Net wor k Wor ki

ng G oup

Request for Comments: 1056
bsol etes: RFC 993

PCMVAI

1. Status

L: A D stributed Mail System for Persona

Tabl e of Contents

of this Docunent

2. Introduction
3. Repository architecture

3. 1.

—~+ O

6. Typical

7. Acu

NOT OO ARRARRRRRD

7.2.
7. 3.

Managenent of user nmail state
Reposi tory-to- RFC-822 nane transl ation

i cati on between repository and client: DVSP

DVSP commands
DVBP responses
DVSP sessi ons
General operations
User operations
Client operations
Mai | box operations
Addr ess operations
Subscri ption operations
Message operations
Architecture
Multiple clients
Synchr oni zati on
Batch operation versus interactive operati
Message summari es
interactive-style client-repository inter

rent Pcrail inplenmentation

| BM PC client code
UNI X client code
Repository code

. DMBP Protocol Specification

8. Concl usi ons
|
|
|

. Operations by nanme
1. Responses by nunber

1. Status of

This RFC i

this Menp

M
J

Comput ers

on

action

Lanbert
MT
une 1988

OO ~NUITADNPE

NNRRRRRRRRRERERE
QOO UITUTA WN -

21
25
25
26
26
26
28
37
38

s a discussion of the Pcmail workstation based distributed

mail system It is identical to the discussion in RFC-993, s
a new, nuch sinpler mail transport protocol is descr
protocol is the result of continued research into ease of

nmpl enentati on and use issues. Distribution of this nmenmo is

transport
protocol i
unlinited.

Lanbert

ave that

i bed. The new

[Page 1]

RFC 1056 PCVAI L June 1988

2.

| nt r oducti on

Pcnail is a distributed nmail system providing mail service to an
arbitrary nunber of users, each of whom owns one or nore

wor kstations. Pcrmail’'s notivation is to provide very flexible nai
service to a wide variety of different workstations, ranging in power
fromsmall, resource-linmted machines like IBM PCs to resource-rich
(where "resources" are primarily processor speed and di sk space)
machi nes like Suns or Mcrovaxes. |t attenpts to provide limted
service to resource-limted workstations while still providing ful
service to resource-rich machines. It is intended to work well with
machi nes only infrequently connected to a network as well as machi nes
permanently connected to a network. It is also designed to offer

di skl ess workstations full nmail service.

The systemis divided into two halves. The first consists of a
single entity called the "repository". The repository is a storage
center for incoming nmail. Ml for a Pcnmail user can arrive
externally fromthe Internet or internally fromother repository
users. The repository also nmaintains a stable copy of each user’s
mail state (this will hereafter be referred to as the user’s "gl oba
mail state"). The repository is therefore typically a conputer with
a | arge anount of disk storage.

The second half of Pcmail consists of one or nore "clients". Each
Pcrmai | user may have an arbitrary nunber of clients, typically

singl e-user workstations. The clients provide a user with a friendly
nmeans of accessing the user’s global mail state over a network. In
order to make the interaction between the repository and a user’s
clients nore efficient, each client maintains a |ocal copy of its
user’'s global nmail state, called the "local nail state". It is
assuned that clients, possibly being small personal conputers, may
not always have access to a network (and therefore to the gl obal mail
state in the repository). This nmeans that the |ocal and gl obal rmail
states may not be identical all the time, making synchronization
between | ocal and gl obal mail states necessary.

Clients conmunicate with the repository via the Distributed Mi
System Protocol (DVBP); the specification for this protocol appears
in appendi x A. The repository is therefore a DVSP server in addition
to a mail end-site and storage facility. DMSP provides a conplete
set of mail manipul ati on operations ("send a nessage", "delete a
nmessage", "print a nessage", etc.). DVMSP also provides special
operations to allow easy synchroni zati on between a user’s gl obal nai
state and his clients’ local nail states. Particular attention has
been paid to the way in which DMSP operations act on a user’s nmnai
state. Al DVBP operations are failure-atomc (that is, they are
guar anteed either to succeed conpletely, or |eave the user’s nai

Lanmber t [Page 2]

RFC 1056 PCVAI L June 1988

state unchanged). A client can be abruptly disconnected fromthe
repository w thout |eaving inconsistent or damaged mail states.

Pcnail’s design has been directed by the characteristics of currently
avai | abl e workstations. Sone workstations are fairly portable, and
can be packed up and noved in the back seat of an autonobbile. A few
are truly portabl e--about the size of a briefcase--and battery-
powered. Sone workstations have constant access to a high-speed

| ocal -area network; pcrmail should allow for "on-line" mail delivery
for these machines while at the same tine providing "batch" mai
delivery for other workstations that are not always connected to a
network. Portable and seni -portable workstations tend to be
resource-poor. A typical IBMPC has a small anount (typically |ess
than one negabyte) of nain nmenory and little in the way of mass
storage (floppy-disk drives that can access perhaps 360 kil obytes of
data). Pcmail nust be able to provide machines like this with
adequate mail service wi thout hanpering its perfornance on nore
resource-rich workstations. Finally, all workstati ons have sone
conmon characteristics that Pcmail shoul d take advantage of. For

i nstance, workstations are fairly inexpensive conpared to the various
ti me-shared systens that nost people use for mail service. This
means that people may own nore than one workstation, perhaps putting
a Mcrovax in an office and an I BM PC at hone.

Pcnail’s design reflects the differing characteristics of the various
wor kstations. Since one person can own several workstations, Pcnai
all ows users nmultiple access points to their mail state. Each Pcnai
user can have several client workstations, each of which can access
the user’s mail by communicating with the repository over a network.
The clients all maintain |ocal copies of the user’s global nai

state, and synchroni ze the I ocal and gl obal states using DVSP.

It is also possible that some workstations will only infrequently be
connected to a network (and thus be able to conmunicate with the
repository). The Pcmail design therefore allows two nodes of

comuni cati on between repository and client. "lInteractive node" is
used when the client is always connected to the network. Any changes
tothe client’s local nail state are i mediately al so nade to the
repository’s global mail state, and any incomng mail is inmediately
transnitted fromrepository to client. "Batch node" is used by
clients that have infrequent access to the repository. Users

mani pul ate the client’s local nmail state, queueing the changes
locally. When the client is next connected to the repository, the
changes are executed, and the client’s local mail state is
synchroni zed with the repository’s global mail state.

Finally, the Pcmail design mnimzes the effect of using a resource-
poor workstation as a client. Mil nessages are split into two

Lanmber t [Page 3]

RFC 1056 PCVAI L June 1988

parts: a "descriptor" and a "body". The descriptor is a capsule
nmessage sunmary whose length (typically about 100 bytes) is

i ndependent of the actual nessage |l ength. The body is the actual
nmessage text, including an RFC-822 standard nessage header. Wile
the client may not have enough storage to hold a conplete set of
nmessages, it can usually hold a conplete set of descriptors, thus
providing the user with at |least a summary of his mail state. For
clients with extrenely limted resources, Pcrail allows the storage
of partial sets of descriptors. Although this nmeans the user does
not have a conplete local mail state, he can at |east | ook at
sumari es of some nessages. In the cases where the client cannot

i medi ately store nmessage bodies, it can always pull themover from
the repository as storage becones avail abl e.

The remai nder of this docunment is broken up into sections discussing
the foll ow ng:

- The repository architecture
- DVMSP, its operations, and notivation for its design
- The client architecture

- A typical DMSP session between the repository and a
client

- The current Pcnail inplenmentation
- Appendi ces describing the DVSP protocol in detail
3. Repository architecture

A typical machi ne running repository code has a relatively powerful
processor and a |large anount of disk storage. It nust also be a

per manent network site, for two reasons. First, clients comunicate
with the repository over a network, and rely on the repository’s
bei ng available at any tine. Second, people sending nail to
repository users rely on the repository’s being available to receive
mai |l at any tine.

The repository nust perform several tasks. First, and nost
inportantly, the repository nmust efficiently nmanage a potentially

| arge nunber of users and their mail states. Ml nust be reliably
stored in a manner that makes it easy for nultiple clients to access
the global mail state and synchronize their local mail states with

the global state. Since a large category of electronic nail is
represented by bulletin boards (bboards), the repository should
efficiently manage bboard mail, using a mninmum of storage to store

Lanbert [Page 4]

RFC 1056 PCVAI L June 1988

bboard nmessages in a nanner that still allows any user subscribing to
the bboard to read the mail. Second, the repository nust be able to
comuni cate efficiently with its clients. The protocol used to
comuni cat e between repository and client nmust be reliable and nust
provi de operations that (1) allow typical nail manipulation, and (2)
support Pcrmail’s distributed nature by allow ng efficient
synchroni zati on between | ocal and global mail states. Third, the
repository nust be able to process mail from sources outside the
repository’s own user comunity (a prinmary outside source is the
Internet). Internet mail will arrive with a NIC RFC-822 standard
nmessage header; the recipient names in the nessage nust be properly
translated fromthe RFC- 822 nanespace into the repository’s
namespace.

3.1. Managenent of user mail state

Pcnail divides the world into a conmunity of users. Each user is
associated with a user object. A user object consists of a unique
nane, a password (which the user’s clients use to authenticate
thensel ves to the repository before mani pul ating a gl obal nai

state), a list of "client objects" describing those clients bel ongi ng
to the user, a list of "subscription objects"”, and a list of "mail box
obj ects"

A client object consists of a unique nanme and a status. A user has
one client object for every client he owns; a client cannot

conmuni cate with the repository unless it has a correspondi ng client
object in a user’s client list. Cient objects therefore serve as a
nmeans of identifying valid clients to the repository. Cient objects
also allow the repository to nmanage | ocal and global mail state
synchroni zation; the repository associates with every client an
"update list" of nmessage state changes which have occurred since the
client’s last synchronization

Aclient’s status is either "active" or "inactive". The repository
defines inactive clients as those clients which have not connected to
the repository within a set tine period (one week in the current
repository inplenmentation). Wen a previously-inactive client does
connect to the repository, the repository notifies the client that it
has been inactive for some tinme and should "reset" itself. Resetting
a client has the effect of placing every nessage in every mail box
onto the client’s update list. This allows the client to get a fresh
global mail state fromthe repository when it next synchronizes (see
synchroni zati on discussion following). The reset is perfornmed on the
assunption that enough gl obal state changes occur in a week that the
client would spend too much tinme perform ng an ordinary |ocal state-
gl obal state synchronization

Lanbert [Page 5]

RFC 1056 PCVAI L June 1988

Messages are stored in nail boxes. Users can have any nunber of

mai | boxes, which serve both to store and to categorize nessages. A
mai | box obj ect both names a nuil box and describes its contents.
Mai | boxes are identified by a unique name; their contents are
described by three numeric values. The first is the total nunber of
nmessages in the mail box, the second is the total nunber of unseen
nmessages (nessages that have never been seen by the user via any
client) in the nmailbox, and the third is the mail box’s next avail able
nmessage unique identifier (UD). The above information is stored in
the mail box object to allow clients to get a sunmary of a nmil box’'s
contents without having to read all the nessages wthin the mail box.

Sone mai | boxes are special, in that other users may read the nessages
stored in them These nmil boxes are called "bulletin board

mai | boxes" or "bboard mail boxes". The repository uses bboard
mai | boxes to store bboard mail. Bboard nmil boxes differ from
ordinary mail boxes in the foll ow ng ways:

- Their nanmes are unique across the entire repository;
for instance, only one bboard mail box naned "sf-I|overs”
may exist in the entire repository community. This
does not preclude other users from having an ordinary
mai | box nanmed "sf-I|overs”

- Subscribers to the bboard are granted read-only access
to the nessages in the bboard nail box. The bboard
mai | box’ s owner (typically the system nanager) has
read/ updat e/ del et e access to the mail box.

A bboard subscriber keeps track of the nessages he has | ooked at via
a subscription object. The subscription object contains the nane of
the bboard, its owner (the user who owns the bboard mail box where al
t he nessages are stored), and the U D of the first message not yet
seen by the subscri ber

Users gain read-only access to a bboard by creating a subscription to
it; they lose that access when they delete that subscription. A list
of all bboard nuil boxes avail able for subscription can be transnitted
to the user on denmand.

Associated with each mail box are any nunber of nessage objects. Each
nmessage is broken into two parts--a "descriptor”, which contains a
summary of useful information about the nessage, and a "body", which
is the message text itself, including its NIC RFC-822 nessage header
Each nmessage is assignhed a nonotonically increasing U D based on the
owni ng mai | box’ s next available U D Each mail box has its own set of
U Ds which, together with the nail box name and user name, uniquely
identify the message within the repository. A descriptor holds the

Lanmber t [Page 6]

RFC 1056 PCVAI L June 1988

following informati on: the nessage U D, the nessage size in bytes
and lines, four "useful" message header fields (the "date:", "to:",
"from", and "subject:" fields), and sixteen flags. These flags are
gi ven identifying nunbers O through 15. Eight of these flags have
wel | -known definitions and are reserved for the repository’s use.
The eight repository-defined flags nmark:

- (#0) whether the nessage has been del et ed

- (#1) whether it has been seen

- (#2) whether it has been forwarded to the user
- (#3) whether it has been forwarded by the user

- (#4) whether it has been filed (witten to a text file
out side the repository)

- (#5) whether it has been printed (locally or renotely)
- (#6) whether it has been replied to

- (#7) whether it has been copied to another mail box

The remai ning eight flags are availble for user use. Descriptors
serve as an efficient neans for clients to get nmessage information
wi t hout having to waste tinme retrieving the entire nessage fromthe
repository.

3.2. Repository-to-RFC 822 nane transl ation

"Addr ess objects" provide the repository with a neans for translating
the RFC-822-style nmail addresses in Internet nessages into repository
nanes. The repository provides its own nanespace for nessage
identification. Any nessage is uniquely identified by the triple
(user-nane, mail box-nanme, nessage-U D). Any nailbox is uniquely
identified by the pair (user-nane, mailbox-name). In order to

transl ate between RFC-822-style nail addresses and repository nanes,
the repository maintains a |ist of address objects. Each address
object is an association between an RFC- 822-styl e address and a
(user-nane, mail box-nanme) pair. Wen mail arrives fromthe Internet,
the repository can use the address object list to translate the
recipients into (user-nanme, nuil box-nane) pairs and route the nessage
correctly.

Lanmber t [Page 7]

RFC 1056 PCVAI L June 1988

4. Conmuni cation between repository and client: DVBP

The Distributed Mail System Protocol (DWVSP) defines and nmani pul at es

the objects nmentioned in the previous section. It has been designed
to work with Pcmail’s singlerepository/nultiple-client nodel of the
world. In addition to providing typical mail manipul ation functions,

DMSP provi des functions that allow easy synchronization of gl obal and
| ocal nmil states.

DMSP has been conpletely re-specified in this version of Pcrmail
Formerly, DMSP was inplenmented on top of the USP renote-procedure-
call protocol. Since this protocol is not fully unofficially
specified (let alone officially specified) anywhere, inplenentation
of USP is difficult for sites wishing to inplenment Pcrail on
different systens. W therefore have decided to conpletely redesign
DMSP. It is now a very sinple request/response protocol simlar to
SMIP or NNTP, running directly on a reliable bidirectional byte-
stream such as TCP. The TCP contact port for DMSP has been

desi gnated 158. Requests and responses consist of ASCI| characters;
on octet-based transm ssion streans, each character is transmtted
rightjustified in an octet with the high-order bit cleared to zero.

4.1. DMSP conmmands

DMSP operations consi st of an operation nane, followed by zero or
nore tab or space characters, followed by zero or nore argunents,
each of which is separated fromthe operati on nane and ot her
argunents by one or nore space or tab characters. All operation
requests, as well as all responses, nust be terminated with a
carriage-return plus line-feed (CR-LF) pair. Al operation nanes and
argunments nmust be taken fromthe set of al phanuneric characters plus
the characters dash ("-"), underscore ("_"), and period (".").

DMSP operati on nanes are case-insensitive; they may be transnitted in
any conbi nation of upper and | ower case. DMSP argunents are case-

i nsensitive but case-preserving; in other words a mail box naned
"MarkL" may be referred to by an operation argunment "markl", but will
al ways be stored, and transnmitted in a repository response, as
"MarkL"; furthernore, any attenpt to create a new nail box "MaRKL"
will not be permitted.

Each operation argunment may contain no nore than 64 characters. No
singl e request or response line may contain nore than 512 characters,
including all white space and the term nating CR-LF.

4.2. DMSP responses

A DVSP operation always results in a response, which may be foll owed

Lanmber t [Page 8]

RFC 1056 PCVAI L June 1988

inturn by a list, consisting of zero or nore |lines of CR-LF-
termnated text term nated by a single period (".") plus a CRLF. A
response is always prefaced by a three-digit reply code; possible
text follow ng the response code can be in any format. The response
code is sufficient to deterni ne whether the operation succeeded or
failed, or whether nore text is forthconing follow ng the response
line. Any text follow ng the response code is for information only,
and need not follow any particular format.

The first digit indicates whether the operation succeeded or failed,
and if it succeeded whether or not nore text should be presented to
the repository. Definitions of the first digit are simlar to those
of NNTP:

1XX I nformati ve nmessage
2XX Operation conpl eted successfully
3XX Operation conpl eted successfully, present

remai nder of text and terminate with a single
period plus CR-LF pair.

4XX Operation was perforned and failed for sone
reason.
5XX Operation could not be perfornmed because of a

protocol syntax error of sone sort.

The second digit indicates the type of object referred to by the

response.
X0X M scel | aneous

X1X User operation
X2X Client operation
X3X Mai | box operation

Lanbert [Page 9]

RFC 1056 PCVAI L June 1988

X4X Subscri ption operation
X5X Message operation
X6X Addr ess operation

In an error response, the final digit can describe the type of error
that occurred. Qherwise, it sinply gives a response a unique
nunber. Nunbers O through 3 are significant in 4XX-class (error)
responses only. Nunbers 0-9 in all other responses serve only to
differentiate responses dealing with the sanme type of object under
di fferent circunstances.

4X0 Operation fail ed because object exists

4X1 Qperation fail ed because obj ect does not exist

4X2 Qperation fail ed because of an internal error

4X3 Operation failed because of an argunent syntax
error

Each operation generates one of a set of responses, detailed in the
protocol specification appendi x.

List termination is determned solely by a well-known character
sequence (CR-LF, period, CR-LF). Since application data could well
accidentally contain this term nati on sequence, the transmtting
protocol nodul e nust nodify application data so it contains no

term nati on sequences. The receiving nmodule nust sinilarly undo the
nodi fication before presenting the data to the application at the
receiving end.

The transmitting nmodul e nodifies application data as follows: If a
line of application data begins with a period, that period is
duplicated. Since the term nation sequence is a single period,

acci dental term nation has now been prevented.

The receiving protocol checks incomng all incomng data lines for a

| eading period. A single periodis alist termnator; a period
foll owed by other text is renpved before being presented to the

Lanmber t [Page 10]

RFC 1056 PCVAI L June 1988

receiving application.
4.3. DMSP sessions

A DVSP session proceeds as follows: a client begins the session with
the repository by opening a connection to the repository’s machi ne.
The client then authenticates both itself and its user to the
repository with a "login" operation. |If the authentication is
successful, the user perforns an arbitrary nunber of DMSP operations
before ending the session with a "l ogout" operation, at which tinme
the connection is closed by the repository.

Because DMSP can nani pulate a pair of mail states (local and gl obal)
at once, it is extrenely inportant that all DMSP operations are
failure-atomc. Failure of any DVMSP operation nust | eave both states
in a consistent, known state. For this reason, a DVMSP operation is
defined to have failed unless an explicit acknow edgenent is received
by the operation initiator. This acknow edgenent consists of a
response code possibly followed by infornation, as described above.

Following is a general discussion of all the DVSP operations. The
operations are broken down by type: general operations, user
operations, client operations, nailbox operations, address
operations, subscription operations, and nessage operations.

Det ai | ed operation specifications appear at the end of this docunent.

4.4. Ceneral operations

The first group of DVMSP operations perform general functions that
operate on no one particular class of object. DWMSP has three genera
operations which provide the follow ng services:

In order to prevent protocol version skew between clients and the
repository, DMSP provides a "send-version" operation. The client
supplies its DVSP version nunber as an argument; the operation
succeeds if the supplied version nunber matches the repository’ s DVBP
version nunber. It fails if the two version nunbers do not match

The version nunber is a natural nunber |ike "100", "101", "200". The
"send- versi on" operation should be the first that a client sends to
the repository, since no other operation nmay work correctly if the
client and repository are using different versions of DVSP

Users can send mail to other users via the "send-nessage" operation
The nmessage nmust have an Internet-style header as defined by NIC
RFC-822. The repository takes the message and distributes it to the
mai | boxes specified by the nessage header’s destination fields. |If
one or nore of the mail boxes exists outside the repository’ s user
comunity, the repository is responsible for handing the nessage to a

Lanmber t [Page 11]

RFC 1056 PCVAI L June 1988

| ocal SMIP server. The nessage envel ope is generated by the
repository fromthe nessage contents since it nay be difficult for
some clients to perform envel ope-generation functions such as address
verification and syntax checking.

A success acknow edgenent is sent fromthe repository only if (1) the
entire nessage was successfully transmtted fromclient to
repository, and (2) the nessage header was properly formatted. Once
the repository has successfully received the nessage fromthe client,
any subsequent errors in queueing or delivery nust be noted via
return mail to the user.

The | ast general operation is the "hel p" operation. The repository
responds to "hel p" by printing an acknow edgenent followed by a |ist
of supported comuands, term nated with a period plus CR-LF. The
information is intended for display and can be in any fornmat as |ong
as the individual lines of text returned by the repository are CR-
LF-term nat ed.

4.5. User operations

The next series of DVSP operations nmani pul ates user objects. The
nost comon of these operations are "login" and "logout". A client
must performa | ogin operation before being able to access a user’s
mail state. A DMSP |ogin operation takes five argunents: (1) the
user’s name, (2) the user’'s password, (3) the nane of the client
performng the login, (4) aflag set to 1 if the repository should
create a client object for the client if one does not exist (0 else),
and (5) a flag set to 1 if the client wi shes to operate in "batch
nmode" and O if the client wishes to operate in "interactive" node.
The last flag value allows the repository to tune internal paraneters
for either node of operation.

The repository can make one of three responses. First, it can make a
success response, indicating successful authentication. Second, it
can make one of several failure responses, indicating failed
authentication. Finally, it can nake a special response indicating
t hat authentication was successful, but that the client has not been
used in over a week. This |ast response serves as a hint that the
client should consider erasing its local mail state and pulling over
a conpl ete version of the repository’s nail state. This is done on
the assunption that so many nail state changes have been made in a
week that it would be inefficient to performa nornal
synchroni zati on

Wien a client has conpleted a session with the repository, it

performs a | ogout operation. This allows the repository to perform
any necessary cl eanup before closing the network connecti on.

Lanmber t [Page 12]

RFC 1056 PCVAI L June 1988

A user can change his password via the "set-password" operation. The
operation works nuch the sane as the UNI X change- password operation
taking as argunments the user’s current password and a desired new
password. |If the current password given matches the user’s current
password, the user’s current password is changed to the new password
gi ven. Because encryption can be difficult to performon sone
resource-poor clients, passwords are transnitted in clear text.
Clearly this is not an acceptable | ong-term solution, and
alternatives are wel coned.

4.6. Client operations

DVMSP provi des four operations to manipulate client objects. The
first, "list-clients", tells the repository to send the user’s client
list to the requesting client. The list is a series of lines, one
per client, containing the client’s name, followed by whitespace,
followed by a status string. The status is either "inactive" or
"active". As with all text responses, the list is terninated with a
period plus CR-LF.

The "create-client" operation allows a user to add a client object to
his Iist of client objects. Al though the |ogin operation duplicates
this functionality via the "create-this- client?" flag, the create-
client operation is a useful neans of creating a nunber of new client
obj ects while logged into the repository via an existing client. The
create-client operation requires as an argunent the nane of the
client to create.

The "delete-client” operation renoves an existing client object from
a user’s client list. The client being renoved cannot be in use by
anyone at the tine. Delete-client also requires as an argunent the
nane of the client to delete.

The last client operation, "reset-client", causes the repository to
pl ace all of the nessages in all nail boxes onto the naned client’s
update list. Wen a client next synchronizes with the repository, it
will end up receiving a list of all descriptors when it requests a
list of changed nessage descriptors for a particular nailbox. This
is useful for two reasons. First, a client’'s local mail state could
easily becone |ost or damaged, especially if it is stored on a floppy
disk. Second, if a client has been marked as inactive by the
repository, the reset-client operation provides a fast way of
resynchroni zing with the repository, assumng that so many

di fferences exist between the local and global mail states that a
normal synchroni zati on woul d take far too nuch tine.

Lanmber t [Page 13]

RFC 1056 PCVAI L June 1988

4.7. Muail box operations

DMSP supports seven operations that nanipul ate nail box objects.
First, "list-nailboxes" has the repository send to the requesting
client informati on on each mmil box. The repository transnits one
line of information per mailbox, ternmnating the list with a period
plus CR-LF. Each line contains, in order and separated by

whi t espace, the mmil box nane, "next available U D', total nessage
count, and unseen nessage count. This operation is useful in
synchroni zing | ocal and global mail states, since it allows a client
to conpare the user’s global mailbox list with a client’s |ocal
mai | box list. The Iist of nail boxes al so provides a quick sunmary of
each mail box’s contents w thout having the contents present.

The "create-nuil box" has the repository create a new mail box and
attach it to the user’s list of mmilboxes. It takes as an argument
the name of the mailbox to create.

"Del et e-mai | box" renoves a mmil box fromthe user’s list of nmail boxes.
Al'l nessages within the mail box are al so del eted and pernmanently
renoved fromthe system Any address objects binding the mail box
nane to RFC-822-style mail box addresses are also removed fromthe
system Del ete-nmil box takes as an argunent the nanme of the mail box
to delete

" Creat e- bboard-nai | box" allows a user to create a bboard mail box.

The nanme given as an argunent nust be unique across the entire
repository user community. Once the bboard mail box has been created,
ot her users nmay subscribe to it, using subscription objects to keep
track of which nessages they have read on which bboard mail boxes.

"Del et e- bboar d- nmai | box" all ows a bboard’ s owner to delete a bboard
mai | box. Subscribers who attenpt to read froma bboard mail box after
it has been deleted are told that the bboard no | onger exists.

Again, the operation’ s argunent is the nane of the bboard mail box to
del et e.

"Reset - mai | box" causes the repository to place all of the messages in
a named nail box onto the current client’s update list. Wen the
client next requests a list of changed nessage descriptors for this
mai | box, it will receive a list of all nmessage descriptors in the
mai | box. This operation is nmerely a nore specific version of the
reset-client operation (which allows the client to pull over a

conpl ete copy of the user’s global nail state). |Its primary use is
for mail boxes whose contents have accidentally been destroyed
| ocal ly.

Finally, DMSP has an "expunge-mail box" operation. Any nessage can be

Lanbert [Page 14]

RFC 1056 PCVAI L June 1988

del eted and "undel eted"” at will, since this sinply changes the val ue
of a flag attached to the nessage. Deletions are nade pernanent by
perforni ng an expunge-nmail box operation. The expunge operation
causes the repository to | ook through a named nail box, renoving from
the system any nessages narked "del eted". Expunge-nuail box takes as
an argunent the nane of the mail box to expunge.

4.8. Address operations

DMSP provi des three operations that allow users to nani pul ate address
objects. First, the "list-address" operation returns a |ist of
address objects associated with a particular mailbox. Each address
is transnitted on a separate line termnated by a CRLF;, the list is
termnated with a period plus CR-LF.

The "create-address" operation adds a new address object that
associ ates a (user-name, nmil box-nane) pair with a given RFC 822-
style muail box address. It takes as argunents the nail box nane and
t he address nane.

Finally, the "del ete-address" operation destroys the address object
bi nding the given RFC-822-style mail address and the given (user-
nane, nail box-nane) pair. Argunents are the address to delete and
the mail box it belongs to.

4.9. Subscription operations
DVMSP provi des five subscription operations. The first, "list-
subscriptions", gives the user a list of the bboards he is currently
subscribing to. The list consists of one line of information per
subscription. Each entry contains the following information, in
order:
- The bulletin board s nane

- The U D of the first nmessage the subscriber has not yet
seen

- The nunber of nessages the subscriber has not yet seen
- The highest nessage U D in the bulletin board

"Li st-avail abl e-subscri ptions" gives the user a list of all bboards
he can subscribe to. The list consists of bboard nanmes, one per

line, termnated by a period plus CR-LF. "Createsubscription" adds a
subscription to the user’s list of subscriptions; it takes as an
argunent the nanme of the bboard to subscribe to. "Delete-

subscri ption" renoves a subscription fromthe list, and takes as an

Lanmber t [Page 15]

RFC 1056 PCVAI L June 1988

argunent the nanme of the subscription to remobve. Note that this does
not del ete the associ ated bboard mail box (obviously only the bboard’ s
owner can do that). It nerely renoves the user fromthe list of the
bboard’s subscribers. Finally DVSP allows the user to tell the
repository which nessages in a bboard he has seen. Every
subscription object contains the UD of the first nessage the user
has not yet seen; the "reset-subscription" operation updates that
nunber, insuring that the user sees a given bboard nessage only once.
Reset - subscription takes as argunents the name of the subscription
and the new U D val ue.

4.10. Message operations

The nmost commonl y- mani pul ated Pcmail objects are nessages; DVSP
therefore provides special nmessage operations to allow efficient
synchroni zation, as well as a set of operations to perform standard
nmessage- nani pul ati on functions.

A user nmay request a series of descriptors with the "fetch-
descriptors" operation. The series is identified by a pair of
nmessage Ul Ds, representing the | ower and upper bounds of the |ist.
Since UDs are defined to be nonotonically increasing nunbers, a pair
of UDs is sufficient to conpletely identify the series of
descriptors. |If the |lower bound U D does not exist, the repository
starts the series with the first nessage with U D greater than the

| ower bound. Simlarly, if the upper bound does not exist, the
repository ends the series with the Iast nmessage with U D |less than
the upper bound. |If certain UDs within the series no |onger exist,
the repository obviously does not send them The repository returns
the descriptors in alist with the follow ng format:

If a descriptor has been expunged, the repository transmts two
consecutive lines of information: the word "expunged" on one line,
foll owed by the nessage U D on the next line. "Expunged"
notifications are only transmitted in response to a "fetch-changed-
descriptors" comand; they are an indication to the client that
sonmeone el se has expunged the mail box and that the client should
renove the |ocal copy of the expunged nessage.

If a descriptor has not been expunged, it is presented as six
consecutive lines of information: the word "descriptor” on the first
line, followed by a second |ine containing the nmessage U D, flag
states (see exanples follow ng), nessage |length in bytes, and nessage
length in lines, followed by four lines containing in order the
nmessage "from" field, "to:" field, "date:" field, and "subject:"
field. The entire list of descriptors is term nated by a period plus
CR-LF; individual descriptors are not specially termnminated since the
first line ("expunged" or "descriptor”) of a list entry determ nes

Lanmber t [Page 16]

RFC 1056 PCVAI L June 1988

the exact length of the entry (two lines or six lines).

The "fetch-changed-descriptors” operation is intended for use during
state synchroni zation. \Whenever a descriptor changes state (one of
its flags is cleared, for exanple), the repository notes those
clients which have not yet recorded the change locally. Fetch-
changed- descriptors has the repository send to the client a maxi mum
of the first N descriptors which have changed since the client’s | ast
synchroni zation, where Nis a nunber sent by the client. The |ist
sent begins with the descriptor with lowest UD. Note that the Iist
of descriptors is only guaranteed to be nonotonically increasing for
a given call to "fetch-changed-descriptors”; nmessages with | ower U Ds
may be changed by other clients in between calls to "fetch-
changeddescri ptors". "Fetch-changed-descriptors" takes two
argunments: the nane of the mailbox to search, and the maxi mum nunber
of descriptors for the repository to return.

Once the changed descriptors have been | ooked at, a user will want to
informthe repository that the current client has recorded the change
locally. The "reset-descriptors"” command causes the repository to
mark as "recorded by current client" a given series of descriptors.
The series is identified by a low U D and a high UD. UDs within
the series that no |longer exist are ignored. Argunents are: mail box
nane, low U D in range, and high U D in range

Whol e nessages are transnitted fromrepository to user with the
"fetch-nmessage" operation. The separation of "fetchdescriptors" and
"fetch-nmessage" operations allows clients with snmall anounts of disk
storage to obtain a small nessage sumary (via "fetch-descriptors" or
"fetch-changed-descriptors") w thout having to pull over the entire
message. Argunents are mail box nane, followed by nessage U D.

Frequently, a nmessage nmay be too large for sone clients to store
locally. Users can still look at the nmessage contents via the
"print-nmessage” operation. This operation has the repository send a
copy of the nessage to a named printer. The printer name need only
have nmeaning to the particular repository inplenmentation; DVSP
transmts the name only as a neans of identification. Argunents are:
mai | box nanme, followed by nessage U D, followed by printer
identification.

Copyi ng of one nmessage into another mail box is acconplished via the
"copy- nessage" operation. A descriptor list of |ength one,
containing a descriptor for the copied nessage, is returned if the
copy operation is successful. This descriptor is required because
the copied nessage acquires a U D different fromthe origi nal
nmessage. The client cannot be expected to know which U D has been
assi gned the copy, hence the repository’s sending a descriptor

Lanmber t [Page 17]

RFC 1056 PCVAI L June 1988

5.

1.

containing the U D Argunents to copy-nessage are: source mail box
nane, target mail box name, and source nmessage U D

Each nmessage has associated with it sixteen flags, as described
earlier. These flags can be set and cleared using the "set-nmessage-
flag" operation. The first eight flags have special nmeaning to the
repository as descri bed above; the remaining eight are for user use.
Set - nessage-flag takes four argunents: mail box name, nessage U D
flag nunber (0 through 15), and desired flag state (0 or 1).

Client Architecture

Clients can be any of a nunber of different workstations; Pcnail’s
architecture nust therefore take into account the range of
characteristics of these workstations. First, nost workstations are
much nore affordable than the | arge conputers currently used for mai
service. It is therefore possible that a user may well have nore
than one. Second, sonme workstations are portable and they are not
expected to be constantly tied into a network. Finally, many of the
smal | er workstations resource-poor, so they are not expected to be
able to store a significant amount of state information locally. The
foll owi ng subsections describe the particular parts of Pcrmail’'s
client architecture that address these different characteristics.

Multiple clients

The fact that Pcrmail users may own nore than one workstation forns
the rationale for the nultiple client nodel that Pcrmail uses. A
Pcnail user may have one client at home, another at an office, and
maybe even a third portable client. Each client nmmintains a separate
copy of the user’s nmail state, hence Pcmail’s distributed nature.
The notion of separate clients allows Pcrmail users to access nai
state fromseveral different |ocations. Pcmail places no
restrictions on a user’s ability to conmunicate with the repository
fromseveral clients at the sane tine. Instead, the decision to
all ow several clients concurrent access to a user’s nail state is
made by the repository inplenentation

5.2. Synchronization

Sonme workstations tend to be small and fairly portable; the

i kelihood of their always being connected to a network is relatively
small. This is another reason for each client’s maintaining a |ocal
copy of a user’s mail state. The user can then nmanipulate the | oca
mai |l state while not connected to the network (and the repository).
This i mediately brings up the problem of synchronization between

| ocal and global mail states. The repository is continually in a
position to receive global nail state updates, either in the form of

Lanmber t [Page 18]

RFC 1056 PCVAI L June 1988

incoming mail, or in the formof changes fromother clients. A
client that is not always connected to the net cannot imediately
receive the global changes. 1In addition, the client’s user can nmake

his own changes on the local mail state.

Pcnail’'s architecture all ows fast synchroni zati on between client

|l ocal nail states and the repository’s global mail state. Each
client isidentified in the repository by a client object attached to
the user. This object fornms the basis for synchroni zati on between

| ocal and global mail states. Sone of the | ess commpn state changes
i nclude the addi ng and del eti ng of user numil boxes and the addi ng and
del eting of address objects. Synchronization of these changes is
perfornmed via DVSP |ist operations, which allow clients to conpare
their local versions of nailbox and address object lists with the
repository’s global version and nmake any appropriate changes. The
maj ority of possible changes to a user’s mail state are in the form
of changed descriptors. Since nbpst users will have a | arge nunber of
nmessages, and nessage states will change relatively often, special
attention needs to be paid to nmessage synchroni zation

An existing descriptor can be changed in one of three ways: first,
one of its sixteen flag values can be changed (this enconpasses the
user’s readi ng an unseen nessage, deleting a nessage, printing a
nmessage, etc). Second, a descriptor can be created, either by the
delivery of a new nessage or by the copying of a nmessage from one
mai | box to another. Finally, a descriptor can be destroyed, via an
"expunge- mai | box" operation.

In the above cases, synchronization is required between the
repository and every client that has not previously noted the change.
To keep track of which clients have noticed a global mail state
change and changed their |ocal states accordingly, each mail box has
associated with it a list of active clients. Each client has a
(potentially enpty) "update list" of nmessages whi ch have changed
since that client |last synchronized.

When a client connects to the repository, it executes a DVMSP "fetch-
changed- descri ptors" operation. This causes the repository to return
a list of all descriptors on that client’s update list. Wen the
client receives the changed descriptors, it may do one of two things:
if the descriptor is marked "expunged", it can renove the
correspondi ng nessage fromthe local nmailbox. |If the descriptor is
not expunged, the client can store the descriptor, thus updating the
local nail state. After a changed descriptor has been recorded, the
client uses the DMSP "reset-descriptors" operation to renove
descriptors fromits update list. Those descriptors will now not be
sent to the client unless (1) it is explicitly requested via a
"fetch-descriptors" operation, or (2) it changes again.

Lanmber t [Page 19]

RFC 1056 PCVAI L June 1988

In this manner, a client can run through its user’s nail boxes,
getting all changes, incorporating theminto the local nail state,
and mar ki ng the changes as recorded.

5.3. Batch operation versus interactive operation

Because of the portable nature of some workstations, they may not

al ways be connected to a network (and able to conmunicate with the
repository). Since each client maintains a local mail state, Pcnail
users can nani pulate the local state while not connected to the
repository. This is known as "batch" operation, since all changes
are recorded by the client and nade to the repository’s global state
in a batch, when the client next connects to the repository.

I nteractive operation occurs when a client is always connected to the
repository. In interactive node, changes nade to the |ocal mail
state are also inmediately made to the gl obal state via DVSP

operati ons.

In batch nbde, interaction between client and repository takes the
following form the client connects to the repository and sends over
all the changes nade by the user to the local nail state. The
repository changes its global nmail state accordingly. Wen al
changes have been processed, the client begins synchronization; this
i ncorporates newy-arrived nail, as well as mmil state changes by
other clients, into the |ocal state.

In interactive node, since |local changes are i medi ately propagated
to the repository, the first part of batch-type operation is
elimnated. The synchronization process al so changes; although one
synchroni zation is required when the client first opens a connection
to the repository, subsequent synchronizations can be perforned
either at the user’s request or automatically every so often by the
client.

5.4. Message summari es

Smal | er workstations nay have little in the way of di sk storage.
Clients running on these workstati ons nay never have enough room for
a conplete local copy of a user’'s global mail state. This neans that
Pcnail’s client architecture nmust allow user’s to obtain a clear
picture of their mail state without having all their nessages
present.

Descriptors provide nessage information without taking up |arge
anounts of storage. Each descriptor contains a sunmary of

i nformati on on a nessage. This information includes the nessage U D
its length in bytes and lines, its status (contained in the eight
system defined and ei ght user-defined flags), and portions of its

Lanmber t [Page 20]

RFC 1056 PCVAI L June 1988

RFC- 822 header (the "from™", "to:", "date:" and "subject:" fields).
Al'l of this information can be encoded in a small (around 100 bytes)
data structure whose length is independent of the size of the nessage
it describes.

Most clients should be able to store a conplete list of nmessage
descriptors with little problem This allows a user to get a
conplete picture of his mail state wi thout having all his nessages
present locally. |[If a client has extrenely limted anmounts of disk
storage, it is also possible to get a subset of the descriptors from
the repository. Short messages can reside on the client, along with
the descriptors, and | ong nessages can either be printed via the DVBP
print-nmessage operation, or specially pulled over via the fetch-
nmessage operation

6. Typical interactive-style client-repository interaction

The foll owi ng exanpl e describes a typical comunication session
between the repository and a client mail reader. The client is one

of three belonging to user "Fred". |Its nanme is "office-client”, and
since Fred has used the client within the last week, it is marked as
"active". Fred has two nail boxes: "fred" is where all of his
current mail is stored; "archive" is where nmessages of |asting

i nportance are kept. The exanple will run through a sinple
synchroni zati on operation. Typically, the synchronization will be
perforned by a mail reader as part of a "get new nmmil" operation

First Fred’s nmail reader connects to the repository and receives the
foll ow ng banner:

200 Pcnmil repository version 3.0.0 ready

In order to access his global nail state, the mail reader nust
authenticate Fred to the repository; this is done via the DVSP | ogin
operati on:

login fred fred-password office-client 0 O

This tells the repository that Fred is logging in via "office-
client", and that "office-client" is identified by an existing client
object in Fred’s mail state. The first argunment to the login
operation is Fred s repository user name. The second argunent is
Fred’s password. The third argunent is the nane of the client
comuni cating with the repository. The fourth argunent tells the
repository not to create "office-client" even if it cannot find its
client object. The final argunment tells the repository that Fred's
client is not operating in batch node but rather in interactive node.

Lanmber t [Page 21]

RFC 1056 PCVAI L June 1988

Fred' s authentication checks out, so the repository |logs himin.
200 command K

Now that Fred is logged in, the nail reader perfornms an initial
synchroni zation. This process starts with the mail reader’s asking
for an up-to-date list of nail boxes:

list-mail boxes

The repository replies wth:

230 nmmil box list foll ows:
fred 2313 10 1
archive 101 100 O

This tells the mail reader that there are two nmil boxes, "fred" and
"archive". "Fred" has 10 nessages, one of which is unseen. The next
i nconmi ng nmessage will be assigned a UD of 2313. "Archive", on the
ot her hand, has 100 nessages, none of which are unseen. The next
nmessage sent to "archive" will be assigned the UD 101. There are no
new mnai | boxes in the list (if there were, the mail reader would
create them On the other hand, if some nail boxes in the mai

reader’s local list were not in the repository's list, the program
woul d assunme them del eted by another client and delete themlocally
as well).

To synchroni ze, the mail reader need only | ook at each mail box’s
contents to see if (1) any new nail has arrived, or (2) if Fred
changed any nessages on one of his other two clients subsequent to
"office-client" s last connection to the repository.

The mai|l reader asks for any changed descriptors via the "fetch-
changed- descri ptors" operation. It requests at nobst ten changed
descriptors since storage is very linmted on Fred' s workstation.

f et ch- changed- descriptors fred 10

The repository responds with:

250 descriptor list foll ows:
expunged

Lanmber t [Page 22]

RFC 1056 PCVAI L June 1988

2101

expunged

2104

descri ptor

2107 1100011100000010 1400 30
foo@ar. edu (Foo Jones)
fred@TT.LCS. M T. EDU

Wed, 9 Dec 87 10:43:52 EST

A typical subject line

descri ptor

2312 0000000000000000 12232 320
j oe@thena. nmt.edu
fred@TT.LCS. M T. EDU

Thu, 17 Dec 87 18:24:09 PST
Anot her typical subject |ine

I f a descriptor changed because it was expunged, it is transnitted as
two lines: the word "expunged" on one line, followed by the nessage
UDon the next line. |If one of its flags changed state, or it is a
new nessage, it is transmitted as six lines: the word "descriptor" on
one line, followed by a line containing the nessage U D, flags, and
length in bytes and lines, followed by the to, from date, and
subject fields, each on one Iine. The flags are transmtted as a
single string of ones and zeroes, a one if the flag is on and a zero
if the flag is off. Al 16 flags are always transmtted. Flag
zero’s state is the first character in the flag string; flag
fifteen's is the last character in the flag string.

The first two descriptors in the Iist have been expunged, presunmably
by Fred s expunging his mail box on another client. The mail reader
renoves nessages 2101 and 2104 fromits |local copy of mailbox "fred".
The next descriptor in the list is one which Fred marked for deletion
on another client yesterday. The nmail reader nmarks the |l ocal version
of the nessage as deleted. The |last descriptor in the list is a new
one. The nmmil reader adds the descriptor to its local list. Since
all changes to nmil box "fred" have now been recorded locally, the
update list can be reset:

reset-descriptors fred 1 2312
The repository responds with:

200 command OK

indicating that it has renoved from"office-client" s update list al

Lanmber t [Page 23]

RFC 1056 PCVAI L June 1988

nmessages in mailbox "fred" with U Ds between 1 and 2312 inclusive (in
this case just two nessages). "Fred" has now been synchroni zed. The
mai | reader now turns to Fred’ s "archive" nmil box and asks for the
first ten changed descriptors.

f et ch- changed-descri ptors archive 10
The repository responds with:
250 descriptor list foll ows:

The zero-length list tells the mail reader that no descriptors have
been changed in "archive" since its |last synchronization. No new
synchroni zati on needs to be perforned.

Fred’s mail reader is nowready to pull over the new nessage. The
nmessage is 320 lines long; there mght not be sufficient storage on
"office-client" to hold the new nessage. The nmil reader tries
anyway:

fetch-nmessage fred 2312
The repository begins transmtting the nessage:

251 nessage foll ows:

u D 2312

From joe@ar.mt.edu

To: fred@TT.LCS. M T. EDU

Date: Thu, 17 Dec 87 18:24:09 PST
Subj ect: Another typical subject line

Fr ed,

Hal f way through the nessage transm ssion, Fred’ s workstation runs out
of disk space. Because all DMSP operations are defined to be
failure-atom c, the portion of the nessage already transnitted is
destroyed locally and the operation fails. The nail reader inforns
Fred that the nmessage cannot be pulled over because of a | ack of disk
space. The synchronization process is now finished and Fred can
start reading his nail. The new nessage that was too big to fit on
"office-client” will be marked "off line"; Fred can use the nai

Lanbert [Page 24]

RFC 1056 PCVAI L June 1988

reader to either renmpte-print it or delete and expunge ot her nessages
until he has enough space to store the new nessage.

Since Fred is running in interactive node, changes he makes to any

nmessages will imediately be transnmitted i nto DVMSP operations and
sent to the repository. Depending on the nmail reader inplenentation
Fred will either have to execute a "synchronize" conmmand periodically

or the client will synchronize for himautomatically every so often
7. A current Pcrail inplenentation

The followi ng section briefly describes a current Pcnail systemthat
services a snmall community of users. The Pcnmil repository runs
under UNI X on a DEC M crovax-I1 connected to the Internet. The
clients run on I BM PCs, XTs, and ATs, as well as Sun workstations,
M crovaxes, and VAX- 750s.

7.1. IBMPC client code

Client code for the I BM nmachi nes operates only in batch node. Users
make | ocal state changes in a nail reader; the changes are queued
until the user runs a network client program The program connects
to the repository, performs the queued changes, and synchronizes

| ocal and global mail states. The network client programthen

di sconnects fromthe repository.

The IBM PC client code has gone through several revisions since the
first Pcrail RFC was published. Wat was once a fairly prinitive and
cunmber sone system has evolved into a systemthat nmakes excellent use
of the PCs linmted resources and provides a fairly powerful, easy-
to-use nail reader

Users access and nodify their local nail state via a nail reader
written in the Epsilon text editor’s EEL extension | anguage. Users
are given a variety of commands to operate on individual nessages and
mai | boxes, as well as to conmpose outgoing nail

Synchroni zati on and the processing of queued changes is performed by
a separate program which the user runs as desired. The program
takes any actions queued while operating the nail reader, and
converts theminto DVSP operations. Al queued changes are nmade

bef ore any synchroni zation is perfornmed. The program can be invoked
directly fromthe mail reader, w thout having to exit and restart.

The limtation of IBMPC client operation to batch node was nmade
because of devel opnent environment limtations. The mail reader
cannot work with the network code inside it because of the network
program architecture. The only solution was to provide a two-part

Lanmber t [Page 25]

RFC 1056 PCVAI L June 1988

client, one part of which read the mail and one part of which
interacted with the repository. Al though slightly cunbersone, the
t wo- program setup works quite well.

7.2. UNI X client code

Client code for the Suns, M crovaxes, and VAX-750s runs on 4.2/4.3BSD
UNIX. It is fully interactive, with a powerful mail reader inside
Richard Stallman’s GNU- EMACS editor. Since UN X-based workstations
have a good deal of main nenory and di sk storage, no effort was made
to lower local mail state size by keepi ng nessage descriptors rather

t han nessage text.

The |l ocal mail state consists of a number of BABYL-format nmil boxes.
The interface is very simlar to the RVAIL nail reader already
present in GNU EMACS

The mai|l reader conmunicates with the repository through network code
i npl enented in EMACS-LISP. Changes to the local mail state are

i mredi ately nade on the repository; although the repository is fast,
there is a small noticeable delay in perform ng operations over the
net wor k.

There is no provision for automatic synchronizati on whenever new mai
arrives or old mail is changed by another client. Instead, users
must get any new mail explicitly. A sinple "notification" program
runs in the background and wakes up every ninute to check for new
mai |l ; when mail arrives, the user executes a command to get the new
mai |, synchronizing the nail box at the sanme tine.

7.3. Repository code

The repository is inplemented in Con 4.2/4.3BSD UNIX. Currently it
runs on DEC VAX-750s and M crovaxes, although other repositories wll
soon be running on I BM RT machi nes and Sun workstations. The
repository code is designed to allow several clients belonging to a
particular user to "concurrently" nodify the user’'s state. A |ocking
schene prevents one client fromnodifying mail state while another
client is nodifying the same state.

8. Concl usi ons
Pcnail is now used by a small conmunity of people at the MT

Laboratory for Conputer Science. The repository design works well,
providing an efficient neans of storing and maintaining nmail state

for several users. |Its performance is quite good when up to ten
users are connected; it remains to be seen whether or not the
repository will be efficient at managing the state of ten or a

Lanmber t [Page 26]

RFC 1056 PCVAI L June 1988

hundred tinmes that many users. G ven sufficient disk storage, it
shoul d be able to, since comunication between different users’
clients and the repository is likely to be very asynchronous and
likely to occur in short bursts with long "quiet intervals" in
bet ween as users are busy doi ng other things.

Menmbers of another research group at LCS are currently working on a
replicated, scal able version of the repository designed to support a
very large conmunity of users with high availability. This
repository al so uses DMSP and has successfully communi cated with
clients that use the current repository inplenentation. DVBP
therefore seens to be usable over several flavors of repository

desi gn.

The IBMPC clients are very limted in the way of resources. The
mai | reader/editor conmbination is quite powerful, making |ocal nai
state mani pulation fairly easy. Cbviously a big perfornmance
enhancenment would be to provide a fully interactive client. As it
is, batch-style synchronization is relatively tinme consum ng due to
the | ow performance of the PCs. The "batch-node" that the PCs use
tends to be good for those PCs that spend a | arge percentage of their
ti me unplugged and away froma network. It is somewhat inconvenient
for those PCs that are al ways connected to a network and coul d nmake
good use of an "interactive-node" state mani pul ation

The UNI X-based clients are nore powerful and easier to use than their
PC counterparts. Synchronization is nmuch faster, and there is far
nmore functionality in the mail reader (having an interface that runs
within GNU-EMACS helps a lot in this respect). Mst of those people
using the Pcrmail system use the UN X-based client code.

Lanmber t [Page 27]

RFC 1056 PCVAI L June 1988

DMSP Prot ocol Specification

Following are a list of DMSP operations by object type, together with
syntax, and possible responses. Sone responses nay be foll owed by
zero or nore lines of text, term nated by a single period plus CRLF
pair. Only success responses and common error responses are |isted,
a conplete list of possible responses follows this appendix.
Expressions in angle brackets (i.e. <nuailbox-name>) are

nmet al i ngui stic variables indicating a general request or response
form Operations with argunents have a sanple invocation follow ng
the operation syntax and response.

General operations:

HEL P

100 Repository version xxx. Follow ng are support ed:
HEL P

SEND- VERSI ON

SEND- MESSAGE

LOd N

LOGOUT

FETCH MESSAGE
COPY- VESSAGE

SEND- VERSI| ON <ver si on- nunber >
200 Command OK
500 versi on skew

i .e. SEND-VERSI ON 230

SEND- MESSAGE

350 enter nessage; end with
To: marKl

From markl

Subj ect: a test nessage

this is a test nessage

Lanmber t [Page 28]

RFC 1056 PCVAI L

Repository responds:

User

200 Conmand OK
403 nmessage syntax error

operati ons:

LOG N <user > <password> <cl i ent> <create-p> <batch-p>
200 Conmmand OK

221 Cient out of date by > 1 week

404 Bad password

405 Cdient <client-name> is |ocked

411 No user naned <user- name>

421 dient <client-name> not found

i.e. LO@ N nmarkl foo randomclient-nane 1 0O

LOGOUT
200 Command OK

SET- PASSWORD <ol d- passwor d> <new passwor d>
200 Conmmand OK
404 | ncorrect old password

i.e. SET-PASSWORD f oo bar

Client operations:

LI ST- CLI ENTS

220 dient list <nane> <status> foll ows:
client-1 active

client-2 inactive

client-3 active

client-foobar active

Each Iine of the list contains a client nane, followed by
espace, followed by the word "active" or the word "inactive"

i ndi cati ng whether or not the client has connected to the repository
within the [ast week.

whi t

Lanbert

June 1988

[Page 29]

RFC 1056 PCVAI L June 1988

CREATE- CLI ENT <cl i ent - nanme>

200 Command OK

403 <client-name> is an illegal nanme
420 dient <client-name> exists

i .e. CREATE-CLI ENT new-client

DELETE- CLI ENT <cl i ent - nane>

200 Command OK

421 dient <client-nanme> not found
405 dient <client-nanme> is | ocked

i .e. DELETE-CLIENT ol d-client

RESET- CLI ENT <cl i ent - nane>

200 Command OK

421 dient <client-nanme> not found
405 dient <client-nanme> is | ocked

i .e. RESET-CLIENT any-old-client
Mai | box operati ons:

LI ST- MAI LBOXES

230 Moox |ist <nanme> <hi gh-U D> <#nsgs> <#new> fol | ows:
mai | box-1 2338 8 1

mai | box-2 59 44 0

ﬁﬁilbox-foobar 19 9 0

Each line of the list contains a mail box name, followed by the
mai | box’ s next avail able unique identifier, followed by the nunber of
nmessages in the mail box, followed finally by the nunber of unseen
nmessages in the mail box. Unseen nessages are those whose descriptors
have flag #1 ("nmessage has been seen") set to zero.

CREATE- MAI LBOX <nai | box- name>

200 Conmmand OK

403 <mmi | box-nane> is an illegal nane

430 <numi | box- nane> al ready exists

440 <mai | box- name> exi sts as a bboard subscription

Lanmber t [Page 30]

RFC 1056 PCVAI L June 1988

i .e. CREATE-MAI LBOX current-events

DELETE- MAI LBOX <mmi | box- nane>

200 Command OK

431 mai |l box <mmi | box- name> not found

440 <mui | box-nane> is a bboard; use del et e-bboard- mai | box

i .e. DELETE-MAILBOX i ncone-tax-information

CREATE- BBOARD- MAI LBOX <nai | box- nanme>

200 Command CK

430 a mai |l box named <nai | box- name> al ready exi sts.

430 a bboard nail box naned <mail box-nanme> al ready exists.
403 <mmi | box-nane> is an illegal nane

i . e. CREATE- BBOARD- MAI LBOX sf -1l overs

DELETE- BBOARD- MAI LBOX <nmi | box- nane>

200 Command OK

404 not owner of <mail box-name>

431 no bboard mail box naned <mmil box- nane>

i . e. DELETE- BBOARD- MAI LBOX rec. aut os
RESET- MAI LBOX <nai | box- nane>

200 Command OK

431 mai |l box <mai | box- nanme> not found
i.e. RESET-MAI LBOX british-cars
EXPUNGE- MAI LBOX <nai | box- nane>

200 Command OK

431 mai |l box <mai | box- nanme> not found

EXPUNGE- MAI LBOX british-cars

Addr ess operations:

Ll ST- ADDRESSES <nai | box- nane>
260 Address list for <mail box-name> foll ows:
address-1

Lanmber t [Page 31]

RFC 1056 PCVAI L June 1988

addr ess-2
éddress-G
or

431 mai |l box <mai | box- nanme> not found

i.e. LIST- ADDRESSES ar chive
Each line of the list consists solely of one address.

CREATE- ADDRESS <nmui | box- name> <addr ess- nanme>
200 Conmand OK

403 <mmi | box-nane> is an illegal nane

431 mai |l box <mai |l box-name> not found

460 <address-nane> al ready exists

i . e. CREATE- ADDRESS nar kl markl - bug- pcmai |

DELETE- ADDRESS <nui | box- nane> <addr ess- nane>
200 Command OK

431 muai |l box <mmi | box- nane> not found

461 address <address-nanme> not found

i .e. DELETE- ADDRESS mar kl markl -i nfo-cobo
Subscri pti on operations:

LI ST- SUBSCRI PTI ONS

240 subscription list foll ows:
bboard-1 2573 33 2606
bboard-2 541 4 545

bboard-6 1530 43 1573

Each line of the list consists of a bulletin-board nane, followed by
the U D of the first nmessage which the user has not yet | ooked at,
foll owed by the nunber of nmessages in the bulletin-board that the
user has not yet | ooked at, followed by the bulletin-board s next
avai |l abl e uni que nessage identifier.

Lanmber t [Page 32]

RFC 1056 PCVAI L June 1988

CREATE- SUBSCRI PTI ON <bboar d- nanme>

200 Conmand OK

403 <bboard-name> is an illegal nanme

430 A mail box nanmed <bboar d- nanme> al ready exists
431 Bboard numil box <bboard-nanme> not found

440 Al ready subscribing to <bboard-nane>

i . e. CREATE- SUBSCRI PTI ON sf-1| overs

DELETE- SUBSCRI PTI ON <bboar d- nanme>
200 Conmmand OK
441 Subscri ption <bboard-nane> not found

i .e. DELETE-SUBSCRI PTI ON rec. nusic

RESET- SUBSCRI PTI ON <bboar d- name> <new Ul D>
200 Conmmand OK
441 Subscri ption <bboard-nane> not found

i .e. RESET-SUBSCRI PTI ON rec. nusi c. gdead 1210
LI ST- AVAI LABLE- SUBSCRI PTI ONS

241 Al avail abl e bboards fol |l ow
nmod. politics

sfl
tcp-ip
f orum

conp. emacs

Each line of the list consists solely of one bulletin-board
name.

Message operati ons:

FETCH CHANGED- DESCRI PTORS <mai | box- name> <max-t o- send>
250 Descriptor list foll ows:

expunged

2333

expunged

2334

Lanmber t [Page 33]

RFC 1056 PCVAI L June 1988

descri ptor

2337 0001000001110000 481 14
croaker@tt.lcs.mt.edu
fred@nymachi ne. mt. edu

Tue, 19 Jan 88 11:10: 03 EST

a typical subject line

descri ptor

2339 0000000000000000 1457 40
bob@cs. mt. edu
csr-people@tt.lcs.nmit.edu
Mon, 18 Jan 88 13:08:17 +0000
anot her typical subject line
expunged

2340

or
431 muai | box <mmi | box- nane> not found
i .e. FETCH CHANGED- DESCRI PTORS mar kl 100

Each el ement of the descriptor list is either two or six lines |ong.
Descri ptors which have been expunged are transmitted as two |ines:
the word "expunged" on one line, followed by the nmessage uni que
identifier on the next line. Descriptors which still exist are
transmtted as six lines: the word "descriptor” on one line, followed
by a line containing the nessage unique identifier, flag states
(sixteen characters either one or zero depending on the associ at ed
flag value), followed by the nmessage length in characters, followed
by the nmessage length in lines. The next four lines contain the
nmessage’s "from", "to:", "date:", and "subject:" fields,
respectively. Flag zero's state is the first character in the flag
string; flag fifteen's is the last character in the flag string.

FETCH DESCRI PTORS <nmi | box- nane> <l ow ui d> <hi gh- ui d>
250 Descriptor list foll ows:
descri ptor

2337 0001000001110000 481 14
croaker@tt.lcs.mt.edu
fred@nymachi ne. mt. edu

Tue, 19 Jan 88 11:10:03 EST

a typical subject line

descri ptor

2339 0000000000000000 1457 40
bob@cs. mt. edu
csr-people@tt.lcs.nmit.edu

Lanbert [Page 34]

RFC 1056 PCVAI L

Lanbert

Mon, 18 Jan 88 13:08:17 +0000
anot her typical subject line

or
431 mai |l box <mai | box- nanme> not found

i.e. FETCH DESCRI PTORS british-cars 12 31

COPY- MESSAGE <src-nmai | box> <t arget - mai | box> <sour ce- Ul D>
250 Descriptor list foll ows:

descri ptor

2339 0000000000000000 1457 40

bob@cs. mt. edu

csr-people@tt.lcs.nmit.edu

Mon, 18 Jan 88 13:08:17 +0000

anot her typical subject line

or

400 cannot copy nessage onto itself
431 target mmil box <target-mail box> not found
431 source nmail box <source-nail box> not found
451 message <source-U D> not found

i.e. COPY-MESSAGE markl british-cars 2338

RESET- DESCRI PTORS <nmi | box- nane> <l ow U D> <hi gh- Ul D>
200 Command OK
431 muai |l box <mmi | box- nane> not found

i .e. RESET-DESCRI PTORS markl 1 10000

PRI NT- MESSACE <mai | box- name> <Ul D> <printer-1|D>
200 Conmmand OK

401 printer <printer-name> not found

431 mai |l box <mai | box- name> not found

451 nessage <U D> not found

i.e. PRI NT-MESSAGE nmar kl 2433 pravda

June 1988

[Page 35]

RFC 105

Lanbert

6 PCVAI L

SET- MESSAGE- FLAG <mai | box- name> <Ul D> <fl| agnun <st at e>
200 Conmmand OK

431 mai |l box <mai |l box- name> not found

451 nessage <U D> not found

500 flag nunber <fl ag-nunber> out of range

i.e. SET- MESSAGE-FLAG british-cars 23 0 1

FETCH MESSACE <mai | box- nanme> <Ul D>
251 nmessage fol |l ows:

From markl @tt.lcs.mt.edu

To: markl @tt.lcs. mt.edu

Date: Sun, 17 Jan 88 11:11:11 EST
Subj ect: anyt hi ng

this is a sanple of sone
nessage text
or

431 Mai | box <mai |l box-name> not found
451 nessage <U D> not found

i.e. FETCH MESSAGE current-events 495

June 1988

[Page 36]

RFC 1056 PCVAI L

Operati ons by nane

copy- nessage
creat e- addr ess

cr eat e- bboar d- nai | box
create-client

creat e-mai | box
create-subscription
del et e- addr ess

del et e- bboar d- nai | box
del ete-client

del et e- mai | box

del et e- subscri ption
expunge- nmai | box

f et ch- changed- descri ptors
fetch-descriptors

f et ch- message

hel p

list-addresses

i st-avail abl e-subscriptions
list-clients
l'ist-mail boxes
|ist-subscriptions

| ogi n

| ogout

pri nt - nessage
reset-client
reset-descriptors
reset - nai | box
reset-subscription
send- nessage
send- ver si on

set - nessage-fl ag

set - passwor d

Lanbert

June 1988

[Page 37]

RFC 1056 PCVAI L

[11. Responses by nunber

100
200
220
221
230
240
250
251
260
350
400
410
420
430
430
440
460
411
421
431
441
451
461
402
403
404
405
406
500

Lanbert

Pcrmai | repository version XXX; follow ng are supported
Command OK

Client list <name> <status> foll ows:

Client out of date by > 1 week

Mai | box |ist <name> <high U D> <#nmsgs> <#new> fol | ows:
Subscription list foll ows:

Descriptor list foll ows:
Message fol |l ows:

Address list foll ows:
enter nessage; end with
cannot copy nessage onto itself

al ready logged in

client <nane> already exists

mai | box <nane> al ready exists

bboard mai |l box <name> al ready exists

subscri ption <nane> al ready exists

addr ess <nane> al ready exists

no user nanmed <nane>

client <name> not found

mai | box <name> not found

subscri pti on <nane> not found

nmessage <U D> not found

addr ess <name> not found

i nternal error message

syntax error in outbound nessage

bad password or pernission denied

mail state is tenporarily in use by another client
pl ease log in

operation syntax error or illegal argument

June 1988

[Page 38]

