Net wor k Wor ki ng Group B. Cal |l aghan

Request for Coments: 1813 B. Paw owsKki
Cat egory: I nfornmational P. Staubach
Sun M crosystens, Inc.

June 1995

NFS Version 3 Protocol Specification
Status of this Meno

This meno provides information for the Internet conmmunity.
This nenb does not specify an Internet standard of any ki nd.
Distribution of this neno is unlimted.

| ESG Not e

I nternet Engi neering Steering G oup coment: please note that
the IETF is not involved in creating or maintaining this
specification. This is the significance of the specification
not being on the standards track.

Abstract

Thi s paper describes the NFS version 3 protocol. This paper is
provi ded so that people can wite conpatible inplenentations.

Tabl e of Contents

I ntroduction . . 3
Scope of the NFS version 3 protocol 4
Useful terms . 5
Renot e Procedure CaII . 5
External Data Representation . . 5
Aut henti cati on and Perm ssion Checklng . 7
Phi | osophy . . 8
Changes fron1the NFS version 2 protocol 11

RPC | nf ormati on .

Aut hentication 14

. 14
14
14
15
17

~NO U WN P

Const ant s

Transport address

Sizes . . .

Basi ¢ Data Types . .

Defi ned Error Nunbers e e e

Server Procedures . . Y 4

Ceneral comments on attrlbutes e e e e 29

Ceneral comments on filenames 30
0 NULL: Do nothing 31

WOWWNNNNNNNRRRRRRRE
O wWNBE

wWN R

Cal | aghan, el al | nf or mat i onal [Page 1]

RFC 1813

O©CO~NOUIA~WNPE

=
=

O©CO~NOUIAWNPE

couoaoaaaoaoonaahbhbbbhbbBbRARMRLERRLWNLWWLWWWWWWWWWOWWWWWW
R wWN R

NN EEEEEE

~ArWNEFLO

Cal | aghan,

NFS Version 3 Protocol June 1995

GETATTR Get file attributes . 32
SETATTR Set file attributes . 33
LOCKUP: Lookup fil enane . 37
ACCESS: Check access pernission . 40
READLI NK: Read from synbolic |ink 44
READ: Read fromfile . . . 46
WRITE: Wite to file . 49
CREATE: Create a file . 54
MKDI R Create adlrectory .o 58
SYMLINK: Create a synbol ic li nk 61
MKNCD: Create a special device . 63
REMOVE: Renove a file . 67
RVDI R Renove a directory . 69
RENAME: Renane a file or di rectory . 71
LINK: Create link to an object 74
READDI R Read Fromdirectory . . . 76
READDI RPLUS: Ext ended read from di rectory 80
FSSTAT: Get dynamic file systeminformation 84
FSINFO Get static file systeminformation. 86
PATHCONF: Retrieve PCSI X infornmation . 90
COM T: Conmit cached data on a server to st abI e storage 92
| npl erent ati on i ssues 96
Mul ti pl e version support 96
Server/client relationship . 96
Path name interpretation . 97
Per mi ssi on i ssues . 98
Duplicate request cache . : 99
Fil e name conponent handling . 101
Synchr onous nodi fyi ng operati ons . 101
St abl e storage . : 101
Lookups and name resoI utl on 102
Adaptive retransni ssion 102
Caching policies . 102
St abl e versus unst abI e Wi tes : : 103
32 bit clients/servers and 64 bit cli ent s/ servers. 104
Appendi x |: Mount protocol 106
RPC | nf ormati on . 106
Aut henti cation . 106
Constants . 106
Transport address 106
Sizes . . . 106
Basi ¢ Data Types . 106
Server Procedures . 107
NULL: Do not hing . . 108
IMNT: Add nount entry . . 109
DUVP: Return nount entries . 110
UWNT: Renpbve nount entry . 111
UWNTALL: Renpve all nount entr| es 112
el al | nf or mat i onal [Page 2]

RFC 1813 NFS Version 3 Protocol June 1995

5.2.5 EXPORT: Return export list 113
6. Appendi x Il: Lock manager protocol 114
6.1 RPC Information 114
6.1.1 Aut hentication . 114
6.1.2 Constants . . O I
6.1.3 Transport Address e 5
6.1. 4 Basic Data Types 115
6.2 NLM Procedures . 118
6.2.0 NULL: Do nothing P 20
6.3 | mpl enent ati on i ssues . . e 240
6.3.1 64-bit offsets and Iengths . 24 0
6.3.2 File handles . . e 240
7. Appendi x I11: Blbllography C e e e e e s 122
8. Security Considerations 125
9. Acknow edgenents . 125
10. Authors’ Addresses . 126

1. Introduction

Sun’s NFS protocol provides transparent renbte access to shared
file systems across networks. The NFS protocol is designed to be
machi ne, operating system network architecture, and transport
protocol independent. This independence is achieved through the
use of Renote Procedure Call (RPC) prinmitives built on top of an
eXternal Data Representation (XDR). Inplenentations of the NFS
version 2 protocol exist for a variety of machi nes, from persona
computers to superconputers. The initial version of the NFS
protocol is specified in the Network File System Protoco
Specification [RFCL094]. A description of the initial

i npl erentation can be found in [Sandberg].

The supporting MOUNT protocol perfornms the operating

system specific functions that allow clients to attach renote
directory trees to a point within the local file system The
nmount process also allows the server to grant renote access
privileges to a restricted set of clients via export control.

The Lock Manager provides support for file | ocking when used in
the NFS environnent. The Network Lock Manager (NLM protocol

i solates the inherently stateful aspects of file locking into a
separ ate protocol

A conpl ete description of the above protocols and their
i npl enentation is to be found in [X OpenNFS].

The purpose of this docunent is to:

Cal | aghan, el al I nf or mat i onal [Page 3]

RFC 1813 NFS Version 3 Protocol June 1995

o Specify the NFS version 3 protocol.

0 Describe semantics of the protocol through annotation
and description of intended inplenentation.

0 Specify the MOUNT version 3 protocol.

o Briefly describe the changes between the NLM version 3
protocol and the NLM version 4 protocol

The nornmative text is the description of the RPC procedures and
argunents and results, which defines the over-the-w re protocol
and the semantics of those procedures. The material describing

i npl enentation practice aids the understanding of the protocol
speci fication and descri bes sonme possible inplenentation issues
and solutions. It is not possible to describe all inplenmentations
and the UNI X operating systeminplenmentati on of the NFS version 3
protocol is nost often used to provide exanples. Gven that, the
i npl enent ati on di scussi on does not bear the authority of the
description of the over-the-wire protocol itself.

1.1 Scope of the NFS version 3 protoco

This revision of the NFS protocol addresses new requirenents.
The need to support larger files and file systens has pronpted
extensions to allow 64 bit file sizes and of fsets. The revision
enhances security by addi ng support for an access check to be
done on the server. Performance nodifications are of three

t ypes:

1. The nunber of over-the-wire packets for a given
set of file operations is reduced by returning file
attributes on every operation, thus decreasing the nunber
of calls to get nodified attributes.

2. The wite throughput bottl eneck caused by the synchronous
definition of wite in the NFS version 2 protocol has been
addressed by addi ng support so that the NFS server can do
unsafe wites. Unsafe wites are wites which have not
been committed to stable storage before the operation
returns. This specification defines a method for
conm tting these unsafe wites to stable storage in a
reliable way.

3. Limtations on transfer sizes have been rel axed.

The ability to support rultiple versions of a protocol in RPC
will allowinplementors of the NFS version 3 protocol to define

Cal | aghan, el al | nf or mat i onal [Page 4]

RFC 1813 NFS Version 3 Protocol June 1995

clients and servers that provide backwards conpatibility with
the existing installed base of NFS version 2 protocol
i npl enent ati ons.

The extensions described here represent an evol ution of the
exi sting NFS protocol and nost of the design features of the
NFS protocol described in [Sandberg] persist. See Changes
fromthe NFS version 2 protocol on page 11 for a nore
detail ed summary of the changes introduced by this revision

1.2 Useful terns

In this specification, a "server" is a machine that provides

resources to the network; a "client"” is a machine that accesses
resources over the network; a "user" is a person logged in on a
client; an "application" is a programthat executes on a client.

1.3 Renote Procedure Cal

The Sun Renote Procedure Call specification provides a
procedure-oriented interface to renpote services. Each server
supplies a program which is a set of procedures. The NFS
service is one such program The conbinati on of host address,
program nunber, version nunber, and procedure nunber specify one
renote service procedure. Servers can support rmnultiple versions
of a program by using different protocol version nunbers.

The NFS protocol was designhed to not require any specific |evel
of reliability fromits lower levels so it could potentially be
used on nany underlying transport protocols. The NFS service is
based on RPC whi ch provides the abstraction above | ower |evel
network and transport protocols.

The rest of this docunent assunes the NFS environnent is
i npl enented on top of Sun RPC, which is specified in [RFCL057].
A conpl ete discussion is found in [Corbin].

1.4 External Data Representation

The eXternal Data Representation (XDR) specification provides a
standard way of representing a set of data types on a network.
This solves the problemof different byte orders, structure
alignnment, and data type representation on different,

conmuni cati ng machi nes.

In this docunment, the RPC Data Description Language is used to

specify the XDR format paraneters and results to each of the RPC
servi ce procedures that an NFS server provides. The RPC Data

Cal | aghan, el al I nf or mat i onal [Page 5]

RFC 1813 NFS Version 3 Protocol June 1995

Description Language is sinmilar to declarations in the C
progranm ng | anguage. A few new constructs have been added.
The not ati on:

string nane[Sl ZE];
string data<DSI| ZE>;

defines nane, which is a fixed size block of SIZE bytes, and
data, which is a variable sized block of up to DSIZE bytes. This
notation indicates fixed-length arrays and arrays with a

vari abl e nunber of elenents up to a fixed maxi rum A

vari abl e-length definition with no size specified neans there is
no maxi mum si ze for the field.

The di scrim nated union definition:

uni on exanpl e switch (enum status) {

case K
struct {
filename filel;
filename file2;
i nt eger count;
}
case ERRCR
struct {
errstat error;
i nt eger errno;
defaul t:
voi d;

}

defines a structure where the first thing over the network is an
enuneration type called status. If the value of status is CK
the next thing on the network will be the structure containing
filel, file2, and count. Else, if the value of status is ERROR
the next thing on the network will be a structure containing
error and errno. |If the value of status is neither OK nor

ERROR, then there is no nore data in the structure.

The XDR type, hyper, is an 8 byte (64 bit) quantity. It is used
in the same way as the integer type. For exanple:

hyper foo;
unsi gned hyper bar;

foo is an 8 byte signed value, while bar is an 8 byte unsi gned
val ue.

Cal | aghan, el al I nf or mat i onal [Page 6]

RFC 1813 NFS Version 3 Protocol June 1995

Al t hough RPC/ XDR conpil ers exist to generate client and server
stubs from RPC Data Description Language input, NFS

i npl ementations do not require their use. Any software that

provi des equi val ent encodi ng and decoding to the canoni cal
network order of data defined by XDR can be used to interoperate
with other NFS inplenentations.

XDR i s described in [RFC1014].
1.5 Aut hentication and Perm ssion Checking

The RPC protocol includes a slot for authentication paraneters
on every call. The contents of the authentication paraneters are
determ ned by the type of authentication used by the server and
client. A server may support several different flavors of

aut henti cation at once. The AUTH _NONE fl avor provides nul

aut hentication, that is, no authentication information is
passed. The AUTH UNI X flavor provides UNl X-style user |ID, group
I D, and groups with each call. The AUTH DES flavor provides
DES- encrypt ed aut henticati on parameters based on a network-wi de
nane, wth session keys exchanged via a public key schene. The
AUTH _KERB fl avor provi des DES encrypted aut hentication
paraneters based on a network-w de nane with session keys
exchanged via Kerberos secret keys.

The NFS server checks permissions by taking the credentials from
the RPC authentication information in each renote request. For
exanpl e, using the AUTH UNI X fl avor of authentication, the
server gets the user’'s effective user ID, effective group ID and
groups on each call, and uses themto check access. Using user
ids and group ids inplies that the client and server either
share the sanme ID list or do |local user and group |ID mapping.
Servers and clients nust agree on the mapping fromuser to uid
and fromgroup to gid, for those sites that do not inplenent a
consi stent user ID and group ID space. In practice, such mapping
is typically performed on the server, following a static mapping
scheme or a nmapping established by the user froma client at
nmount tine.

The AUTH DES and AUTH KERB style of authentication is based on a
net wor k-wi de name. It provides greater security through the use
of DES encryption and public keys in the case of AUTH DES, and
DES encryption and Kerberos secret keys (and tickets) in the
AUTH_KERB case. Again, the server and client nust agree on the
identity of a particular name on the network, but the name to
identity mapping is nore operating systemindependent than the
uid and gid mapping in AUTH UNIl X. Al so, because the

aut hentication paranmeters are encrypted, a malicious user nust

Cal | aghan, el al | nf or mat i onal [Page 7]

RFC 1813 NFS Version 3 Protocol June 1995

know anot her users network password or private key to masquerade
as that user. Sinilarly, the server returns a verifier that is
al so encrypted so that masqueradi ng as a server requires know ng
a network password.

The NULL procedure typically requires no authentication
1.6 Phil osophy

Thi s specification defines the NFS version 3 protocol, that is
the over-the-wire protocol by which a client accesses a server
The protocol provides a well-defined interface to a server’s
file resources. A client or server inplenments the protocol and
provi des a mapping of the local file system senantics and
actions into those defined in the NFS version 3 protocol

| mpl enentations may differ to varying degrees, depending on the
extent to which a given environnent can support all the
operations and semantics defined in the NFS version 3 protocol
Al t hough i npl enmentations exist and are used to illustrate
various aspects of the NFS version 3 protocol, the protocol
specification itself is the final description of how clients
access server resources.

Because the NFS version 3 protocol is designed to be

operati ng-system i ndependent, it does not necessarily nmatch the
semanti cs of any existing system Server inplenentations are
expected to nake a best effort at supporting the protocol. If a
server cannot support a particular protocol procedure, it my
return the error, NFS3ERR _NOTSUP, that indicates that the
operation is not supported. For exanple, nmany operating systens
do not support the notion of a hard link. A server that cannot
support hard links should return NFS3ERR NOTSUP in response to a
LI NK request. FSINFO describes the nost commonly unsupported
procedures in the properties bit map. Alternatively, a server
may not natively support a given operation, but can enulate it
in the NFS version 3 protocol inplenentation to provide greater
functionality.

In sone cases, a server can support nost of the semantics
descri bed by the protocol but not all. For exanple, the ctine
field in the fattr structure gives the tine that a file's
attributes were last nodified. Many systens do not keep this
information. In this case, rather than not support the GETATTR
operation, a server could sinmulate it by returning the | ast
nodi fied time in place of ctine. Servers nust be careful when
simulating attribute informati on because of possible side
effects on clients. For exanple, many clients use file

nodi fication tinmes as a basis for their cache consistency

Cal | aghan, el al I nf or mat i onal [Page 8]

RFC 1813 NFS Version 3 Protocol June 1995

schene.

NFS servers are dunb and NFS clients are smart. It is the
clients that do the work required to convert the generalized
file access that servers provide into a file access nethod that
is useful to applications and users. In the LINK exanple given
above, a UNI X client that received an NFS3ERR_NOTSUP error from
a server would do the recovery necessary to either make it | ook
to the application like the |ink request had succeeded or return
a reasonable error. In general, it is the burden of the client
to recover.

The NFS version 3 protocol assunmes a statel ess server

i npl enentation. Statel essness neans that the server does not
need to naintain state about any of its clients in order to
function correctly. Statel ess servers have a distinct advantage
over stateful servers in the event of a crash. Wth statel ess
servers, a client need only retry a request until the server
responds; the client does not even need to know that the server
has crashed. See additional comments in Duplicate request cache
on page 99.

For a server to be useful, it holds nonvolatile state: data
stored in the file system Design assunptions in the NFS version
3 protocol regarding flushing of nodified data to stable storage
reduce the nunmber of failure nodes in which data | oss can occur.
In this way, NFS version 3 protocol inplenentations can tolerate
transient failures, including transient failures of the network.
In general, server inplenentations of the NFS version 3 protoco
cannot tolerate a non-transient failure of the stable storage
itself. However, there exist fault tolerant inplenmentations
which attenpt to address such probl ens.

That is not to say that an NFS version 3 protocol server can't
mai ntain noncritical state. In many cases, servers will maintain
state (cache) about previous operations to increase performnce.
For example, a client READ request might trigger a read-ahead of
the next block of the file into the server’s data cache in the
anticipation that the client is doing a sequential read and the
next client READ request will be satisfied fromthe server’s
data cache instead of fromthe disk. Read-ahead on the server

i ncreases performance by overl apping server disk 1/Owth client
requests. The inportant point here is that the read-ahead bl ock
is not necessary for correct server behavior. If the server
crashes and loses its nenory cache of read buffers, recovery is
sinple on reboot - clients will continue read operations
retrieving data fromthe server disk.

Cal | aghan, el al I nf or mat i onal [Page 9]

RFC 1813 NFS Version 3 Protocol June 1995

Most dat a-nmodi fying operations in the NFS protocol are
synchronous. That is, when a data nodifying procedure returns
to the client, the client can assune that the operation has
conpl eted and any nodified data associated with the request is
now on stable storage. For exanple, a synchronous client WRI TE
request nay cause the server to update data bl ocks, file system
i nformation bl ocks, and file attribute infornation - the latter
information is usually referred to as netadata. Wen the WRI TE
operation conpletes, the client can assune that the wite data
is safe and discard it. This is a very inportant part of the
statel ess nature of the server. If the server did not flush
dirty data to stable storage before returning to the client, the
client would have no way of knowi ng when it was safe to discard
nodi fied data. The followi ng data nodi fyi ng procedures are
synchronous: WRITE (with stable flag set to FILE SYNC), CREATE
MKDI R, SYM.I NK, MKNCOD, REMOVE, RMDI R, RENAME, LINK, and COWM T.

The NFS version 3 protocol introduces safe asynchronous wites
on the server, when the WRI TE procedure is used in conjunction
with the COMM T procedure. The COM T procedure provides a way
for the client to flush data from previ ous asynchronous WRI TE
requests on the server to stable storage and to detect whether
it is necessary to retransmit the data. See the procedure
descriptions of WRITE on page 49 and COWMM T on page 92.

The LOOKUP procedure is used by the client to traverse

mul ti conmponent file names (pathnanes). Each call to LOOKUP is
used to resol ve one segnent of a pathnanme. There are two reasons
for restricting LOOKUP to a single segnment: it is hard to
standardi ze a conmon format for hierarchical file nanes and the
client and server nay have di fferent nappings of pathnanmes to
file systems. This would inply that either the client nust break
the path nane at file system attachnent points, or the server
must know about the client’s file systemattachment points. In
NFS version 3 protocol inplenmentations, it is the client that
constructs the hierarchical file nane space using nounts to
build a hierarchy. Support utilities, such as the Autonounter,
provi de a way to nmanage a shared, consistent inmage of the file
nane space while still being driven by the client nount

process.

Clients can performcaching in varied manner. The genera
practice with the NFS version 2 protocol was to inplenent a

ti me-based client-server cache consistency nmechanism It is
expected NFS version 3 protocol inplenentations will use a
sim | ar mechanism The NFS version 3 protocol has sonme explicit
support, in the formof additional attribute infornmation to
elimnate explicit attribute checks. However, caching is not

Cal | aghan, el al I nf or mat i onal [Page 10]

RFC 1813 NFS Version 3 Protocol June 1995

required, nor is any caching policy defined by the protocol.
Nei ther the NFS version 2 protocol nor the NFS version 3
protocol provide a neans of maintaining strict client-server
consi stency (and, by inplication, consistency across client
caches).

1.7 Changes fromthe NFS Version 2 Protoco

The ROOT and WRI TECACHE procedures have been renpved. A MKNCOD
procedure has been defined to allow the creation of special
files, elimnating the overl oadi ng of CREATE. Caching on the
client is not defined nor dictated by the NFS version 3
protocol, but additional information and hints have been added
to the protocol to allow clients that inplenent caching to
manage their caches nore effectively. Procedures that affect the
attributes of a file or directory may now return the new
attributes after the operation has conpleted to optimze out a
subsequent GETATTR used in validating attribute caches. In

addi tion, operations that nmodify the directory in which the
target object resides return the old and new attributes of the
directory to allowclients to inplenent nore intelligent cache
i nval i dation procedures. The ACCESS procedure provi des access
perm ssion checking on the server, the FSSTAT procedure returns
dynamic information about a file system the FSINFO procedure
returns static information about a file systemand server, the
READDI RPLUS procedure returns file handles and attributes in
addition to directory entries, and the PATHCONF procedure
returns POSI X pat hconf information about a file.

Below is a list of the inportant changes between the NFS version
2 protocol and the NFS version 3 protocol.

File handl e size
The file handl e has been increased to a variable-length
array of 64 bytes maxinumfroma fixed array of 32
bytes. This addresses some known requirenents for a
slightly larger file handle size. The file handl e was
converted fromfixed length to variable length to
reduce | ocal storage and network bandw dth requirenments
for systems which do not utilize the full 64 bytes of
| engt h.

Maxi mum data sizes
The maxi mum si ze of a data transfer used in the READ
and WRI TE procedures is now set by values in the FSINFO
return structure. In addition, preferred transfer sizes
are returned by FSINFO The protocol does not place any
artificial limts on the maxi mumtransfer sizes.

Cal | aghan, el al | nf or mat i onal [Page 11]

RFC 1813 NFS Version 3 Protocol June 1995

Fi | enanes and pat hnanmes are now specified as strings of
variable length. The actual length restrictions are
determ ned by the client and server inplenentations as
appropriate. The protocol does not place any
artificial limts on the I ength. The error,
NFS3ERR_NAMETOOLONG, is provided to allow the server to
return an indication to the client that it received a
pat hnane that was too long for it to handle.

Error return
Error returns in sone instances now return data (for
exanmple, attributes). nfsstat3 now defines the full set
of errors that can be returned by a server. No ot her
val ues are all owed.

File type
The file type now includes NF3CHR and NF3BLK for
special files. Attributes for these types include
subfields for UNI X maj or and ni nor devi ces nunbers.
NF3SOCK and NF3FI FO are now defined for sockets and
fifos in the file system

File attributes
The bl ocksize (the size in bytes of a block in the
file) field has been renoved. The node field no | onger
contains file type informati on. The size and fileid
fields have been wi dened to ei ght-byte unsigned
integers fromfour-byte integers. Mjor and m nor
device infornmation is now presented in a distinct
structure. The blocks field nanme has been changed to
used and now contains the total nunber of bytes used by
the file. It is also an eight-byte unsigned integer.

Set file attributes
In the NFS version 2 protocol, the settable attributes
were represented by a subset of the file attributes
structure; the client indicated those attributes which
were not to be nodified by setting the correspondi ng
field to -1, overloading sone unsigned fields. The set
file attributes structure now uses a discrim nated
union for each field to tell whether or how to set that
field. The atinme and mine fields can be set to either
the server’s current time or a tinme supplied by the
client.

L OCKUP

The LOOKUP return structure now i ncludes the attri butes
for the directory searched.

Cal | aghan, el al | nf or mat i onal [Page 12]

RFC 1813 NFS Version 3 Protocol June 1995

ACCESS
An ACCESS procedure has been added to allow an explicit
over-the-wire perm ssions check. This addresses known
problems with the superuser |ID mapping feature in many
server inplenentations (where, due to mappi ng of root
user, unexpected perm ssion denied errors could occur
while reading fromor witing to a file). This also
renoves the assunption which was made in the NFS
version 2 protocol that access to files was based
solely on UNI X style node bits.

READ
The reply structure includes a Boolean that is TRUE if
the end-of-file was encountered during the READ. This
allows the client to correctly detect end-of-file.

WRI TE
The begi noffset and total count fields were renmoved from
the WRI TE argunents. The reply now includes a count so
that the server can wite | ess than the requested
anount of data, if required. An indicator was added to
the argunments to instruct the server as to the |evel of
cache synchroni zation that is required by the client.

CREATE
An exclusive flag and a create verifier was added for
t he exclusive creation of regular files.

MKNGOD
This procedure was added to support the creation of
special files. This avoids overloading fields of CREATE
as was done in some NFS version 2 protoco
i npl enent ati ons.

READDI R
The READDI R argunments now i nclude a verifier to allow
the server to validate the cookie. The cookie is now a
64 bit unsigned integer instead of the 4 byte array
whi ch was used in the NFS version 2 protocol. This
will help to reduce interoperability problens.

READDI RPLUS
This procedure was added to return file handles and
attributes in an extended directory |ist.

FSI NFO

FSI NFO was added to provide nonvol atile information
about a file system The reply includes preferred and

Cal | aghan, el al I nf or mat i onal [Page 13]

RFC 1813 NFS Version 3 Protocol June 1995

maxi nrum read transfer size, preferred and nmaxinumwite
transfer size, and flags stating whether |inks or
synmbolic links are supported. Also returned are
preferred transfer size for READDI R procedure replies,
server time granularity, and whether tines can be set
in a SETATTR request.

FSSTAT
FSSTAT was added to provide volatile informtion about
a file system for use by utilities such as the Unix
system df conmmand. The reply includes the total size
and free space in the file systemspecified in bytes,
the total nunber of files and nunber of free file slots
inthe file system and an estimate of tinme between
file systemnodi fications (for use in cache consi stency
checking al gorithmns).

CcCoOwW T
The COM T procedure provides the synchronization
mechani smto be used with asynchronous WRI TE
operati ons.
2. RPC Information
2.1 Authentication
The NFS service uses AUTH NONE in the NULL procedure. AUTH UN X
AUTH_DES, or AUTH KERB are used for all other procedures. O her
aut hentication types nmay be supported in the future.
2.2 Constants

These are the RPC constants needed to call the NFS Version 3
service. They are given in decinal

PROGRAM 100003
VERSION 3

2.3 Transport address
The NFS protocol is normally supported over the TCP and UDP
protocols. It uses port 2049, the sanme as the NFS version 2
pr ot ocol .

2.4 Si zes

These are the sizes, given in decinmal bytes, of various XDR
structures used in the NFS version 3 protocol:

Cal | aghan, el al | nf or mat i onal [Page 14]

RFC 1813 NFS Version 3 Protoco

NFS3_FHSI ZE 64
The maxi mum size in bytes of the opaque file handle.

NFS3_COKI EVERFSI ZE 8
The size in bytes of the opaque cookie verifier passed by
READDI R and READDI RPLUS.

NFS3_CREATEVERFSI ZE 8
The size in bytes of the opaque verifier used for
excl usi ve CREATE

NFS3_WRI TEVERFSI ZE 8
The size in bytes of the opaque verifier used for
asynchronous WRI TE.
2.5 Basic Data Types

The followi ng XDR definitions are basic definitions that are
used in other structures.

ui nt 64

t ypedef unsi gned hyper uint 64;
i nt 64

t ypedef hyper i nt64;
ui nt 32

t ypedef unsigned | ong uint32;
i nt 32

typedef long int32;
filenanme3

typedef string fil ename3<>;
nf spat h3

typedef string nfspath3<>
fileid3

typedef uint64 fileid3;
cooki e3

t ypedef uint64 cookie3;

cooki everf3
t ypedef opaque cooki everf 3[NFS3_COOKI EVERFSI ZE] ;

Cal | aghan, el al I nf or mat i onal

June 1995

[Page 15]

RFC 1813 NFS Version 3 Protocol June 1995

createverf3
t ypedef opaque createverf 3[NFS3_CREATEVERFSI ZE] ;

writeverf3
t ypedef opaque writeverf 3[NFS3_WRI TEVERFSI ZE] ;

ui d3
t ypedef uint32 uid3;
gi d3
t ypedef uint32 gid3;
si ze3
t ypedef uint64 size3;
of fset3
t ypedef uint64 offset3;
node3
t ypedef uint32 node3;
count 3
t ypedef uint32 count 3;
nfsstat 3
enum nfsstat3 {
NFS3_OK = 0,
NFS3ERR_PERM =1,
NFS3ERR_NCENT = 2,
NFS3ERR | O = 5,
NFS3ERR_NXI O = 6,
NFS3ERR_ACCES = 13,
NFS3ERR_EXI ST = 17,
NFS3ERR_XDEV = 18,
NFS3ERR_NCDEV = 19,
NFS3ERR_NOTDI R = 20,
NFS3ERR | SDI R = 21,
NFS3ERR | NVAL = 22,
NFS3ERR _FBI G = 27,
NFS3ERR_NOSPC = 28,
NFS3ERR_ROFS = 30,
NFS3ERR_MLI NK = 31,
NFS3ERR_NAVETOOLONG = 63,
NFS3ERR_NOTEMPTY = 66,
NFS3ERR _DQUOT = 69,
NFS3ERR_STALE = 70,
NFS3ERR_REMOTE =71,
NFS3ERR_BADHANDLE = 10001,

Cal | aghan, el al I nf or mat i onal [Page 16]

RFC 1813 NFS Version 3 Protocol June 1995

NFS3ERR NOT_SYNC = 10002,
NFS3ERR_BAD_COOKI E = 10003,
NFS3ERR_NOTSUPP = 10004,
NFS3ERR TOOSMALL = 10005,
NFS3ERR_SERVERFAULT = 10006,
NFS3ERR_BADTYPE = 10007,
NFS3ERR_J UKEBOX = 10008

H

The nfsstat3 type is returned with every procedure’s results
except for the NULL procedure. A value of NFS3_CK indicates that
the call conpl eted successfully. Any other val ue indicates that
sone error occurred on the call, as identified by the error
code. Note that the precise nunmeric encoding nust be foll owed.
No ot her values may be returned by a server. Servers are
expected to nake a best effort nmapping of error conditions to
the set of error codes defined. In addition, no error
precedences are specified by this specification. Error
precedences deternine the error value that should be returned
when nore than one error applies in a given situation. The error
precedence will be determ ned by the individual server

i npl enentation. If the client requires specific error
precedences, it should check for the specific errors for

itself.

2.6 Defined Error Nunbers
A description of each defined error follows:

NFS3_OK
I ndi cates the call conpleted successfully.

NFS3ERR_PERM
Not owner. The operation was not all owed because the
caller is either not a privileged user (root) or not the
owner of the target of the operation.

NFS3ERR_NCENT
No such file or directory. The file or directory name
speci fi ed does not exi st.

NFS3ERR | O
/O error. A hard error (for exanple, a disk error)
occurred while processing the requested operation.

NFS3ERR_NXI O
/O error. No such device or address.

Cal | aghan, el al | nf or mat i onal [Page 17]

RFC 1813 NFS Version 3 Protocol June 1995

NFS3ERR_ACCES
Per m ssi on deni ed. The caller does not have the correct
perm ssion to performthe requested operation. Contrast
this with NFS3ERR PERM which restricts itself to owner
or privileged user perm ssion fail ures.

NFS3ERR_EXI ST
File exists. The file specified already exists.

NFS3ERR_XDEV
Attenpt to do a cross-device hard link

NFS3ERR_NCDEV
No such devi ce.

NFS3ERR_NOTDI R
Not a directory. The caller specified a non-directory in
a directory operation

NFS3ERR | SDI R
Is a directory. The caller specified a directory in a
non-di rectory operation

NFS3ERR | NVAL
I nvalid argument or unsupported argunment for an
operation. Two exanples are attenpting a READLINK on an
obj ect other than a synbolic link or attenpting to
SETATTR a tine field on a server that does not support
this operation.

NFS3ERR _FBI G
File too | arge. The operation woul d have caused a file to
grow beyond the server’'s limt.

NFS3ERR_NOSPC
No space |l eft on device. The operation would have caused
the server’'s file systemto exceed its limt.

NFS3ERR_ROFS
Read-only file system A nodifying operation was
attenpted on a read-only file system

NFS3ERR_M.I NK
Too many hard |inks.

NFS3ERR_NAMETOOLONG
The filenane in an operation was too | ong.

Cal | aghan, el al I nf or mat i onal [Page 18]

RFC 1813 NFS Version 3 Protocol June 1995

NFS3ERR_NOTEMPTY

An attenpt was nade to renove a directory that was not
enpty.

NFS3ERR_DQUOT
Resource (quota) hard limt exceeded. The user’s resource

limt on the server has been exceeded.

NFS3ERR_STALE
Invalid file handle. The file handle given in the
argunents was invalid. The file referred to by that file
handl e no | onger exists or access to it has been
revoked.

NFS3ERR_REMOTE
Too many |levels of renote in path. The file handl e given
in the argunents referred to a file on a non-local file
system on the server

NFS3ERR_BADHANDLE
II'legal NFS file handle. The file handle failed internal
consi stency checks.

NFS3ERR_NOT_SYNC
Updat e synchroni zati on m smat ch was detected during a
SETATTR oper ati on

NFS3ERR_BAD COOKI E
READDI R or READDI RPLUS cookie is stale.

NFS3ERR_NOTSUPP
Qperation is not supported.

NFS3ERR_TOOSMAL L
Buf fer or request is too small.

NFS3ERR_SERVERFAULT
An error occurred on the server which does not map to any
of the legal NFS version 3 protocol error values. The
client should translate this into an appropriate error
UNI X clients may choose to translate this to EIO

NFS3ERR_BADTYPE

An attenpt was nade to create an object of a type not
supported by the server.

Cal | aghan, el al I nf or mat i onal [Page 19]

RFC 1813 NFS Version 3 Protocol June 1995

NFS3ERR_JUKEBOX
The server initiated the request, but was not able to
conplete it in a tinmely fashion. The client should wait
and then try the request with a new RPC transaction ID
For exanmple, this error should be returned froma server
that supports hierarchical storage and receives a request
to process a file that has been migrated. In this case,
t he server should start the inmm gration process and
respond to client with this error.

ftype3

enum ftype3 {
NF3REG
NF3DI R
NF3BLK
NF3CHR
NF3LNK
NF3SOCK
NF3FI FO

~Nouh~wWNE

H

The enuneration, ftype3, gives the type of a file. The type,
NF3REG is a regular file, NFBDIRis a directory, NF3BLK is a
bl ock special device file, NFSCHR is a character special device
file, NFBLNK is a synbolic link, NF3SOCK is a socket, and
NF3FIFO is a naned pipe. Note that the preci se enum encodi ng
nmust be fol | owed.

specdat a3

struct specdata3 {
ui nt 32 specdat al;
ui nt 32 specdat a2;
1

The interpretation of the two words depends on the type of file
system obj ect. For a block special (NF3BLK) or character special
(NF3CHR) file, specdatal and specdata2 are the major and ninor
devi ce nunbers, respectively. (This is obviously a

UNI X-specific interpretation.) For all other file types, these
two el enents should either be set to O or the val ues should be
agreed upon by the client and server. If the client and server
do not agree upon the values, the client should treat these
fields as if they are set to 0. This data field is returned as
part of the fattr3 structure and so is available from al
replies returning attri butes. Since these fields are otherw se
unused for objects which are not devices, out of band

Cal | aghan, el al I nf or mat i onal [Page 20]

RFC 1813 NFS Version 3 Protocol June 1995

i nformati on can be passed fromthe server to the client.
However, once again, both the server and the client nust agree
on the val ues passed.

nfs_fh3

struct nfs_fh3 {
opaque dat a<NFS3_FHSI ZE>;

The nfs_fh3 is the variabl e-1ength opaque object returned by the
server on LOOKUP, CREATE, SYM.INK, MKNOD, LINK, or READDI RPLUS
operations, which is used by the client on subsequent operations
to reference the file. The file handle contains all the

i nformati on the server needs to distinguish an individual file.
To the client, the file handle is opaque. The client stores file
handl es for use in a later request and can conpare two file
handl es fromthe sanme server for equality by doing a

byt e- by- byt e compari son, but cannot otherw se interpret the
contents of file handles. If two file handles fromthe same
server are equal, they must refer to the sane file, but if they
are not equal, no conclusions can be drawn. Servers should try
to nmaintain a one-to-one correspondence between file handl es and
files, but this is not required. Cients should use file handle
conpari sons only to inprove performance, not for correct

behavi or.

Servers can revoke the access provided by a file handle at any
time. If the file handle passed in a call refers to a file
system obj ect that no | onger exists on the server or access for
that file handl e has been revoked, the error, NFS3ERR STALE
shoul d be returned.

nfstine3

struct nfstine3 {
ui nt 32 seconds;
ui nt 32 nseconds;

H

The nfstine3 structure gives the nunber of seconds and
nanoseconds since mdnight January 1, 1970 Greenwi ch Mean Ti ne.
It is used to pass tinme and date information. The tines
associated with files are all server tines except in the case of
a SETATTR operation where the client can explicitly set the file
time. A server converts to and fromlocal tine when processing
time val ues, preserving as much accuracy as possible. If the
preci sion of timestanps stored for a file is less than that

Cal | aghan, el al | nf or mat i onal [Page 21]

RFC 1813 NFS Version 3 Protocol June 1995

defined by NFS version 3 protocol, |oss of precision can occur.
An adjunct tinme maintenance protocol is reconended to reduce
client and server tinme skew.

fattr3
struct fattr3 {
ftype3 type;
node3 node;
ui nt 32 nlink;
ui d3 ui d;
gi d3 gi d;
si ze3 si ze;
si ze3 used;
specdat a3 rdev;
ui nt 64 fsid;

fileid3 fileid;
nfstine3 ati ne;
nfstine3 mime;
nfstine3 ctine;

H

This structure defines the attributes of a file system object.

It is returned by nost operations on an object; in the case of
operations that affect two objects (for exanple, a MKDI R that
nodi fies the target directory attri butes and defines new
attributes for the newy created directory), the attributes for
both may be returned. In some cases, the attributes are returned
in the structure, wcc_data, which is defined below, in other
cases the attributes are returned alone. The main changes from
the NFS version 2 protocol are that many of the fields have been
wi dened and the major/ mnor device information is now presented
in a distinct structure rather than being packed into a word.

The fattr3 structure contains the basic attributes of a file.
Al'l servers should support this set of attributes even if they
have to sinmul ate sone of the fields. Type is the type of the
file. Mode is the protection node bits. Nlink is the nunber of
hard links to the file - that is, the nunber of different nanes
for the sane file. Ud is the user ID of the owner of the file.
Gdis the group ID of the group of the file. Size is the size
of the file in bytes. Used is the nunber of bytes of disk space
that the file actually uses (which can be snaller than the size
because the file may have holes or it may be |arger due to
fragnentation). Rdev describes the device file if the file type
is NF3CHR or NF3BLK - see specdata3 on page 20. Fsid is the file
systemidentifier for the file system Fileid is a nunber which
uniquely identifies the file withinits file system (on UN X

Cal | aghan, el al | nf or mat i onal [Page 22]

RFC 1813 NFS Version 3 Protocol June 1995

this would be the inunber). Atinme is the tine when the file data
was | ast accessed. Mine is the tine when the file data was | ast
nodified. Cine is the time when the attributes of the file
were | ast changed. Witing to the file changes the ctine in
addition to the ntine.

The nmode bits are defined as foll ows:

0x00800 Set user |ID on execution

0x00400 Set group I D on execution.

0x00200 Save swapped text (not defined in POSIX).

0x00100 Read perm ssion for owner

0x00080 Wite perm ssion for owner.

0x00040 Execute perm ssion for owner on a file. O | ookup
(search) perm ssion for owner in directory.

0x00020 Read perm ssion for group

0x00010 Wite perm ssion for group.

0x00008 Execute permission for group on a file. O | ookup
(search) perm ssion for group in directory.

0x00004 Read perm ssion for others.

0x00002 Wite perm ssion for others.

0x00001 Execute perm ssion for others on a file. O | ookup
(search) perm ssion for others in directory.

post_op_attr

uni on post_op_attr switch (bool attributes_follow {
case TRUE:
fattr3 attri butes;
case FALSE:
voi d;
b

This structure is used for returning attributes in those
operations that are not directly involved with mani pul ating
attributes. One of the principles of this revision of the NFS
protocol is to return the real value fromthe indicated
operation and not an error froman incidental operation. The
post _op_attr structure was designed to allow the server to
recover fromerrors encountered while getting attributes.

This appears to make returning attri butes optional. However,
server inplenentors are strongly encouraged to rmake best effort
to return attributes whenever possible, even when returning an
error.

Cal | aghan, el al I nf or mat i onal [Page 23]

RFC 1813 NFS Version 3 Protocol June 1995

wee_attr

struct wec_attr {

si ze3 si ze;
nfsti me3 mi ne;
nfsti me3 ctine;

H

This is the subset of pre-operation attributes needed to better
support the weak cache consistency senmantics. Size is the file
size in bytes of the object before the operation. Mine is the
time of last nodification of the object before the operation.
Ctinme is the time of last change to the attributes of the object
before the operation. See discussion in wec_attr on page 24.

The use of ntime by clients to detect changes to file system
obj ects residing on a server is dependent on the granularity of
the tinme base on the server.

pre_op_attr

union pre_op_attr switch (bool attributes follow {
case TRUE:
wecc_attr attributes;
case FALSE:
voi d;
1

wcc_dat a

struct wec_data {
pre_op_attr bef or e;
post _op_attr after;

Wien a client perforns an operation that nodifies the state of a
file or directory on the server, it cannot inmediately determ ne
fromthe post-operation attributes whether the operation just
perfornmed was the only operation on the object since the | ast
time the client received the attributes for the object. This is
i nportant, since if an intervening operation has changed the
object, the client will need to invalidate any cached data for
the object (except for the data that it just wote).

To deal with this, the notion of weak cache consistency data or
wcc_data is introduced. A wcc_data structure consists of certain
key fields fromthe object attributes before the operati on,
together with the object attributes after the operation. This

Cal | aghan, el al | nf or mat i onal [Page 24]

RFC 1813 NFS Version 3 Protocol June 1995

information allows the client to nmanage its cache nore
accurately than in NFS version 2 protocol inplenentations. The
term weak cache consistency, enphasizes the fact that this
mechani sm does not provide the strict server-client consistency
that a cache consi stency protocol would provide.

In order to support the weak cache consi stency nodel, the server
will need to be able to get the pre-operation attributes of the
obj ect, performthe intended nodify operation, and then get the
post-operation attributes atomcally. If there is a wi ndow for
the object to get nodified between the operation and either of

the get attributes operations, then the client will not be able
to determine whether it was the only entity to nodify the
object. Sone information will have been | ost, thus weakening the

weak cache consi stency guarant ees.
post _op_fh3

uni on post_op_fh3 switch (bool handle_follows) ({
case TRUE:
nfs_fh3 handl e;
case FALSE:
voi d;
b

One of the principles of this revision of the NFS protocol is to
return the real value fromthe indicated operation and not an
error froman incidental operation. The post_op fh3 structure
was designed to allow the server to recover fromerrors
encountered while constructing a file handl e.

This is the structure used to return a file handle fromthe
CREATE, MKDI R, SYM.I NK, MKNOD, and READDI RPLUS requests. In each
case, the client can get the file handle by issuing a LOOKUP
request after a successful return fromone of the listed
operations. Returning the file handle is an optinization so that
the client is not forced to i Mmediately issue a LOOKUP request
to get the file handle.

sattr3

enum ti me_how {

DONT_CHANGE = 0,
SET_TO SERVER TI ME = 1,
SET_TO CLIENT_TIME = 2

H

uni on set_node3 switch (bool set_it) {

Cal | aghan, el al I nf or mat i onal [Page 25]

RFC 1813 NFS Version 3 Protocol June 1995

case TRUE:

node3 node;
defaul t:

voi d;
}s

uni on set_uid3 switch (bool set_it) {
case TRUE:
ui d3 ui d;
def aul t:
voi d;
¥

uni on set_gid3 switch (bool set_it) {
case TRUE:
gi d3 gi d;
defaul t:
voi d;
1

uni on set_size3 switch (bool set_it) {
case TRUE:
si ze3 si ze;
def aul t:
voi d;
}s

union set_atime switch (tinme_how set _it) {
case SET_TO CLI ENT_TI ME:
nfstinme3d atine;
defaul t:
voi d;
1

union set_ntime switch (tinme_how set _it) {
case SET_TO CLI ENT_TI ME:
nfstime3d ntine;
defaul t:
voi d;
1

struct sattr3 {
set _node3 node;
set _ui d3 ui d;
set _gi d3 gi d;
set_size3 si ze;
set_atine ati ne;
set_ntinme nime;

Cal | aghan, el al I nf or mat i onal [Page 26]

RFC 1813 NFS Version 3 Protocol June 1995

H

The sattr3 structure contains the file attributes that can be
set fromthe client. The fields are the sane as the simlarly
naned fields in the fattr3 structure. In the NFS version 3
protocol, the settable attributes are described by a structure
containing a set of discrimnated unions. Each union indicates
whet her the corresponding attribute is to be updated, and if so,
how:.

There are two forns of discrimnated unions used. In setting the
nmode, uid, gid, or size, the discrimnated union is switched on
a boolean, set_it; if it is TRUE, a value of the appropriate
type is then encoded.

In setting the atine or ntine, the union is switched on an
enuneration type, set_it. If set_it has the val ue DONT_CHANGE
the corresponding attribute is unchanged. If it has the val ue,
SET_TO SERVER TI ME, the corresponding attribute is set by the
server to its local tine; no data is provided by the client.
Finally, if set_it has the value, SET_TO CLIENT_TIME, the
attribute is set to the tinme passed by the client in an nfstine3
structure. (See FSINFO on page 86, which addresses the issue of
time granularity).

di ropar gs3

struct diropargs3 {
nfs_fh3 dir;
filenanme3 name;

H

The diropargs3 structure is used in directory operations. The
file handle, dir, identifies the directory in which to
mani pul ate or access the file, nane. See additional coments in
Fil e name conmponent handling on page 101

3. Server Procedures

The followi ng sections define the RPC procedures that are
supplied by an NFS version 3 protocol server. The RPC
procedure nunber is given at the top of the page with the
nane. The SYNOPSI S provides the nane of the procedure, the
list of the nanes of the argunents, the |ist of the nanmes of
the results, foll owed by the XDR argunent decl arati ons and
results declarations. The information in the SYNOPSIS is
specified in RPC Data Description Language as defined in

[RFC1014] . The DESCRI PTI ON section tells what the procedure

Cal | aghan, el al | nf or mat i onal [Page 27]

RFC 1813

NFS Version 3 Protocol June 1995

is expected to do and how its argunments and results are used.
The ERRORS section lists the errors returned for specific
types of failures. These lists are not intended to be the

definitive statenent of all
returned by any specific procedure,

nore common errors which may be returned.
i npl ement ati ons shoul d be prepared to deal

errors comng froma server.

of the errors which can be
but as a guide for the

dient
wi t h unexpected

The | MPLEMENTATI ON fi el d gives

i nformati on about how the procedure is expected to work and
how it should be used by clients.

program NFS_PROGRAM {
version NFS V3 {

Cal | aghan,

voi d
NFSPROC3_NULL(voi d)

CGETATTR3r es
NFSPROC3_GETATTR(GETATTR3ar gs)

SETATTR3r es
NFSPROC3_SETATTR(SETATTR3ar gs)

LOOKUP3r es
NFSPROC3_ L OOKUP(LOCKUP3ar gs)

ACCESS3r es
NFSPROC3_ ACCESS(ACCESS3ar gs)

READLI NK3r es
NFSPROC3_READLI NK(READLI NK3ar gs)

READ3r es
NFSPROC3_READ(READ3ar gs)

VRl TE3r es
NFSPROC3_WRI TE(WRI TE3ar gs)

CREATESr es
NFSPROC3_CREATE(CREATE3ar gs)

MKDI R3r es
NFSPROC3_MKDI R(MKDI R3ar gs)

SYM.I NK3r es
NFSPROC3_SYML.I NK(SYM.I NK3ar gs)

el al | nf or mat i onal

[Page 28]

RFC 1813

NFS Ver sion 3 Protocol
MKNOD3r es
NFSPROC3_ MKNOD(MKNCD3ar gs)

REMOVE3r es
NFSPROC3_ REMOVE(REMOVE3ar gs)

RVDI R3r es
NFSPROC3_RVDI R(RVDI R3ar gs)

RENAME3r es
NFSPROC3_ RENAME(RENAME3ar gs)

LI NK3r es
NFSPROC3_ LI NK(LI NK3ar gs)

READDI R3r es
NFSPROC3_READDI R(READDI R3ar gs)

READDI RPLUS3r es

NFSPROC3_ READDI RPLUS(READDI RPLUS3ar gs)

FSSTAT3r es
NFSPROC3_FSSTAT(FSSTAT3ar gs)

FSI NFQ3r es
NFSPROC3_FSI NFQ(FSI NFQBar gs)

PATHCONF3r es
NFSPROC3_ PATHCONF(PATHCONF3ar gs)

COW T3res
NFSPROC3_COVM T(COW T3ar gs)

P =3
} = 100003;

Qut of range (undefined) procedure nunbers result
Refer to [RFCL057] for nore detail.

errors.

3.1 CGeneral

For those procedures that
structures on failure,

directory.
depend on the particular server inplenentation

11;

12;

13;

14:

15;

16;

17;

18;

19;

20;

21;

in RPC

June 1995

comments on attributes and consistency data on failure

return either post_op_attr or wcc_data
the discrimnated union may contain the
pre-operation attributes of the object or object parent

Thi s depends on the error encountered and may al so

| npl erentors are

strongly encouraged to return as nuch attribute data as possible

upon failure, but client inplementors need to be aware that

Cal | aghan,

el al | nf or mat i onal

[Page 29]

RFC 1813 NFS Version 3 Protocol June
their inplenentation nust correctly handle the variant return
i nstance where no attributes or consistency data is returned.
3.2 General conmments on filenanes
The followi ng comments apply to all NFS version 3 protoco
procedures in which the client provides one or nore filenames in
the argunments: LOOKUP, CREATE, MKDI R, SYM.I NK, MKNOD, REMOVE,
RVDI R, RENAME, and LI NK

1. The filenane nmust not be null nor may it be the null

string. The server should return the error, NFS3ERR_ACCES, if

it receives such a filename. On sone clients, the fil enane,
or a null string, is assuned to be an alias for the current
directory. Clients which require this functionality should
implenment it for thensel ves and not depend upon the server to
support such semantics.

2. Afilenane having the value of "." is assuned to be an
alias for the current directory. Cients which require this

1995

functionality should inplenent it for thensel ves and not depend

upon the server to support such semantics. However, the server

shoul d be able to handle such a filenane correctly.

3. Afilename having the value of ".." is assuned to be an
alias for the parent of the current directory, i.e. the
directory which contains the current directory. The server
shoul d be prepared to handle this semantic, if it supports

directories, even if those directories do not contain UN X-style

or entries.

4. |If the filenanme is longer than the maxinumfor the file
system (see PATHCONF on page 90, specifically name_max), the

result depends on the value of the PATHCONF flag, no_trunc. If

no_trunc is FALSE, the filename will be silently truncated to

name_max bytes. If no_trunc is TRUE and the fil ename exceeds the
server’s file system maxi numfil enanme | ength, the operation wll

fail with the error, NFS3ERR_NAMETOOLONG

5. In general, there will be characters that a server wll
not be able to handle as part of a filename. This set of
characters will vary fromserver to server and from
i mpl ementation to inplenentation. |In nost cases, it is the

server which will control the client’s view of the file system

If the server receives a filenanme containing characters that

Cient inplenentations should be prepared to handle this side
affect of heterogeneity.

it
can not handle, the error, NFS3ERR EACCES, should be returned.

Cal | aghan, el al I nf or mat i onal [Page 30]

RFC 1813 NFS Version 3 Protocol June 1995

See al so conments in File nane conponent handling on page 101
3.3.0 Procedure 0: NULL - Do nothing
SYNOPSI S
voi d NFSPROC3_NULL(void) = 0;
DESCRI PTI ON

Procedure NULL does not do any work. It is nade available to
al | ow server response testing and timng.

| MPLEMENTATI ON

It is inportant that this procedure do no work at all so
that it can be used to neasure the overhead of processing
a service request. By convention, the NULL procedure
shoul d never require any authentication. A server nay
choose to ignore this convention, in a nore secure

i mpl ement ati on, where responding to the NULL procedure
call acknow edges the existence of a resource to an

unaut henticated client.

ERRORS

Since the NULL procedure takes no NFS version 3 protocol
argunments and returns no NFS version 3 protocol response,
it can not return an NFS version 3 protocol error

However, it is possible that sonme server inplenentations
may return RPC errors based on security and authentication
requi rements

Cal | aghan, el al I nf or mat i onal [Page 31]

RFC 1813 NFS Version 3 Protocol June 1995

3.3.1 Procedure 1: GETATTR - Get file attributes
SYNOPSI S
GETATTR3r es NFSPROC3_CGETATTR(GETATTR3args) = 1;

struct GETATTR3args {
nfs _fh3 object;
1

struct GETATTR3resok {
fattr3 obj _attri butes;
1

uni on GETATTR3res switch (nfsstat3 status) {
case NFS3_K
GETATTR3resok resok;
defaul t:
voi d;
1

DESCRI PTI ON

Procedure CETATTR retrieves the attributes for a specified
file system object. The object is identified by the file
handl e that the server returned as part of the response
froma LOOKUP, CREATE, MKDI R, SYM.INK, MKNCD, or

READDI RPLUS procedure (or fromthe MOUNT servi ce,

descri bed el sewhere). On entry, the argunents in
CETATTR3args are:

obj ect
The file handl e of an object whose attributes are to be
retrieved.

On successful return, GETATTR3res.status is NFS3_OK and
GETATTR3res. resok contai ns:

obj _attributes
The attributes for the object.

O herwi se, GETATTR3res.status contains the error on failure and
no other results are returned.

| MPLEMENTATI ON

The attributes of file systemobjects is a point of major
di sagreenent between different operating systems. Servers

Cal | aghan, el al I nf or mat i onal [Page 32]

RFC 1813 NFS Version 3 Protocol June 1995

shoul d nake a best attenpt to support all of the
attributes in the fattr3 structure so that clients can
count on this as a common ground. Sonme mappi ng may be
required to map local attributes to those in the fattr3
structure.

Today, nobst client NFS version 3 protocol inplenentations
i mpl ement a tine-bounded attribute caching scheme to
reduce over-the-wire attribute checks.

ERRORS
NFS3ERR | O
NFS3ERR_STALE
NFS3ERR_BADHANDL E
NFS3ERR_SERVERFAULT

SEE ALSO
ACCESS

3.3.2 Procedure 2: SETATTR - Set file attributes

SYNOPSI S

SETATTR3r es NFSPROC3_SETATTR(SETATTR3ar gs) = 2;

uni on sattrguard3 switch (bool check) {

case TRUE:
nfstinme3d obj_ctineg;
case FALSE:
voi d;
1
struct SETATTR3args {
nfs_fh3 obj ect;
sattr3 new attri butes;

sattrguard3 guard;
1

struct SETATTR3resok {
wcc_data obj _wcc;
1

struct SETATTR3resfail {
wcc_data obj _wcc;
1

Cal | aghan, el al I nf or mat i onal [Page 33]

RFC 1813 NFS Version 3 Protocol June 1995

uni on SETATTR3res switch (nfsstat3 status) {
case NFS3_K
SETATTR3r esok r esok
def aul t:
SETATTR3resfail resfail;
}s

DESCRI PTI ON

Procedure SETATTR changes one or nore of the attributes of
a file systemobject on the server. The new attributes are
specified by a sattr3 structure. On entry, the argunents
in SETATTR3args are:

obj ect
The file handle for the object.

new attri butes
A sattr3 structure containing bool eans and
enunerations describing the attributes to be set and the new
val ues for those attributes.

guard
A sattrguard3 union

check
TRUE if the server is to verify that guard.obj _ctinme
mat ches the ctinme for the object; FALSE ot herw se.

A client may request that the server check that the object
is in an expected state before performing the SETATTR
operation. To do this, it sets the argunment guard.check to
TRUE and the client passes a tine value in guard.obj_ctine.
If guard.check is TRUE, the server nust conpare the val ue of
guard.obj _ctime to the current ctime of the object. If the
values are different, the server must preserve the object
attributes and nust return a status of NFS3ERR _NOT_SYNC

I f guard.check is FALSE, the server will not performthis
check.

On successful return, SETATTR3res.status is NFS3_OK and
SETATTR3res. resok contai ns:

obj _wcc

A wcc_data structure containing the old and new
attributes for the object.

Cal | aghan, el al I nf or mat i onal [Page 34]

RFC 1813 NFS Version 3 Protocol June 1995

O herwi se, SETATTR3res.status contains the error on
failure and SETATTR3res.resfail contains the foll ow ng:

obj _wcc
A wcc_data structure containing the old and new
attributes for the object.

| MPLEMENTATI ON

The guard. check nechanismallows the client to avoid
changing the attributes of an object on the basis of stale
attributes. It does not guarantee exactly-once semanti cs.
In particular, if areply is lost and the server does not
detect the retransm ssion of the request, the procedure
can fail with the error, NFS3ERR _NOT_SYNC, even though the
attribute setting was previously perfornmed successfully.
The client can attenpt to recover fromthis error by
getting fresh attributes fromthe server and sending a new
SETATTR request using the new ctinme. The client can
optionally check the attributes to avoid the second
SETATTR request if the new attributes show that the

attri butes have already been set as desired (though it may
not have been the issuing client that set the

attributes).

The new attributes.size field is used to request changes
to the size of a file. A value of 0 causes the file to be
truncated, a value less than the current size of the file
causes data fromnew size to the end of the file to be

di scarded, and a size greater than the current size of the
file causes logically zeroed data bytes to be added to the
end of the file. Servers are free to inplenment this using
hol es or actual zero data bytes. dients should not make
any assunptions regarding a server’'s inplenentation of

this feature, beyond that the bytes returned will be
zeroed. Servers nust support extending the file size via
SETATTR

SETATTR i s not guaranteed atomc. A failed SETATTR may
partially change a file's attributes.

Changing the size of a file with SETATTR indirectly
changes the ntime. A client nust account for this as size
changes can result in data deletion

If server and client tinmes differ, prograns that conpare

client time to file tinmes can break. A tinme naintenance
protocol should be used to limt client/server tine skew

Cal | aghan, el al I nf or mat i onal [Page 35]

RFC 1813 NFS Version 3 Protocol June 1995

In a heterogeneous environnent, it is quite possible that
the server will not be able to support the full range of
SETATTR requests. The error, NFS3ERR_|INVAL, may be
returned if the server can not store a uid or gid inits
own representation of uids or gids, respectively. |If the
server can only support 32 bit offsets and sizes, a
SETATTR request to set the size of a file to |arger than
can be represented in 32 bits will be rejected with this
sane error.

ERRORS

NFS3ERR_PERM
NFS3ERR | O
NFS3ERR_ACCES
NFS3ERR_| NVAL
NFS3ERR_NOSPC
NFS3ERR_ROFS
NFS3ERR_DQUOT
NFS3ERR_NOT_SYNC
NFS3ERR_STALE
NFS3ERR_BADHANDLE
NFS3ERR_SERVERFAULT

SEE ALSO

CREATE, MKDI R, SYM.I NK, and MKNOD.

Cal | aghan, el al I nf or mat i onal [Page 36]

RFC 1813 NFS Version 3 Protocol June 1995

3.3.3 Procedure 3: LOOKUP - Lookup filename
SYNOPSI S
LOOKUP3r es NFSPROC3_LOOKUP(LOOKUP3ar gs) = 3;

struct LOOKUP3args {
di ropargs3 what;

1
struct LOOKUP3resok {
nfs_fh3 obj ect;
post _op_attr obj_attributes;
post _op_attr dir_attributes;
1

struct LOOKUP3resfail ({
post _op_attr dir_attributes;
1

uni on LOOKUP3res switch (nfsstat3 status) {
case NFS3_K
LOOKUP3r esok resok;
def aul t:
LOOKUP3resfail resfail;
}s

DESCRI PTI ON

Procedure LOOKUP searches a directory for a specific nane
and returns the file handle for the corresponding file
system object. On entry, the argunents in LOOKUP3args
are:

what
oj ect to | ook up:
dir
The file handle for the directory to search.
name

The filenanme to be searched for. Refer to General
comrents on filenanes on page 30.

On successful return, LOOKUP3res.status is NFS3_OK and
LOOKUP3r es. resok cont ai ns:

Cal | aghan, el al I nf or mat i onal [Page 37]

RFC 1813 NFS Version 3 Protocol June 1995

obj ect
The file handl e of the object corresponding to
what . nane.

obj _attributes
The attributes of the object corresponding to
what . nane.

dir_attributes
The post-operation attributes of the directory,
what . dir.

O herw se, LOOKUP3res.status contains the error on failure and
LOOKUP3res.resfail contains the foll ow ng:

dir_attributes
The post-operation attributes for the directory,
what . dir.

| MPLEMENTATI ON

At first glance, in the case where what.nanme refers to a
nount point on the server, two different replies seem
possi bl e. The server can return either the file handle for
the underlying directory that is nmounted on or the file
handl e of the root of the nounted directory. This
anbiguity is sinply resolved. A server will not allow a
LOOKUP operation to cross a nountpoint to the root of a
different filesystem even if the filesystemis exported.
Thi s does not prevent a client from accessing a hierarchy
of filesystens exported by a server, but the client nust
nmount each of the filesystens individually so that the
nount poi nt crossing takes place on the client. A given
server inplenmentation nay refine these rules given
capabilities or limtations particular to that

i mpl ementation. Refer to [X OpenNFS] for a discussion on
exporting file systens.

Two filenames are distinguished, as in the NFS version 2

protocol. The nane, ".", is an alias for the current
directory and the nanme, "..", is an alias for the parent
directory; that is, the directory that includes the
specified directory as a nmenber. There is no facility for
dealing with a multiparented directory and the NFS
protocol assunmes a hierarchical organization, organized as

a single-rooted tree.

Cal | aghan, el al I nf or mat i onal [Page 38]

RFC 1813 NFS Version 3 Protocol June 1995

Note that this procedure does not follow synbolic Iinks.
The client is responsible for all parsing of filenanes
including filenames that are nodified by synbolic |inks
encount ered during the | ookup process.

ERRORS

NFS3ERR | O
NFS3ERR_NOENT
NFS3ERR_ACCES
NFS3ERR_NOTDI R
NFS3ERR_NAMETOOLONG
NFS3ERR_STALE
NFS3ERR_BADHANDLE
NFS3ERR_SERVERFAULT

SEE ALSO

CREATE, MKDI R, SYM.I NK, MKNOD, READDI RPLUS, and PATHCONF.

Cal | aghan, el al I nf or mat i onal [Page 39]

RFC 1813 NFS Version 3 Protocol June 1995

3.3.4 Procedure 4: ACCESS - Check Access Perni ssion
SYNOPSI S

ACCESS3r es NFSPROC3_ACCESS(ACCESS3ar gs) = 4;

const ACCESS3_READ = 0x0001
const ACCESS3_LOOKUP = 0x0002;
const ACCESS3_MODI FY = 0x0004;
const ACCESS3_EXTEND = 0x0008;
const ACCESS3_DELETE = 0x0010;
const ACCESS3_EXECUTE = 0x0020;

struct ACCESS3args {
nfs _fh3 object;
ui nt 32 access;

H

struct ACCESS3resok {
post _op_attr obj _attri butes;
ui nt 32 access;

H

struct ACCESS3resfail {
post _op_attr obj _attri butes;
1

uni on ACCESS3res switch (nfsstat3 status) {
case NFS3_K
ACCESS3r esok resok;
defaul t:
ACCESS3resfail resfail;
1

DESCRI PTI ON

Procedure ACCESS determi nes the access rights that a user
as identified by the credentials in the request, has with
respect to a file systemobject. The client encodes the
set of permnissions that are to be checked in a bit mask
The server checks the perm ssions encoded in the bit mask
A status of NFS3_OK is returned along with a bit nask
encoded with the perm ssions that the client is all owed.

The results of this procedure are necessarily advisory in
nature. That is, a return status of NFS3_OK and the
appropriate bit set in the bit nask does not inply that
such access will be allowed to the file systemobject in

Cal | aghan, el al I nf or mat i onal [Page 40]

RFC 1813 NFS Version 3 Protocol June 1995

the future, as access rights can be revoked by the server
at any tine.

On entry, the argunents in ACCESS3args are:

obj ect
The file handle for the file system object to which
access is to be checked.

access
A bit mask of access pernissions to check.

The followi ng access perm ssions nay be request ed:

ACCESS3_READ
Read data fromfile or read a directory.

ACCESS3_LOOKUP
Look up a nane in a directory (no neaning for
non-directory objects).

ACCESS3_MODI FY
Rewite existing file data or nodify existing
directory entries.

ACCESS3_EXTEND
Wite new data or add directory entries.

ACCESS3_DELETE
Del ete an existing directory entry.

ACCESS3_EXECUTE
Execute file (no nmeaning for a directory).

On successful return, ACCESS3res.status is NFS3_OK. The
server should return a status of NFS3_COK if no errors
occurred that prevented the server from naking the
requi red access checks. The results in ACCESS3res.resok
are:

obj _attributes
The post-operation attributes of object.

access
A bit mask of access pernissions indicating access
rights for the authentication credentials provided with
t he request.

Cal | aghan, el al | nf or mat i onal [Page 41]

RFC 1813 NFS Version 3 Protocol June 1995

O herw se, ACCESS3res.status contains the error on failure
and ACCESS3res.resfail contains the foll ow ng:

obj _attributes
The attributes of object - if access to attributes is
permtted.

| MPLEMENTATI ON

In general, it is not sufficient for the client to attenpt
to deduce access permnissions by inspecting the uid, gid,
and node fields in the file attributes, since the server
may performuid or gid napping or enforce additional
access control restrictions. It is also possible that the
NFS version 3 protocol server may not be in the sane ID
space as the NFS version 3 protocol client. In these cases
(and perhaps others), the NFS version 3 protocol client
can not reliably performan access check with only current
file attributes.

In the NFS version 2 protocol, the only reliable way to
determ ne whet her an operation was allowed was to try it
and see if it succeeded or failed. Using the ACCESS
procedure in the NFS version 3 protocol, the client can
ask the server to indicate whether or not one or nore

cl asses of operations are pernitted. The ACCESS operation
is provided to allow clients to check before doing a
series of operations. This is useful in operating systens
(such as UNI X) where permission checking is done only when
a file or directory is opened. This procedure is also

i nvoked by NFS client access procedure (called possibly
through access(2)). The intent is to nmake the behavior of
opening a renote file nore consistent with the behavior of
opening a local file.

The information returned by the server in response to an
ACCESS call is not permanent. It was correct at the exact
time that the server performed the checks, but not
necessarily afterwards. The server can revoke access
perm ssion at any tine.

The NFS version 3 protocol client should use the effective
credentials of the user to build the authentication
information in the ACCESS request used to deternine access
rights. It is the effective user and group credentials
that are used in subsequent read and wite operations. See
the coments in Perm ssion i ssues on page 98 for nore
information on this topic.

Cal | aghan, el al | nf or mat i onal [Page 42]

RFC 1813 NFS Version 3 Protocol June 1995

Many i npl ementations do not directly support the
ACCESS3_DELETE permni ssion. Operating systens |ike UN X
will ignore the ACCESS3_DELETE bit if set on an access
request on a non-directory object. In these systens,

del ete permission on a file is determ ned by the access
perm ssions on the directory in which the file resides,

i nstead of being determned by the pernissions of the file
itself. Thus, the bit nask returned for such a request
wi Il have the ACCESS3_DELETE bit set to O, indicating that
the client does not have this perm ssion.

ERRORS
NFS3ERR | O
NFS3ERR_STALE
NFS3ERR_BADHANDLE
NFS3ERR_SERVERFAULT

SEE ALSO

GETATTR

Cal | aghan, el al I nf or mat i onal [Page 43]

RFC 1813 NFS Version 3 Protocol June 1995

3.3.5 Procedure 5: READLINK - Read from synmbolic |ink
SYNOPSI S
READLI NK3r es NFSPROC3_READLI NK(READLI NK3ar gs) = 5;

struct READLI NK3args {
nfs_fh3 synlink;
b

struct READLI NK3resok {
post _op_attr symink_attributes;
nf spat h3 dat a;

H

struct READLI NK3resfail {
post _op_attr symink_attributes;
1

uni on READLI NK3res switch (nfsstat3 status) {
case NFS3_K
READL| NK3r esok resok;
def aul t:
READLI NK3resfail resfail;
}s

DESCRI PTI ON

Procedure READLINK reads the data associated with a
synmbolic link. The data is an ASCI| string that is opaque
to the server. That is, whether created by the NFS
version 3 protocol software froma client or created
locally on the server, the data in a synbolic link is not
interpreted when created, but is sinply stored. On entry,
the argunments in READLI NK3args are:

sym i nk
The file handle for a synbolic Iink (file system object
of type NF3LNK).

On successful return, READLI NK3res.status is NFS3_CK and
READLI NK3r es. resok cont ai ns:

dat a
The data associated with the synbolic |ink.

symink_attributes
The post-operation attributes for the synmbolic |ink.

Cal | aghan, el al | nf or mat i onal [Page 44]

RFC 1813 NFS Version 3 Protocol June 1995

O herwi se, READLI NK3res.status contains the error on
failure and READLI NK3res.resfail contains the foll ow ng:

symink_attributes
The post-operation attributes for the synmbolic |ink.

| MPLEMENTATI ON

A synbolic link is nomnally a pointer to another file.
The data is not necessarily interpreted by the server

just stored in the file. It is possible for a client

i mpl ementation to store a path nane that is not neani ngful
to the server operating systemin a synbolic link. A
READLI NK operation returns the data to the client for
interpretation. If different inplenentations want to share
access to synbolic links, then they nust agree on the
interpretation of the data in the synbolic |ink

The READLI NK operation is only allowed on objects of type,
NF3LNK. The server should return the error

NFS3ERR | NVAL, if the object is not of type, NF3LNK

(Note: The X/ Open XNFS Specification for the NFS version 2
protocol defined the error status in this case as
NFSERR_NXI O This is inconsistent with existing server

practice.)
ERRORS
NFS3ERR | O

NFS3ERR_| NVAL
NFS3ERR_ACCES
NFS3ERR_STALE
NFS3ERR_BADHANDLE
NFS3ERR_NOTSUPP
NFS3ERR_SERVERFAULT

SEE ALSO

READLI NK, SYM.I NK

Cal | aghan, el al I nf or mat i onal [Page 45]

RFC 1813 NFS Version 3 Protocol June 1995

3.3.6 Procedure 6: READ - Read Fromfile
SYNOPSI S
READ3r es NFSPROC3_READ(READ3ar gs) = 6;

struct READ3args {
nfs_fh3 file;
of fset3 offset;
count 3 count ;

H

struct READ3resok {
post _op_attr file_ attributes;

count 3 count ;
bool eof ;
opaque dat a<>;

struct READ3resfail ({
post _op_attr file_ attributes;
1

uni on READ3res switch (nfsstat3 status) {
case NFS3_K
READ3r esok resok;
def aul t:
READ3resfail resfail;
}s

DESCRI PTI ON

Procedure READ reads data froma file. On entry, the
argunments in READ3args are:

file
The file handle of the file fromwhich data is to be
read. This nust identify a file system object of type,
NF3REG.

of f set
The position within the file at which the read is to
begin. An offset of O neans to read data starting at
t he beginning of the file. If offset is greater than or
equal to the size of the file, the status, NFS3_OK, is
returned with count set to 0 and eof set to TRUE,
subj ect to access perni ssions checking.

Cal | aghan, el al I nf or mat i onal [Page 46]

RFC 1813 NFS Version 3 Protocol June 1995

count
The nunber of bytes of data that are to be read. If
count is O, the READ will succeed and return O bytes of

data, subject to access perni ssions checking. count

must be | ess than or equal to the value of the rtnax
field in the FSINFO reply structure for the file system
that contains file. If greater, the server may return
only rtmax bytes, resulting in a short read.

On successful return, READ3res.status is NFS3_OK and
READ3r es. resok cont ai ns:

file_attributes
The attributes of the file on conpletion of the read.

count
The nunber of bytes of data returned by the read.

eof
If the read ended at the end-of-file (formally, in a
correctly formed READ request, if READ3args. of fset plus
READ3r esok. count is equal to the size of the file), eof
is returned as TRUE; otherwise it is FALSE. A
successful READ of an enpty file will always return eof
as TRUE.

dat a
The counted data read fromthe file.

O herwi se, READ3res.status contains the error on failure
and READ3res.resfail contains the foll ow ng:

file_attributes
The post-operation attributes of the file.

| MPLEMENTATI ON

The nfsdata type used for the READ and WRI TE operations in
the NFS version 2 protocol defining the data portion of a
request or reply has been changed to a variable-1ength
opaque byte array. The maxi mum size all owed by the
protocol is now limted by what XDR and underlying
transports will allow. There are no artificial linits

i mposed by the NFS version 3 protocol. Consult the FSINFO
procedure description for details.

Cal | aghan, el al | nf or mat i onal [Page 47]

RFC 1813 NFS Version 3 Protocol June 1995

It is possible for the server to return fewer than count
bytes of data. If the server returns |less than the count
requested and eof set to FALSE, the client should issue
another READ to get the remmining data. A server may
return |l ess data than requested under several
circunstances. The file nmay have been truncated by anot her
client or perhaps on the server itself, changing the file
size fromwhat the requesting client believes to be the
case. This would reduce the actual anmount of data
available to the client. It is possible that the server
may back off the transfer size and reduce the read request
return. Server resource exhaustion may al so occur
necessitating a snaller read return

Sonme NFS version 2 protocol client inplenmentations chose
to interpret a short read response as indicating EOF. The
addition of the eof flag in the NFS version 3 protocol
provides a correct way of handling EOF.

Sonme NFS version 2 protocol server inplenentations
incorrectly returned NFSERR ISDIR if the file system
obj ect type was not a regular file. The correct return
value for the NFS version 3 protocol is NFS3ERR_| NVAL.

ERRORS

NFS3ERR | O
NFS3ERR_NXI O
NFS3ERR_ACCES
NFS3ERR_| NVAL
NFS3ERR_STALE
NFS3ERR_BADHANDLE
NFS3ERR_SERVERFAULT

SEE ALSO

READLI NK

Cal | aghan, el al I nf or mat i onal [Page 48]

RFC 1813 NFS Version 3 Protocol

3.3.7 Procedure 7: WRITE - Wite to file
SYNOPSI S
VWRI TE3res NFSPROC3_WRI TE(WRI TE3args) = 7;

enum st abl e_how {

UNSTABLE = O,
DATA _SYNC = 1,
FI LE_SYNC = 2

H

struct WRI TE3args {
nfs_fh3 file;
of fset3 of fset;
count 3 count;
stabl e_how stabl e;
opaque dat a<>;

H

struct WRI TE3resok {
wcc_dat a file_wcce;
count 3 count;
stabl e_how conmitted;
witeverf3 verf;

H

struct WRI TE3resfail {
wcc_dat a file_wcce;

H

uni on WRI TE3res switch (nfsstat3 status) {
case NFS3_K
WRI TE3r esok resok;
def aul t:
WRI TE3r esf ai | resfail;
}s

DESCRI PTI ON

Procedure WRITE wites data to a file. On entry, the
argunments in WRI TE3args are:

file
The file handle for the file to which data is to be
written. This nust identify a file system object of
type, NF3REG

Cal | aghan, el al I nf or mat i onal

June 1995

[Page 49]

RFC 1813 NFS Version 3 Protocol June 1995

of f set
The position within the file at which the wite is to
begin. An offset of O neans to wite data starting at
t he beginning of the file.

count
The nunber of bytes of data to be witten. If count is
0, the WRITE will succeed and return a count of 0,

barring errors due to perm ssions checking. The size of
data nust be less than or equal to the value of the
wrmax field in the FSINFO reply structure for the file
systemthat contains file. If greater, the server may
wite only wtnax bytes, resulting in a short wite.

stabl e
If stable is FILE_SYNC, the server nust commit the data
written plus all file systemnetadata to stable storage
before returning results. This corresponds to the NFS
version 2 protocol senmantics. Any other behavior
constitutes a protocol violation. If stable is
DATA _SYNC, then the server nmust commit all of the data
to stable storage and enough of the netadata to
retrieve the data before returning. The server
i npl enentor is free to inplenent DATA_SYNC in the sane
fashion as FILE SYNC, but with a possible performance
drop. |If stable is UNSTABLE, the server is free to
commt any part of the data and the netadata to stable
storage, including all or none, before returning a
reply to the client. There is no guarantee whet her or
when any unconmitted data will subsequently be
commtted to stable storage. The only guarant ees made
by the server are that it will not destroy any data
wi t hout changi ng the value of verf and that it will not
conmt the data and netadata at a | evel |ess than that
requested by the client. See the discussion on COWM T
on page 92 for nore information on if and when
data is conmmitted to stable storage.

dat a
The data to be witten to the file.

On successful return, WRI TE3res.status is NFS3_OK and
WRI TE3r es. resok cont ains:

file_ wcc
Weak cache consistency data for the file. For a client
that requires only the post-wite file attributes,
these can be found in file_wcc. after

Cal | aghan, el al I nf or mat i onal [Page 50]

RFC 1813 NFS Version 3 Protocol June 1995

count
The nunber of bytes of data written to the file. The
server my wite fewer bytes than requested. If so, the
actual nunber of bytes witten starting at |ocation
of fset, is returned.

conm tted
The server should return an indication of the |evel of
comm tnment of the data and netadata via committed. |f
the server conmitted all data and netadata to stable
storage, committed should be set to FILE_SYNC. If the
| evel of commitment was at | east as strong as
DATA_SYNC, then committed should be set to DATA _SYNC
O herwi se, comitted nmust be returned as UNSTABLE. |f
stabl e was FILE _SYNC, then conmitted nust al so be
FI LE_SYNC:. anything el se constitutes a protocol
violation. If stable was DATA SYNC, then conmitted may
be FILE _SYNC or DATA SYNC. anything el se constitutes a
protocol violation. If stable was UNSTABLE, then
conmtted may be either FILE_SYNC, DATA_SYNC, or
UNSTABLE

ver f
This is a cookie that the client can use to determne
whet her the server has changed state between a call to
WRI TE and a subsequent call to either WRITE or COWM T.
Thi s cooki e nmust be consistent during a single instance
of the NFS version 3 protocol service and nust be
uni que between instances of the NFS version 3 protocol
server, where unconmitted data nay be | ost.

O herwi se, WRI TE3res. status contains the error on failure
and WRI TE3res.resfail contains the foll ow ng:

file_ wcc
Weak cache consistency data for the file. For a client
that requires only the post-wite file attributes,
these can be found in file_wcc.after. Even though the
wite failed, full wec_data is returned to allow the
client to determne whether the failed wite resulted
in any change to the file.

If aclient wites data to the server with the stable
argunment set to UNSTABLE and the reply yields a conmitted
response of DATA SYNC or UNSTABLE, the client will follow
up sone tinme in the future with a COM T operation to
synchroni ze out st andi ng asynchronous data and net adat a
with the server’s stable storage, barring client error. It

Cal | aghan, el al I nf or mat i onal [Page 51]

RFC 1813 NFS Version 3 Protocol June 1995

is possible that due to client crash or other error that a
subsequent COWM T will not be received by the server.

| MPLEMENTATI ON

The nfsdata type used for the READ and WRI TE operations in
the NFS version 2 protocol defining the data portion of a
request or reply has been changed to a variable-1ength
opaque byte array. The maxi mum size all owed by the
protocol is now limted by what XDR and underlying
transports will allow. There are no artificial lints

i nposed by the NFS version 3 protocol. Consult the FSINFO
procedure description for details.

It is possible for the server to wite fewer than count
bytes of data. In this case, the server should not return
an error unless no data was witten at all. If the server
wites | ess than count bytes, the client should issue
another WRITE to wite the renaining data.

It is assuned that the act of witing data to a file will
cause the ntinme of the file to be updated. However, the
ntime of the file should not be changed unl ess the
contents of the file are changed. Thus, a WRI TE request
with count set to O should not cause the ntinme of the file
to be updated.

The NFS version 3 protocol introduces safe asynchronous
wites. The conbination of WRITE with stable set to
UNSTABLE fol l owed by a COMW T addresses the performance
bottl eneck found in the NFS version 2 protocol, the need
to synchronously conmit all wites to stable storage.

The definition of stable storage has been historically a
poi nt of contention. The foll owi ng expected properties of
stabl e storage may help in resolving design issues in the

i npl ementation. Stable storage is persistent storage that
survives:

1. Repeated power failures.

2. Hardware failures (of any board, power supply, and so on.).
3. Repeated software crashes, including reboot cycle.

This definition does not address failure of the stable
storage nodul e itself.

Cal | aghan, el al I nf or mat i onal [Page 52]

RFC 1813 NFS Version 3 Protocol June 1995

A cookie, verf, is defined to allow a client to detect

di fferent instances of an NFS version 3 protocol server
over which cached, unconmitted data may be lost. In the
nost |ikely case, the verf allows the client to detect
server reboots. This information is required so that the
client can safely determ ne whether the server could have
| ost cached data. If the server fails unexpectedly and the
client has uncommtted data from previous WRI TE requests
(done with the stable argunment set to UNSTABLE and in
which the result committed was returned as UNSTABLE as
well) it may not have flushed cached data to stable
storage. The burden of recovery is on the client and the
client will need to retransnmit the data to the server

A suggested verf cookie would be to use the tine that the
server was booted or the tine the server was | ast started
(if restarting the server without a reboot results in |ost
buffers).

The committed field in the results allows the client to do
nore effective caching. If the server is conmtting al

WRI TE requests to stable storage, then it should return
with conmitted set to FILE _SYNC, regardless of the value
of the stable field in the argunents. A server that uses
an NVRAM accel erator may choose to inplenent this policy.
The client can use this to increase the effectiveness of
the cache by discarding cached data that has already been
conmtted on the server

Some i npl enentations may return NFS3ERR _NOSPC i nstead of
NFS3ERR _DQUOT when a user’s quota is exceeded.

Sonme NFS version 2 protocol server inplenentations
incorrectly returned NFSERR ISDIR if the file system
obj ect type was not a regular file. The correct return
value for the NFS version 3 protocol is NFS3ERR_| NVAL.

ERRORS

NFS3ERR | O
NFS3ERR_ACCES
NFS3ERR_FBI G
NFS3ERR_DQUOT
NFS3ERR_NOSPC
NFS3ERR_ROFS
NFS3ERR_| NVAL
NFS3ERR_STALE
NFS3ERR_BADHANDLE

Cal | aghan, el al I nf or mat i onal [Page 53]

RFC 1813 NFS Version 3 Protocol June 1995

NFS3ERR_SERVERFAULT

SEE ALSO
COW T.

3.3.8 Procedure 8: CREATE - Create a file

SYNOPSI S
CREATE3r es NFSPROC3_CREATE(CREATE3args) = 8;
enum cr eat enode3

UNCHECKED

GUARDED
EXCLUSI VE

NH_C):—*-\

H

uni on createhow3 switch (createnode3 node) {
case UNCHECKED:
case GUARDED:
sattr3 obj _attri butes;
case EXCLUSI VE:
createverf3 verf;
1

struct CREATE3args {
di ropar gs3 wher e;
creat ehow3 how;

H

struct CREATE3resok {
post _op_fh3 obj ;
post _op_attr obj_attributes;

wcc_dat a di r _wecc;
b
struct CREATE3resfail {
wcc_dat a di r _wecc;
b

uni on CREATE3res switch (nfsstat3 status) {
case NFS3_K
CREATE3r esok resok;
def aul t:
CREATE3resfail resfail;
}s

Cal | aghan, el al I nf or mat i onal [Page 54]

RFC 1813 NFS Version 3 Protocol June 1995

DESCRI PTI ON

Procedure CREATE creates a regular file. On entry, the
argunments in CREATE3args are:

wher e
The | ocation of the file to be created:

dir
The file handle for the directory in which the file
is to be created.

nane
The nane that is to be associated with the created
file. Refer to General comments on fil enanes on
page 30.

When creating a regular file, there are three ways to
create the file as defined by:

how
A di scrimnated union describing howthe server is to
handl e the file creation along with the appropriate
attributes:

node
One of UNCHECKED, GUARDED, and EXCLUSI VE. UNCHECKED
means that the file should be created w thout checking
for the existence of a duplicate file in the sane
directory. In this case, how obj _attributes is a sattr3
describing the initial attributes for the file. GUARDED
specifies that the server should check for the presence
of a duplicate file before perforning the create and
should fail the request with NFS3ERR EXIST if a
duplicate file exists. If the file does not exist, the
request is perfornmed as described for UNCHECKED
EXCLUSI VE specifies that the server is to foll ow
exclusive creation semantics, using the verifier to
ensure exclusive creation of the target. No attributes
may be provided in this case, since the server may use
the target file nmetadata to store the createverf3
verifier.

On successful return, CREATE3res.status is NFS3_OK and the
results in CREATE3res.resok are:

obj
The file handle of the newy created regular file.

Cal | aghan, el al I nf or mat i onal [Page 55]

RFC 1813 NFS Version 3 Protocol June 1995

obj _attributes
The attributes of the regular file just created.

di r_wcc
Weak cache consistency data for the directory,
where.dir. For a client that requires on the
post - CREATE directory attributes, these can be found in
dir_wcc. after.

O herw se, CREATE3res.status contains the error on failure
and CREATE3res.resfail contains the foll ow ng:

di r_wcc
Weak cache consistency data for the directory,
where.dir. For a client that requires only the
post - CREATE directory attributes, these can be found in
dir_wcc.after. Even though the CREATE failed, ful
wcc_data is returned to allow the client to deternine
whet her the failing CREATE resulted in any change to
the directory.

| MPLEMENTATI ON

Unli ke the NFS version 2 protocol, in which certain fields
inthe initial attributes structure were overloaded to

i ndicate creation of devices and FIFGs in addition to
regular files, this procedure only supports the creation
of regular files. The MKNOD procedure was introduced in
the NFS version 3 protocol to handl e creation of devices
and FI FGs. | nplenentations should have no reason in the
NFS version 3 protocol to overl oad CREATE semanti cs.

One aspect of the NFS version 3 protocol CREATE procedure
warrants particularly careful consideration: the nechani sm
i ntroduced to support the reliable exclusive creation of
regular files. The nechani sm cones into play when how. node
is EXCLUSIVE. 1In this case, how verf contains a verifier
that can reasonably be expected to be unique. A

conbi nation of a client identifier, perhaps the client

net wor k address, and a uni que nunber generated by the
client, perhaps the RPC transaction identifier, nay be
appropri ate.

If the file does not exist, the server creates the file
and stores the verifier in stable storage. For file
systens that do not provide a nmechanismfor the storage of
arbitrary file attributes, the server nmay use one or nore
elements of the file nmetadata to store the verifier. The

Cal | aghan, el al I nf or mat i onal [Page 56]

RFC 1813 NFS Version 3 Protocol June 1995

verifier nmust be stored in stable storage to prevent
erroneous failure on retransm ssion of the request. It is
assuned that an exclusive create is being perforned
because exclusive semantics are critical to the
appl i cation. Because of the expected usage, exclusive
CREATE does not rely solely on the normally volatile
dupli cate request cache for storage of the verifier. The
dupli cate request cache in volatile storage does not
survive a crash and nmay actually flush on a | ong network
partition, opening failure windows. |In the UN X | ocal
file systemenvironnent, the expected storage |ocation for
the verifier on creation is the netadata (tinme stanps) of
the file. For this reason, an exclusive file create may
not include initial attributes because the server woul d
have nowhere to store the verifier.

If the server can not support these exclusive create
semanti cs, possibly because of the requirenment to conmit
the verifier to stable storage, it should fail the CREATE
request with the error, NFS3ERR_NOTSUPP

Duri ng an excl usive CREATE request, if the file already
exi sts, the server reconstructs the file' s verifier and
conpares it with the verifier in the request. If they
mat ch, the server treats the request as a success. The
request is presunmed to be a duplicate of an earlier
successful request for which the reply was | ost and that
the server duplicate request cache nechani smdid not
detect. If the verifiers do not match, the request is
rejected with the status, NFS3ERR EXI ST.

Once the client has performed a successful exclusive
create, it nust issue a SETATTR to set the correct file
attributes. Until it does so, it should not rely upon any
of the file attributes, since the server inplenentation
may need to overload file nmetadata to store the verifier.

Use of the GUARDED attribute does not provide exactly-once
semantics. |In particular, if areply is lost and the
server does not detect the retransm ssion of the request,
the procedure can fail with NFS3ERR_EXI ST, even though the
create was performed successfully.

Refer to General comments on fil enanmes on page 30.

Cal | aghan, el al I nf or mat i onal [Page 57]

RFC 1813 NFS Version 3 Protocol June 1995

ERRORS

NFS3ERR | O
NFS3ERR_ACCES
NFS3ERR_EXI ST
NFS3ERR_NOTDI R
NFS3ERR_NOSPC
NFS3ERR_ROFS
NFS3ERR_NAMETOOLONG
NFS3ERR_DQUOT
NFS3ERR_STALE
NFS3ERR_BADHANDLE
NFS3ERR_NOTSUPP
NFS3ERR_SERVERFAULT

SEE ALSO
MKDI R, SYM.I NK, MKNOD, and PATHCONF.
3.3.9 Procedure 9: MKDIR - Create a directory
SYNOPSI S
MKDI R3r es NFSPROC3_MKDI R(MKDI R3args) = 9;
struct MKDI R3args {

di ropar gs3 wher e;
sattr3 attri butes;

H

struct MKDI R3resok {
post _op_fh3 obj ;
post _op_attr obj_attributes;

wcc_dat a di r _wecc;
b
struct MKDI R3resfail {
wcc_dat a di r _wecc;
b

uni on MKDI R3res switch (nfsstat3 status) {
case NFS3_K
MKDI R3r esok resok;
def aul t:
MKDI R3resfail resfail;
}s

Cal | aghan, el al I nf or mat i onal [Page 58]

RFC 1813 NFS Version 3 Protocol June 1995

DESCRI PTI ON

Procedure MKDIR creates a new subdirectory. On entry, the
argunments in MKDI R3args are:

wher e
The location of the subdirectory to be created:
dir
The file handle for the directory in which the
subdirectory is to be created.
name

The nanme that is to be associated with the created
subdirectory. Refer to General conments on fil enanes
on page 30.

attributes
The initial attributes for the subdirectory.

On successful return, MKDIR3res.status is NFS3_OK and the
results in MKDI R3res.resok are:

obj
The file handle for the newy created directory.

obj _attributes
The attributes for the newy created subdirectory.

dir_wcc
Weak cache consistency data for the directory,
where.dir. For a client that requires only the
post-MKDI R directory attributes, these can be found in
dir_wcc. after.

O herwi se, MKDI R3res. status contains the error on failure
and MKDI R3res.resfail contains the foll ow ng:

dir_wcc
Weak cache consistency data for the directory,
where.dir. For a client that requires only the
post-MKDI R directory attributes, these can be found in
dir_wcc.after. Even though the MKDIR failed, full
wcc_data is returned to allow the client to deternine
whether the failing MKDIR resulted in any change to the
directory.

Cal | aghan, el al I nf or mat i onal [Page 59]

RFC 1813

| MPLEMENTATI ON

Many server

In this case,
Ref er to Cener al

ERRORS

or

NFS3ERR | O
NFS3ERR_ACCES
NFS3ERR_EXI ST
NFS3ERR_NOTDI R
NFS3ERR_NOSPC
NFS3ERR_ROFS
NFS3ERR_NAMETOOLONG
NFS3ERR_DQUOT
NFS3ERR_STALE
NFS3ERR_BADHANDLE
NFS3ERR_NOTSUPP
NFS3ERR_SERVERFAULT

SEE ALSO

NFS Version 3 Protocol

i mpl ementati ons will

not allow the fil enanes,

to be used as targets in a MKDI R operation.

the server should return NFS3ERR_EXI ST.
conments on fil enames on page 30.

CREATE, SYM.INK, MKNCD, and PATHCONF.

Cal | aghan,

el

al

| nf or mat i onal

June 1995

[Page 60]

RFC 1813 NFS Version 3 Protocol June 1995

3.3.10 Procedure 10: SYMLINK - Create a synbolic |ink
SYNOPSI S
SYMLI NK3res NFSPROC3_SYM.I NK(SYMLI NK3ar gs) = 10;

struct syminkdata3 {
sattr3 sym ink_attributes;
nfspath3 symink_data

H

struct SYM.I NK3args ({
di ropar gs3 wher e;
sym i nkdata3 symink
b

struct SYM.I NK3resok {
post _op_fh3 obj ;
post _op_attr obj_attributes;

wcc_dat a di r _wecc;
b
struct SYM.I NK3resfail {
wcc_dat a di r _wecc;
b

uni on SYM.I NK3res switch (nfsstat3 status) {
case NFS3_K
SYM_I NK3r esok r esok
def aul t:
SYMLI NK3resfail resfail;
}s

DESCRI PTI ON

Procedure SYM.INK creates a new synbolic link. On entry,
the argunents in SYM.I NK3args are:

wher e
The location of the synbolic link to be created:
dir
The file handle for the directory in which the
synbolic link is to be created.

Cal | aghan, el al I nf or mat i onal [Page 61]

RFC 1813 NFS Version 3 Protocol June 1995

nane
The nanme that is to be associated with the created
synmbolic link. Refer to General coments on
filenames on page 30.

sym i nk
The synbolic link to create:

symink_attributes
The initial attributes for the synbolic Iink.

sym i nk_dat a
The string containing the synbolic Iink data.

On successful return, SYM.INK3res.status is NFS3_OK and
SYMLI NK3r es. resok cont ai ns:

obj
The file handle for the newy created synbolic |ink

obj _attributes
The attributes for the newy created synbolic |ink

di r_wcc
Weak cache consistency data for the directory,
where.dir. For a client that requires only the
post-SYM.INK directory attributes, these can be found
indir_wcc.after.

O herw se, SYM.I NK3res.status contains the error on
failure and SYMLI NK3res.resfail contains the foll ow ng:

dir_wcc
Weak cache consistency data for the directory,
where.dir. For a client that requires only the
post-SYM.INK directory attributes, these can be found
in dir_wcc.after. Even though the SYM.INK failed, ful
wcc_data is returned to allow the client to deternine
whet her the failing SYM.I NK changed the directory.

| MPLEMENTATI ON
Refer to General comments on fil enanmes on page 30.
For synbolic links, the actual file systemnode and its
contents are expected to be created in a single atonic

operation. That is, once the synmbolic link is visible,
there nust not be a wi ndow where a READLI NK would fail or

Cal | aghan, el al I nf or mat i onal [Page 62]

RFC 1813 NFS Version 3 Protoco

return i ncorrect data.
ERRCRS

NFS3ERR | O
NFS3ERR_ACCES
NFS3ERR_EXI ST
NFS3ERR_NOTDI R
NFS3ERR_NOSPC
NFS3ERR_ROFS
NFS3ERR_NAMETOOLONG
NFS3ERR_DQUOT
NFS3ERR_STALE
NFS3ERR_BADHANDLE
NFS3ERR_NOTSUPP
NFS3ERR_SERVERFAULT

SEE ALSO

READLI NK, CREATE, MKDI R, MKNCOD, FSI NFO, and PATHCONF

3.3.11 Procedure 11: MKNOD - Create a speci al

SYNOPSI S
MKNOD3r es NFSPROC3_MKNOD(VKNOD3ar gs)

struct devi cedata3 {
sattr3 dev_attri butes;
specdat a3 spec;

H

uni on nknoddat a3 switch (ftype3 type)

case NF3CHR:
case NF3BLK
devi cedat a3 devi ce;
case NF3SOCK
case NF3FI FO
sattr3 pi pe_attributes;
def aul t:
voi d;
}s

struct MKNOD3args {
di ropar gs3 wher e;
nmknoddat a3 what ;

H

Cal | aghan, el al I nf or mat i onal

devi ce

11;

June 1995

[Page 63]

RFC 1813 NFS Version 3 Protocol June 1995

struct MKNOD3resok {
post _op_fh3 obj ;
post _op_attr obj_attributes;

wcc_dat a di r_wcc;
1
struct MKNOD3resfail {
wcc_dat a di r_wcc;
1

uni on MKNOD3res switch (nfsstat3 status) {
case NFS3_K
MKNCOD3r esok resok
defaul t:
MKNOD3r esfail resfail;
1

DESCRI PTI ON

Procedure MKNOD creates a new special file of the type,
what .type. Special files can be device files or named
pipes. On entry, the argunents in MKNOD3args are:

wher e
The location of the special file to be created:

dir
The file handle for the directory in which the
special file is to be created.

nane
The nanme that is to be associated with the created
special file. Refer to General conments on fil enanes
on page 30.

what
A discrimnated union identifying the type of the
special file to be created along with the data and
attributes appropriate to the type of the speci al
file:

type
The type of the object to be created.

When creating a character special file (what.type is

NF3CHR) or a block special file (what.type i s NF3BLK),
what i ncl udes:

Cal | aghan, el al I nf or mat i onal [Page 64]

RFC 1813 NFS Version 3 Protocol June 1995

devi ce
A structure devicedata3 with the foll ow ng conmponents:

dev_attributes
The initial attributes for the special file.

spec
The maj or nunber stored in device. spec. specdatal and
the m nor nunber stored in device. spec. specdat a2

When creating a socket (what.type is NF3SOCK) or a FIFO
(what.type is NF3FI FO, what includes:

pi pe_attributes
The initial attributes for the special file.

On successful return, MKNOD3res.status is NFS3_OK and
MKNOD3r es. r esok cont ai ns:

obj
The file handle for the newy created special file.

obj _attributes
The attributes for the newy created special file.

dir_wcc
Weak cache consistency data for the directory,
where.dir. For a client that requires only the
post-MKNOD directory attributes, these can be found in
dir_wcc. after.

O herw se, MKNOD3res. status contains the error on failure
and MKNOD3res.resfail contains the foll ow ng:

dir_wcc
Weak cache consistency data for the directory,
where.dir. For a client that requires only the
post-MKNOD directory attributes, these can be found in
dir_wcc.after. Even though the MKNOD failed, ful
wcc_data is returned to allow the client to deternine
whet her the failing MKNOD changed the directory.

| MPLEMENTATI ON
Refer to General comments on fil enanmes on page 30.

Wthout explicit support for special file type creation in
the NFS version 2 protocol, fields in the CREATE argunents

Cal | aghan, el al I nf or mat i onal [Page 65]

RFC 1813 NFS Version 3 Protocol June 1995

were overl oaded to indicate creation of certain types of
obj ects. This overloading is not necessary in the NFS
version 3 protocol

If the server does not support any of the defined types,
the error, NFS3ERR_NOTSUPP, should be returned. O herw se,
if the server does not support the target type or the
target type is illegal, the error, NFS3ERR BADTYPE, shoul d
be returned. Note that NF3REG NF3DI R, and NF3LNK are
illegal types for MKNOD. The procedures, CREATE, MD R,
and SYM.I NK shoul d be used to create these file types,
respectively, instead of NMKNCD

ERRORS

NFS3ERR | O
NFS3ERR_ACCES
NFS3ERR_EXI ST
NFS3ERR_NOTDI R
NFS3ERR_NOSPC
NFS3ERR_ROFS
NFS3ERR_NAMETOOLONG
NFS3ERR_DQUOT
NFS3ERR_STALE
NFS3ERR_BADHANDLE
NFS3ERR_NOTSUPP
NFS3ERR_SERVERFAULT
NFS3ERR_BADTYPE

SEE ALSO

CREATE, MKDI R, SYM.I NK, and PATHCONF.

Cal | aghan, el al I nf or mat i onal [Page 66]

RFC 1813 NFS Version 3 Protocol June 1995

3.3.12 Procedure 12: REMOVE - Renove a File
SYNOPSI S
REMOVE3r es NFSPROC3_REMOVE(REMOVE3args) = 12;

struct REMOVE3args {
di ropargs3 object;
1

struct REMOVE3resok {
wcc_dat a di r _wecc;
b

struct REMOVE3resfail ({
wcc_dat a di r _wecc;
b

uni on REMOVE3res switch (nfsstat3 status) {
case NFS3_K
REMOVE3r esok resok;
def aul t:
REMOVE3resfail resfail;
}s

DESCRI PTI ON

Procedure REMOVE renoves (deletes) an entry froma
directory. If the entry in the directory was the | ast
reference to the corresponding file system object, the
obj ect may be destroyed. On entry, the argunents in
REMOVE3ar gs are:

obj ect
A diropargs3 structure identifying the entry to be
r enoved:

dir

The file handle for the directory fromwhich the entry
is to be renoved.

name
The nanme of the entry to be renoved. Refer to General
conments on fil enames on page 30.

On successful return, REMOVE3res.status is NFS3_OK and
REMOVE3r es. resok cont ai ns:

Cal | aghan, el al I nf or mat i onal [Page 67]

RFC 1813 NFS Version 3 Protocol June 1995

di r_wcc
Weak cache consistency data for the directory,
object.dir. For a client that requires only the
post- REMOVE directory attributes, these can be found in
dir_wcc. after.

O herw se, REMOVE3res.status contains the error on failure
and REMOVE3res.resfail contains the foll ow ng:

di r_wcc
Weak cache consistency data for the directory,
object.dir. For a client that requires only the
post- REMOVE directory attributes, these can be found in
dir_wcc.after. Even though the REMOVE failed, ful
wcc_data is returned to allow the client to deternine
whet her the failing REMOVE changed the directory.

| MPLEMENTATI ON

In general, REMOVE is intended to renove non-directory
file objects and RVMDIR is to be used to renove
directories. However, REMOVE can be used to renove
directories, subject to restrictions inposed by either the
client or server interfaces. This had been a source of
confusion in the NFS version 2 protocol

The concept of last reference is server specific. However,
if the nlink field in the previous attributes of the

obj ect had the value 1, the client should not rely on
referring to the object via a file handle. Likew se, the
client should not rely on the resources (disk space,
directory entry, and so on.) formerly associated with the
obj ect becoming i medi ately available. Thus, if a client
needs to be able to continue to access a file after using
REMOVE to renove it, the client should take steps to nake
sure that the file will still be accessible. The usual
nmechani smused is to use RENAME to renanme the file from
its old nane to a new hi dden nane.

Refer to General comments on fil enanmes on page 30.
ERRORS

NFS3ERR_NOENT

NFS3ERR | O

NFS3ERR_ACCES

NFS3ERR_NOTDI R
NFS3ERR_NAMVETOOLONG

Cal | aghan, el al I nf or mat i onal [Page 68]

RFC 1813 NFS Version 3 Protocol June 1995

NFS3ERR_ROFS
NFS3ERR_STALE
NFS3ERR_BADHANDLE
NFS3ERR_SERVERFAULT

SEE ALSO
RMDI R and RENAME.
3.3.13 Procedure 13: RVMDIR - Renbve a Directory
SYNOPSI S
RMDI R3r es NFSPROC3_RMDI R(RMDI R3ar gs) = 13;
struct RMDI R3args {

di ropargs3 object;
1

struct RMDI R3resok {
wcc_dat a di r_wcc;
b

struct RVDI R3resfail {
wcc_dat a di r _wecc;
b

uni on RVDI R3res switch (nfsstat3 status) {
case NFS3_K
RMVDI R3r esok r esok
def aul t:
RVMDI R3resfail resfail;
}s

DESCRI PTI ON

Procedure RVMDIR renpoves (deletes) a subdirectory froma

directory. If the directory entry of the subdirectory is
the last reference to the subdirectory, the subdirectory
may be destroyed. On entry, the argunents in RMDI R3args

are:

obj ect

A diropargs3 structure identifying the directory entry
to be renoved:

Cal | aghan, el al I nf or mat i onal [Page 69]

RFC 1813 NFS Version 3 Protocol June 1995

dir
The file handle for the directory fromwhich the
subdirectory is to be renoved.

name
The name of the subdirectory to be renpved. Refer to
General conments on fil enames on page 30.

On successful return, RVDIR3res.status is NFS3_OK and
RVDI R3r es. resok cont ai ns:

di r_wcc
Weak cache consistency data for the directory,
object.dir. For a client that requires only the
post-RVMDIR directory attributes, these can be found in
dir_wcc. after.

O herwi se, RVMDI R3res. status contains the error on failure
and RVDI R3res.resfail contains the foll ow ng:

di r_wcc
Weak cache consistency data for the directory,
object.dir. For a client that requires only the
post-RVMDIR directory attributes, these can be found in
dir_wcc.after. Note that even though the RVDIR fail ed,
full wec_data is returned to allow the client to
determ ne whether the failing RVDI R changed t he
directory.

| MPLEMENTATI ON

Note that on sone servers, renoval of a non-enpty
directory is disallowed.

On sone servers, the filenane, ".", is illegal. These
servers will return the error, NFS3ERR |INVAL. On sone
servers, the filenane, "..", is illegal. These servers

will return the error, NFS3ERR EXI ST. This woul d seem

i nconsi stent, but allows these servers to conply with
their own specific interface definitions. dients should
be prepared to handl e both cases.

The client should not rely on the resources (disk space,

directory entry, and so on.) formerly associated with the
di rectory becom ng i medi ately avail abl e.

Cal | aghan, el al I nf or mat i onal [Page 70]

RFC 1813 NFS Version 3 Protocol June 1995

ERRORS

NFS3ERR_NOENT
NFS3ERR | O
NFS3ERR_ACCES
NFS3ERR_| NVAL
NFS3ERR_EXI ST
NFS3ERR_NOTDI R
NFS3ERR_NAMETOOLONG
NFS3ERR_ROFS
NFS3ERR_NOTEMPTY
NFS3ERR_STALE
NFS3ERR_BADHANDLE
NFS3ERR_NOTSUPP
NFS3ERR_SERVERFAULT

SEE ALSO
REMOVE.
3.3.14 Procedure 14: RENAME - Renane a File or Directory
SYNOPSI S
RENAME3r es NFSPROC3_RENAME(RENAME3ar gs) = 14;

struct RENAME3args ({
di ropar gs3 from
di ropar gs3 to;
1

struct RENAME3resok {
wcc_dat a fromdir_wcc;
wcc_dat a todir_wcc;

H

struct RENAME3resfail {
wcc_dat a fromdir_wcc;
wcc_dat a todir_wcc;

H

uni on RENAME3res switch (nfsstat3 status) {
case NFS3_K
RENAME3r esok resok;
def aul t:
RENAVE3resfail resfail;
}s

Cal | aghan, el al | nf or mat i onal [Page 71]

RFC 1813 NFS Version 3 Protocol June 1995

DESCRI PTI ON

Procedure RENAME renanes the file identified by from nane
in the directory, fromdir, to to.nanme in the di- rectory,
to.dir. The operation is required to be atomic to the
client. To.dir and fromdir nust reside on the same file
system and server. On entry, the arguments in RENAVE3args
are:

from
A diropargs3 structure identifying the source (the file
system obj ect to be re-naned):

fromdir
The file handle for the directory fromwhich the
entry is to be renaned.

from nane
The nanme of the entry that identifies the object to
be renaned. Refer to General comments on fil enanes
on page 30.

to
A diropargs3 structure identifying the target (the new
nane of the object):

to.dir
The file handle for the directory to which the
object is to be renaned

t 0. name
The new nanme for the object. Refer to Cenera
comrents on filenanes on page 30.

If the directory, to.dir, already contains an entry with
the nanme, to.nane, the source object nust be conpatible
with the target: either both are non-directories or both
are directories and the target nust be enpty. If

conmpati ble, the existing target is renoved before the
renane occurs. If they are not conpatible or if the target
is a directory but not enpty, the server should return the
error, NFS3ERR_EXI ST.

On successful return, RENAME3res.status is NFS3_OK and
RENAME3r es. resok cont ai ns:

Cal | aghan, el al | nf or mat i onal [Page 72]

RFC 1813 NFS Version 3 Protocol June 1995

fromdir_wcc
Weak cache consistency data for the directory,
fromdir.

todir_wcc
Weak cache consistency data for the directory, to.dir.

O herw se, RENAME3res.status contains the error on failure
and RENAVE3res.resfail contains the foll ow ng:

fromdir_wcc
Weak cache consistency data for the directory,
fromdir.

todir_wcc
Weak cache consistency data for the directory, to.dir.

| MPLEMENTATI ON
The RENAME operation nmust be atomic to the client. The
nessage "to.dir and fromdir nust reside on the sane file
systemon the server, [or the operation will fail]" means
that the fsid fields in the attributes for the directories
are the sane. If they reside on different file systens,
the error, NFS3ERR_XDEV, is returned. Even though the
operation is atom c, the status, NFS3ERR M.INK, nay be
returned if the server used a "unlink/Ilink/unlink"
sequence internally.

A file handle may or may not becone stale on a renane.
However, server inplenentors are strongly encouraged to
attenpt to keep file handles frombeconing stale in this
f ashi on.

On sone servers, the filenanes, "." and "..", are illega
as either fromname or to.name. In addition, neither
fromnane nor to.nane can be an alias for fromdir. These
servers will return the error, NFS3ERR INVAL, in these
cases.

If fromand to both refer to the sanme file (they m ght
be hard |inks of each other), then RENAME shoul d perform
no action and return NFS3_CK

Refer to General comments on fil enanmes on page 30.

Cal | aghan, el al I nf or mat i onal [Page 73]

RFC 1813 NFS Version 3 Protocol June 1995

ERRORS

NFS3ERR_NOENT
NFS3ERR | O
NFS3ERR_ACCES
NFS3ERR_EXI ST
NFS3ERR_XDEV
NFS3ERR_NOTDI R
NFS3ERR_| SDI R
NFS3ERR_| NVAL
NFS3ERR_NOSPC
NFS3ERR_ROFS
NFS3ERR_MLI NK
NFS3ERR_NAMETOOLONG
NFS3ERR_NOTEMPTY
NFS3ERR_DQUOT
NFS3ERR_STALE
NFS3ERR_BADHANDLE
NFS3ERR_NOTSUPP
NFS3ERR_SERVERFAULT

SEE ALSO
REMOVE and LI NK.
3.3.15 Procedure 15: LINK - Create Link to an object
SYNOPSI S
LI NK3res NFSPROC3_LI NK(LI NK3args) = 15;

struct LINK3args {
nfs_fh3 file;
di ropargs3 |ink;
1

struct LINK3resok {
post _op_attr file_ attributes;
wcc_dat a i nkdi r_wec;

H

struct LINK3resfail ({
post _op_attr file_ attributes;
wcc_dat a i nkdi r_wec;

H

union LINK3res switch (nfsstat3 status) {
case NFS3_K

Cal | aghan, el al | nf or mat i onal [Page 74]

RFC 1813 NFS Version 3 Protocol June 1995

LI NK3r esok r esok;
defaul t:

LI NK3resfail resfail;
H

DESCRI PTI ON

Procedure LINK creates a hard link fromfile to |ink.nane,
inthe directory, link.dir. file and link.dir nust reside
on the same file systemand server. On entry, the
argunments in LINK3args are:

file
The file handle for the existing file system object.

i nk
The | ocation of the link to be created:

link.dir
The file handle for the directory in which the |ink
is to be created.

i nk. nane
The nane that is to be associated with the created
link. Refer to General conmments on filenanmes on page
17.

On successful return, LINK3res.status is NFS3_OK and
LI NK3res. resok contai ns:

file_attributes
The post-operation attributes of the file system object
identified by file.

Iinkdir_wcc
Weak cache consistency data for the directory,
link.dir.

O herwi se, LINK3res.status contains the error on failure
and LI NK3res.resfail contains the foll ow ng:

file_attributes
The post-operation attributes of the file system object
identified by file.

Iinkdir_wcc

Weak cache consistency data for the directory,
link.dir.

Cal | aghan, el al I nf or mat i onal [Page 75]

RFC 1813 NFS Version 3 Protocol June 1995

| MPLEMENTATI ON

Changes to any property of the hard-linked files are

reflected in all of the linked files. When a hard link is
nmade to a file, the attributes for the file should have a
value for nlink that is one greater than the val ue before

the LI NK

The comments under RENAME regardi ng object and target
residing on the same file systemapply here as well. The
comments regarding the target nanme applies as well. Refer

to CGeneral comments on fil enanes on page 30.
ERRORS

NFS3ERR | O
NFS3ERR_ACCES
NFS3ERR_EXI ST
NFS3ERR_XDEV
NFS3ERR_NOTDI R
NFS3ERR_| NVAL
NFS3ERR_NOSPC
NFS3ERR_ROFS
NFS3ERR_MLI NK
NFS3ERR_NAMETOOLONG
NFS3ERR_DQUOT
NFS3ERR_STALE
NFS3ERR_BADHANDLE
NFS3ERR_NOTSUPP
NFS3ERR_SERVERFAULT

SEE ALSO
SYM.I NK, RENAME and FSI NFO.
3.3.16 Procedure 16: READDIR - Read From Directory
SYNOPSI S
READDI R3r es NFSPROC3_READDI R(READDI R3ar gs) = 16;

struct READDI R3args {

nfs_fh3 dir;

cooki e3 cooki e;
cooki everf3 cookieverf;
count 3 count ;

H

Cal | aghan, el al I nf or mat i onal [Page 76]

RFC 1813 NFS Version 3 Protocol June 1995

struct entry3 {

fileid3 fileid;
filenanme3 name;
cooki e3 cooki e;
entry3 *nextentry,
1
struct dirlist3 {
entry3 *entries;
bool eof ;
1

struct READDI R3resok {
post _op_attr dir_attributes;
cooki everf3 cookieverf;
dirlist3 reply;

1

struct READDI R3resfail {
post _op_attr dir_attributes;
1

uni on READDI R3res switch (nfsstat3 status) {
case NFS3_K
READDI R3r esok r esok
def aul t:
READDI R3resfail resfail;
}s

DESCRI PTI ON

Procedure READDIR retrieves a variable nunber of entries,
in sequence, froma directory and returns the nanme and
file identifier for each, with information to allow the
client to request additional directory entries in a
subsequent READDI R request. On entry, the arguments in
READDI R3ar gs ar e:

dir
The file handle for the directory to be read.
cooki e
This should be set to 0 in the first request to read

the directory. On subsequent requests, it should be a
cookie as returned by the server

Cal | aghan, el al | nf or mat i onal [Page 77]

RFC 1813 NFS Version 3 Protocol June 1995

cooki everf
This should be set to 0 in the first request to read
the directory. On subsequent requests, it should be a
cooki everf as returned by the server. The cooki everf
must match that returned by the READDIR i n which the
cooki e was acqui red.

count
The maxi mum si ze of the READD R3resok structure, in
bytes. The size must include all XDR overhead. The
server is free to return I ess than count bytes of
dat a.

On successful return, READD R3res.status is NFS3_OK and
READDI R3r es. resok cont ai ns:

dir_attributes
The attributes of the directory, dir.

cooki ever f
The cookie verifier.

reply
The directory list:

entries
Zero or nmore directory (entry3) entries.

eof
TRUE if the |ast nmenber of reply.entries is the | ast
entry in the directory or the list reply.entries is
enpty and the cookie corresponded to the end of the
directory. If FALSE, there may be nore entries to
read.

O herw se, READDI R3res.status contains the error on
failure and READDI R3res.resfail contains the foll ow ng:

dir_attributes
The attributes of the directory, dir.

| MPLEMENTATI ON

In the NFS version 2 protocol, each directory entry
returned i ncluded a cookie identifying a point in the
directory. By including this cookie in a subsequent
READDI R, the client could resune the directory read at any
point in the directory. One problemwth this schene was

Cal | aghan, el al I nf or mat i onal [Page 78]

RFC 1813 NFS Version 3 Protocol June 1995

that there was no easy way for a server to verify that a
cookie was valid. If two READDI Rs were separated by one or
nore operations that changed the directory in sonme way
(for exanple, reordering or conpressing it), it was
possi bl e that the second READDI R could miss entries, or
process entries nmore than once. If the cookie was no

| onger usable, for exanple, pointing into the mddle of a
directory entry, the server would have to either round the
cookie down to the cookie of the previous entry or round
it up to the cookie of the next entry in the directory.

Ei ther way woul d possibly lead to incorrect results and
the client would be unaware that any probl em exi sted.

In the NFS version 3 protocol, each READDI R request

i ncl udes both a cookie and a cookie verifier. For the
first call, both are set to 0. The response includes a
new cookie verifier, with a cookie per entry. For
subsequent READDI Rs, the client nust present both the

cooki e and the corresponding cookie verifier. |If the
server detects that the cookie is no |l onger valid, the
server will reject the READDI R request with the status,

NFS3ERR _BAD COCKI E. The client should be careful to
avoi d holding directory entry cooki es across operations
that nodify the directory contents, such as REMOVE and
CREATE.

One inplenmentation of the cookie-verifier nechani sm m ght
be for the server to use the nodification tinme of the
directory. This mght be overly restrictive, however. A
better approach would be to record the tinme of the | ast
directory nodification that changed the directory

organi zation in a way that would nake it inpossible to
reliably interpret a cookie. Servers in which directory
cookies are always valid are free to use zero as the
verifier always.

The server may return fewer than count bytes of
XDR-encoded entries. The count specified by the client in
the request should be greater than or equal to FSINFO

dt pref.

Since UNI X clients give a special neaning to the fileid
val ue zero, UNI X clients should be careful to map zero
fileid values to sone other value and servers should try
to avoid sending a zero fileid.

Cal | aghan, el al I nf or mat i onal [Page 79]

RFC 1813 NFS Version 3 Protocol June 1995

ERRORS
NFS3ERR | O
NFS3ERR_ACCES
NFS3ERR_NOTDI R
NFS3ERR_BAD COOKI E
NFS3ERR_TOOSMALL
NFS3ERR_STALE
NFS3ERR_BADHANDL E
NFS3ERR_SERVERFAULT
SEE ALSO
READDI RPLUS and FSI NFO.
3.3.17 Procedure 17: READDI RPLUS - Extended read fromdirectory
SYNOPSI S
READDI RPLUS3r es NFSPROC3_READDI RPLUS(READDI RPLUS3ar gs) = 17;

struct READDI RPLUS3ar gs {

nfs_fh3 dir;
cooki e3 cooki e;
cooki everf3 cookieverf;
count 3 di rcount;
count 3 maxcount ;
}s
struct entryplus3 {
fileid3 fileid;
fil enanme3 nane;
cooki e3 cooki e;
post _op_attr name_attri butes;
post _op_fh3 name_handl e;
entrypl us3 *nextentry;
}s
struct dirlistplus3 {
entrypl us3 *entries;
bool eof ;

H

struct READDI RPLUS3resok {

post _op_attr
cooki everf3
dirlistplus3

H

Cal | aghan, el al

dir_attributes;
cooki everf;

reply;

| nf or mat i onal

[Page 80]

RFC 1813 NFS Version 3 Protocol June 1995

struct READDI RPLUS3resfail {
post _op_attr dir_attributes;
1

uni on READDI RPLUS3res switch (nfsstat3 status) {
case NFS3_K
READDI RPLUS3r esok r esok
def aul t:
READDI RPLUS3resfail resfail;
}s

DESCRI PTI ON

Procedure READDI RPLUS retrieves a variabl e nunber of
entries froma file systemdirectory and returns conplete
i nformati on about each along with information to all ow the
client to request additional directory entries in a
subsequent READDI RPLUS. READDI RPLUS differs from READDI R
only in the amount of information returned for each

entry. In READDIR, each entry returns the filenane and
the fileid. In READDI RPLUS, each entry returns the nane,
the fileid, attributes (including the fileid), and file
handle. On entry, the argunents in READDI RPLUS3args are:

dir
The file handle for the directory to be read.

cooki e
This should be set to 0 on the first request to read a
directory. On subsequent requests, it should be a
cookie as returned by the server

cooki everf
This should be set to 0 on the first request to read a
directory. On subsequent requests, it should be a
cooki everf as returned by the server. The cooki everf
must match that returned by the READDI RPLUS call in
whi ch the cooki e was acquir ed.

di r count
The maxi mum nunber of bytes of directory information
returned. This nunber should not include the size of
the attributes and file handle portions of the result.

maxcount

The maxi mum si ze of the READDI RPLUS3resok structure, in
bytes. The size nust include all XDR overhead. The

Cal | aghan, el al I nf or mat i onal [Page 81]

RFC 1813 NFS Version 3 Protocol June 1995

server is free to return fewer than maxcount bytes of
dat a.

On successful return, READDI RPLUS3res.status is NFS3_K
and READDI RPLUS3r es. resok cont ai ns:

dir_attributes
The attributes of the directory, dir.

cooki ever f
The cookie verifier.

reply
The directory list:

entries
Zero or nore directory (entryplus3) entries.

eof
TRUE if the |ast nmenber of reply.entries is the | ast
entry in the directory or the list reply.entries is
enpty and the cookie corresponded to the end of the
directory. If FALSE, there may be nore entries to
read.

O herwi se, READDI RPLUS3r es. status contains the error on
failure and READDI RPLUS3res.resfail contains the follow ng:

dir_attributes
The attributes of the directory, dir.

| MPLEMENTATI ON

| ssues that need to be understood for this procedure

i ncl ude increased cache flushing activity on the client
(as new file handles are returned with names which are
entered into caches) and over-the-wi re overhead versus
expect ed subsequent LOOKUP elimnation. It is thought that
this procedure nay inprove performance for directory
browsi ng where attributes are always required as on the
Appl e Maci ntosh operating system and for Ms-DCS.

The dircount and maxcount fields are included as an

optim zation. Consider a READDI RPLUS call on a UNI X
operating systeminplenentation for 1048 bytes; the reply
does not contain many entries because of the overhead due
to attributes and file handles. An alternative is to issue
a READDI RPLUS call for 8192 bytes and then only use the

Cal | aghan, el al I nf or mat i onal [Page 82]

RFC 1813 NFS Version 3 Protocol June 1995

first 1048 bytes of directory information. However, the
server doesn’t know that all that is needed is 1048 bytes
of directory information (as would be returned by
READDIR). It sees the 8192 byte request and issues a
VOP_READDI R for 8192 bytes. It then steps through all of
those directory entries, obtaining attributes and file
handl es for each entry. Wen it encodes the result, the
server only encodes until it gets 8192 bytes of results
which include the attributes and file handles. Thus, it
has done a | arger VOP_READDI R and many nore attribute
fetches than it needed to. The ratio of the directory
entry size to the size of the attributes plus the size of
the file handle is usually at least 8 to 1. The server has
done nuch nore work than it needed to.

The solution to this problemis for the client to provide
two counts to the server. The first is the nunber of bytes
of directory information that the client really wants,
dircount. The second is the maxi mum nunber of bytes in
the result, including the attributes and file handl es,
maxcount. Thus, the server will issue a VOP_READDIR for
only the nunber of bytes that the client really wants to
get, not an inflated nunber. This should help to reduce
the size of VOP_READDI R requests on the server, thus
reduci ng the anount of work done there, and to reduce the
nunber of VOP_LOOKUP, VOP_GETATTR, and other calls done by
the server to construct attributes and file handl es.

ERRORS

NFS3ERR | O
NFS3ERR_ACCES
NFS3ERR_NOTDI R
NFS3ERR_BAD_COCKI E
NFS3ERR_TOOSMALL
NFS3ERR_STALE
NFS3ERR_BADHANDLE
NFS3ERR_NOTSUPP
NFS3ERR_SERVERFAULT

SEE ALSO

READDI R.

Cal | aghan, el al I nf or mat i onal [Page 83]

RFC 1813 NFS Version 3 Protocol June 1995

3.3.18 Procedure 18: FSSTAT - CGet dynanmic file systeminfornmation
SYNOPSI S
FSSTAT3r es NFSPROC3_FSSTAT(FSSTAT3ar gs) = 18;
struct FSSTAT3args {
. nfs_fh3 fsroot;

struct FSSTAT3resok {
post _op_attr obj_attributes;

si ze3 t byt es;
si ze3 f byt es;
si ze3 abyt es;
si ze3 tfiles;
si ze3 ffiles;
si ze3 afil es;
ui nt 32 i nvar sec;

H

struct FSSTAT3resfail {
post _op_attr obj_attributes;
1

uni on FSSTAT3res switch (nfsstat3 status) {
case NFS3_K
FSSTAT3r esok r esok
def aul t:
FSSTAT3resfail resfail;
}s

DESCRI PTI ON

Procedure FSSTAT retrieves volatile file systemstate
information. On entry, the argunents in FSSTAT3args are:

f sroot
A file handle identifying a object in the file system
This is normally a file handle for a nount point for a
file system as originally obtained fromthe MOUNT
service on the server.

On successful return, FSSTAT3res.status is NFS3_OK and
FSSTAT3r es. resok contai ns:

Cal | aghan, el al I nf or mat i onal [Page 84]

RFC 1813 NFS Version 3 Protocol June 1995

obj _attributes
The attributes of the file system object specified in
fsroot.

t byt es
The total size, in bytes, of the file system

f byt es
The ampunt of free space, in bytes, in the file
system

abyt es
The anount of free space, in bytes, available to the
user identified by the authentication information in
the RPC. (This reflects space that is reserved by the
file system it does not reflect any quota system
i npl emrented by the server.)

tfiles
The total nunber of file slots in the file system (On
a UNI X server, this often corresponds to the nunber of
i nodes configured.)

ffiles
The nunber of free file slots in the file system

afiles
The nunber of free file slots that are available to the
user corresponding to the authentication information in
the RPC. (This reflects slots that are reserved by the
file system it does not reflect any quota system
i npl emrented by the server.)

i nvar sec
A nmeasure of file systemvolatility: this is the nunber
of seconds for which the file systemis not expected to
change. For a volatile, frequently updated file system
this will be 0. For an inmutable file system such as a
CD-ROM this would be the | argest unsigned integer. For
file systens that are infrequently nodified, for
exanpl e, one containing | ocal executable progranms and
on-1line docunentation, a value corresponding to a few
hours or days m ght be used. The client nay use this as
a hint in tuning its cache managenent. Note however,
this neasure is assuned to be dynam ¢ and nmay change at
any tinmne.

Cal | aghan, el al I nf or mat i onal [Page 85]

RFC 1813 NFS Version 3 Protocol June 1995
O herwi se, FSSTAT3res.status contains the error on failure
and FSSTAT3res.resfail contains the foll ow ng:
obj _attributes

The attributes of the file systemobject specified in
fsroot.
| MPLEMENTATI ON
Not all inplenentations can support the entire |ist of
attributes. It is expected that servers will make a best
effort at supporting all the attributes.
ERRORS
NFS3ERR | O
NFS3ERR_STALE
NFS3ERR_BADHANDL E
NFS3ERR_SERVERFAULT
SEE ALSO
FSI NFO.
3.3.19 Procedure 19: FSINFO - Cet static file systemInformation
SYNOPSI S

FSI NFQ3r es NFSPROC3_FSI NFOQ(FSI NFQGBar gs) = 19;

const FSF3_LINK = 0x0001
const FSF3_SYM.I NK = 0x0002;
const FSF3_HOMOGENEQUS = 0x0008;
const FSF3_CANSETTI ME = 0x0010;

struct FSINFQargs {
nfs_fh3 fsroot;
b

struct FSI NFQ3resok {
post _op_attr obj_attributes;

ui nt 32 rt max;

ui nt 32 rtpref;
ui nt 32 rtmul t;
ui nt 32 W max;

ui nt 32 wt pr ef ;
ui nt 32 wt mul t;
ui nt 32 dt pref;

Cal | aghan, el al I nf or mat i onal [Page 86]

RFC 1813 NFS Version 3 Protocol June 1995

si ze3 maxfil esi ze;
nfstinme3 time_delta;
ui nt 32 properti es;

H

struct FSINFQ3resfail {
post _op_attr obj_attributes;
1

uni on FSI NFQ3res switch (nfsstat3 status) {
case NFS3_K
FSI NFQBr esok resok;
def aul t:
FSI NFQBresfail resfail;
}s

DESCRI PTI ON

Procedure FSINFO retrieves nonvolatile file systemstate
informati on and general information about the NFS version
3 protocol server inplenmentation. On entry, the arguments
in FSINFO3args are:

f sroot
A file handle identifying a file object. Normal usage
is to provide a file handle for a nount point for a
file system as originally obtained fromthe MOUNT
service on the server.

On successful return, FSINFQ3res.status is NFS3_OK and
FSI NFC3r es. resok cont ai ns:

obj _attributes
The attributes of the file system object specified in
fsroot.

rt max
The maxi mum si ze in bytes of a READ request supported
by the server. Any READ with a nunber greater than
rtmax will result in a short read of rtmax bytes or
| ess.

rtpref
The preferred size of a READ request. This should be
the same as rtmax unless there is a clear benefit in
performance or efficiency.

Cal | aghan, el al I nf or mat i onal [Page 87]

RFC 1813 NFS Version 3 Protocol June 1995

rtmult
The suggested multiple for the size of a READ request.

W max
The maxi mum si ze of a WRI TE request supported by the
server. In general, the client is limted by wt nmax

since there is no guarantee that a server can handle a
larger wite. Any WRITE with a count greater than w nmax
will result in a short wite of at nost wtnmax bytes.

wt pr ef
The preferred size of a WRITE request. This shoul d be
the same as wtnmax unless there is a clear benefit in
performance or efficiency.

wt mul t
The suggested multiple for the size of a WRITE
request.

dt pr ef
The preferred size of a READDI R request.

maxfil esi ze
The maxi mum size of a file on the file system

time_delta
The server tinme granularity. Wen setting a file tine
usi ng SETATTR, the server guarantees only to preserve
times to this accuracy. If this is {0, 1}, the server
can support nanosecond tines, {0, 1000000} denotes
mllisecond precision, and {1, 0} indicates that tinmes
are accurate only to the nearest second.

properties
A bit mask of file system properties. The foll ow ng
val ues are defined:

FSF_LI NK
If this bit is 1 (TRUE), the file system supports
hard 1i nks.

FSF_SYM.I NK
If this bit is 1 (TRUE), the file system supports
synbolic |inks.

FSF_HOMOGENEOUS

If this bit is 1 (TRUE), the information returned by
PATHCONF is identical for every file and directory

Cal | aghan, el al I nf or mat i onal [Page 88]

RFC 1813 NFS Version 3 Protocol June 1995

inthe file system If it is O (FALSE), the client
shoul d retrieve PATHCONF i nformation for each file
and directory as required.

FSF_CANSETTI ME
If this bit is 1 (TRUE), the server will set the
times for a file via SETATTR if requested (to the
accuracy indicated by tinme_delta). If it is O
(FALSE), the server cannot set times as requested.

O herwi se, FSINFQ3res.status contains the error on failure
and FSI NFQ3res.resfail contains the foll ow ng:

attributes
The attributes of the file system object specified in
fsroot.

| MPLEMENTATI ON

Not all inplenentations can support the entire |ist of
attributes. It is expected that a server will nake a best
effort at supporting all the attributes.

The file handl e provided is expected to be the file handle
of the file systemroot, as returned to the MOUNT
operation. Since nounts nmay occur anywhere within an
exported tree, the server should expect FSINFO requests
specifying file handles within the exported file system
A server nmay export different types of file systens with
different attributes returned to the FSINFO call. The
client should retrieve FSINFO i nformation for each nount
conmpl et ed. Though a server may return different FSINFO
information for different files within a file system
there is no requirenment that a client obtain FSINFO
information for other than the file handl e returned at
nmount .

The maxfilesize field determ nes whether a server’s
particular file systemuses 32 bit sizes and offsets or 64
bit file sizes and offsets. This may affect a client’s
processi ng.

The preferred sizes for requests are noninally tied to an
exported file system nounted by a client. A surnountable
issue arises in that the transfer size for an NFS version
3 protocol request is not only dependent on
characteristics of the file systembut al so on
characteristics of the network interface, particularly the

Cal | aghan, el al I nf or mat i onal [Page 89]

RFC 1813 NFS Version 3 Protocol June 1995

maxi mum transfer unit (MIU). A server inplenentation can
advertise different transfer sizes (for the fields, rtnmax,
rtpref, wmax, wtpref, and dtpref) depending on the
interface on which the FSINFO request is received. This is
an inpl enentation issue.
ERRORS
NFS3ERR_STALE
NFS3ERR_BADHANDL E
NFS3ERR_SERVERFAULT
SEE ALSO
READLI NK, WRI TE, READDI R, FSSTAT and PATHCONF.
3.3.20 Procedure 20: PATHCONF - Retrieve PCSI X infornmation
SYNOPSI S
PATHCONF3r es NFSPROC3_PATHCONF(PATHCONF3ar gs) = 20;
struct PATHCONF3args {
nfs_fh3 obj ect;
1

struct PATHCONF3resok {
post _op_attr obj_attributes;

ui nt 32 i nknax;
ui nt 32 nane_mex;
bool no_trunc;
bool chown_restricted;
bool case_insensitive;
bool case_preserving;

H

struct PATHCONF3resfail {
post _op_attr obj_attributes;
1

uni on PATHCONF3res switch (nfsstat3 status) {
case NFS3_K
PATHCONF3r esok resok;
def aul t:
PATHCONF3resfail resfail;
}s

Cal | aghan, el al I nf or mat i onal [Page 90]

RFC 1813 NFS Version 3 Protocol June 1995

DESCRI PTI ON

Procedure PATHCONF retrieves the pathconf information for
a file or directory. If the FSF_HOMOGENEQUS bit is set in
FSFI NFO3r esok. properties, the pathconf information will be
the sane for all files and directories in the exported
file systemin which this file or directory resides. On
entry, the argunments in PATHCONF3args are:

obj ect
The file handle for the file system object.

On successful return, PATHCONF3res.status is NFS3_CK and
PATHCONF3r es. resok cont ai ns:

obj _attributes
The attributes of the object specified by object.

i nkmax
The maxi mum nunber of hard links to an object.

nanme_max
The maxi mum | ength of a conponent of a fil enane.

no_trunc
If TRUE, the server will reject any request that
i ncl udes a nanme |onger than name_nmax with the error,
NFS3ERR_NAMETOOLONG | f FALSE, any |ength nane over
name_nmax bytes will be silently truncated to nanme_max
byt es.

chown_restricted
If TRUE, the server will reject any request to change
either the owner or the group associated with a file if
the caller is not the privileged user. (Ud 0.)

case_insensitive
If TRUE, the server file system does not distinguish
case when interpreting fil enanes.

case_preserving
If TRUE, the server file systemw || preserve the case
of a nane during a CREATE, MKDI R, MKNOD, SYM.I NK
RENAME, or LINK operation.

O herwi se, PATHCONF3res.status contains the error on
failure and PATHCONF3res.resfail contains the foll ow ng:

Cal | aghan, el al I nf or mat i onal [Page 91]

RFC 1813 NFS Version 3 Protocol

obj _attributes
The attributes of the object specified by object.

| MPLEMENTATI ON
In sonme inplenmentations of the NFS version 2 protocol,
pat hconf informati on was obtained at nount tinme through
the MOUNT protocol. The proper place to obtain it, is as
here, in the NFS version 3 protocol itself.

ERRORS
NFS3ERR_STALE
NFS3ERR_BADHANDL E
NFS3ERR_SERVERFAULT

SEE ALSO

June 1995

LOOKUP, CREATE, MKDI R, SYM.INK, MKNCD, RENAME, LINK and FSI NFO

3.3.21 Procedure 21: COWM T - Commt cached data on a server to stable

st or age
SYNOPSI S
COW T3res NFSPROC3_COW T(COW T3args) = 21,

struct COWM T3args {
nfs_fh3 file;
of fset3 of f set;
count 3 count ;

H

struct COWM T3resok {
wec_data fil e_wecc;
witeverf3 verf;

H

struct COW T3resfail {
wec_data fil e_wecc;
1

union COW T3res switch (nfsstat3 status) {
case NFS3_K
COWM T3r esok resok;
defaul t:
COW T3resfail resfail;
1

Cal | aghan, el al I nf or mat i onal

[Page 92]

RFC 1813 NFS Version 3 Protocol June 1995

DESCRI PTI ON

Procedure COWM T forces or flushes data to stable storage
that was previously witten with a WRI TE procedure cal
with the stable field set to UNSTABLE. On entry, the
argunents in COW T3args are:

file
The file handle for the file to which data is to be
flushed (committed). This nust identify a file system
obj ect of type, NF3REG

of f set
The position within the file at which the flush is to
begin. An offset of O neans to flush data starting at
t he beginning of the file.

count
The nunber of bytes of data to flush. If count is 0, a
flush fromoffset to the end of file is done.

On successful return, COW T3res.status is NFS3_OK and
COW T3res. resok contains:

file_ wcc
Weak cache consistency data for the file. For a client
that requires only the post-operation file attributes,
these can be found in file_wcc. after

ver f
This is a cookie that the client can use to determne
whet her the server has rebooted between a call to WRITE
and a subsequent call to COWM T. This cooki e nust be
consi stent during a single boot session and nust be
uni que between instances of the NFS version 3 protocol
server where uncommitted data may be | ost.

O herwi se, COW T3res.status contains the error on failure
and COMM T3res.resfail contains the foll ow ng:

file_ wcc
Weak cache consistency data for the file. For a client
that requires only the post-wite file attributes,
these can be found in file_wcc.after. Even though the
COWMT failed, full wc_data is returned to allow the
client to determ ne whether the file changed on the
server between calls to WRITE and COWM T.

Cal | aghan, el al I nf or mat i onal [Page 93]

RFC 1813 NFS Version 3 Protocol June 1995

| MPLEMENTATI ON

Procedure COW T is sinmilar in operation and senantics to
the PCSI X fsync(2) systemcall that synchronizes a file's
state with the disk, that is it flushes the file's data
and netadata to disk. COWM T perfornms the sane operation
for a client, flushing any unsynchroni zed data and

nmet adata on the server to the server’'s disk for the
specified file. Like fsync(2), it may be that there is
sonme nodified data or no nodified data to synchroni ze. The
data may have been synchroni zed by the server’s normal
periodi c buffer synchronization activity. COWM T wi ||

al ways return NFS3_OK, unless there has been an unexpected
error.

COMT differs fromfsync(2) in that it is possible for
the client to flush a range of the file (nost likely
triggered by a buffer-reclamation scheme on the client
before file has been conpletely witten).

The server inplenmentation of COM T is reasonably sinple.
If the server receives a full file COMT request, that is
starting at offset 0 and count 0, it should do the

equi val ent of fsync()'ing the file. Oherwise, it should
arrange to have the cached data in the range specified by
of fset and count to be flushed to stable storage. In both
cases, any netadata associated with the file nust be
flushed to stable storage before returning. It is not an
error for there to be nothing to flush on the server.

This nmeans that the data and netadata that needed to be
flushed have already been flushed or |ost during the [|ast
server failure.

The client inplenentation of COMT is a little nore

compl ex. There are two reasons for wanting to commt a
client buffer to stable storage. The first is that the
client wants to reuse a buffer. In this case, the offset
and count of the buffer are sent to the server in the
COW T request. The server then flushes any cached data
based on the of fset and count, and flushes any netadata
associated with the file. It then returns the status of
the flush and the verf verifier. The other reason for the
client to generate a COM T is for a full file flush, such
as may be done at close. In this case, the client would
gather all of the buffers for this file that contain
unconmitted data, do the COYW T operation with an of fset

of 0 and count of 0, and then free all of those buffers.
Any other dirty buffers would be sent to the server in the

Cal | aghan, el al I nf or mat i onal [Page 94]

RFC 1813 NFS Version 3 Protocol June 1995

normal fashi on.

This inplenentation will require sonme nodifications to the
buffer cache on the client. After a buffer is witten with
stabl e UNSTABLE, it nust be considered as dirty by the
client systemuntil it is either flushed via a COWM T
operation or witten via a WRITE operation with stable set
to FILE_SYNC or DATA SYNC. This is done to prevent the
buffer frombeing freed and reused before the data can be
flushed to stable storage on the server

When a response conmes back fromeither a WRITE or a COWM T
operation that contains an unexpected verf, the client

will need to retransmit all of the buffers containing
uncommi tted cached data to the server. Howthis is to be
done is up to the inplenentor. If there is only one buffer
of interest, then it should probably be sent back over in
a WRI TE request with the appropriate stable flag. If there
nore than one, it mght be worthwhile retransmtting al

of the buffers in WRITE requests with stable set to
UNSTABLE and then retransmitting the COM T operation to
flush all of the data on the server to stable storage. The
timng of these retransmssions is left to the

i mpl enment or.

The above description applies to page-cache-based systens
as well as buffer-cache-based systens. In those systens,
the virtual nenory systemw |l need to be nodified instead
of the buffer cache.
See additional comments on WRI TE on page 49.

ERRORS
NFS3ERR | O
NFS3ERR_STALE
NFS3ERR_BADHANDL E
NFS3ERR_SERVERFAULT

SEE ALSO

WRI TE.

Cal | aghan, el al I nf or mat i onal [Page 95]

RFC 1813 NFS Version 3 Protocol June 1995

4. |nplementation issues

The NFS version 3 protocol was designed to allow different
operating systens to share files. However, since it was
designed in a UNI X environment, many operations have
semantics sinilar to the operations of the UNIX file system
This section discusses sone of the genera

i npl enentati on-specific details and semantic issues.
Procedure descriptions have inplenmentati on conments specific
to that procedure.

A nunber of papers have been witten describing issues
encount ered when constructing an NFS version 2 protocol

i npl enentati on. The best overview paper is still [Sandberqg].
[Israel], [Macklen], and [Pawl owski] describe other

i npl emrent ations. [X/ OpenNFS] provides a conplete description
of the NFS version 2 protocol and supporting protocols, as
wel | as a discussion on inplenmentation issues and procedure
and error semantics. Many of the issues encountered when
constructing an NFS version 2 protocol inplenentation will be
encount ered when constructing an NFS version 3 protocol

i npl emrent ati on.

4.1 Multiple version support

The RPC protocol provides explicit support for versioning of
a service. Cient and server inplenentations of NFS version 3
protocol shoul d support both versions, for full backwards
conmpatibility, when possible. Default behavior of the RPC

bi ndi ng protocol is the client and server bind using the

hi ghest version nunber they both support. Client or server

i npl ement ati ons that cannot easily support both versions (for
exanpl e, because of nenory restrictions) will have to choose
what version to support. The NFS version 2 protocol would be
a safe choice since fully capable clients and servers should
support both versions. However, this choice would need to be
made keeping all requirenments in mnd

4.2 Server/client relationship

The NFS version 3 protocol is designed to allow servers to be
as sinple and general as possible. Sonetinmes the sinplicity
of the server can be a problem if the client inplenents
conplicated file system semantics.

For exampl e, sone operating systens allow renoval of open

files. A process can open a file and, while it is open,
renove it fromthe directory. The file can be read and

Cal | aghan, el al I nf or mat i onal [Page 96]

RFC 1813 NFS Version 3 Protocol June 1995

witten as long as the process keeps it open, even though the
file has no nanme in the file system It is inpossible for a
statel ess server to inplenment these semantics. The client
can do sone tricks such as renaning the file on renpove (to a
hi dden name), and only physically deleting it on close. The
NFS version 3 protocol provides sufficient functionality to

i npl enent nost file system semantics on a client.

Every NFS version 3 protocol client can also potentially be a
server, and renote and | ocal nounted file systens can be
freely m xed. This | eads to sone problens when a client
travels down the directory tree of a renpote file system and
reaches the nount point on the server for another remote file
system Allowi ng the server to follow the second renote nount
woul d require | oop detection, server |ookup, and user
revalidation. Instead, both NFS version 2 protocol and NFS
version 3 protocol inplenentations do not typically |et
clients cross a server’s mount point. Wien a client does a
LOCKUP on a directory on which the server has nmounted a file
system the client sees the underlying directory instead of
the nounted directory.

For example, if a server has a file systemcalled /usr and
mounts another file systemon /usr/src, if a client nmounts
/usr, it does not see the nounted version of /usr/src. A
client could do renpte nmounts that match the server’s nount
points to maintain the server’s view. |In this exanple, the
client would also have to nmount /usr/src in addition to /usr,
even if they are fromthe sanme server.

4.3 Path name interpretation

There are a few conplications to the rule that path names are
al ways parsed on the client. For exanple, synbolic |inks
could have different interpretations on different clients.
There is no answer to this problemin this specification.

Anot her conmon problem for non-UN X i nmpl enentations is the
special interpretation of the pathnanme, "..", to mean the
parent of a given directory. A future revision of the
protocol may use an explicit flag to indicate the parent
instead - however it is not a problemas many working

non- UNI X i npl enent ati ons exi st.

Cal | aghan, el al I nf or mat i onal [Page 97]

RFC 1813 NFS Version 3 Protocol June 1995

4.4 Perm ssion issues

The NFS version 3 protocol, strictly speaking, does not
define the pernission checking used by servers. However, it
is expected that a server will do normal operating system
perm ssi on checki ng using AUTH UNI X styl e authentication as
the basis of its protection nmechani sm or another stronger
form of authentication such as AUTH DES or AUTH KERB. Wth
AUTH_UNI X aut hentication, the server gets the client’s
effective uid, effective gid, and groups on each call and
uses themto check perm ssion. These are the so-called UN X
credentials. AUTH DES and AUTH KERB use a network nane, or
netnane, as the basis for identification (fromwhich a UN X
server derives the necessary standard UNI X credential s).
There are problenms with this nmethod that have been sol ved.

Using uid and gid inplies that the client and server share
the same uid list. Every server and client pair nmust have the
sanme mapping fromuser to uid and fromgroup to gid. Since
every client can also be a server, this tends to inply that
t he whol e network shares the same uid/gid space. If this is
not the case, then it usually falls upon the server to
perform sone custom mappi ng of credentials from one

aut henti cati on domain into another. A discussion of

techni ques for managi ng a shared user space or for providing
nmechani sns for user | D napping is beyond the scope of this
speci ficati on.

Anot her problem arises due to the usually stateful open
operation. Most operating systens check pernission at open
time, and then check that the file is open on each read and
wite request. Wth statel ess servers, the server cannot
detect that the file is open and nust do perm ssion checking

on each read and wite call. UNIX client semantics of access
perm ssi on checki ng on open can be provided with the ACCESS
procedure call in this revision, which allows a client to

explicitly check access perm ssions wi thout resorting to
trying the operation. On a local file system a user can open
a file and then change the perm ssions so that no one is

allowed to touch it, but will still be able to wite to the
file because it is open. On a renote file system by
contrast, the wite would fail. To get around this problem

the server’s permnission checking al gorithmshould allowthe
owner of a file to access it regardless of the pernission
setting. This is needed in a practical NFS version 3 protocol
server inplenmentation, but it does depart fromcorrect |oca
file system semantics. This should not affect the return
result of access perm ssions as returned by the ACCESS

Cal | aghan, el al I nf or mat i onal [Page 98]

RFC 1813 NFS Version 3 Protocol June 1995

procedure, however.

A simlar problemhas to do with paging in an executabl e
program over the network. The operating system usually checks
for execute perm ssion before opening a file for demand

pagi ng, and then reads blocks fromthe open file. In a |l oca
UNI X file system an executable file does not need read

perm ssion to execute (pagein). An NFS version 3 protocol
server can not tell the difference between a normal file read
(where the read permission bit is neaningful) and a demand
pagein read (where the server should allow access to the
executable file if the execute bit is set for that user or
group or public). To make this work, the server allows
reading of files if the uid given in the call has either
execute or read perm ssion on the file, through ownership,
group menbership or public access. Again, this departs from
correct local file system semantics.

In nost operating systenms, a particular user (on UNI X, the
uid 0) has access to all files, no matter what perm ssion and
ownershi p they have. This superuser perm ssion may not be

al l oned on the server, since anyone who can becone superuser
on their client could gain access to all renmote files. A UN X
server by default nmaps uid O to a distinguished val ue

(Ul D_NOBODY), as well as napping the groups list, before
doing its access checking. A server inplenentation may
provi de a nechanismto change this mapping. This works except
for NFS version 3 protocol root file systems (required for

di skl ess NFS version 3 protocol client support), where
superuser access cannot be avoided. Export options are used,
on the server, to restrict the set of clients all owed
superuser access.

4.5 Duplicate request cache

The typical NFS version 3 protocol failure recovery nodel
uses client tine-out and retry to handl e server crashes,
network partitions, and | ost server replies. Aretried
request is called a duplicate of the original

When used in a file server context, the termidenpotent can
be used to distinguish between operation types. An idenpotent
request is one that a server can performnore than once with
equi valent results (though it may in fact change, as a side
effect, the access tinme on a file, say for READ). Sone NFS
operations are obviously non-idenpotent. They cannot be
reprocessed without special attention sinply because they may
fail if tried a second tinme. The CREATE request, for exanple,

Cal | aghan, el al I nf or mat i onal [Page 99]

RFC 1813 NFS Version 3 Protocol June 1995

can be used to create a file for which the owner does not
have wite perm ssion. A duplicate of this request cannot
succeed if the original succeeded. Likewi se, a file can be
renmoved only once.

The side effects caused by performnming a duplicate

non-i denpot ent request can be destructive (for exanple, a
truncate operation causing lost wites). The conbination of a
statel ess design with the commopn choice of an unreliable
network transport (UDP) inplies the possibility of
destructive replays of non-idenpotent requests. Though to be
nore accurate, it is the inherent stateless design of the NFS
version 3 protocol on top of an unreliable RPC nechani smthat
yields the possibility of destructive replays of

non-i denpot ent requests, since even in an inplenmentation of
the NFS version 3 protocol over a reliable
connection-oriented transport, a connection break with
automati c reestablishment requires duplicate request
processing (the client will retransmt the request, and the
server needs to deal with a potential duplicate

non-i denpot ent request).

Most NFS version 3 protocol server inplenentations use a
cache of recent requests (called the duplicate request cache)
for the processing of duplicate non-idenpotent requests. The
dupli cate request cache provides a short-term nenory

mechani smin which the original conpletion status of a
request is remenbered and the operation attenpted only once.
If a duplicate copy of this request is received, then the
original conpletion status is returned.

The duplicate-request cache nechani sm has been useful in
reduci ng destructive side effects caused by duplicate NFS
version 3 protocol requests. This mechani sm however, does
not guarantee agai nst these destructive side effects in al
failure nodes. Most servers store the duplicate request cache
in RAM so the contents are lost if the server crashes. The
exception to this nay possibly occur in a redundant server
approach to high availability, where the file systemitself
may be used to share the duplicate request cache state. Even
if the cache survives server reboots (or failovers in the
hi gh availability case), its effectiveness is a function of
its size. A network partition can cause a cache entry to be
reused before a client receives a reply for the correspondi ng

request. |f this happens, the duplicate request will be
processed as a new one, possibly with destructive side
ef fects.

Cal | aghan, el al I nf or mat i onal [Page 100]

RFC 1813 NFS Version 3 Protocol June 1995

A good description of the inplenmentation and use of a
duplicate request cache can be found in [Juszczak].

4.6 File name conponent handling

Server inplenmentations of NFS version 3 protocol will
frequently inpose restrictions on the names which can be
created. Many servers will also forbid the use of names that
contain certain characters, such as the path conponent
separator used by the server operating system For exanple,
the UFS file systemwi |l reject a name which contains "/",
while "." and ".." are distinguished in UFS, and may not be
specified as the nane when creating a file system object.
The exact error status values return for these errors is
specified in the description of each procedure argunent. The
val ues (which conformto NFS version 2 protocol server
practice) are not necessarily obvious, nor are they

consi stent fromone procedure to the next.

4.7 Synchronous nodi fying operations

Dat a- nodi fyi ng operations in the NFS version 3 protocol are
synchronous. When a procedure returns to the client, the
client can assune that the operation has conpl eted and any
data associated with the request is now on stable storage.

4.8 Stable storage

NFS version 3 protocol servers nust be able to recover

wi thout data loss fromnultiple power failures (including
cascadi ng power failures, that is, several power failures in
qui ck succession), operating systemfailures, and hardware
failure of conponents other than the storage nediumitself
(for exanple, disk, nonvolatile RAM.

Sone exanpl es of stable storage that are allowable for an NFS
server include:

1. Media commit of data, that is, the nodified data has
been successfully witten to the disk nedia, for exanple,
the disk platter.

2. An immediate reply disk drive with battery-backed
on-drive internedi ate storage or uninterruptible power
system (UPS).

3. Server conmit of data with battery-backed internediate
storage and recovery software.

Cal | aghan, el al | nf or mat i onal [Page 101]

RFC 1813 NFS Version 3 Protocol June 1995

4. Cache conmmit with uninterruptible power system (UPS) and
recovery software.

Conversely, the followi ng are not exanples of stable
st or age:

1. An immedi ate reply disk drive w thout battery-backed
on-drive internedi ate storage or uninterruptible power
system (UPS).

2. Cache commit without both uninterruptible power system
(UPS) and recovery software.

The only exception to this (introduced in this protocol
revision) is as described under the WRI TE procedure on the
handling of the stable bit, and the use of the COWM T
procedure. It is the use of the synchronous COM T procedure
that provides the necessary senantic support in the NFS
version 3 protocol

4.9 Lookups and nane resol ution

A conmon objection to the NFS version 3 protocol is the

phi | osophy of conponent-by-conponent LOOKUP by the client in
resolving a nane. The objection is that this is inefficient,
as | atencies for conmponent-by-conmponent LOOKUP woul d be
unbear abl e.

| npl ementation practice solves this issue. A nane cache,
provi di ng conponent to file-handl e mapping, is kept on the
client to short circuit actual LOOKUP invocations over the
wire. The cache is subject to cache timeout paraneters that
bound attri butes.

4.10 Adaptive retransm ssion

Most client inplenentations use either an exponenti al
back-of f strategy to sone maxi mumretransm ssion value, or a
nore adaptive strategy that attenpts congesti on avoi dance.
Congesti on avoi dance schenes in NFS request retransm ssion
are nodell ed on the work presented in [Jacobson]. [Now cKki]
and [Mackl em describe congestion avoi dance schenes to be
applied to the NFS protocol over UDP.

4.11 Caching policies

The NFS version 3 protocol does not define a policy for
caching on the client or server. In particular, there is no

Cal | aghan, el al | nf or mat i onal [Page 102]

RFC 1813 NFS Version 3 Protocol June 1995

support for strict cache consistency between a client and
server, nor between different clients. See [Kazar] for a
di scussi on of the issues of cache synchronization and
nmechani sns in several distributed file systens.

4,12 Stable versus unstable wites

The setting of the stable field in the WRITE argunents, that
is whether or not to do asynchronous WRI TE requests, is
straightforward on a UNIX client. If the NFS version 3
protocol client receives a wite request that is not marked
as being asynchronous, it should generate the RPC with stable
set to TRUE. If the request is marked as bei ng asynchronous,
the RPC shoul d be generated with stable set to FALSE. If the
response conmes back with the comritted field set to TRUE, the
client should just mark the wite request as done and no
further action is required. If conmtted is set to FALSE
indicating that the buffer was not synchronized with the
server’s disk, the client will need to mark the buffer in
some way which indicates that a copy of the buffer lives on
the server and that a new copy does not need to be sent to
the server, but that a conmit is required.

Note that this algorithmintroduces a new state for buffers,
thus there are now three states for buffers. The three states
are dirty, done but needs to be committed, and done. This
extra state on the client will likely require nodifications
to the systemoutside of the NFS version 3 protocol client.

One proposal that was rejected was the addition of a bool ean
commt argunment to the WRITE operation. It would be used to

i ndi cate whether the server should do a full file conmt
after doing the wite. This seens as if it could be useful if
the client knew that it was doing the last wite on the file.
It is difficult to see how this could be used, given existing
client architectures though

The asynchronous wite opens up the wi ndow of problens
associated with wite sharing. For exanple: client A wites
some data asynchronously. Cient Ais still holding the
buffers cached, waiting to conmit themlater. Cient B reads
the nodified data and wites it back to the server. The
server then crashes. Wien it cones back up, client A issues a
COMWM T operation which returns with a different cookie as
wel| as changed attributes. In this case, the correct action
may or rmay not be to retransnmit the cached buffers.
Unfortunately, client Acan't tell for sure, so it will need
to retransmt the buffers, thus overwiting the changes from

Cal | aghan, el al I nf or mat i onal [Page 103]

RFC 1813 NFS Version 3 Protocol June 1995

client B. Fortunately, wite sharing is rare and the
solution matches the current wite sharing situation. Wthout
usi ng | ocking for synchronization, the behaviour will be

i ndet er m nat e.

In a high availability (redundant systenm) server

i npl erentation, two cases exist which relate to the verf
changing. |If the high availability server inplenentation
does not use a shared-nenory schene, then the verf should
change on failover, since the unsynchronized data is not

avail able to the second processor and there is no guarantee
that the system which had the data cached was able to flush
it to stable storage before going down. The client will need
to retransmt the data to be safe. In a shared-nenory high
availability server inplenentation, the verf would not need
to change because the server would still have the cached data
available to it to be flushed. The exact policy regarding the
verf in a shared nmenory high availability inplenentation,
however, is up to the server inplenentor

4.13 32 bit clients/servers and 64 bit clients/servers

The 64 bit nature of the NFS version 3 protocol introduces
several conpatibility problems. The npost notable two are

m smatched clients and servers, that is, a 32 bit client and
a 64 bit server or a 64 bit client and a 32 bit server

The problens of a 64 bit client and a 32 bit server are easy
to handle. The client will never encounter a file that it can
not handle. If it sends a request to the server that the
server can not handle, the server should reject the request
with an appropriate error.

The problens of a 32 bit client and a 64 bit server are nuch
harder to handle. In this situation, the server does not have
a probl em because it can handl e anything that the client can
generate. However, the client may encounter a file that it

can not handle. The client will not be able to handle a file
whose size can not be expressed in 32 bits. Thus, the client
will not be able to properly decode the size of the file into

its local attributes structure. Also, a file can grow beyond
the limt of the client while the client is accessing the
file.

The solutions to these problens are left up to the individua
i npl emrentor. However, there are two conmon approaches used to
resolve this situation. The inplenentor can choose between
them or even can invent a new sol ution altogether.

Cal | aghan, el al I nf or mat i onal [Page 104]

RFC 1813 NFS Version 3 Protocol June 1995

The nmost common solution is for the client to deny access to
any file whose size can not be expressed in 32 bits. This is
probably the safest, but does introduce sone strange
semanti cs when the file grows beyond the limt of the client
while it is being access by that client. The file becones

i naccessible even while it is being accessed.

The second solution is for the client to map any size greater
than it can handle to the maxi num size that it can handl e.
Effectively, it is lying to the application program This

all ows the application access as nuch of the file as possible
given the 32 bit offset restriction. This elimnates the
strange semantic of the file effectively disappearing after
it has been accessed, but does introduce other problens. The
client will not be able to access the entire file.

Currently, the first solution is the recommended sol ution

However, client inplementors are encouraged to do the best
that they can to reduce the effects of this situation

Cal | aghan, el al I nf or mat i onal [Page 105]

RFC 1813 NFS Version 3 Protocol June 1995

5.0 Appendi x |: Munt protocol

The changes fromthe NFS version 2 protocol to the NFS version 3
protocol have required sone changes to be nade in the MOUNT
protocol. To neet the needs of the NFS version 3 protocol, a
new version of the MOUNT protocol has been defined. This new
protocol satisfies the requirements of the NFS version 3
protocol and addresses several other current market

requirenments.

5.1 RPC I nformation
5.1.1 Authentication

The MOUNT service uses AUTH NONE in the NULL procedure.
AUTH_UNI X, AUTH_SHORT, AUTH_DES, or AUTH KERB are used for al
ot her procedures. Oher authentication types nay be supported
in the future.

5.1.2 Constants

These are the RPC constants needed to call the MOUNT servi ce.
They are given in deci nal

PROGRAM 100005
VERSION 3

(621

.1.3 Transport address

The MOUNT service is nornally supported over the TCP and UDP
protocols. The rpcbi nd daenon should be queried for the correct
transport address.

5.1.4 Sizes
const MNTPATHLEN = 1024; /* Maxi mum bytes in a path name */
const MNTNAMLEN = 255; /* Maxi num bytes in a nane */
const FHSI ZE3 = 64; /* Maxi num bytes in a V3 file handle */
5.1.5 Basic Data Types

t ypedef opaque fhandl e3<FHSI ZE3>;
typedef string dirpat h<MNTPATHLEN>;
typedef string name<MNTNAMLEN>;

Cal | aghan, el al I nf or mat i onal [Page 106]

RFC 1813 NFS Version 3 Protocol June 1995

enum nount stat 3 {

MNT3_OK = 0, /* no error */

MNT3ERR_PERM = 1, /* Not owner */

MNT3ERR_NCENT = 2, /* No such file or directory */
MNT3ERR | O = 5, /* 1/Oerror */

MNT3ERR_ACCES = 13, /* Perm ssion denied */
MNT3ERR_NOTDI R = 20, /* Not a directory */
MNT3ERR | NVAL = 22, /* Invalid argunment */
MNT3ERR_NAMETOOLONG = 63, /* Filenane too |ong */
MNT3ERR_NOTSUPP = 10004, /* Qperation not supported */

MNT3ERR_SERVERFAULT = 10006 /* A failure on the server */
3

5.2 Server Procedures

The followi ng sections define the RPC procedures supplied by a
MOUNT version 3 protocol server. The RPC procedure number is
given at the top of the page with the nanme and version. The
SYNOPSI S provi des the nanme of the procedure, the list of the
nanmes of the argunents, the list of the names of the results,
followed by the XDR argunent declarations and results

decl arations. The information in the SYNOPSIS is specified in
RPC Data Description Language as defined in [RFC1014]. The
DESCRI PTI ON section tells what the procedure is expected to do
and how its argunents and results are used. The ERRORS section
lists the errors returned for specific types of failures. The

| MPLEMENTATI ON fi el d describes how the procedure is expected to
work and how it should be used by clients.

pr ogr am MOUNT_PROGRAM {
versi on MOUNT_V3 {

voi d MOUNTPROC3_NULL(voi d) = 0;
nmount res3 MOUNTPROC3_MNT(dirpath) = 1;
nmount | i st MOUNTPROC3_DUMP(voi d) = 2;
voi d MOUNTPROC3_UMNT(di rpath) = 3;
voi d MOUNTPROC3_UWNTALL(voi d) = 4;
exports MOUNTPROC3_EXPORT(void) = 5;
= 3,
} = 100005;

Cal | aghan, el al I nf or mat i onal [Page 107]

RFC 1813 NFS Version 3 Protocol June 1995

5.2.0 Procedure 0: Null - Do nothing
SYNOPSI S
voi d MOUNTPROC3_NULL(void) = 0;
DESCRI PTI ON

Procedure NULL does not do any work. It is nade avail able
to all ow server response testing and tim ng.

| MPLEMENTATI ON

It is inmportant that this procedure do no work at all so
that it can be used to neasure the overhead of processing
a service request. By convention, the NULL procedure
shoul d never require any authentication. A server nay
choose to ignore this convention, in a nore secure

i mpl ement ati on, where responding to the NULL procedure
call acknow edges the existence of a resource to an

unaut henticated client.

ERRORS

Since the NULL procedure takes no MOUNT protocol argunents
and returns no MOUNT protocol response, it can not return
a MOUNT protocol error. However, it is possible that sone
server inmplenmentations may return RPC errors based on
security and authentication requirenents.

Cal | aghan, el al I nf or mat i onal [Page 108]

RFC 1813 NFS Version 3 Protocol June 1995

5.2.1 Procedure 1: MNT - Add nount entry
SYNOPSI S
nmount res3 MOUNTPROC3_MNT(di rpath) = 1;

struct nountres3_ok {
fhandl e3 fhandl e;

i nt auth_fl avors<>;
1
uni on nountres3 switch (nmountstat3 fhs_status) {
case MNT_OK
mount res3_ok nounti nfo;
defaul t:
voi d;
1
DESCRI PTI ON

Procedure MNT maps a pathname on the server to a file
handl e. The pathnanme is an ASCI| string that describes a
directory on the server. If the call is successful
(MNT3_OK), the server returns an NFS version 3 protoco
file handl e and a vector of RPC authentication flavors
that are supported with the client’s use of the file
handl e (or any file handles derived fromit). The

aut hentication flavors are defined in Section 7.2 and
section 9 of [RFCL057].

| MPLEMENTATI ON

If mountres3.fhs_status is MNT3_OK, then

nmountres3. nountinfo contains the file handle for the
directory and a |ist of acceptable authentication

flavors. This file handle may only be used in the NFS
version 3 protocol. This procedure also results in the
server adding a new entry to its nount |ist recording that
this client has mounted the directory. AUTH UN X

aut hentication or better is required.

ERRORS

MNT3ERR_NOENT
MNT3ERR | O
MNT3ERR_ACCES
MNT3ERR_NOTDI R
MNT3ERR_NAVETOOLONG

Cal | aghan, el al I nf or mat i onal [Page 109]

RFC 1813 NFS Version 3 Protocol June 1995

5.2.2 Procedure 2: DUMP - Return nount entries
SYNOPSI S

nmount | i st MOUNTPROC3_DUMP(voi d) = 2;

typedef struct nountbody *nountli st;

struct nount body {
nane nm _host nane;
di rpath m _directory
mountlist m _next;

}s
DESCRI PTI ON

Procedure DUWP returns the list of renotely nounted file
systens. The nountlist contains one entry for each client
host nanme and directory pair.

| MPLEMENTATI ON

This list is derived froma list naintained on the server
of clients that have requested file handles with the MNT
procedure. Entries are renoved fromthis list only when a
client calls the UMWT or UWNTALL procedure. Entries may
becone stale if a client crashes and does not issue either
UWT calls for all of the file systens that it had
previously nmounted or a UVNTALL to renove all entries that
existed for it on the server.

ERRORS
There are no MOUNT protocol errors which can be returned

fromthis procedure. However, RPC errors may be returned
for authentication or other RPC fail ures.

Cal | aghan, el al | nf or mat i onal [Page 110]

RFC 1813 NFS Version 3 Protoco

5.2.3 Procedure 3: UWNT - Renobve nount entry
SYNOPSI S
voi d MOUNTPROC3_UMNT(di rpath) = 3;
DESCRI PTI ON
Procedure UWNT renoves the nount list entry for the
directory that was previously the subject of a MNT cal

fromthis client. AUTH UN X authentication or better is
required.

| MPLEMENTATI ON

Typically, server inplenentations have maintained a |list
of clients which have file systens nounted. In the past,
this Iist has been used to informclients that the server
was going to be shutdown.

ERRORS

There are no MOUNT protocol errors which can be returned
fromthis procedure. However, RPC errors may be returned
for authentication or other RPC fail ures.

June 1995

Cal | aghan, el al | nf or mat i onal [Page 111]

RFC 1813 NFS Version 3 Protocol June 1995

5.2.4 Procedure 4: UWTALL - Renove all nount entries
SYNOPSI S
voi d MOUNTPROC3_UMWNTALL(void) = 4;
DESCRI PTI ON

Procedure UWNTALL renoves all of the nmount entries for
this client previously recorded by calls to MNT. AUTH_UNI X
aut hentication or better is required.

| MPLEMENTATI ON

Thi s procedure should be used by clients when they are
recovering after a system shutdown. If the client could
not successfully unnmount all of its file systens before
bei ng shutdown or the client crashed because of a software
or hardware problem there nay be servers which still have
nmount entries for this client. This is an easy way for the
client to informall servers at once that it does not have
any mounted file systens. However, since this procedure
is generally inplemented using broadcast RPC, it is only
of limted usefull ness.

ERRORS
There are no MOUNT protocol errors which can be returned

fromthis procedure. However, RPC errors may be returned
for authentication or other RPC fail ures.

Cal | aghan, el al | nf or mat i onal [Page 112]

RFC 1813 NFS Version 3 Protocol June 1995

5.2.5 Procedure 5: EXPORT - Return export |ist
SYNOPSI S
exports MOUNTPROC3_EXPORT(void) = 5;
typedef struct groupnode *groups;

struct groupnode {
name gr _nane;
gr oups gr _next;

typedef struct exportnode *exports;

struct exportnode {
dirpath ex_dir;
gr oups ex_groups;
exports ex_next;

}s
DESCRI PTI ON

Procedure EXPORT returns a list of all the exported file
systens and which clients are allowed to nount each one.
The nanmes in the group list are inplenentation-specific
and cannot be directly interpreted by clients. These namnes
can represent hosts or groups of hosts.

| MPLEMENTATI ON

This procedure generally returns the contents of a list of
shared or exported file systens. These are the file
systens which are made avail able to NFS version 3 protocol
clients.

ERRORS
There are no MOUNT protocol errors which can be returned

fromthis procedure. However, RPC errors may be returned
for authentication or other RPC fail ures.

Cal | aghan, el al | nf or mat i onal [Page 113]

RFC 1813 NFS Version 3 Protocol June 1995

6.0 Appendi x I1: Lock manager protocol

Because the NFS version 2 protocol as well as the NFS version 3
protocol is stateless, an additional Network Lock Manager (NLM
protocol is required to support |ocking of NFS-nmounted fil es.
The NLM version 3 protocol, which is used with the NFS version 2
protocol, is docunmented in [X QpenNFS].

Sonme of the changes in the NFS version 3 protocol require a
new version of the NLM protocol. This new protocol is the NLM
version 4 protocol. The follow ng table sunmarizes the
correspondence between versions of the NFS protocol and NLM
pr ot ocol .

NFS and NLM protocol conpatibility

+- - - - - - +- - - - - - +
| NFS | NLM |
| Version | Version

[e ——_———————
I 2 | 1,3 |
+- - - - - - +- - - - - - +
I 3 I 4 I
+- - - - - - +- - - - - - +

Thi s appendi x only discusses the differences between the NLM
version 3 protocol and the NLM version 4 protocol. As in the
NFS version 3 protocol, alnost all the names in the NLM version
4 protocol have been changed to include a version nunber. This
appendi x does not di scuss changes that consist solely of a name
change.

6.1 RPC Information

6.1.1 Authentication
The NLM service uses AUTH NONE in the NULL procedure.
AUTH_UNI X, AUTH_SHORT, AUTH DES, and AUTH KERB are used for
all other procedures. Qther authentication types may be
supported in the future.

6.1.2 Constants

These are the RPC constants needed to call the NLM servi ce.
They are given in deci nal

PROGRAM 100021
VERSI ON 4

Cal | aghan, el al | nf or mat i onal [Page 114]

RFC 1813 NFS Version 3 Protocol June 1995

6.1.3 Transport Address

The NLM service is nornmally supported over the TCP and UDP
protocols. The rpchind daenon shoul d be queried for the
correct transport address.

6.1.4 Basic Data Types

ui nt 64
typedef unsi gned hyper ui nt 64;

i nt 64
typedef hyper int64;

ui nt 32
typedef unsigned | ong uint32;

i nt 32
typedef |ong int32;

These types are new for the NLM version 4 protocol. They are
the same as in the NFS version 3 protocol

nlmi_stats

enum nl m_stats {
NLM4_GRANTED = 0,
NLMA_DEN ED = 1,
NLM4_DENI ED_NOLOCKS = 2,
NLM4_BLOCKED = 3,
NLM4_DENI ED_GRACE_PERI OD = 4,
NLM4_DEADLCK = 5,

NLMA_ROFS = 6,
NLM4_STALE FH = 7,
NLM4 FBI G = 8,
NLM4_FAILED = 9
}s
Nl nmd_stats indicates the success or failure of a call. This

version contains several new error codes, so that clients can
provide nore precise failure information to applications.

NLM4_GRANTED
The call conpl eted successfully.

NLMV4_DENI ED
The call failed. For attenpts to set a lock, this status
implies that if the client retries the call later, it may

Cal | aghan, el al | nf or mat i onal [Page 115]

RFC 1813 NFS Version 3 Protocol June 1995

succeed.

NLM4_DENI ED_NOLOCKS
The call failed because the server could not allocate the
necessary resources.

NLM4_BLOCKED
I ndi cates that a bl ocki ng request cannot be granted
i medi ately. The server will issue an NLMPROCA_GRANTED
call back to the client when the I ock is granted.

NLM4_DENI ED_GRACE_PERI OD
The call failed because the server is reestablishing old
| ocks after a reboot and is not yet ready to resunme nornal
servi ce.

NLM4_DEADLCK
The request could not be granted and bl ocki ng woul d cause
a deadl ock

NLMA_ROFS
The call failed because the renote file systemis
read-only. For exanple, sone server inplenentations night
not support exclusive |locks on read-only file systens.

NLM4_STALE_FH
The call failed because it uses an invalid file handl e.
This can happen if the file has been renoved or if access
to the file has been revoked on the server.

NLMA_FBI G
The call failed because it specified a | ength or offset
that exceeds the range supported by the server.

NLM4_FAI LED
The call failed for sone reason not already listed. The
client should take this status as a strong hint not to
retry the request.

nl m4_hol der
struct nl md_hol der {
bool excl usi ve;
i nt 32 svi d;
net obj oh;
ui nt 64 | _offset;
ui nt 64 | _len;

Cal | aghan, el al | nf or mat i onal [Page 116]

RFC 1813 NFS Version 3 Protocol June 1995

This structure indicates the holder of a |ock. The exclusive
field tells whether the holder has an exclusive lock or a
shared |l ock. The svid field identifies the process that is
hol di ng the lock. The oh field is an opaque object that
identifies the host or process that is holding the |ock. The
| len and | _offset fields identify the region that is |ocked.
The only difference between the NLM version 3 protocol and
the NLM version 4 protocol is that in the NLMversion 3
protocol, the | _len and | _offset fields are 32 bits w de,
while they are 64 bits wide in the NLM version 4 protocol

nl md_| ock

struct nlmd_| ock {
string cal | er _name<LM MAXSTRLEN>;

net obj fh;

net obj oh;

i nt 32 svi d;

ui nt 64 | _offset;
ui nt 64 | _len;

H

This structure describes a | ock request. The caller_nane
field identifies the host that is making the request. The fh
field identifies the file to | ock. The oh field is an opaque
object that identifies the host or process that is making the
request, and the svid field identifies the process that is
maki ng the request. The | _offset and | _len fields identify
the region of the file that the lock controls. Al _len of O
means "to end of file".

There are two di fferences between the NLM version 3 protoco
and the NLM version 4 protocol versions of this structure.
First, in the NLMversion 3 protocol, the length and offset
are 32 bits wide, while they are 64 bits wide in the NLM
version 4 protocol. Second, in the NLM version 3 protocol
the file handle is a fixed-length NFS version 2 protocol file
handl e, which is encoded as a byte count followed by a byte
array. In the NFS version 3 protocol, the file handle is

al ready variable-length, so it is copied directly into the fh
field. That is, the first four bytes of the fh field are the
sane as the byte count in an NFS version 3 protocol nfs_fh3.
The rest of the fh field contains the byte array fromthe NFS
version 3 protocol nfs_fh3.

Cal | aghan, el al | nf or mat i onal [Page 117]

RFC 1813 NFS Version 3 Protocol June 1995

nl mM_share

struct nlmi_share {

string cal | er _nanme<LM MAXSTRLEN>
net obj fh;
net obj oh;

fsh4_node node;
fsh4_access access;

H

This structure is used to support DOS file sharing. The
caller_nane field identifies the host making the request.

The fh field identifies the file to be operated on. The oh
field is an opaque object that identifies the host or process
that is making the request. The npde and access fields
specify the file-sharing and access nodes. The encoding of fh
is a byte count, followed by the file handle byte array. See
t he description of nlmi_|ock for nore details.

6.2 NLM Procedures

The procedures in the NLMversion 4 protocol are semantically
the same as those in the NLMversion 3 protocol. The only
semantic difference is the addition of a NULL procedure that
can be used to test for server responsiveness. The procedure
nanes with _MSG and _RES suffixes denote asynchronous
nmessages; for these the void response inplies no reply. A
syntactic change is that the procedures were renamed to avoid
nane conflicts with the values of nlm_stats. Thus the
procedure definition is as foll ows.

versi on NLM4_VERS ({

voi d

NLMPROCA_NULL(voi d) = 0;
nlmi_testres

NLMPROC4A_TEST(nl m4_t est ar gs) = 1;
nlmd_res

NLMPROCA_LOCK(nl m4_I| ockar gs) = 2;
nlmd_res

NLMPROC4_CANCEL(nl m4_cancar gs) = 3;
nlmd_res

NLMPROCA_UNLOCK(nl m4_unl ockar gs) = 4;

Cal | aghan, el al | nf or mat i onal [Page 118]

RFC 1813 NFS Version 3 Protocol
nlmd_res
NLMPROCA_GRANTED(nl m4_t est ar gs)

voi d
NLMPROCA_TEST_MSGE nl m4_t est ar gs)

voi d
NLMPROCA_LOCK_MSGE nl m4_| ockar gs)

voi d
NLMPROC4_CANCEL_MSGE nl md_cancar gs)

voi d
NLMPROC4_UNLOCK_MSGE nl md_unl ockar gs)

voi d
NLMPROC4A_GRANTED MsG@(nl mi_t est ar gs)

voi d
NLMPROC4A_TEST_RES(nl m4_t estres)

voi d
NLMPROCA_LOCK_RES(nl m4_r es)

voi d
NLMPROC4_CANCEL_RES(nl m4_res)

voi d
NLMPROC4A_UNLOCK_RES(nl m4_r es)

voi d
NLMPROC4_GRANTED_RES(nl m4_r es)

nl mM_shareres
NLMPROC4_SHARE(nl n¥_shar ear gs)

nl mM_shareres
NLMPROC4_UNSHARE(nl mi_shar ear gs)

nlmd_res
NLMPROC4_NM _LOCK(nl m4_I ockar gs)

voi d
NLMPROCA_FREE_ALL(nl m4_noti fy)

} =4

Cal | aghan, el al I nf or mat i onal

10;

11;

12;

13;

14:

15;

20;

21:

22:

23;

June 1995

[Page 119]

RFC 1813 NFS Version 3 Protocol June 1995

6.2.0 Procedure 0: NULL - Do nothing
SYNOPSI S
voi d NLMPROC4_NULL(void) = 0;
DESCRI PTI ON

The NULL procedure does no work. It is nade available in
all RPC services to allow server response testing and
tim ng.

| MPLEMENTATI ON

It is inmportant that this procedure do no work at all so
that it can be used to neasure the overhead of processing
a service request. By convention, the NULL procedure
shoul d never require any authentication.

ERRORS

It is possible that sonme server inplenentations may return
RPC errors based on security and authentication
requi rements

6.3 I nplenmentation issues
6.3.1 64-bit offsets and | engths

Sone NFS version 3 protocol servers can only support
requests where the file offset or length fits in 32 or
fewer bits. For these servers, the | ock manager will have
the same restriction. |f such a | ock manager receives a
request that it cannot handl e (because the offset or

| ength uses nore than 32 bits), it should return the
error, NLM4_FBI G

6.3.2 File handl es

The change in the file handle format from the NFS version
2 protocol to the NFS version 3 protocol conplicates the

| ock manager. First, the | ock manager needs sone way to
tell when an NFS version 2 protocol file handle refers to
the sane file as an NFS version 3 protocol file handle.
(This is assunming that the | ock manager supports both NLM
version 3 protocol clients and NLM version 4 protoco
clients.) Second, if the | ock manager runs the file handle
t hrough a hashing function, the hashing function may need

Cal | aghan, el al | nf or mat i onal [Page 120]

RFC 1813 NFS Version 3 Protocol June 1995

to be retuned to work with NFS version 3 protocol file
handl es as well as NFS version 2 protocol file handles.

Cal | aghan, el al | nf or mat i onal [Page 121]

RFC 1813 NFS Version 3 Protocol June 1995

7.0 Appendix I11: Bibliography

[Cor bi n] Corbin, John, "The Art of Distributed
Progr anm ng- Progranm ng Techni ques for Renote
Procedure Calls." Springer-Verlag, New York, New
York. 1991. Basic description of RPC and XDR
and how to programdistributed applications
usi ng them

[4 over] d over, Fred, "TNFS Protocol Specification,"
Trusted SystemInterest G oup, Wrk in
Pr ogr ess.

[Israel] I srael, Robert K., Sandra Jett, Janes Pownell,

George M FEricson, "Elimnating Data Copies in
UNI X- based NFS Servers," Uniforum Conference
Proceedi ngs, San Franci sco, CA

February 27 - March 2, 1989. Describes two
nmet hods for reducing data copies in NFS server

code.
[Jacobson] Jacobson, V., "Congestion Control and
Avoi dance," Proc. ACM SI GCOW ‘88, Stanford, CA

August 1988. The paper describing inprovenents
to TCP to all ow use over Wde Area Networks and
t hrough gat eways connecting networks of varying
capacity. This work was a starting point for the
NFS Dynami ¢ Retransni ssion work.

[Juszczak] Juszczak, Chet, "lnproving the Performance and
Correctness of an NFS Server," USEN X Conference
Proceedi ngs, USEN X Associ ati on, Berkel ey, CA
June 1990, pages 53-63. Describes reply cache
i mpl enentation that avoids work in the server by
handl i ng duplicate requests. Mre inportant,
though listed as a side-effect, the reply cache
aids in the avoi dance of destructive
non-i denpot ent operation re-application --
i mprovi ng correctness.

[Kazar] Kazar, M chael Leon, "Synchronization and Cachi ng
Issues in the Andrew File System ™ USEN X Conference
Proceedi ngs, USEN X Associ ati on, Berkel ey, CA
Dal l as Wnter 1988, pages 27-36. A description
of the cache consistency schene in AFS
Contrasted with other distributed file systens.

Cal | aghan, el al | nf or mat i onal [Page 122]

RFC 1813 NFS Version 3 Protocol June 1995

[Mackl emi Mackl em Rick, "Lessons Learned Tuning the
4.3BSD Reno | nplenmentation of the NFS Protocol,"
W nter USEN X Conference Proceedi ngs, USEN X
Associ ation, Berkeley, CA, January 1991.
Descri bes performance work in tuning the 4.3BSD
Reno NFS i mpl ementati on. Descri bes perfornmance
i mprovenent (reduced CPU | oadi ng) through
el i m nation of data copi es.

[Mogul] Mogul , Jeffrey C., "A Recovery Protocol for Spritely
NFS, " USEN X Fil e System Wrkshop Proceedi ngs,
Ann Arbor, M, USEN X Associ ation, Berkeley, CA
May 1992. Second paper on Spritely NFS proposes
a | ease-based scheme for recovering state of
consi st ency protocol.

[Nowi cki] Nowi cki, Bill, "Transport Issues in the Network
File System" ACM S| GCOW newsl etter Conputer
Conmuni cation Review, April 1989. A brief
description of the basis for the dynamc
retransm ssi on work.

[Paw owsKki] Pawl owski, Brian, Ron H xon, Mark Stein, Joseph
Turmmi naro, "Network Conputing in the UNI X and
| BM Mai nfrane Environnment," Uniforum ‘89 Conf.
Proc., (1989) Description of an NFS server
i mpl ementation for IBMs WS operating system

[RFC1014] Sun M crosystens, Inc., "XDR External Data
Representation Standard", RFC 1014,
Sun M crosystens, Inc., June 1987.
Speci fication for canonical fornmat for data
exchange, used with RPC

[RFC1057] Sun M crosystens, Inc., "RPC. Renpte Procedure
Call Protocol Specification", RFC 1057,
Sun M crosystens, Inc., June 1988.
Renot e procedure protocol specification.

[RFC1094] Sun M crosystens, Inc., "Network Fil esystem
Speci fication", RFC 1094, Sun M crosystens, Inc.,
March 1989. NFS version 2 protocol
speci ficati on.

Cal | aghan, el al | nf or mat i onal [Page 123]

RFC 1813 NFS Version 3 Protocol June 1995

[Sandber g] Sandberg, R, D. CGoldberg, S. Kleimn, D. Wil sh,
B. Lyon, "Design and | nplenentation of the Sun
Network Filesystem " USEN X Conference
Proceedi ngs, USEN X Associ ati on, Berkel ey, CA,
Summer 1985. The basi c paper describing the
SunGCS i npl enment ati on of the NFS version 2
protocol, and discusses the goals, protocol
specification and trade-offs.

[Srinivasan] Srinivasan, V., Jeffrey C. Mgul, "Spritely
NFS: I nplenmentation and Performance of Cache
Consi stency Protocol s", WRL Research Report
89/5, Digital Equi pment Corporation Western
Resear ch Laboratory, 100 Hamilton Ave., Palo
Al'to, CA, 94301, May 1989. This paper analyzes
the effect of applying a Sprite-like consistency
protocol applied to standard NFS. The issues of
recovery in a stateful environment are covered
in [Mogul].

[X/ OpenNFS] X/ Open Conpany, Ltd., X Open CAE Specification:
Protocols for X Qpen Internetworking: XNFS,
X/ Open Conpany, Ltd., Apex Plaza, Forbury Road,
Readi ng Berkshire, RGL 1AX, United Ki ngdom
1991. This is an indispensable reference for
NFS version 2 protocol and acconpanyi ng
protocols, including the Lock Manager and the
Por t mapper.

[X/ OpenPCNFS] X/ Open Conpany, Ltd., X Open CAE Specification:
Protocols for X/ Open Internetworking: (PC)NFS
Devel oper’s Specification, X Open Conpany, Ltd.,
Apex Pl aza, Forbury Road, Reading Berkshire, RGL
1AX, United Kingdom 1991. This is an
i ndi spensabl e reference for NFS version 2
protocol and acconpanyi ng protocols, including
the Lock Manager and the Portmapper.

Cal | aghan, el al | nf or mat i onal [Page 124]

RFC 1813 NFS Version 3 Protocol June 1995

8. Security Considerations

Since sensitive file data may be transnitted or received

froma server by the NFS protocol, authentication, privacy,

and data integrity issues should be addressed by inpl enentations
of this protocol.

As with the previous protocol revision (version 2), NFS
version 3 defers to the authentication provisions of the
supporting RPC protocol [RFCL057], and assunes that data
privacy and integrity are provided by underlying transport
| ayers as available in each inplenentation of the protocol.
See section 4.4 for a discussion relating to file access
perm ssi ons.

9. Acknow edgenent s

This description of the protocol is derived froman origina
docunment witten by Brian Pawl owski and revised by Peter
Staubach. This protocol is the result of a co-operative
effort that conprises the contributions of Geoff Arnold,
Brent Cal | aghan, John Corbin, Fred d over, Chet Juszczak

M ke Eisler, John Gllono, Dave Htz, Mke Kupfer, Rick
Mackl em Ron M nnich, Brian Pawl owski, David Robi nson, Rusty
Sandberg, Crai g Schanp, Spencer Shepler, Carl Smith, Mark
Stein, Peter Staubach, Tom Tal pey, Rob Thurl ow, and Mark
Wttle.

Cal | aghan, el al | nf or mat i onal [Page 125]

RFC 1813 NFS Version 3 Protocol June 1995

10. Authors’ Addresses
Address conments related to this protocol to:

nf s3@ng. sun. com

Brent Cal | aghan

Sun M crosystens, |nc.

2550 Garcia Avenue

Mai | st op UMIV05- 44

Mount ain View, CA 94043-1100

Phone: 1-415-336-1051
Fax: 1- 415- 336- 6015
EMai | : brent.cal |l aghan@ng. sun. com

Bri an Pawl owsKki

Net wor k Appl i ance Cor p.
319 North Bernardo Ave.
Mountai n View, CA 94043

Phone: 1-415-428-5136
Fax: 1-415-428-5151
EMai | : beepy@et app. com

Pet er St aubach

Sun M crosystens, Inc.

2550 Garci a Avenue

Mai | st op UMIV05- 44

Mountain View, CA 94043-1100

Phone: 1-415-336-5615

Fax: 1- 415- 336- 6015
EMai | . peter.staubach@ng. sun. com

Cal | aghan, el al | nf or mat i onal [Page 126]

