Net wor k Wor ki ng Group N. Chi appa
Request for Comments: 1753 Decenber 1994
Category: Informationa

| Png Techni cal Requirements
O the Ninrod Routing and Addressing Architecture

Status of this Meno

This meno provides information for the Internet community. This neno
does not specify an Internet standard of any kind. Distribution of
this meno is unlimted.

Abstract

Thi s docunent was subrmitted to the IETF IPng area in response to RFC
1550. Publication of this docunent does not inply acceptance by the
| Png area of any ideas expressed within. Conments shoul d be
submitted to the big-internet @unnari.oz.au mailing list.

Thi s docunent presents the requirenments that the Ninrod routing and
addressing architecture has upon the internetwork |ayer protocol. To
be nmost useful to Ninmrod, any protocol selected as the |IPng shoul d
satisfy these requirenments. Also presented is sone background

i nformation, consisting of i) information about architectural and
desi gn principles which mght apply to the design of a new

i nternetworking layer, and ii) sone details of the |ogic and
reasoni ng behi nd particul ar requirenents.

1. Introduction

It is inportant to note that this docunment is not "IPng Requirenents
for Routing", as other proposed routing and addressi ng desi gns may
need different support; this docunent is specific to Ninrod, and
doesn’t claimto speak for other efforts.

However, although | don’t wi sh to assune that the particul ar designs
bei ng worked on by the Nintrod Ws will be w dely adopted by the
Internet (if for no other reason, they have not yet been depl oyed and
tried and tested in practise, to see if they really work, an

absol utely necessary hurdle for any protocol), there are reasons to
believe that any routing architecture for a | arge, ubiquitous gl obal
Internet will have many of the same basic fundanental principles as
the Ninrod architecture, and the requirenments that these generate.

Chi appa [Page 1]

RFC 1753 Ni ntod Techni cal Requirenments for |Png Decenber 1994

2.

While current day routing technol ogi es do not yet have the
characteristics and capabilities that generate these requirenents,
they also do not seemto be conpletely suited to routing in the
next-generation Internet. As routing technol ogy noves towards what is
needed for the next generation Internet, the underlying fundamental
laws and principles of routing will alnost inevitably drive the

desi gn, and hence the requirenents, toward things which |look Iike the
mat eri al presented here.

Therefore, even if Ninrod is not the routing architecture of the
next-generation Internet, the basic routing architecture of that
Internet will have requirenents that, while differing in detail, wll
al nost inevitably be sinmlar to these.

In a sinlar, but nore general, context, note that, by and large, the
general analysis of sections 3.1 ("Interaction Architectural |ssues")
and 3.2 ("State and Flows in the Internetwork Layer") will apply to
other areas of a new internetwork layer, not just routing.

Il will tackle the internetwork packet format first (which is
sinpler), and then the whole issue of the interaction with the rest
of the internetwork |ayer (which is a nmuch nore subtle topic).

Packet For nat

2.1 Packet Format | ssues

As a general rule, the design philosophy of Ninrod is "maximnm ze the
lifetime (and flexibility) of the architecture". Design tradeoffs
(i.e., optimizations) that will adversely affect the flexibility,
adaptability and lifetime of the design are not not necessarily w se
choi ces; they nay cost nore than they save. Such optim zations mni ght
be the correct choices in a stand-al one system where the replacenent
costs are relatively small; in the gl obal conmunication network, the
repl acenent costs are very nuch higher

Providing the Ninrod functionality requires the carrying of certain
information in the packets. The design principle noted above has a
nunber of corollaries in specifying the fields to contain that

i nformati on.

First, the design should be "sinple and strai ghtforward", which neans
that various functions should be handled by conpletely separate
nmechani sns, and fields in the packets. It nay seemthat an
opportunity exists to save space by overloading two functions onto
one nmechani smor field, but general experience is that, over tine,
this attenpt at optinization costs nore, by restricting flexibility
and adaptability.

Chi appa [Page 2]

RFC 1753 Ni ntod Techni cal Requirenments for |Png Decenber 1994

Second, field |l engths should be specified to be sonewhat |arger than
can concei vably be used; the history of systemarchitecture is
replete with exanples (processor address size being the nost

not ori ous) where fields becanme too short over the lifetime of the
system The docunent indicates what the snall est reasonabl e
"adequate" lengths are, but this is nore of a "critical floor" than a
recommendati on. A "reconmended” length is also given, which is the

I engt h which corresponds to the application of this principle. The

wi se desi gner would pick this Iength.

It is inportant to now that this does *not* nean that inplenentations
must support the maxi num val ue possible in a field of that size. |

i magi ne that systemw de admnistrative limts will be placed on the
maxi num val ues whi ch nust be supported. Then, as the need arises, we
can increase the adnministrative linmt. This allows an easy, and
conpletely interoperable (with no special nechanisns) path to upgrade
the capability of the network. If the maxi mum supported val ue of a
field needs to be increased fromMto N, an announcenent is made that
this is comng; during the interimperiod, the systemcontinues to
operate with M but new inplenmentations are deployed; while this is
happeni ng, interoperation is autonmatic, with no transition nmechani sns
of any ki nd needed. Wen things are "ready" (i.e., the proportion of
ol d equipnent is snmall enough), use of the |arger val ue comrences.

Al so, in speaking of the packet format, you first need to distinguish
bet ween the host-router part of the path, and the router-router part;
a format that works OK for one nay not do for another.

The issue is conplicated by the fact that Ninrod can be nade to work,
albeit not in optimal form with information/fields mssing fromthe
packet in the host to "first hop router"” section of the packet’s
path. The nissing fields and informati on can then be added by the
first hop router. (This capability will be used to allow depl oynent
and operation with unnodi fied | Pv4 hosts, although sinmilar techniques
coul d be used with other internetworking protocols.) Access to the
full range of Ninrod capabilities will require upgrading of hosts to
i nclude the necessary information in the packets they exchange with
the routers.

Second, Ninrod currently has three planned forwardi ng nodes (fl ows,
datagram and source-routed packets), and a format that works for one
may not work for another; sone nodes use fields that are not used by
ot her nodes. The presence or absence of these fields will make a

di fference.

Chi appa [Page 3]

RFC 1753 Ni ntod Techni cal Requirenments for |Png Decenber 1994

2.2 Packet Format Fields

What Nintrod would like to see in the internetworking packet is:

Source and destination endpoint identification. There are severa
possibilities here.

One is "UD's, which are "shortish", fixed Iength fields which
appear in each packet, in the internetwork header, which contain
gl obal Iy unique, topologically insensitive identifiers for either
i) endpoints (if you aren't familiar with endpoints, think of them
as hosts), or ii) nulticast groups. (In the former instance, the
UDis an EID, in the latter, a "set ID', or SID. An SIDis an
identifier which | ooks just like an EID, but it refers to a group
of endpoints. The semantics of SID s are not conpletely defined.)
For each of these 48 bits is adequate, but we would recommend 64
bits. (IPv4d will be able to operate with snaller ones for a while,
but eventually either need a new packet format, or the difficult
and not wholly satisfactory techni que known as Network Address
Transl ators, which allows the contents of these fields to be only
| ocal |l y unique.)

Anot her possibility is some shorter field, naned an "endpoi nt
selector", or ESEL, which contains a value which is not globally
uni que, but only unique in napping tables on each end, tables which
map fromthe small value to a globally unique value, such as a DNS
name.

Finally, it is possible to conceive of overall networking designs
whi ch do not include any endpoint identification in the packet at
all, but transfer it at the start of a comunication, and fromthen
on infer it. This alternative would have to have sonme other neans
of telling which endpoint a given packet is for, if there are
several endpoints at a given destination. Sone coordination on

all ocation of flowids, or higher level port nunbers, etc., m ght
do this.

Flow identification. There are two basic approaches here, depending
on whether flows are aggregated (in internediate switches) or not.
It should be enphasized at this point that it is not yet known

whet her flow aggregation will be needed. The only reason to do it
is to control the gromh of state in internedi ate routers, but
there is no hard case nmade that either this growth will be
unmanageabl e, or that aggregating flows will be feasible

practically.

Chi appa [Page 4]

RFC 1753 Ni ntod Techni cal Requirenments for |Png Decenber 1994

For the non-aggregated case, a single "flowid" field will suffice.
This *rmust not* use one of the two previous U D fields, as in
dat agram node (and probably source-routed node as well) the flowid

will be over-written during transit of the network. It could nost
easily be constructed by adding a UDto a locally unique flowid,
which will provide a globally unique flowid. It is possible to use

non- gl obally uni que flowids, (which would allow a shorter |ength
to this field), although this would nmean that collisions would
result, and have to be dealt with. An adequate length for the |ocal
part of a globally unique flowid would be 12 bits (which would be
my "out of thin air" guess), but we reconmend 32. For a non-

gl obally unique flowid, 24 bits would be adequate, but | reconmend
32.

For the aggregated case, three broad cl asses of mechani smare
possi bl e.

- Option 1: The packet contains a sequence (sort of |like a source
route) of flowids. Whenever you aggregate or deaggregate, you
nove along the list to the next one. This takes the nobst space,
but is otherwi se the |east work for the routers.

- Option 2: The packet contains a stack of flowids, with the
current one on the top. Wen you aggregate, you push a new one
on; when you de-aggregate, you take one off. This takes nore
wor k, but |ess space in the packet than the conplete "source-
route". Encapsul ating packets to do aggregati on does basically
this, but you' re stacking entire headers, not just flowids. The
clever way to do this flowid stacking, w thout doing
encapsul ation, is to find out fromfl ow setup how deep the stack
will get, and allocate the space in the packet when it’'s
created. That way, all you ever have to do is insert a new
flowid, or "renove" one; you never have to nake roomfor nore
flowids.

- Option 3: The packet contains only the "base" flowid (i.e., the
one with the finest granularity), and the current flowid. Wen
you aggregate, you just bash the current flowid. The tricky
part comes when you de-aggregate; you have to put the right
val ue back. To do this, you have to have state in the router at
the end of the aggregated flow, which tells you what the de-
aggregated flow for each base flowis. The downside here is
obvi ous: we get away w thout individual flow state for each of
the constituent flows in all the routers along the path of that
aggregated, flow, *except* for the |ast one.

Chi appa [Page 9]

RFC 1753 Ni ntod Techni cal Requirenments for |Png Decenber 1994

O her than encapsul ation, which has significant inefficiency in
space overhead fairly quickly, after just a few layers of
aggregation, there appears to be no way to do it with just one
flowid in the packet header. Even if you don’t touch the
packets, but do the aggregati on by mappi ng sonme nunber of "base"
flowid s to a single aggregated flowin the routers along the
path of the aggregated flow, the table that does the nmapping is
still going to have to have a nunmber of entries directly
proportional to the nunber of base flows going through the

swi tch.

- Al ooping packet detector. This is any nmechanismthat will detect a
packet which is "stuck" in the network; a tineout value in packets,
together with a check in routers, is an exanple. If this is a hop-
count, it has to be nore than 8 bits; 12 bits would be adequate,
and | recomend 16 (which also nakes it easy to update). This is
not to say that | think networks with diameters |arger than 256 are
good, or that we should design such nets, but | think liniting the
maxi mum pat h through the network to 256 hops is likely to bite us
down the road the same way making "infinity" 16 in RIP did (as it
did, eventually). Wen we hit that ceiling, it’s going to hurt, and
there won't be an easy fix. | will note in passing that we are
al ready seeing paths |engths of over 30 hops.

- Optional source and destination |locators. These are structured,
variable length itenms which are topologically sensitive identifiers
for the place in the network fromwhich the traffic originates or
to which the traffic is destined. The locator will probably contain
internal separators which divide up the fields, so that a
particular field can be enlarged without creating a great deal of
upheaval . An adequate val ue for maxi mum | ength supported woul d be
up to 32 bytes per locator, and | onger would be even better; |
woul d recomend up to 256 bytes per |ocator.

- Perhaps (paired with the above), an optional pointer into the
locators. This is optional "forwarding state" (i.e., state in the
packet which records sonething about its progress across the
network) which is used in the datagram forwardi ng node to help
ensure that the packet does not loop. It can also inprove the
forwarding processing efficiency. It is thus not absolutely
essential, but is very desirable froma real-world engineering view
point. It needs to be large enough to identify locations in either
|l ocator; e.g., if locators can be up to 256 bytes, it would need to
be 9 bits.

- An optional source route. This is used to support the "source

routed packet" forwardi ng node. Although not designed in detai
yet, we can di scuss two possi bl e approaches.

Chi appa [Page 6]

RFC 1753 Ni ntod Techni cal Requirenments for |Png Decenber 1994

In one, used with "sem -strict" source routing (in which a
contiguous series of entities is nanmed, albeit perhaps at a high

| ayer of abstraction), the syntax will likely I ook nuch |ike source
routes in PIP, in Nimod they will be a sequence of Nimrod entity
identifiers (i.e., locator elenments, not conplete |locators), along

with clues as to the context in which each identifier is to be
interpreted (e.g., up, down, across, etc.). Since those identifiers
thensel ves are variable | ength (although probably nost will be two
bytes or less, otherwi se the routing overhead inside the naned

obj ect woul d be excessive), and the hop count above contenpl at es
the possibility of paths of over 256 hops, it would seemthat these
m ght possibly some day exceed 512 bytes, if a lengthy path was
specified in terns of the actual physical assets used. An adequate
I ength woul d be 512 bytes; the recomended | ength would be 2716
bytes (although this I ength woul d probably not be supported in
practise; rather, the field length would allow it).

In the other, used with classical "loose" source routes, the source
consists of a nunber of locators. It is not yet clear if this nopde
will be supported. If so, the header would need to be able to store

a sequence of locators (as described above). Space mi ght be saved
by not repeating |ocator prefixes that match that of the previous

|l ocator in the sequence; Nintrod will probably allow use of such
"locally useful"” locators. It is hard to determ ne what an adequate
I ength would be for this case; the recommended | ength woul d be 2716
bytes (again, with the previous caveat).

- Perhaps (paired with the above), an optional pointer into the

source route. This is also optional "forwarding state". It needs to
be I arge enough to identify |ocations anywhere in the source route;
e.g., if the source router can be up to 1024 bytes, it would need

to be 10 bits.

- An internetwork header length. | nmention this since the above
fields could easily exceed 256 bytes, if they are to all be carried
in the internetwork header (see comments below as to where to carry
all this information), the header length field needs to be nore
than 8 bits; 12 bits would be adequate, and | recommend 16 bits.
The approach of putting sonme of the data itens above into an
interior header, to limt the size of the basic internetworking
header, does not really seemoptimal, as this data is for use by
the internediate routers, and it needs to be easily accessible.

- Authentication of sone sort is needed. See the recent |AB docunent
whi ch was produced as a result of the IAB architecture retreat on
security (draft-iab-sec-arch-workshop-00.txt), section 4, and
especially section 4.3. There is currently no set way of doing
"denial/theft of service" in Ninrod, but this topic is well

Chi appa [Page 7]

RFC 1753 Ni ntod Techni cal Requirenments for |Png Decenber 1994

explored in that docunment; N nrod woul d use whatever mechani sm(s)
seem appropriate to those know edgeable in this area.

- A version nunber. Future forwardi ng mechani sns mi ght need ot her
information (i.e., fields) in the packet header; use a version
nunber would allow it to be nodified to contain what’s needed.
(This woul d not necessarily be information that is visible to the
hosts, so this does not necessarily nean that the hosts woul d need
to know about this new fornat.) 4 bits is adequate; it’'s not clear
if a larger value needs to be reconmended.

2.3 Field Requirenents and Addition Methods

As noted above, it’'s possible to use Nintod in a limted node where
needed information/fields are added by the first-hop router. It’s
thus useful to ask "which of the fields nust be present in the host-
router header, and which could be added by the router?" The only ones
whi ch are absolutely necessary in all packets are the endpoint
identification (provided that sonme neans is available to nap them
into locators; this would obviously be nost useful on U D s which are
EIDs).

As to the others, if the user wishes to use flows, and wants to
guarantee that their packets are assigned to the correct flows, the
flowid field is needed. If the user wi shes efficient use of the
datagram node, it’'s probably necessary to include the locators in the
packet sent to the router. |If the user wishes to specify the route
for the packets, and does not wish to set up a flow, they need to

i ncl ude the source route.

How woul d additional information/fields be added to the packet, if
the packet is emitted fromthe host in inconplete forn? (By this, I
mean the sinple question of how, nechanically, not the nore conpl ex
i ssue of where any needed information cones from)

This question is conplex, since all the |IPng candidates (and in fact,
any reasonabl e inter-networking protocol) are extensible protocols;

t hose extensi on nmechani sns could be used. Also, it would possible to
carry sonme of the required information as user data in the

i nternetwor ki ng packet, with the original user’s data encapsul at ed
further inside. Finally, a private inter-router packet format could
be defi ned.

It’s not clear which path is best, but we can tal k about which fields
the Ninrod routers need access to, and how often; |ess used ones
could be placed in harder-to-get-to | ocations (such as in an

encapsul ated header). The fields to which the routers need access on
every hop are the flowid and the | oopi ng packet detector. The

Chi appa [Page 8]

RFC 1753 Ni ntod Techni cal Requirenments for |Png Decenber 1994

| ocator/pointer fields are only needed at intervals (in what datagram
forwardi ng node calls "active" routers), as is the source route (the
latter at every object which is named in the source route).

Dependi ng on how access control is done, and which forwardi ng node is
used, the U D s and/or |ocators mnmight be exam ned for access control
pur poses, wherever that function is perforned.

This is not a conplete exploration of the topic, but should give a
rough idea of what’'s going on

3. Architectural |ssues
3.1 Interaction Architectural |ssues

The topic of the interaction with the rest of the internetwork | ayer
is more conplex. Ninrod springs in part froma design vision which
sees the entire internetwork layer, distributed across all the hosts
and routers of the internetwork, as a single system albeit a
distributed system

Approached fromthat angle, one naturally falls into a typical system
desi gner point of view, where you start to think of the
nmodul ari zati on of the system chosing the functional boundaries which
divide the systemup into functional units, and defining the

i nteractions between the functional units. As we all know, that
nodul ari zation is the key part of the system design process.

It’s rare that a group of conpletely independent nodules forma
system there's usually a fairly strong internal interaction. Those
i nteractions have to be thought about and understood as part of the
nodul ari zati on process, since it effects the placenment of the
functional boundaries. Poor placenment |eads to conplex interactions,
or desired interactions which cannot be realized.

These are all nore inportant issues with a system which is expected
to have a long lifetinme; correct placenment of the functiona
boundaries, so as to clearly and sinply break up the systeminto
truly fundanental units, is a necessity is the systemis to endure
and serve well.

3.1.1 The Internetwork Layer Service Mdel

To return to the view of the internetwork |ayer as a system that
system provides certain services to its clients; i.e., it
instantiates a service nodel. To begin with, lacking a shared vi ew of
the service nodel that the internetwork layer is supposed to provide,
it’'s reasonabl e to suppose that it will prove inpossible to agree on

Chi appa [Page 9]

RFC 1753 Ni ntod Techni cal Requirenments for |Png Decenber 1994

mechani sns at the internetwork | evel to provide that service.

To answer the question of what the service nodel ought to be, one can
view the internetwork | ayer itself as a subsystem of an even | arge
system the entire internetwork itself. (That systemis quite likely
the |l argest and nost conplex systemwe will ever build, as it is the
| argest system we can possibly build; it is the systemwhich wll

i nevitably contain alnost all other systens.)

From that point of view, the issue of the service nodel of the
internetwork |ayer becones a little clearer. The services provided by
the internetwork |ayer are no |onger purely abstract, but can be

t hought about as the external nodule interface of the internetwork

| ayer nodule. If agreement can be reached on where to put the
functional boundaries of the internetwork |ayer, and on what overal
service the internet as a whole should provide, the service nodel of
the internetwork | ayer should be easier to agree on

In general terms, it seens that the unreliabl e packet ought to remain
t he fundanmental building block of the internetwork |ayer. The design
principle that says that we can take any packet and throw it away
with no warning or other action, or take any router and turn it off
with no warning, and have the systemstill work, seens very powerful
The conponent design sinplicity (since routers don’'t have to stand on
their heads to retain a packet which they have the only copy of), and
overall system robustness, resulting fromthese two assunptions is
absolutely critical.

In detail, however, particularly in areas which are still the subject
of research and experinentation (such as resource allocation
security, etc.), it seenms difficult to provide a finished definition
of exactly what the service nodel of the internetwork |ayer ought to
be.

3.1.2 The Subsystens of the Internetwork Layer

In any event, by viewing the internetwork |ayer as a | arge system
one starts to think about what subsystens are needed, and what the

i nteractions anong them should look Iike. Nintrod is sinmply a nunber
of the subsystens of this larger system the internetwork |ayer. It
is *not* intended to be a purely standal one set of subsystens, but to
work together in close concert with the other subsystens of the

i nternetwork | ayer (resource allocation, security, charging, etc.) to
provide the internetwork |ayer service nodel

One reason that Nintrod is not sinply a nonolithic subsystemis that

sone of the interactions with the other subsystens of the
internetwork layer, for instance the resource allocation subsystem

Chi appa [Page 10]

RFC 1753 Ni ntod Techni cal Requirenments for |Png Decenber 1994

are nmuch clearer and easier to manage if the routing is broken up
into several subsystens, with the interactions between them open

It is inportant to realize that Nintrod was initially broken up into
separate subsystens for purely internal reasons. It so happens that,
consi dered as a separate problem the fundanmental boundary lines for
dividing routing up into subsystens are the sanme boundaries that make
interaction with other subsystens cleaner; this provi des added

evi dence that these boundaries are in fact the right ones.

The subsystens which conprise the functionality covered by Ninrod are
i) routing information distribution (in the case of N nmrod, topology
map distribution, along with the attributes [policy, QOS, etc.] of

the topology elenments), ii) route selection (strictly speaking, not
part of the Ninrod spec per se, but functional exanples will be
produced), and iii) user traffic handling.

The fornmer can fairly well be defined without reference to other
subsystens, but the second and third are necessarily nore invol ved.
For instance, route selection mght involve finding out which |inks
have the resources available to handl e sonme required | evel of

service. For user traffic handling, if a particular application needs
a resource reservation, getting that resource reservation to the
routers is as nuch a part of getting the routers ready as meking sure
they have the correct routing information, so here too, routing is
tied in with other subsystens.

In any event, although we can tal k about the rel ationship between the
Ni ntod subsystens, and the other functional subsystens of the
internetwork layer, until the service nodel of the internetwork |ayer
is more clearly visible, along with the functional boundaries wthin
that | ayer, such a discussion is necessarily rather nebul ous.

3.2 State and Flows in the Internetwork Layer

The internetwork |ayer as whole contains a variety of information, of
varying lifetimes. This information we can refer to as the
internetwork layer’s "state". Some of this state is stored in the
routers, and some is stored in the packets.

In the packet, | distinguish between what | call "forwarding state",
whi ch records sonet hi ng about the progress of this individual packet
t hrough the network (such as the hop count, or the pointer into a
source route), and other state, which is information about what
service the user wants fromthe network (such as the destination of
t he packet), etc.

Chi appa [Page 11]

RFC 1753 Ni ntod Techni cal Requirenments for |Png Decenber 1994

3.2.1 User and Service State

| call state which reflects the desires and service requests of the
user "user state". This is information which could be sent in each
packet, or which can be stored in the router and applied to nultiple
packets (dependi ng on which nmakes the nbst engineering sense). It is
still called user state, even when a copy is stored in the routers.

User state can be divided into two classes; "critical" (such as

desti nati on addresses), without which the packets cannot be forwarded
at all, and "non-critical" (such as a resource allocation class),

wi t hout which the packets can still be forwarded, just not quite in
the way the user woul d nost prefer

There are a range of possible nechanisns for getting this user state
to the routers; it may be put in every packet, or placed there by a
setup. In the latter case, you have a whol e range of possibilities
for howto get it back when you lose it, such as placing a copy in
every Nt h packet.

However, other state is needed which cannot be stored in each packet;
it’s state about the longer-term(i.e., across the life of nany
packets) situation; i.e., state which is inherently associated with a
nunber of packets over sone tinme-frame (e.g., a resource allocation).
| call this state "server state"

Thi s apparently changes the "statel ess" nodel of routers sonewhat,
but this change is nore apparent than real. The routers already
contain state, such as routing table entries; state without which is
it virtually inpossible to handle user traffic. Al that is being
changed is the anount, granularity, and lifetime, of state in the
routers.

Sone of this service state nmay need to be installed in a fairly
reliable fashion; e.g., if there is service state related to billing,
or allocation of resources for a critical application, one nore or

| ess needs to be guaranteed that this service state has been
correctly install ed.

To the extent that you have state in the routers (either service
state, or user state), you have to be able to associate that state
with the packets it goes with. The fields in the packets that allow
you to do this are "tags"

Chi appa [Page 12]

RFC 1753 Ni ntod Techni cal Requirenments for |Png Decenber 1994

3.2.2 Flows
It is useful to step back for a bit here, and think about the traffic
in the network. Some of it will be fromapplications with are
basically transactions; i.e., they require only a single packet, or a

very small nunber. (I tend to use the term"datagram' to refer to
such applications, and use the term "packet" to describe the unit of
transm ssion through the network.) However, other packets are part of
| onger-1ived comuni cations, which have been terned "fl ows".

A flow, fromthe user’s point of view, is a sequence of packets which
are associated, usually by being froma single application instance.
In an internetwork | ayer which has a nore conpl ex service nodel

(e.g., supports resource allocation, etc.), the flow woul d have
service requirenments to pass on to sone or all of the subsystens

whi ch provi de those services.

To the internetworking layer, a flowis a sequence of packets that
share all the attributes that the internetworking | ayer cares about.
This includes, but is not linmted to: source/destination, path,
resource allocation, accounting/authorization

aut hentication/security, etc., etc.

There isn’t necessarily a one-one mapping fromflows to *anyt hi ng*

el se, be it a TCP connection, or an application instance, or

whatever. A single flow nmight contain several TCP connections (e.g.
with FTP, where you have the control connection, and a nunber of data
connections), or a single application might have several flows (e.g.,
mul ti-medi a conferencing, where you' d have one flow for the audio,
another for a graphic wi ndow, etc., with different resource
requirenents in ternms of bandw dth, delay, etc., for each.)

Fl ows may al so be nulticast constructs, i.e., nultiple sources and
destinations; they are not inherently unicast. Milticast flows are
nmore conpl ex than unicast (there is a | arge pool of state which nust
be made coherent), but the concepts are sinilar.

There’s an interesting architectural issue here. Let’s assune we have
all these different internetwork | evel subsystens (routing, resource
al l ocation, security/access-control, accounting), etc. Now, we have
two choi ces.

First, we could allow each individual subsystem which uses the
concept of flows to define itself what it thinks a "flow' is, and
define which values in which fields in the packet define a given
"flow' for it. Now, presunmably, we have to allow 2 flows for
subsystem X to map onto 1 flow for subsystemY to nap onto 3 flows
for subsystemZ; i.e., you can nmix and natch to your heart’s content.

Chi appa [Page 13]

RFC 1753 Ni ntod Techni cal Requirenments for |Png Decenber 1994

Second, we could define a standard "flow' nmechanismfor the
internetwork layer, along with a way of identifying the flowin the
packet, etc. Then, if you have two things which wish to differ in
any subsystem you have to have a separate flow for each

The forner has the advantages that it’'s a little easier to deploy
incremental ly, since you don’'t have to agree on a comon fl ow
mechanism |t may save on replicated state (if | have 3 flows, and
they are the sane for subsystem X, and different for Y, |I only need
one set of X state). It also has a lot nore flexibility. The latter
is sinple and straightforward, and given the conplexity of what is
bei ng proposed, it seens that any place we can nmeke things sinpler,

we shoul d.

The choice is not trivial; it all depends on things |ike "what
percentage of flows will want to share the sanme state in certain
subsystenms with other flows". | don’t know how to quantify those, but
as an architect, | prefer sinple, straightforward things. This system

is pretty conplex already, and I'’m not sure the benefits of being
able to mix and natch are worth the added conplexity. So, for the
monent |’ 11 assune a single, systemw de, definition of flows.

The packets which belong to a flow could be identified by a tag

consi sting of a nunber of fields (such as addresses, ports, etc.), as
opposed to a specialized field. However, it nay be nore

strai ghtforward, and fool proof, to sinply identify the flow a packet
bel ongs to with by neans of a specialized tag field (the "flowid")
in the internetwork header. G ven that you can always find situations
where the existing fields alone don't do the job, and you *still*
need a separate field to do the job correctly, it seens best to take
the sinple, direct approach , and say "the flow a packet belongs to
is named by a flowid in the packet header".

The sinplicity of globally-unique flowid s (or at least a flowid
whi ch uni que along the path of the flow) is also desirable; they take
nmore bits in the header, but then you don't have to worry about al

t he mechani sm needed to renmap | ocally-unique flowid s, etc., etc.
From t he perspective of designing sonmething with a long Iifetinme, and
which is to be deployed widely, sinplicity and directness is the only
way to go. For ne, that translates into flows being named solely by
globally unique flowid s, rather than sone conplex semantics on

exi sting fields.

However, the issue of how to recogni ze which packets belong to fl ows

i s somewhat orthogonal to the issue of whether the internetwork |eve
recogni zes flows at all. Should it?

Chi appa [Page 14]

RFC 1753 Ni ntod Techni cal Requirenments for |Png Decenber 1994

3.2.3 Flows and State

To the extent that you have service state in the routers you have to
be able to associate that state with the packets it goes with. This
is a fundanmental reason for flows. Access to service state is one
reason to explicitly recognize flows at the internetwork |ayer, but
it is not the only one.

If the user has requirenments in a nunber of areas (e.g., routing and
access control), they can theoretically comunicate these to the
routers by placing a copy of all the relevant information in each
packet (in the internetwork header). |If nany subsystens of the
internetwork are involved, and the requirenents are conplex, this
could be a lot of bits.

(As a final aside, there’'s clearly no point in storing in the routers
any user state about packets which are providi ng datagram service;

t he datagram service has usually conme and gone in the sane packet,
and this discussion is all about state retention.)

There are two schools of thought as to how to proceed. The first says
that for reasons of robustness and sinplicity, all user state ought
to be repeated in each packet. For efficiency reasons, the routers
may cache such user state, probably along with preconputed data
derived fromthe user state. (It rmakes sense to store such cached
user state along with any applicable server state, of course.)

The second school says that if sonething is going to generate |ots of
packets, it nakes engineering sense to give all this information to
the routers once, and fromthen on have a tag (the flowid) in the
packet which tells the routers where to find that infornmation. It’s
sinply going to be too inefficient to carry all the user state around
all the tinme. This is purely an engineering efficiency reason, but
it’s a significant one.

There is a slightly deeper argument, which says that the routers wll
i nevitably come to contain nore user state, and it’'s sinply a
guestion of whether that state is installed by an explicit nechani sm
or whether the routers infer that state fromwatching the packets

whi ch pass through them To the extent that it is inevitable anyway,
there are obvious benefits to be gained fromrecognizing that, and an
explicit design of the installation is nore likely to give
satisfactory results (as opposed to an ad-hoc nechanisn).

It is worth noting that although the term"flow' is often used to

refer to this state in the routers along the path of the flow, it is
i nportant to distinguish between i) a flow as a sequence of packets
(i.e., the definition given in 3.2.2 above), and ii) a flow, as the

Chi appa [Page 15]

RFC 1753 Ni ntod Techni cal Requirenments for |Png Decenber 1994

thing which is set up in the routers. They are different, and
al t hough the particular neaning is usually clear fromthe context,
they are not the sane thing at all.

I’ mnot sure how much use there is to any internediate position, in
whi ch one subsysteminstalls user state in the routers, and another
carries a copy of its user state in each packet.

(There are other internediate positions. First, one flow night use a
gi ven technique for all its subsystens, and another flow m ght use a
different technique for its; there is potentially sone use to this,
al though I'’mnot sure the cost in conplexity of supporting both
mechanisns is worth the benefits. Second, one flow mi ght use one
mechanismwi th one router along its path, and another for a different
router. A nunber of different reasons exist as to why one mght do
this, including the fact that not all routers may support the sane
mechani sns si mul t aneousl y.)

It seenms to ne that to have one internetwork | ayer subsystem (e.g.
resource allocation) carry user state in all the packets (perhaps
with use of a "hint" in the packets to find potentially cached copies
in the router), and have a second (e.g., routing) use a direct
installation, and use a tag in the packets to find it, nmakes little
sense. W should do one or the other, based on a consideration of the
ef fi ci ency/ robust ness tradeoff.

Also, if there is a way of installing such fl ow associ ated state, it
makes sense to have only one, which all subsystens use, instead of
buil ding a separate one for each flow.

It’s alittle difficult to nake the choice between installation, and
carrying a copy in each packet, w thout nore information of exactly
how rmuch user state the network is likely to have in the future. (For
i nstance, we might wind up with 500 byte headers if we include the
full source route, resource reservation, etc., in every header.)

lt’s also difficult w thout consideration of the actual nechanisns

i nvol ved. As a general principle, we wish to make recovery froma

| oss of state as local as possible, to linmt the nunber of entities
whi ch have to becone involved. (For instance, when a router crashes,
traffic is rerouted around it wi thout needing to open a new TCP
connection.) The option of the "installation" |ooks a |ot nore
attractive if it’s sinple, and relatively cheap, to reinstall the
user state when a router crashes, w thout otherw se causing a | ot of
hassl e.

Chi appa [Page 16]

RFC 1753 Ni ntod Techni cal Requirenments for |Png Decenber 1994

However, given the likely growh in user state, the necessity for
service state, the requirenent for reliable installation, and a
nunber of similar considerations, it seens that direct installation
of user state, and explicit recognition of flows, through a unified
definition and tag nmechanismin the packets, is the way to go, and
this is the path that Ninrod has chosen

3.3 Specific Interaction |Issues

Here is a very inconplete list of the things which Ninrod would Iike
to see fromthe internetwork |ayer as a whol e:

A unified definition of flows in the internetwork | ayer, and a
uni fied way of identifying, through a separate flowid field, which
packets belong to a given fl ow

- Aunified mechanism (potentially distributed) for installing state
about flows (including multicast flows) in routers.

- A nethod for getting information about whether a given resource
al l ocation request has failed along a given path; this might be
part of the unified flow setup nechani sm

- An interface to (potentially distributed) nechani smfor maintaining
the nenbership in a nmulti-cast group

- Support for nultiple interfaces; i.e., multi-homing. N nrod does
this by decoupling transport identification (done via EID s) from
interface identification (done via locators). E.g., a packet with
any valid destination |ocator should be accepted by the TCP of an
endpoint, if the destination EID is the one assigned to that
endpoi nt .

- Support for nultiple |ocators ("addresses") per network interface.
This is needed for a nunber of reasons, anpbng themto allow for
| ess painful transitions in the | ocator abstraction hierarchy as
t he topol ogy changes.

- Support for nmultiple UD s ("addresses") per endpoint (roughly, per
host). This would definitely include both nultiple nmulticast SID s,
and at | east one unicast EID (the need for multiple unicast EID s
per endpoint is not obvious).

- Support for distinction between a multicast group as a naned
entity, and a nulticast flow which nay not reach all the nmenbers.

- Adistributed, replicated, user name translation system (DNS?) that
maps such user nanes into (EID, locator0O, ... locatorN) bindings.

appa [Page 17]

RFC 1753 Ni ntod Techni cal Requirenments for |Png Decenber 1994

Security Considerations

Security issues are discussed in section 2.2.
Aut hor’ s Addr ess

J. Noel Chiappa

Phone: (804) 898-8183
EMail: jnc@cs.mt.edu

Chi appa [Page 18]

