Net wor k Wor ki ng Group C. Adans
Request for Comments: 2025 Bel | - Nort hern Research
Cat egory: Standards Track Cct ober 1996

The Sinple Public-Key GSS-API Mechani sm (SPKM
Status of this Meno

Thi s docunment specifies an Internet standards track protocol for the
Internet conmunity, and requests di scussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this meno is unlimnited.

Abstract

This specification defines protocols, procedures, and conventions to
be enpl oyed by peers inplenmenting the Generic Security Service
Application ProgramlInterface (as specified in RFCs 1508 and 1509)
when using the Sinple Public-Key Mechani sm

Backgr ound

Al t hough the Kerberos Version 5 GSS-API mechani sm [KRB5] is becom ng
wel | -established in many environnents, it is inportant in sone
applications to have a GSS- APl nechani smwhich is based on a public-
key, rather than a symretric-key, infrastructure. The mechanism
described in this docunent has been proposed to neet this need and to
provide the follow ng features.

1) The SPKM al l ows both unilateral and nutual authentication
to be acconplished without the use of secure tinestanps. This
enabl es environnents which do not have access to secure tine
to neverthel ess have access to secure authentication.

2) The SPKM uses Algorithmldentifiers to specify various
algorithnms to be used by the conmunicating peers. This allows
maxi mum flexibility for a variety of environments, for future
enhancenents, and for alternative al gorithns.

3) The SPKM all ows the option of a true, asymetric algorithm
based, digital signature in the gss_sign() and gss_seal ()
operations (now called gss_getMC() and gss_wap() in
[GSSv2]), rather than an integrity checksum based on a MAC
conputed with a symetric algorithm(e.g., DES). For sone
environnents, the availability of true digital signatures
supporting non-repudiation is a necessity.

Adans St andards Track [Page 1]

RFC 2025 SPKM COct ober 1996

4) SPKM data formats and procedures are designed to be as sinilar
to those of the Kerberos mechanismas is practical. This is
done for ease of inplenentation in those environnents where
Ker ber os has al ready been i npl enent ed.

For the above reasons, it is felt that the SPKMw I | offer
flexibility and functionality, w thout undue conplexity or overhead.

Key Managenent

The key managenent enployed in SPKMis intended to be as conpatible
as possible with both X. 509 [X 509] and PEM [RFC-1422], since these
represent large communities of interest and show relative maturity in
st andar ds.

Acknow edgnent s

Much of the material in this docunment is based on the Kerberos
Version 5 GSS- APl nechanism [KRB5], and is intended to be as
conpatible with it as possible. This docunent also owes a great debt
to Warwi ck Ford and Paul Van Qorschot of Bell-Northern Research for
many fruitful discussions, to Kelvin Desplanque for inplenentation-
related clarifications, to John Linn of OpenVision Technol ogi es for
hel pful comments, and to Bancroft Scott of OSS for ASN. 1 assi stance.

1. Overview

The goal of the Generic Security Service Application Program
Interface (GSS-API) is stated in the abstract of [RFC 1508] as
foll ows:

"This Generic Security Service Application ProgramlInterface (GSS-
APl') definition provides security services to callers in a generic
fashi on, supportable with a range of underlying nmechani sns and

t echnol ogi es and hence all owi ng source-level portability of
applications to different environnents. This specification defines
GSS- APl services and primtives at a |evel independent of
under | yi ng nechani sm and progranm ng | anguage environnment, and is
to be conplenmented by other, related specifications:

- docunents defining specific parameter bindings for particul ar
| anguage environments;

- docunments defining token formats, protocols, and procedures to

be inplenented in order to realize GSS-APlI services atop
particul ar security nechani sns."

Adans St andards Track [Page 2]

RFC 2025 SPKM COct ober 1996

The SPKMis an instance of the latter type of docunent and is
therefore ternmed a "GSS- APl Mechani sm'. Thi s mechani sm provi des
aut hentication, key establishnent, data integrity, and data
confidentiality in an on-line distributed application environnment
using a public-key infrastructure. Because it confornms to the

i nterface defined by [RFC-1508], SPKM can be used as a drop-in

repl acenent by any application which nakes use of security services
through GSS-API calls (for exanple, any application which already
uses the Kerberos GSS-API for security). The use of a public-key
infrastructure allows digital signatures supporting non-repudiation
to be enployed for nessage exchanges, and provi des other benefits
such as scalability to | arge user popul ations.

The tokens defined in SPKM are intended to be used by application
prograns according to the GSS APl "operational paradigmt (see [RFC
1508] for further details):

The operational paradigmin which GSS-API operates is as follows.

A typical GSS-API caller is itself a conmmunications protocol [or is
an application program whi ch uses a communi cati ons protocol],
calling on GSS-API in order to protect its conmunications wth
authentication, integrity, and/or confidentiality security
services. A GSS-API caller accepts tokens provided to it by its

| ocal GSS-API inplenmentation [i.e., its GSS-API nechani sni and
transfers the tokens to a peer on a renote system that peer passes
the received tokens to its |local GSS-API inplenmentation for
processi ng.

Thi s docunent defines two separate GSS-APlI nechani sns, SPKM 1 and
SPKM 2, whose primary difference is that SPKM 2 requires the
presence of secure tinestanps for the purpose of replay detection
during context establishment and SPKM 1 does not. This allows
greater flexibility for applications since secure tinmestanps cannot
al ways be guaranteed to be available in a given environnent.

Adans St andar ds Track [Page 3]

RFC 2025 SPKM COct ober 1996

2. Algorithns

A nunber of algorithmtypes are enployed in SPKM Each type, al ong
with its purpose and a set of specific exanples, is described in this
section. In order to ensure at |least a mninmmlevel of
interoperability anmong various inplenmentati ons of SPKM one of the
integrity algorithms is specified as MANDATORY; all remaining
exanpl es (and any other algorithms) may optionally be supported by a
gi ven SPKM i npl enentation (note that a GSS-conformant nechani sm need
not support confidentiality). Mking a confidentiality algorithm
mandat ory nay preclude exportability of the nechani sminplenentation;
this docunment therefore specifies certain algorithns as RECOMVENDED

(that is, interoperability will be enhanced if these algorithns are
included in all SPKM i npl enentations for which exportability is not a
concern).

2.1 Integrity Algorithm (I-ALG:
Pur pose:

This algorithmis used to ensure that a nessage has not been
altered in any way after being constructed by the legitimte
sender. Depending on the algorithmused, the application of
this algorithmmy al so provide authenticity and support non-
repudi ati on for the nessage.

Exanpl es:

nmd5W t hRSAEncr ypti on OBJECT | DENTI FI ER :: = {
i so(1l) menber-body(2) US(840) rsadsi(113549) pkcs(1)
pkcs-1(1) 4 -- inmported from [PKCS1]

}

Thi s al gorithm (MANDATORY) provides data integrity and
authenticity and supports non-repudi ati on by conputing an
RSA signature on the MD5 hash of that data. This is
essentially equivalent to mi5WthRSA {1 3 14 3 2 3},
which is defined by OW (the Open Systens Environnent

| mpl ement ors’ Wor kshop).

Note that since this is the only integrity/authenticity
algorithm specified to be mandatory at this time, for
interoperability reasons it is also stipulated that
nmd5W t hRSA be the algorithmused to sign all context

est abl i shment tokens which are signed rather than MACed --
see Section 3.1.1 for details. |In future versions of this
docunent, alternate or additional algorithns may be
specified to be nmandatory and so this stipulation on the

Adans St andar ds Track [Page 4]

RFC 2025 SPKM COct ober 1996

context establishment tokens may be renoved.

DES- MAC OBJECT | DENTI FIER :: = {
iso(l) identified-organization(3) oiw14) secsig(3)
algorithm(2) 10 -- carries length in bits of the MAC as

-- an | NTEGER paraneter, constrained to
-- multiples of eight from16 to 64

Thi s al gorithm (RECOMVENDED) provides integrity by conputing
a DES MAC (as specified by [FIPS-113]) on that data.

nd5- DES- CBC OBJECT | DENTI FI ER :: = {
iso(1l) identified-organization(3) dod(6) internet(1)
security(5) integrity(3) md5-DES-CBC(1)

This algorithm provides data integrity by encrypting, using
DES CBC, the "confounded" MD5 hash of that data (see Section
3.2.2.1 for the definition and purpose of confounding).

This will typically be faster in practice than conputing a
DES MAC unl ess the input data is extrenely short (e.g., a
few bytes). Note that without the confounder the strength
of this integrity mechanismis (at nost) equal to the
strength of DES under a known-pl ai ntext attack.

sumb4- DES- CBC OBJECT | DENTI FIER :: = {
iso(1l) identified-organization(3) dod(6) internet(1)
security(5) integrity(3) sunmb4- DES- CBC(2)

This algorithm provides data integrity by encrypting, using
DES CBC, the concatenation of the confounded data and the
sumof all the input data bl ocks (the sum conputed using
addition nmodulo 2**64 - 1). Thus, in this algorithm
encryption is a requirement for the integrity to be secure.

For comments regarding the security of this integrity
al gorithm see [Juen84, Davi89].

Adans St andar ds Track [Page 5]

RFC 2025 SPKM COct ober 1996

2.2 Confidentiality Algorithm (G ALG:
Pur pose:

This synmetric algorithmis used to generate the encrypted
data for gss_seal () / gss_wap().

Exanpl e:

DES- CBC OBJECT | DENTI FIER :: = {
iso(l) identified-organization(3) oiw14) secsig(3)
algorithm2) 7 -- carries |V (OCCTET STRING as a paraneter;
-- this (optional) parameter is unused in
-- SPKM due to the use of confounding

This al gorithmis RECOVMENDED
2.3 Key Establishment Al gorithm (K-ALG:

Pur pose:

This algorithmis used to establish a symetric key for use
by both the initiator and the target over the established
context. The keys used for C ALG and any keyed |-ALGs (for
exanpl e, DES-MAC) are derived fromthis context key. As wll
be seen in Section 3.1, key establishnment is done within the
X. 509 aut henticati on exchange and so the resulting shared
symmetric key is authenticat ed.

Exanpl es:
RSAEncrypti on OBJECT I DENTI FIER :: = {
i so(1l) menber-body(2) US(840) rsadsi(113549) pkcs(1)
pkcs-1(1) 1 -- inmported from [PKCS1l] and [RFC 1423]
}

In this algorithm (MANDATORY), the context key is generated
by the initiator, encrypted with the RSA public key of the
target, and sent to the target. The target need not respond
to the initiator for the key to be established.

i d-rsa-key-transport OBJECT IDENTIFIER ::= {

iso(l) identified-organization(3) oiw14) secsig(3)
algorithm(2) 22 -- inmported from [X9. 44]

Simlar to RSAEncryption, but source authenticating info.
is also encrypted with the target’s RSA public key.

Adans St andar ds Track [Page 6]

RFC 2025 SPKM COct ober 1996

dhKeyAgr eement OBJECT | DENTIFIER :: = {
i so(1l) menber-body(2) US(840) rsadsi(113549) pkcs(1)
pkcs-3(3) 1

In this algorithm the context key is generated jointly by
the initiator and the target using the Diffie-Hellman key
establi shment algorithm The target nust therefore respond
to the initiator for the key to be established (so this

K- ALG cannot be used with unilateral authentication in
SPKM 2 (see Section 3.1)).

2.4 One-Way Function (O ALG for Subkey Derivation Al gorithm
Pur pose:

Havi ng established a context key using the negotiated K-ALG
both initiator and target nust be able to derive a set of
subkeys for the various G ALGs and keyed |-ALGs supported over
the context. Let the (ordered) list of agreed C ALGs be
nunber ed consecutively, so that the first algorithm(the
"default") is nunbered "0", the next is nunbered "1", and so
on. Let the nunbering for the (ordered) list of agreed |I-ALGs
be identical. Finally, let the context key be a binary string
of arbitrary length "M, subject to the follow ng constraint:
L <= M<=U (where the lower Iimt "L" is the bit length of
the |l ongest key needed by any agreed C- ALG or keyed I-ALG and
the upper linmt "U" is the largest bit size which will fit
within the K-ALG paraneters).

For example, if DES and two-key-triple-DES are the negoti ated
confidentiality algorithms and DES-MAC i s the negoti ated keyed
integrity algorithm(note that digital signatures do not use a
context key), then the context key nust be at |east 112 bits
long. |If 512-bit RSAEncryption is the K-ALG in use then the
originator can randonmly generate a context key of any greater
length up to 424 bits (the | ongest allowabl e RSA input
specified in [PKCS-1]) -- the target can deternine the |ength
whi ch was chosen by renoving the paddi ng bytes during the RSA
decryption operation. On the other hand, if dhKeyAgreenent is
the K-ALG in use then the context key is the result of the
Diffie-Hellman conputation (wWith the exception of the high-
order byte, which is discarded for security reasons), so that
its length is that of the Diffie-Hellnman nodul us, p, mnus 8
bits.

Adans St andar ds Track [Page 7]

RFC 2025

Adans

SPKM Oct ober 1996

The derivation algorithmfor a k-bit subkey is specified as
foll ows:

ri ght

nmost _k_bits (OANF(context_key || x || n|] s || context_key))

wher e

X" is the ASCI| character "C' (0x43) if the subkey is
for a confidentiality algorithmor the ASCH | character
(0x49) if the subkey is for a keyed integrity algorithm

"n" is the nunber of the algorithmin the appropriate agreed
list for the context (the ASCII character "0" (0x30), "1"
(0x31), and so on);

"s" is the "stage" of processing -- always the ASC

character "0" (0x30), unless "k" is greater than the out put
size of OAF, in which case the OAF is conputed repeatedly
with increasing ASCI1 values of "stage" (each OAF out put
bei ng concatenated to the end of previ ous ONF outputs),

until "k" bits have been generated;

“||" is the concatenation operation; and

"OWF" is any appropriate One-Way Functi on.

Exanpl es:
VD5 OBJECT | DENTI FIER ::= {
i so(1l) menber-body(2) US(840) rsadsi(113549)
digestAlgorithm(2) 5
}
This algorithmis MANDATORY.
SHA OBJECT | DENTIFIER :: = {
iso(l) identified-organization(3) oiw14) secsig(3)
algorithm(2) 18
}
It is recognized that existing hash functions may not satisfy
all required properties of OANFs. This is the reason for
al owi ng negotiation of the O ALG ON during the context

establ i shnment process (see Section 2.5), since in this way
future inprovenents in OAF design can easily be acconmpdat ed.
For exanmple, in some environnments a preferred OAF technique

mi

ght be an encryption al gorithm which encrypts the input

speci fi ed above using the context_key as the encryption key.

St andar ds Track [Page 8]

RFC 2025 SPKM COct ober 1996

2.5 Negoti ation:

During context establishment in SPKM the initiator offers a set of
possi bl e confidentiality algorithns and a set of possible integrity
algorithnms to the target (note that the term"integrity al gorithms"
includes digital signature algorithns). The confidentiality

al gorithnms selected by the target beconme ones that may be used for
C- ALG over the established context, and the integrity algorithns
sel ected by the target becone ones that may be used for |-ALG over
the established context (the target "selects" algorithns by
returning, in the sane relative order, the subset of each offered
list that it supports). Note that any G ALG and |-ALG nay be used
for any message over the context and that the first confidentiality
algorithmand the first integrity algorithmin the agreed sets becone
the default algorithns for that context.

The agreed confidentiality and integrity algorithns for a specific
context define the valid values of the Quality of Protection (QOP)
paraneter used in the gss_getMC() and gss_wap() calls -- see
Section 5.2 for further details. |If no response is expected fromthe
target (unilateral authentication in SPKM2) then the algorithns
offered by the initiator are the ones that may be used over the
context (if this is unacceptable to the target then a del ete token
nmust be sent to the initiator so that the context is never

est abl i shed).

Furthernmore, in the first context establishnent token the initiator
offers a set of possible K-ALGs, along with the key (or key half)
corresponding to the first algorithmin the set (its preferred
algorithm. |If this K-ALGis unacceptable to the target then the
target nust choose one of the other K-ALGs in the set and send this
choice along with the key (or key half) corresponding to this choice
inits response (otherwi se a delete token nust be sent so that the
context is never established). |f necessary (that is, if the target
chooses a 2-pass K-ALG such as dhKeyAgreenent), the initiator wll
send its key half in a response to the target.

Finally, in the first context establishnment token the initiator
offers a set of possible OALGs (only a single OGALGif no response
is expected). The (single) O ALG chosen by the target becones the
subkey derivation algorithm ONF to be used over the context.

In future versions of SPKM other algorithnms nmay be specified for any
or all of I-ALG CALG K-ALG and O ALG

Adans St andar ds Track [Page 9]

RFC 2025 SPKM COct ober 1996

3. Token Fornmmats

This section discusses protocol -visible characteristics of the SPKM
it defines elenents of protocol for interoperability and is
i ndependent of | anguage bindi ngs per [RFC-1509].

The SPKM GSS- APl nechanismwi || be identified by an Cbject Identifier
representing "SPKM 1" or "SPKM 2", having the value {spkm spkm 1(1)}
or {spkm spkm 2(2)}, where spkm has the value {iso(1l) identified-
organi zation(3) dod(6) internet(1l) security(5) mechani sns(5)
spkm(1)}. SPKM 1 uses random nunbers for replay detection during
context establishment and SPKM 2 uses tinestanps (note that for both
nmechani sns, sequence nunbers are used to provide replay and out - of -
sequence detection during the context, if this has been requested by
the application).

Tokens transferred between GSS- APl peers (for security context
managenent and per-nessage protection purposes) are defined.

3.1. Context Establishnment Tokens

Three cl asses of tokens are defined in this section: "lnitiator"
tokens, enmitted by calls to gss_init_sec_context() and consuned by
calls to gss_accept_sec_context(); "Target" tokens, enmitted by calls
to gss_accept_sec_context() and consumed by calls to
gss_init_sec_context(); and "Error" tokens, potentially emtted by
calls to gss_init_sec_context() or gss_accept_sec_context(), and
potentially consunmed by calls to gss_init_sec_context() or
gss_accept _sec_context ().

Per RFC-1508, Appendix B, the initial context establishnent token

will be enclosed within fram ng as foll ows:
Initial ContextToken ::= [APPLI CATION O] I MPLICI T SEQUENCE ({
t hi sMech MechType,

-- MechType is OBJECT | DENTI FI ER
-- representing "SPKM 1" or "SPKM 2"
i nner Cont ext Token ANY DEFI NED BY t hi sMech
} -- contents mechani smspecific

Adans St andar ds Track [Page 10]

RFC 2025 SPKM COct ober 1996

When thisMech is SPKM 1 or SPKM 2, inner Context Token is defined as
foll ows:

SPKM nner Cont ext Token ::= CHO CE {
req [0] SPKM REQ,
rep-ti [1] SPKM REP-TI,
rep-it [2] SPKM REP-IT,
error [3] SPKM ERROR,
mc [4] SPKM M C,
wr ap [5] SPKM VRAP,
del [6] SPKM DEL

}

The above GSS- APl framing shall be applied to all tokens enmitted by

t he SPKM GSS- APl nechani sm i ncludi ng SPKM REP-TI (the response from
the Target to the Initiator), SPKMREP-1T (the response fromthe
Initiator to the Target), SPKM ERROR, context-deletion, and per-
nmessage tokens, not just to the initial token in a context
establ i shment exchange. Wile not required by RFC 1508, this enables
i npl enentations to perform enhanced error-checking. The tag val ues
provi ded i n SPKM nner Cont ext Token ("[0]" through "[6]") specify a
token-id for each token; similar information is contained in each
token's tok-id field. While seem ngly redundant, the tag val ue and
tok-id actually performdifferent tasks: the tag ensures that

I nitial Context Token can be properly decoded; tok-id ensures, anong
other things, that data associated with the per-nessage tokens is
cryptographically linked to the intended token type. Every

i nner Cont ext Token al so includes a context-id field; see Section 6 for
a di scussion of both token-id and context-id infornmation and their
use in an SPKM support function).

The i nner Cont ext Token field of context establishnment tokens for the
SPKM GSS- APl nmechanismwi |l contain one of the foll owi ng nessages:
SPKM REQ SPKM REP- Tl ; SPKM REP-1T; and SPKM ERROR. Furthernore, all
i nner Cont ext Tokens are encoded using ASN. 1 BER (constrai ned, in the
interests of parsing sinplicity, to the DER subset defined in

[X. 509], clause 8.7).

The SPKM cont ext establishnent tokens are defined according to

[X. 509] Section 10 and are conpatible with [9798]. SPKM 1 (random
nunbers) uses Section 10.3, "Two-way Authentication”, when performng
uni l ateral authentication of the target to the initiator and uses
Section 10.4, "Three-way Authentication", when mutual authentication
is requested by the initiator. SPKM 2 (tinestanps) uses Section

10. 2, "One-way Aut hentication", when perforning unilateral
authentication of the initiator to the target and uses Section 10. 3,
"Two-way Aut hentication", when nutual authentication is requested by
the initiator.

Adans St andards Track [Page 11]

RFC 2025 SPKM COct ober 1996

The inplication of the previous paragraph is that for SPKM 2

uni l ateral authentication no negotiation of K-ALG can be done (the
target either accepts the K-ALG and context key given by the
initiator or disallows the context). For SPKM 2 mutual or SPKM 1
uni l ateral authentication some negotiation is possible, but the
target can only choose anbng the one-pass K-ALGs offered by the
initiator (or disallowthe context). Alternatively, the initiator
can request that the target generate and transnit the context key.
For SPKM 1 mutual authentication the target can choose any one- or
two- pass K-ALG offered by the initiator and, again, can be requested
to generate and transmt the context key.

It is envisioned that typical use of SPKM1 or SPKM2 will involve

nmut ual aut hentication. Although unilateral authentication is

avail abl e for both mechanisns, its use is not generally recomrended.
3.1.1. Context Establishnment Tokens - Initiator (first token)

In order to acconplish context establishnment, it nay be necessary
that both the initiator and the target have access to the other

partys public-key certificate(s). |In sone environnents the initiator
may choose to acquire all certificates and send the rel evant ones to
the target in the first token. In other environnments the initiator

may request that the target send certificate data in its response
token, or each side may individually obtain the certificate data it
needs. In any case, however, the SPKM i npl ementati on nust have the
ability to obtain certificates which correspond to a supplied Nane.
The actual mechanismto be used to achieve this is a | ocal

i npl enentation matter and is therefore outside the scope of this
speci ficati on.

Rel evant SPKM REQ syntax is as follows (note that inports from other
docunents are given in Appendix A):

SPKM REQ :: = SEQUENCE {
request Token REQ TOKEN,
certif-data [0] CertificationData OPTI ONAL,
aut h-data [1] Aut hori zati onDat a OPTI ONAL
-- see [RFC-1510] for a discussion of auth-data
}
CertificationbData ::= SEQUENCE {
certificationPath [0] CertificationPath OPTI ONAL,
certificateRevocationList [1] CertificateList OPTI ONAL
} -- at least one of the above shall be present

Adans St andards Track [Page 12]

RFC 2025 SPKM COct ober 1996

CertificationPath ::= SEQUENCE {
userKeyld [0] OCTET STRI NG OPTI ONAL,
-- identifier for user’s public key
userCertif [1] Certificate OPTI ONAL,
-- certificate containing user’s public key
verifKeyld [2] OCTET STRI NG OPTI ONAL,
-- identifier for user’s public verification key
userVerifCertif [3] Certificate OPTI ONAL,
-- certificate containing user’s public verification key
theCACertificates [4] SEQUENCE OF CertificatePair OPTI ONAL
} -- certification path fromtarget to source

Havi ng separate verification fields allows different key pairs
(possibly corresponding to different algorithnms) to be used for
encryption/decryption and signing/verification. Presence of [0] or
[1] and absence of [2] and [3] inplies that the same key pair is to
be used for enc/dec and verif/signing (note that this practice is not
typically recommended). Presence of [2] or [3] inplies that a
separate key pair is to be used for verif/signing, and so [0] or [1]
nmust al so be present. Presence of [4] inplies that at |east one of
[0], [1], [2], and [3] nust al so be present.

REQ TOKEN : : = SEQUENCE {

reg-contents Req- cont ent s,

al gld Al gorithm dentifier,

reg-integrity Integrity -- "token" is Reg-contents
}
Integrity ::= BIT STRING

-- If corresponding algld specifies a signing algorithm

-- "Integrity" holds the result of applying the signing procedure
-- specified in algld to the BER-encoded octet string which results
-- from applying the hashing procedure (also specified in algld) to
-- the DER-encoded octets of "token".

-- Alternatively, if corresponding algld specifies a MAC ng

-- algorithm "Integrity" holds the result of applying the MAC ng
-- procedure specified in algld to the DER encoded octets of

-- "token" (note that for MAC, algld nust be one of the integrity
-- algorithns offered by the initiator with the appropriate subkey
-- derived fromthe context key (see Section 2.4) used as the key
-- input)

It is envisioned that typical use of the Integrity field for each of
REQ TOKEN, REP-TI-TOKEN, and REP-1T-TOKEN will be a true digita
sighature, providing unilateral or nutual authentication along with
replay protection, as required. However, there are situations in

whi ch the MAC choice will be appropriate. One exanple is the case in
which the initiator wishes to renmain anonynmous (so that the first, or

Adans St andar ds Track [Page 13]

RFC 2025 SPKM COct ober 1996

first and third, token(s) will be MACed and the second token will be
signed). Another exanple is the case in which a previously

aut henti cated, established, and cached context is being re-
established at some later tine (here all exchanged tokens w |l be
MACed) .

The prinmary advantage of the MAC choice is that it reduces processing
overhead for cases in which either authentication is not required
(e.g., anonymty) or authentication is established by sone other
nmeans (e.g., ability to formthe correct MAC on a "fresh" token in
context re-establishment).

Reqg-contents ::= SEQUENCE {
tok-id | NTEGER (256), -- shall contain 0100(hex)
context-id Random I nt eger, -- see Section 6.3
pvno BI T STRI NG -- protocol version nunber
timestanp UTCTi me OPTI ONAL, -- mandatory for SPKM 2
randSrc Random | nt eger,
t ar g- nane Name,
src-nane [0] Nanme OPTI ONAL,
-- nmust be supplied unless originator is "anonynous"
reqg- data Cont ext - Dat a,
validity [1] Validity OPTI ONAL,

-- validity interval for key (rmay be used in the
-- conputation of security context |ifetine)

key- est b- set Key- Est b- Al gs,
-- specifies set of key establishnent algorithns

key- estb-req BI T STRI NG OPTI ONAL,
-- key estb. parameter corresponding to first K-ALG in set
-- (not used if initiator is unable or unwilling to
-- generate and securely transmit key material to target).
-- Established key nust satisfy the key length constraints
-- specified in Section 2.4.

key- src-bind OCTET STRI NG OPTI ONAL
-- Used to bind the source name to the symmetric key.
-- This field nust be present for the case of SPKM 2
-- unilateral authen. if the K-ALG in use does not provide
-- such a binding (but is optional for all other cases).
-- The octet string holds the result of applying the
-- mandat ory hashi ng procedure MD5 (i n MANDATCRY |- ALG
-- see Section 2.1) as follows: MD5(src || context_key),
-- where "src" is the DER-encoded octets of src-nane,
-- "context-key" is the symmetric key (i.e., the
-- unprotected version of what is transmitted in
-- key-estb-req), and "||" is the concatenation operation

Adans St andar ds Track [Page 14]

RFC 2025 SPKM COct ober 1996

The protocol version nunmber (pvno) paraneter is a BIT STRI NG whi ch
uses as nmany bits as necessary to specify all the SPKM protoco

ver sions supported by the initiator (one bit per protocol

version). The protocol specified by this docunment is version O.
Bit O of pvho is therefore set if this version is support ed;
simlarly, bit 1 is set if version 1 (if defined in the future) is
supported, and so on. Note that for unilateral authentication
usi ng SPKM 2, no response token is expected during context

establi shment, so no protocol negotiation can take place; in this
case, the initiator nust set exactly one bit of pvno. The version
of REQ TOKEN rnust correspond to the highest bit set in pvno.

The "validity" paraneter above is the only way within SPKM for

the initiator to transnmt desired context lifetime to the target.
Since it cannot be guaranteed that the initiator and target have
synchroni zed tinme, the span of tinme specified by "validity" is to
be taken as definitive (rather than the actual tines given in this
par ameter).

Random I nteger ::= BIT STRI NG

Each SPKM i npl enentation is responsible for generating a "fresh”
random nunber for the purpose of context establishnment; that is,
one which (with high probability) has not been used previously.
There are no cryptographic requirenments on this random numnber

-- (i.e., it need not be unpredictable, it sinply needs to be fresh).
Cont ext-Data ::= SEQUENCE {
channel I d Channel I d OPTI ONAL, -- channel bi ndings
seq- number | NTEGER OPTI ONAL, -- sequence nunber
opti ons Opt i ons,
conf-alg Conf - Al gs, -- confidentiality. algs.
intg-alg I nt g- Al gs, -- integrity algorithm
ow -al g OWF- Al gs -- for subkey derivation
}
Channel I d ::= OCTET STRI NG
Options ::= BIT STRI NG {
del egation-state (0),
nmut ual -state (1),
replay-det-state (2), -- used for replay det. during context
sequence-state (3), -- used for sequencing during context
conf-avail (4),
i nteg-avail (5),
target-certif-data-required (6)
-- used to request targ’'s certif. data
}
Adans St andar ds Track [Page 15]

RFC 2025 SPKM COct ober 1996

Conf-Algs ::= CHO CE {
al gs [0] SEQUENCE OF Al gorithmdentifier,
nul I [1] NULL

-- used when conf. is not avail abl e over context
} -- for C-ALG (see Section 5.2 for discussion of QOP)

Intg-Algs ::= SEQUENCE OF Algorithm dentifier
-- for I-ALG (see Section 5.2 for discussion of QOP)

ONF- Al gs ::= SEQUENCE OF Al gorithm dentifier
-- Contains exactly one algorithmin REQ TOKEN for SPKM 2
-- unilateral, and contains at |east one algorithm otherw se.
-- Always contains exactly one algorithmin REP- TOKEN.

Key- Estb- Al gs ::= SEQUENCE OF Al gorithmdentifier
-- to allow negotiation of K-ALG

A context establishment sequence based on the SPKMw || perform

uni lateral authentication if the nmutual-req bit is not set in the
application's call to gss_init_sec_context(). SPKM 2 acconplishes
this using only SPKM REQ (thereby authenticating the initiator to the
target), while SPKM 1 acconplishes this using both SPKM REQ and

SPKM REP-TI (thereby authenticating the target to the initiator).

Applications requiring authentication of both peers (initiator as
wel | as target) must request nutual authentication, resulting in
"mutual -state” being set within SPKMREQ Options. In response to
such a request, the context target will reply to the initiator with
an SPKM REP-TI token. If mechani sm SPKM 2 has been chosen, this
conpl etes the (timestanp-based) nutual authentication context

establ i shnment exchange. |f mechani sm SPKM 1 has been chosen and
SPKM REP-TI is sent, the initiator will then reply to the target with
an SPKM REP-1T token, conpleting the (random nunber-based) mnutual

aut henti cati on context establishment exchange.

O her bits in the Options field of Context-Data are explained in
RFC- 1508, with the exception of target-certif-data-required, which
the initiator sets to TRUE to request that the target return its
certification data in the SPKM REP-TI token. For unilateral

aut hentication in SPKM2 (in which no SPKM REP-TI token is
constructed), this option bit is ignhored by both initiator and
target.

Adans St andar ds Track [Page 16]

RFC 2025 SPKM COct ober 1996

3.1.2. Context Establishment Tokens - Tar get

SPKM REP-TI :: = SEQUENCE {
responseToken REP- TI - TOKEN,
certif-data CertificationData OPTI ONAL

-- included if target-certif-data-required option was
-- set to TRUE i n SPKM REQ

}
REP- Tl - TOKEN : : = SEQUENCE ({
rep-ti-contents Rep-ti-contents,
algld Al gorithmdentifier,
rep-ti-integ Integrity -- "token" is Rep-ti-contents
}
Rep-ti-contents ::= SEQUENCE {
tok-id | NTEGER (512), -- shall contain 0200 (hex)
context-id Random I nteger, -- see Section 6.3
pvno [0] BIT STRING OPTI ONAL, -- prot. version numnber
timestanp UTCTi me OPTI ONAL, -- mandatory for SPKM 2
randTar g Random | nt eger,
src-nane [1] Nanme OPTI ONAL,
-- must contain whatever value was supplied in REQ TOKEN
t ar g- nane Name,
randSrc Random | nt eger,
rep-dat a Cont ext - Dat a,
validity [2] Validity OPTI ONAL,

-- validity interval for key (used if the target can only
-- support a shorter context lifetine than was offered in
-- REQ TOKEN)

key-estb-id Al gorithm dentifier OPTIONAL,
-- used if target is changing key estb. algorithm (nmust be
-- a nenber of initiators key-estb-set)

key-estb-str BI T STRI NG OPTI ONAL
-- contains (1) the response to the initiators
-- key-estb-req (if init. used a 2-pass K-ALG, or (2) the
-- key-estb-req corresponding to the K-ALG supplied in
-- above key-estb-id, or (3) the key-estb-req correspondi ng
-- to the first K-ALG supplied in initiator’s key-estb-id,
-- if initiator’s (OPTIONAL) key-estb-req was not used
-- (target’s key-estb-str nust be present in this case).
-- Established key nmust satisfy the key length constraints
-- specified in Section 2.4.

Adans St andar ds Track [Page 17]

RFC 2025 SPKM COct ober 1996

The protocol version nunber (pvno) paraneter is a BIT STRI NG whi ch
uses as nmany bits as necessary to specify a single SPKM protocol
version offered by the initiator which is supported by the target
(one bit per protocol version); that is, the target sets exactly one

bit of pvno. |If none of the versions offered by the initiator are
supported by the target, a delete token nmust be returned so that the
context is never established. |If the initiator’s pvno has only one

bit set and the target happens to support this protocol version, then
this version is used over the context and the pvno paraneter of REP-
TOKEN can be onmitted. Finally, if the initiator and target do have
one or nore versions in common but the version of the REQ TOKEN
received is not supported by the target, a REP-TOKEN nust be sent
with a desired version bit set in pvho (and dumry val ues used for all
subsequent token fields). The initiator can then respond with a new
REQ TOKEN of the proper version (essentially starting context

est abl i shnent anew) .

3.1.3. Context Establishnment Tokens - Initiator (second token)

Rel evant SPKM REP-1T syntax is as follows:

SPKM REP-1 T ::= SEQUENCE {
responseToken REP- | T- TOKEN,
algld Al gorithm dentifier,
rep-it-integ Integrity -- "token" is REP-IT- TOKEN
}
REP- | T- TOKEN : : = SEQUENCE ({
tok-id | NTEGER (768), -- shall contain 0300 (hex)
context-id Random | nt eger,
randSrc Random | nt eger,
randTar g Random | nt eger,
t ar g- nane Nane, -- the targ-nane specified in REP-TI
Src- name Name OPTI ONAL,
-- must contain whatever value was supplied in REQ TOKEN
key-estb-rep BI T STRI NG OPTI ONAL

-- contains the response to targets key-estb-str
-- (if target selected a 2-pass K-ALGQ

}
3.1.4. Error Token

The syntax of SPKM ERROR is as foll ows:

SPKM ERROR : : = SEQUENCE {
error-token ERROR- TOKEN,
algld Al gorithm dentifier,
integrity Integrity -- "token" is ERROR- TOKEN

Adans St andar ds Track [Page 18]

RFC 2025 SPKM COct ober 1996

}

ERROR- TOKRN ::= SEQUENCE {
tok-id | NTEGER (1024), -- shall contain 0400 (hex)
context-id Random | nt eger
}

The SPKM ERROR token is used only during the context establishnent
process. |If an SPKM REQ or SPKM REP-TI token is received in error,
the receiving function (either gss_init_sec_context() or

gss_accept _sec_context()) will generate an SPKM ERROR t oken to be
sent to the peer (if the peer is still in the context establishnent
process) and will return GSS_S CONTI NUE_NEEDED. If, on the other
hand, no context establishment response is expected fromthe peer
(i.e., the peer has conpleted context establishnment), the function
will return the appropriate najor status code (e.g., GSS_S BAD SI QG
along with a minor status of GSS SPKM S SG CONTEXT_ESTB_ABORT and al |

context-relevant information will be deleted. The output token wll
not be an SPKM ERROR token but will instead be an SPKM DEL t oken
which will be processed by the peer’s gss_process_context _token().

If gss_init_sec_context() receives an error token (whether valid or
invalid), it will regenerate SPKM REQ as its output token and return
a maj or status code of GSS_S CONTI NUE_NEEDED. (Note that if the
peer’s gss_accept _sec_context() receives SPKM REQ token when it is
expecting a SPKMREP-1T token, it will ignore SPKM REQ and return a
zero-length output token with a major status of

GSS_S_CONTI NUE_NEEDED.)

Simlarly, if gss_accept_sec_context() receives an error token
(whether valid or invalid), it will regenerate SPKMREP-TI as its
out put token and return a major status code of GSS_S CONTI NUE_NEEDED.

mi5WthRsa is currently stipulated for the signing of context

establ i shnment tokens. Discrepancies involving nodulus bitlength can
be resol ved through judicious use of the SPKM ERROR token. The
context initiator signs REQ TOKEN using the strongest RSA it supports
(e.g., 1024 bits). |If the target is unable to verify signatures of
this length, it sends SPKM ERROR signed with the strongest RSA that
it supports (e.g. 512).

At the conpletion of this exchange, both sides know what RSA
bitlength the other supports, since the size of the signature is
equal to the size of the nmodulus. Further exchanges can be nmade
(using successively snaller supported bitlengths) until either an
agreenent is reached or context establishnment is aborted because no
agreenent is possible.

Adans St andar ds Track [Page 19]

RFC 2025 SPKM COct ober 1996

3.2. Per-Message and Context Del etion Tokens

Three cl asses of tokens are defined in this section: "MC' tokens,
emtted by calls to gss_getMC() and consuned by calls to
gss_verifyMC(); "Wap" tokens, enitted by calls to gss_wap() and
consuned by calls to gss_unwap(); and context deletion tokens,
emtted by calls to gss_init_sec_context(), gss_accept_sec_context(),
or gss_del ete_sec_context() and consuned by calls to
gss_process_cont ext _token().

3.2.1. Per-nessage Tokens - Sign / MC

Use of the gss_sign() / gss_getMC() call yields a token, separate
fromthe user data being protected, which can be used to verify the
integrity of that data as received. The token and the data may be
sent separately by the sending application and it is the receiving
application’ s responsibility to associate the received data with the
recei ved token.

The SPKM M C token has the followi ng format:

SPKM M C :: = SEQUENCE ({
nm c- header M c- Header,
i nt-cksum BIT STRI NG
-- Checksum over header and dat a,
-- calcul ated according to algorithm
-- specified inint-alg field.
}
M c- Header ::= SEQUENCE ({
tok-id | NTEGER (257),
-- shall contain 0101 (hex)
context-id Random | nt eger,
int-alg [0] Al gorithm dentifier OPTI ONAL,
-- Integrity algorithmindicator (nust
-- be one of the agreed integrity
-- algorithns for this context).
-- field not present = default id.
snd-seq [1] SegNum OPTI ONAL -- sequence nunber field.
}
SegNum : : = SEQUENCE {
num | NTEGER, -- the sequence nunber itself
dir-ind BOOLEAN -- a direction indicator
}

Adans St andar ds Track [Page 20]

RFC 2025 SPKM COct ober 1996

3.2.1.1. Checksum

Checksum cal cul ati on procedure (common to all algorithnms -- note that
for SPKMthe term "checksuni includes digital signatures as well as
hashes and MACs): Checksuns are cal cul ated over the data field,

| ogically prepended by the bytes of the plaintext token header (mc-
header). The result binds the data to the entire plaintext header,
so as to minimze the possibility of malicious splicing.

For example, if the int-alg specifies the mi5WthRSA al gorithm then
the checksumis formed by conputing an MD5 [RFC-1321] hash over the
pl ai ntext data (prepended by the header), and then computing an RSA
sighature [PKCS1] on the 16-byte MD5 result. The signature is
conmputed using the RSA private key retrieved fromthe credentials
structure and the result (whose length is inplied by the "nodul us"
paraneter in the private key) is stored in the int-cksumfield.

If the int-alg specifies a keyed hashing algorithm (for exanple,
DES- MAC or nd5- DES-CBC), then the key to be used is the appropriate
subkey derived fromthe context key (see Section 2.4). Again, the
result (whose length is inplied by int-alg) is stored in the int-
cksum fi el d.

3.2.1.2. Sequence Nunber

It is assunmed that the underlying transport |ayers (of whatever

protocol stack is being used by the application) will provide
adequate comunications reliability (that is, non-nalicious |oss,
re-ordering, etc., of data packets will be handled correctly).

Theref ore, sequence nunbers are used in SPKM purely for security, as
opposed to reliability, reasons (that is, to avoid malicious |oss,
replay, or re-ordering of SPKMtokens) -- it is therefore recommended
that applications request sequencing and replay detection over al
contexts. Note that sequence nunbers are used so that there is no
requi rement for secure tinestanps in the nmessage tokens. The
initiator’s initial sequence nunber for the current context may be
explicitly given in the Context-Data field of SPKM REQ and the
target’s initial sequence nunmber may be explicitly given in the
Context-Data field of SPKMREP-TI; if either of these is not given
then the default value of 00 is to be used.

Sequence nunber field: The sequence nunber field is formed fromthe
sender’s four-byte sequence nunmber and a Bool ean direction-indicator
(FALSE - sender is the context initiator, TRUE - sender is the
context acceptor). After constructing a gss_sign/getMC() or
gss_seal /wap() token, the sender’'s seq. nunber is increnented by 1.

Adans St andards Track [Page 21]

RFC 2025 SPKM COct ober 1996

3.2.1.3. Sequence Number Processing

The receiver of the token will verify the sequence nunber field by
conpari ng the sequence nunber with the expected sequence nunber and
the direction indicator with the expected direction indicator. |If

t he sequence nunber in the token is higher than the expected nunber,
then the expected sequence nunber is adjusted and GSS S GAP_TCKEN i s
returned. |f the token sequence nunber is |ower than the expected
nunber, then the expected sequence nunber is not adjusted and

GSS_S DUPLI CATE_TOKEN, GSS_S UNSEQ TOKEN, or GSS_S OLD TCKEN i s
returned, whichever is appropriate. |If the direction indicator is
wrong, then the expected sequence nunber is not adjusted and

GSS_S UNSEQ TOKEN i s returned.

Since the sequence nunber is used as part of the input to the
integrity checksum sequence nunbers need not be encrypted, and
attenpts to splice a checksum and sequence nunber fromdifferent
messages will be detected. The direction indicator will detect
t okens whi ch have been maliciously reflected.

3.2.2. Per-nmessage Tokens - Seal / Wap

Use of the gss_seal () / gss_wap() call yields a token which

encapsul ates the input user data (optionally encrypted) along with
associated integrity check quantities. The token enitted by
gss_seal () / gss_wap() consists of an integrity header foll owed by a
body portion that contains either the plaintext data (if conf-alg =
NULL) or encrypted data (using the appropriate subkey specified in
Section 2.4 for one of the agreed C-ALGs for this context).

The SPKM WRAP t oken has the foll ow ng fornmat:

SPKM VWRAP : : = SEQUENCE {
wr ap- header W ap- Header
wr ap- body W ap- Body
}
W ap- Header ::= SEQUENCE ({
tok-id | NTEGER (513),
-- shall contain 0201 (hex)
context-id Random | nt eger,
int-alg [0] Al gorithm dentifier OPTI ONAL,

-- Integrity algorithmindicator (nust
-- be one of the agreed integrity

-- algorithns for this context).

-- field not present = default id.

Adans St andards Track [Page 22]

RFC 2025 SPKM COct ober 1996

conf-alg [1] Conf - Al g OPTI ONAL,
-- Confidentiality algorithmindicator
-- (rmust be NULL or one of the agreed
-- confidentiality algorithnms for this
-- context).
-- field not present = default id.
-- NULL = none (no conf. applied).
snd-seq [2] SegNum OPTI ONAL
-- sequence nunber field.

}
W ap- Body :: = SEQUENCE {
i nt-cksum BI T STRI NG
-- Checksum of header and dat a,
-- calcul ated according to algorithm
-- specified inint-alg field.
dat a BI T STRI NG
-- encrypted or plaintext data.
}
Conf-Alg ::= CHO CE {
algld [0] Al gorithm dentifier,
nul I [1] NULL
}

3.2.2.1: Confounding

As in [KRB5], an 8-byte random confounder is prepended to the data to
conpensate for the fact that an IV of zero is used for encryption.
The result is referred to as the "confounded" data field.

3.2.2.2. Checksum

Checksum cal cul ati on procedure (conmmon to all al gorithms): Checksuns
are cal cul ated over the plaintext data field, logically prepended by
the bytes of the plaintext token header (wap-header). As with
gss_sign() / gss_getM(C(), the result binds the data to the entire
pl ai ntext header, so as to ninimze the possibility of malicious
splicing.

The exanples for nmd5WthRSA and DES- MAC are exactly as specified in
3.2.1.1.

If int-alg specifies nmid5-DES-CBC and conf-al g specifies anything
ot her than DES-CBC, then the checksumis conputed according to

Adans St andar ds Track [Page 23]

RFC 2025 SPKM COct ober 1996

3.2.1.1 and the result is stored in int-cksum However, if conf-alg
specifies DES-CBC then the encryption and the integrity are done as
follows. An MD5 [RFC-1321] hash is conputed over the plaintext data
(prepended by the header). This 16-byte value is appended to the
concat enati on of the "confounded" data and 1-8 paddi ng bytes (the
padding is as specified in [KRB5] for DES-CBC). The result is then
CBC encrypted using the DES-CBC subkey (see Section 2.4) and pl aced
in the "data" field of Wap-Body. The final two bl ocks of ciphertext
(i.e., the encrypted MD5 hash) are also placed in the int-cksumfield
of Wap-Body as the integrity checksum

If int-alg specifies sunb4-DES-CBC then conf-alg nust specify DES-CBC
(i.e., confidentiality nust be requested by the calling application
or SPKMwill return an error). Encryption and integrity are done in
a single pass using the DES-CBC subkey as follows. The sum (nodul o
2**64 - 1) of all plaintext data bl ocks (prepended by the header) is
conmputed. This 8-byte value is appended to the concatenation of the
"conf ounded" data and 1-8 padding bytes (the padding is as specified
in [KRB5] for DES-CBC). As above, the result is then CBC encrypted
and placed in the "data" field of Wap-Body. The final block of

ci phertext (i.e., the encrypted sum is also placed in the int-cksum
field of Wap-Body as the integrity checksum

3.2.2.3 Sequence Nunber

Sequence nunbers are conputed and processed for gss_wap() exactly as
specified in 3.2.1.2 and 3.2.1.3.

3.2.2.4: Data Encryption

The followi ng procedure is followed unless (a) conf-alg is NULL (no
encryption), or (b) conf-alg is DES-CBC and int-alg is nmid5- DES- CBC
(encryption as specified in 3.2.2.2), or (c) int-alg is sunb4- DES- CBC
(encryption as specified in 3.2.2.2):

The "confounded" data is padded and encrypted according to the

al gorithm specified in the conf-alg field. The data is encrypted
using CBC with an IV of zero. The key used is the appropriate subkey
derived fromthe established context key using the subkey derivation
al gorithm described in Section 2.4 (this ensures that the subkey used
for encryption and the subkey used for a separate, keyed integrity
algorithm-- for exanple DES-MAC, but not sunb4-DES-CBC -- are
different).

3.2.3. Context deletion token

The token emtted by gss_del ete_sec_context() is based on the fornat
for tokens enmitted by gss_sign() / gss_getM ().

Adans St andar ds Track [Page 24]

RFC 2025 SPKM COct ober 1996

The SPKM DEL token has the followi ng formt:

SPKM DEL ::= SEQUENCE {
del - header Del - Header,
i nt-cksum BIT STRI NG
-- Checksum of header, cal cul ated
-- according to algorithmspecified
-- inint-alg field.
}
Del - Header ::= SEQUENCE ({
tok-id | NTEGER (769),
-- shall contain 0301 (hex)
context-id Random | nt eger,
int-alg [0] Al gorithm dentifier OPTI ONAL,

-- Integrity algorithmindicator (nust

-- be one of the agreed integrity

-- algorithns for this context).

-- field not present = default id.
snd-seq [1] SegNum OPTI ONAL

-- sequence nunber field.

}

The field snd-seq will be calculated as for tokens emtted by
gss_sign() / gss_getMC(). The field int-cksumw |l be calcul ated as
for tokens enmitted by gss_sign() / gss_getMC(), except that the
user-data conmponent of the checksumdata will be a zero-length
string.

If a valid delete token is received, then the SPKM i npl enentati on
will delete the context and gss_process_context_token() will return a
maj or status of GSS_S COVWPLETE and a mi nor status of
GSS_SPKM S SG CONTEXT_DELETED. 1f, on the other hand, the delete
token is invalid, the context will not be deleted and
gss_process_context _token() will return the appropriate major status
(GSS_S BAD SIG for exanple) and a mnor status of

GSS_SPKM_ S _SG BAD DELETE TOKEN _RECD. The application may w sh to
take sone action at this point to check the context status (such as
sendi ng a seal ed/ wapped test nessage to its peer and waiting for a
seal ed/ wr apped response).

4. Name Types and Cbject ldentifiers

No mandatory nane forns have yet been defined for SPKM This section
is for further study.

Adans St andar ds Track [Page 25]

RFC 2025 SPKM COct ober 1996

4.1. Optional Nane Forns

This section discusses nane forns which may optionally be supported
by inplenentations of the SPKM GSS- APl nmechanism It is recognized
that OS-specific functions outside GSS-API are likely to exist in
order to performtransl ati ons anong these forms, and that GSS-API

i npl erent ati ons supporting these forns may thensel ves be | ayered atop
such OS-specific functions. Inclusion of this support wthin GSS-API
i npl enentations is intended as a conveni ence to applications.

4.1.1. User Nane Form

This nane formshall be represented by the Object ldentifier {iso(1l)
menber - body(2) United States(840) mit(113554) infosys(1l) gssapi(2)
generic(1l) user_nane(1l)}. The reconmended synbolic nane for this
type is "GSS_SPKM NT_USER NANE".

This nane type is used to indicate a naned user on a |ocal system
Its interpretation is OS-specific. This name formis constructed as:

user nanme
4.1.2. Machine U D Form

This nane formshall be represented by the Qbject ldentifier {iso(l)
menber - body(2) United States(840) mit(113554) infosys(1l) gssapi(2)
generic(1l) machine_uid_nanme(2)}. The recommended synbolic nane for
this type i s "GSS_SPKM NT_MACH NE_UI D_NAME".

This nane type is used to indicate a nuneric user identifier
corresponding to a user on a local system |Its interpretation is
CS-specific. The gss_buffer_desc representing a nane of this type
shoul d contain a locally-significant uid_t, represented in host byte
order. The gss_inport_nane() operation resolves this uid into a
username, which is then treated as the User Nane Form

4.1.3. String UD Form

This nane formshall be represented by the Qbject ldentifier {iso(l)
menber - body(2) United States(840) mit(113554) infosys(1l) gssapi(2)
generic(1l) string uid name(3)}. The recomended synbolic name for
this type is "GSS_SPKM NT_STRI NG U D_NAME".

This nane type is used to indicate a string of digits representing
the nuneric user identifier of a user on a |ocal system |Its
interpretation is OS-specific. This nanme type is simlar to the
Machi ne U D Form except that the buffer contains a string
representing the uid_t.

Adans St andar ds Track [Page 26]

RFC 2025 SPKM COct ober 1996

5. Paraneter Definitions

This section defines paranmeter val ues used by the SPKM GSS- API
mechanism It defines interface elenments in support of portability.

5.1. Mnor Status Codes

This section recomends conmon synbolic names for ninor_status val ues
to be returned by the SPKM GSS- APl mechanism Use of these
definitions will enabl e independent inplenentors to enhance
application portability across different inplenmentations of the
nmechani smdefined in this specification. (lIn all cases,

i npl ementati ons of gss_display_status() will enable callers to
convert minor_status indicators to text representations.) Each

i npl enentati on nmust nake avail abl e, through include files or other
nmeans, a facility to translate these synbolic nanes into the concrete
val ues which a particular GSS-API inplenentation uses to represent
the mnor_status values specified in this section. It is recognized
that this list may grow over time, and that the need for additional

m nor _status codes specific to particular inplenmentations may ari se.

5.1.1. Non-SPKM specific codes (Mnor Status Code MSB, bit 31, SET)
5.1.1. 1. GSS-Related codes (M nor Status Code bit 30 SET)

GSS_S G _VALI DATE_FAI LED

/* "Validation error" */
GSS_S G BUFFER ALLCC

/* "Couldn't allocate gss_buffer_t data" */
GSS_S G BAD MSG _CTX

/* "Message context invalid" */
GSS_S_G WRONG S| ZE

/* "Buffer is the wong size" */
GSS_S_G BAD USAGE

/* "Credential usage type is unknown" */
GSS_S G UNAVAI L_QOP

/* "Unavail able quality of protection specified" */

5.1.1.2. Inplenentation-Related codes (M nor Status Code bit 30 COFF)

GSS_S G MEMORY_ALLOC
/* "Couldn’t performrequested nmenory allocation" */

5.1.2. SPKM specific-codes (Mnor Status Code MSB, bit 31, OFF)
GSS_SPKM S_SG_CONTEXT _ESTABLI SHED

/* "Context is already fully established" */
GSS_SPKM S_SG BAD | NT_ALG TYPE

Adans St andar ds Track [Page 27]

RFC 2025 SPKM COct ober 1996

/* "Unknown integrity algorithmtype in token" */
GSS_SPKM S_SG BAD CONF_ALG TYPE

/* "Unknown confidentiality algorithmtype in token" */
GSS_SPKM S_SG BAD KEY_ESTB_ALG TYPE

/* "Unknown key establishnment algorithmtype in token" */
GSS_SPKM S_SG_CTX_| NCOVPLETE

/* "Attenpt to use inconplete security context" */
GSS_SPKM S_SG BAD | NT_ALG SET

/* "No integrity algorithmin comon fromoffered set" */
GSS_SPKM S _SG BAD CONF_ALG SET

/* "No confidentiality algorithmin comon fromoffered set" */
GSS_SPKM S_SG BAD KEY_ESTB_ALG SET

/* "No key establishnent algorithmin cormmon fromoffered set" */
GSS_SPKM_S_SG NO_PVNO_|I N_COVWWON

/* "No protocol version nunber in comon fromoffered set" */
GSS_SPKM S _SG | NVALI D_TOKEN DATA

/* "Data is inproperly fornmatted: cannot encode into token" */
GSS_SPKM S _SG | NVALI D_TOKEN FORVAT

/* "Received token is inproperly formatted: cannot decode" */
GSS_SPKM S SG_CONTEXT _DELETED

/* "Context deleted at peer’s request" */
GSS_SPKM S SG BAD DELETE_TOKEN_RECD

/* "lInvalid del ete token received -- context not del eted" */
GSS_SPKM S_SG_CONTEXT_ESTB_ABORT

/* "Unrecoverabl e context establishnment error. Context deleted" */

5.2. Quality of Protection Val ues

The Quality of Protection (QOP) paraneter is used in the SPKM GSS- API
nmechani smas input to gss_sign() and gss_seal () (gss_getMC() and
gss_wap()) to select anpong alternate confidentiality and integrity-
checking algorithms. Once these sets of algorithms have been agreed
upon by the context initiator and target, the QOP paraneter sinply
selects fromthese ordered sets.

More specifically, the SPKM REQ token sends an ordered sequence of
Alg. IDs specifying integrity-checking algorithns supported by the
initiator and an ordered sequence of Al g. |IDs specifying
confidentiality algorithns supported by the initiator. The target
returns the subset of the offered integrity-checking Alg. IDs which
it supports and the subset of the offered confidentiality Alg. IDs
which it supports in the SPKM REP-TI token (in the sane relative
orders as those given by the initiator). Thus, the initiator and
target each know the al gorithnms which they thensel ves support and the
al gorithms which both sides support (the latter are defined to be
those supported over the established context). The QOP paraneter has
meaning and validity with reference to this know edge. For exanpl e,
an application may request integrity algorithmnunber 3 as defined by

Adans St andar ds Track [Page 28]

RFC 2025 SPKM COct ober 1996

the mechani sm specification. |If this algorithmis supported over
this context then it is used; otherw se, GSS_S FAlI LURE and an
appropriate nminor status code are returned.

If the SPKM REP-TI token is not used (unilateral authentication using
SPKM 2), then the "agreed" sets of Alg. IDs are sinply taken to be
the initiator’s sets (if this is unacceptable to the target then it
must return an error token so that the context is never established).
Note that, in the interest of interoperability, the initiator is not
required to offer every algorithmit supports; rather, it may offer
only the mandat ed/ reconmended SPKM al gorithns since these are likely
to be supported by the target.

The QOP paraneter for SPKMis defined to be a 32-bit unsigned integer
(an OMuint32) with the following bit-field assignnents:

Confidentiality Integrity
31 (MSB) 16 15 (LSB) O
| TS (5 | W3) | TA(4) | MA(4) | TS(5 | W3) | TA(4) | M(4) |

wher e

TS is a 5-bit Type Specifier (a semantic qualifier whose val ue
specifies the type of algorithmwhich may be used to protect the
correspondi ng token -- see below for details);

Uis a 3-bit Unspecified field (available for future
use/ expansi on) ;

IAis a 4-bit field enunerating I nplenmentation-specific
Al gorithms; and

MAis a 4-bit field enunerati ng Mechani sm defined Al gorithns.

The interpretation of the QOP paraneter is as follows (note that the
same procedure is used for both the confidentiality and the integrity
hal ves of the paranmeter). The MA field is examned first. |If it is
non-zero then the algorithmused to protect the token is the
nmechani sm speci fied al gorithm corresponding to that integer val ue.

If MAis zero then Ais exanined. |If this field value is non-zero
then the algorithmused to protect the token is the inplenentation-
specified algorithmcorresponding to that integer value (if this
algorithmis avail abl e over the established context). Note that use
of this field nay hinder portability since a particular value my
specify one algorithmin one inplenentation of the nechani smand may

Adans St andar ds Track [Page 29]

RFC 2025 SPKM COct ober 1996

not be supported or may specify a conpletely different algorithmin
anot her inplenentation of the mechani sm

Finally, if both MA and I A are zero then TS is exam ned. A value of
zero for TS specifies the default algorithmfor the established
context, which is defined to be the first algorithmon the
initiator’s list of offered algorithnms (confidentiality or integrity,
dependi ng on which half of QOP is being exam ned) which is supported
over the context. A non-zero value for TS corresponds to a
particular algorithmqualifier and selects the first algorithm
supported over the context which satisfies that qualifier.

The following TS values (i.e., algorithmaqualifiers) are specified;
ot her values may be added in the future.

For the Confidentiality TS field:

00001 (1) = SPKM SYM ALG STRENGTH_ STRONG
00010 (2) = SPKM SYM ALG STRENGTH_MEDI UM
00011 (3) = SPKM SYM ALG STRENGTH_WEAK

For the Integrity TS field:

00001 (1)
00010 (2)

SPKM | NT_ALG _NON_REP_SUPPORT
SPKM_| NT_ALG_REPUDI ABLE

Clearly, qualifiers such as strong, nmedium and weak are debat abl e
and likely to change with tine, but for the purposes of this version
of the specification we define these terns as follows. A
confidentiality algorithmis "weak" if the effective key length of
the cipher is 40 bits or less; it is "nediumstrength" if the
effective key length is strictly between 40 and 80 bits; and it is
"strong" if the effective key length is 80 bits or greater. (Note
that "effective key I ength" describes the conmputational effort
required to break a ci pher using the best-known cryptanal ytic attack
agai nst that cipher.)

A five-bit TS field allows up to 31 qualifiers for each of
confidentiality and integrity (since "0" is reserved for "default").
Thi s docunment specifies three for confidentiality and two for
integrity, leaving a lot of roomfor future specification
Suggestions of qualifiers such as "fast", "medi umspeed", and "sl ow'
have been made, but such terns are difficult to quantify (and in any
case are platform and processor-dependent), and so have been |eft
out of this initial specification. The intention is that the TS
terms be quantitative, environnent-independent qualifiers of
algorithms, as nmuch as this is possible.

Adans St andar ds Track [Page 30]

RFC 2025 SPKM COct ober 1996

Use of the QOP structure as defined above is ultinately nmeant to be
as foll ows.

- TS values are specified at the GSS-API |evel and are therefore
portabl e across mechani snms. Applications which know not hi ng about
algorithns are still able to choose "quality" of protection for
their nmessage tokens.

- MA val ues are specified at the nechanismlevel and are therefore
portabl e across inplenentations of a mechanism For exanple, al
i mpl ement ati ons of the Kerberos V5 GSS nmechani sm nust support

GSS_KRB5_| NTEG _C_QOP_MD5 (value: 1)
GSS_KRB5_I NTEG_C_QOP_DES MDX5 (val ue: 2)
GSS_KRB5_| NTEG_ C_QOP_DES MAC (val ue: 3).

(Note that these Kerberos-specified integrity QOP val ues do not
conflict with the QOP structure defined above.)

- 1A values are specified at the inplenmentation [evel (in user
docunent ation, for exanple) and are therefore typically non-
portable. An application which is aware of its own nmechani sm
i mpl enentati on and the nechani sminplementation of its peer,
however, is free to use these values since they will be perfectly
valid and neani ngful over that context and between those peers.

The receiver of a token nust pass back to its calling application a
QOP paraneter with all relevant fields set. For example, if triple-
DES has been specified by a nechanismas algorithm8, then a receiver
of a triple-DES-protected token nust pass to its application (QOP
Confidentiality TS=1, IA=0, MA=8). In this way, the application is
free to read whatever part of the QOP it understands (TS or | A/ M.

To aid in inplenentation and interoperability, the follow ng
stipulation is nmade. The set of integrity Alg. IDs sent by the
initiator nust contain at |east one specifying an al gorithm which
conmputes a digital signature supporting non-repudiation, and mnust
contain at |east one specifying any other (repudiable) integrity
algorithm The subset of integrity Alg. IDs returned by the target
must al so contain at |east one specifying an al gorithm which conputes
a digital signature supporting non-repudiation, and at |east one
specifying a repudiable integrity algorithm

The reason for this stipulation is to ensure that every SPKM

i mpl enentation will provide an integrity service which supports non-
repudi ati on and one whi ch does not support non-repudiation. An
application with no know edge of underlying algorithns can choose one
or the other by passing (QOP Integrity TS=1, | A=MA=0) or (QOP

Adans St andards Track [Page 31]

RFC 2025 SPKM COct ober 1996

Integrity TS=2, 1 A=MA=0). Although an initiator who wi shes to remin
anonynous will never actually use the non-repudi able digital
signature, this integrity service nust be avail abl e over the context
so that the target can use it if desired.

Finally, in accordance with the MANDATORY and RECOMMENDED al gorithms
given in Section 2, the followi ng QOP values are specified for SPKM

For the Confidentiality MA field:
0001 (1) = DES-CBC
For the Integrity MA field:

0001 (1)
0010 (2)

nmd5W t hRSA
DES- MAC

6. Support Functions
This section describes a mandatory support function for SPKM
conformant inplenentations which nmay, in fact, be of value in all
GSS- APl nechanisnms. It makes use of the token-id and context-id
i nformati on which is included i n SPKM cont ext - establi shnent, error,
context-del etion, and per-nmessage tokens. The function is defined in
the followi ng section.

6.1. SPKM Parse_token call
| nput s:
0 input_token OCTET STRI NG
Qut put s:
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER,
o nech_type OBJECT | DENTI FI ER,
0 token_type | NTEGER,

0 context _handl e CONTEXT HANDLE,

Adans St andards Track [Page 32]

RFC 2025 SPKM COct ober 1996

Return mgj or _status codes:

0 GSS_S COVWPLETE indicates that the input_token could be parsed for
all relevant fields. The resulting values are stored in
nech_type, token_type and context handl e, respectively (with NULLs
in any paraneters which are not rel evant).

0 GSS_S DEFECTI VE_TOKEN i ndicates that either the token-id or the
context-id (if it was expected) information could not be parsed.
A non-NULL return value in token_type indicates that the latter
situation occurred.

0 GSS S NO TYPE indicates that the token-id information could be
parsed, but it did not correspond to any valid token_type.

(Note that this major status code has not been defined for GSS in
RFC-1508. Until such a definition is nmade (if ever), SPKM

i mpl ementati ons should instead return GSS_S DEFECTI VE_TOKEN wi t h
bot h token_type and context_handle set to NULL. This essentially
i mplies that unrecogni zed token-id information is considered to be
equi val ent to token-id information which could not be parsed.)

0 GSS_S NO CONTEXT indicates that the context-id could be parsed,
but it did not correspond to any valid context_handl e.

0 GSS_ S FAILURE indicates that the nechani smtype could not be
parsed (for exanple, the token may be corrupted).

SPKM Parse_token() is used to return to an application the nechani sm
type, token type, and context handl e which correspond to a given

i nput token. Since GSS-API tokens are neant to be opaque to the
calling application, this function allows the application to
determ ne informati on about the token w thout having to violate the
opaqueness intention of GSS. O primary inportance is the token
type, which the application can then use to decide which GSS function
to call in order to have the token processed.

If all tokens are franed as suggested in RFC 1508, Appendix B
(specified both in the Kerberos V5 GSS nmechanism [KRB5] and in this
docunent), then any nechani sminpl enentati on should be able to return
at | east the nmech_type paraneter (the other paraneters bei ng NULL)
for any uncorrupted input token. |[If the nmechani sminplenentation
whose SPKM Parse_token() function is being called does recogni ze the
token, it can return token_type so that the application can
subsequently call the correct GSS function. Finally, if the
nmechani sm provides a context-id field in its tokens (as SPKM does),
then an inplenentation can map the context-id to a context_handl e and
return this to the application. This is necessary for the situation

Adans St andar ds Track [Page 33]

RFC 2025 SPKM COct ober 1996

where an application has nultiple contexts open sinmultaneously, al
usi ng the sane mechanism Wen an incomi ng token arrives, the
application can use this function to deternine not only which GSS
function to call, but also which context_handle to use for the call.
Note that this function does no cryptographi c processing to determne
the validity of tokens; it sinply attenpts to parse the nech_type,
token_type, and context-id fields of any token it is given. Thus, it
is conceivable, for exanple, that an arbitrary buffer of data m ght
start with random val ues which ook |like a valid nmech_type and that
SPKM Parse_token() would return incorrect information if given this
buffer. Wile conceivable, however, such a situation is unlikely.

The SPKM Parse_token() function is mandatory for SPKM conf or nant

i npl enentations, but it is optional for applications. That is, if an
application has only one context open and can guess which GSS
function to call (or is willing to put up with sone error codes),
then it need never call SPKM Parse_token(). Furthernore, if this
function ever migrates up to the GSS- APl |evel, then

SPKM Parse_token() will be deprecated at that tine in favour of

GSS _Parse_token(), or whatever the new name and function
specification night be. Note finally that no mnor status return
codes have been defined for this function at this tine.

6.2. The token_type Qutput Paraneter

The followi ng token types are defined:

GSS_| NI T_TOKEN 1
GSS_ACCEPT_TOKEN = 2
GSS_ERROR TOKEN = 3

GSS_SI GN_TOKEN
GSS_SEAL_TOKEN
GSS_DELETE_TOKEN

GSS_GETM C_TOKEN
GSS_WRAP_TOKEN
6

Al'l SPKM nechani sms shall be able to performthe mapping fromthe
token-id information which is included in every token (through the
tag val ues in SPKM nner Cont ext Token or through the tok-id field) to
one of the above token types. Applications should be able to decide,
on the basis of token_type, which GSS function to call (for exanple,
if the token is a GSS INIT_TOKEN then the application will cal
gss_accept _sec_context(), and if the token is a GSS WRAP_TOKEN t hen
the application will call gss_unwap()).

6.3. The context_handl e Qutput Paraneter
The SPKM nmechani sm i npl enentation is responsible for maintaining a

mappi ng between the context-id value which is included in every token
and a context_handl e, thus associating an individual token with its

Adans St andar ds Track [Page 34]

RFC 2025 SPKM COct ober 1996

proper context. Cearly the value of context_handl e may be locally
determ ned and may, in fact, be associated with nenory contai ning
sensitive data on the |local system and so having the context-id

actually be set equal to a conputed context_handle will not work in
general. Conversely, having the context_handl e actually be set equal
to a conputed context-id will not work in general either, because

context _handl e nmust be returned to the application by the first cal
to gss_init_sec_context() or gss_accept_sec_context(), whereas

uni queness of the context-id (over all contexts at both ends) may
require that both initiator and target be involved in the
comput ati on. Consequently, context_handl e and context-id nust be
conmput ed separately and the mechani sminpl ementation nmust be able to
map fromone to the other by the conpletion of context establishnent
at the | atest.

Conput ati on of context-id during context establishnent is
acconplished as follows. Each SPKMinplenentation is responsible for
generating a "fresh" random nunber; that is, one which (w th high
probability) has not been used previously. Note that there are no
cryptographic requirenments on this random nunber (i.e., it need not
be unpredictable, it sinply needs to be fresh). The initiator passes
its random nunber to the target in the context-id field of the SPKM
REQ token. |If no further context establishnment tokens are expected
(as for unilateral authentication in SPKM2), then this value is
taken to be the context-id (if this is unacceptable to the target
then an error token nust be generated). Qherw se, the target
generates its random nunmber and concatenates it to the end of the
initiator’s random nunber. This concatenated value is then taken to
be the context-id and is used in SPKMREP-TI and in all subsequent

t okens over that context.

Havi ng both peers contribute to the context-id assures each peer of
freshness and therefore precludes replay attacks between contexts
(where a token froman old context between two peers is maliciously
injected into a new context between the sane or different peers).
Such assurance is not available to the target in the case of
uni l ateral authentication using SPKM 2, sinply because it has not
contributed to the freshness of the conmputed context-id (instead, it
must trust the freshness of the initiator’s random nunber, or reject
the context). The key-src-bind field in SPKMREQ is required to be
present for the case of SPKM 2 unilateral authentication precisely to
assist the target in trusting the freshness of this token (and its
proposed context key).

7. Security Considerations

Security issues are discussed throughout this neno.

Adans St andar ds Track [Page 35]

RFC 2025 SPKM COct ober 1996

8. References

[Davi 89] : D. W Davies and W L. Price, "Security for Conputer
Net wor ks", Second Edition, John WIley and Sons, New York, 1989.

[FIPS-113]: National Bureau of Standards, Federal |nformation
Processi ng Standard 113, "Conputer Data Authentication", My 1985.

[GSSv2]: Linn, J., "Ceneric Security Service Application Program
Interface Version 2", Wrk in Progress.

[Juen84]: R R Juenenan, C. H Meyer and S. M Mtyas, Message
Aut hentication with Manipul ati on Detection Codes, in Proceedi ngs of
the 1983 | EEE Synposi um on Security and Privacy, |EEE Conputer

Soci ety Press, 1984, pp. 33-54.

[KRB5] : Linn, J., "The Kerberos Version 5 GSS-APlI Mechani sni,
RFC 1964, June 1996.

[PKCS1] - RSA Encryption Standard, Version 1.5, RSA Data Security,
Inc., Nov. 1993.

[PKCS3] : Diffie-Hell man Key- Agreenent Standard, Version 1.4, RSA
Data Security, Inc., Nov. 1993.

[RFC-1321]: Rivest, R, "The MD5 Message-Di gest Algorithni, RFC 1321.

[RFC-1422]: Kent, S., "Privacy Enhancenent for Internet Electronic

Mail: Part I1: Certificate-Based Key Managenent", RFC 1422.

[RFC-1423]: Balenson, D., "Privacy Enhancenent for Internet
El ecronic Mail: Part 111: Al gorithnms, Mdes, and Identifiers",
RFC 1423.

[RFC-1508]: Linn, J., "Generic Security Service Application Program
Interface", RFC 1508.

[RFC-1509]: Way, J., "Generic Security Service Application Program
Interface: C-bindings", RFC 1509.

[RFC-1510]: Kohl J., and C. Neuman, "The Kerberos Network
Aut hentication Service (V5)", RFC 1510.

[9798]: | SO I EC 9798-3, "Information technol ogy - Security

Techni ques - Entity authentication nmechanisns - Part 3. Entitiy
aut hentication using a public key algorithn, 1SO1EC 1993.

Adans St andar ds Track [Page 36]

RFC 2025 SPKM COct ober 1996

[X. 501]: | SO I EC 9594-2, "Information Technol ogy - Open Systens
I nterconnection - The Directory: Mdels", CC TT/ITU Recomrendati on
X. 501, 1993.

[X. 509]: | SO | EC 9594-8, "Information Technol ogy - Open Systens
Interconnection - The Directory: Authentication Franework",
CCl TT/ 1 TU Reconmendati on X. 509, 1993.

[X9. 44]: ANSI , "Public Key Cryptography Usi ng Reversible
Al gorithms for the Financial Services Industry: Transport of
Symmetric Al gorithm Keys Usi ng RSA", X9.44-1993.

9. Author’s Address
Carlisle Adans
Bel | - Nort hern Research
P. O. Box 3511, Station C
OGtawa, Ontario, CANADA K1Y 4H7

Phone: +1 613. 763. 9008
EMai | : cadans@nr. ca

Adans St andar ds Track [Page 37]

RFC 2025 SPKM COct ober 1996

Appendi x A: ASN. 1 Mdule Definition

SpknGssTokens {iso(1l) identified-organization(3) dod(6) internet(1)
security(5) nechanisns(5) spkn(1l) spknGssTokens(10)}

DEFINITIONS | MPLICI T TAGS :: =
BEG N

-- EXPORTS ALL --

| MPORTS

Nane
FROM | nf or mati onFramework {joint-iso-ccitt(2) ds(5) nodul e(1)
i nformati onFranmewor k(1) 2}

Certificate, CertificateList, CertificatePair, Al gorithndentifier,
Validity
FROM Aut henti cati onFramework {joint-iso-ccitt(2) ds(5) nodul e(1)
aut henti cati onFramework(7) 2} ;

-- types --
SPKM REQ :: = SEQUENCE {
request Token REQ TOKEN,
certif-data [0] CertificationData OPTI ONAL,
aut h-data [1] Aut hori zati onDat a OPTI ONAL
}
CertificationbData ::= SEQUENCE {
certificationPath [0] CertificationPath OPTI ONAL,
certificateRevocationList [1] CertificateList OPTI ONAL
} -- at least one of the above shall be present
CertificationPath ::= SEQUENCE {
userKeyld [0] OCTET STRI NG OPTI ONAL,
userCertif [1] Certificate OPTI ONAL,
verifKeyld [2] OCTET STRI NG OPTI ONAL,
userVerifCertif [3] Certificate OPTI ONAL,
theCACertificates [4] SEQUENCE OF CertificatePair OPTI ONAL
} -- Presence of [2] or [3] inplies that [0] or [1] nust al so be

Adans St andar ds Track [Page 38]

RFC 2025 SPKM COct ober 1996

-- present. Presence of [4] inplies that at |east one of [0], [1],
-- [2], and [3] nust also be present.

REQ TOKEN : : = SEQUENCE {

reg-contents Req- cont ent s,

algld Al gorithm dentifier,

reg-integrity Integrity -- "token" is Reg-contents
}
Integrity ::= BIT STRING

-- |If corresponding algld specifies a signing algorithm

-- "Integrity" holds the result of applying the signing procedure
-- specified in algld to the BER-encoded octet string which results
-- from applying the hashing procedure (also specified in algld) to
-- the DER-encoded octets of "token".

-- Alternatively, if corresponding algld specifies a MAC ng

-- algorithm "Integrity" holds the result of applying the MAC ng
-- procedure specified in algld to the DER-encoded octets of

-- "token"
Reqg-contents ::= SEQUENCE {
tok-id | NTEGER (256), -- shall contain 0100 (hex)
context-id Random | nt eger,
pvno BI T STRI NG
timestanp UTCTi me OPTI ONAL, -- mandatory for SPKM 2
randSrc Random | nt eger,
t ar g- nane Name,
src-nane [0] Nanme OPTI ONAL,
reqg- data Cont ext - Dat a,
validity [1] Validity OPTI ONAL,
key- est b- set Key- Est b- Al gs,
key- estb-req BI T STRI NG OPTI ONAL,
key- src-bind OCTET STRI NG OPTI ONAL
-- This field nust be present for the case of SPKM 2
-- unilateral authen. if the K-ALG in use does not provide
-- such a binding (but is optional for all other cases).
-- The octet string holds the result of applying the
-- mandat ory hashi ng procedure (in MANDATORY |- ALG
-- see Section 2.1) as follows: MD5(src || context_key),
-- where "src" is the DER-encoded octets of src-nane,
-- "context-key" is the symmetric key (i.e., the
-- unprotected version of what is transmitted in
-- key-estb-req), and "||" is the concatenation operation.
}
Random I nteger ::= BIT STRI NG

Adans St andar ds Track [Page 39]

RFC 2025 SPKM COct ober 1996

Context-Data ::= SEQUENCE ({
channel | d Channel | d OPTI ONAL,
seg- nunber | NTEGER OPTI ONAL,
options Opt i ons,
conf-alg Conf - Al gs,
intg-alg I nt g- Al gs,
ow -al g OWF- Al gs

}

Channel Id ::= OCTET STRI NG

Options ::= BIT STRI NG {

del egation-state (0),

mut ual -state (1),
replay-det-state (2),
seguence-state (3),

conf-avail (4),

i nteg-avail (5),
target-certif-data-required (6)

}
Conf-Algs ::= CHO CE {
al gs [0] SEQUENCE OF Al gorithm dentifier,
nul I [1] NULL
}
Intg-Algs ::= SEQUENCE OF Algorithm dentifier
ONF- Al gs ::= SEQUENCE OF Al gorithm dentifier
Key- Estb- Al gs ::= SEQUENCE OF Al gorithmdentifier
SPKM REP-TI :: = SEQUENCE {
responseToken REP- TI - TOKEN,
certif-data CertificationbData OPTI ONAL
-- present if target-certif-data-required option was
} -- set to TRUE i n SPKM REQ
REP- Tl - TOKEN : : = SEQUENCE {
rep-ti-contents Rep-ti-contents,
algld Al gorithm dentifier,
rep-ti-integ Integrity -- "token" is Rep-ti-contents
}
Rep-ti-contents ::= SEQUENCE {
tok-id | NTEGER (512), -- shall contain 0200 (hex)
context-id Random I nt eger,

Adans St andar ds Track [Page 40]

RFC 2025 SPKM COct ober 1996

pvno [0] BI T STRI NG OPTI ONAL,
timestanp UTCTi me OPTI ONAL, -- mandatory for SPKM 2
randTar g Random | nt eger,
src-nane [1] Nanme OPTI ONAL,
t ar g- nane Name,
randSrc Random | nt eger,
rep-dat a Cont ext - Dat a,
validity [2] Validity OPTI ONAL,
key-estb-id Al gorithm dentifier OPTIONAL,
key-estb-str BI T STRI NG OPTI ONAL
}
SPKM REP-1 T ::= SEQUENCE {
responseToken REP- | T- TOKEN,
algld Al gorithm dentifier,
rep-it-integ Integrity -- "token" is REP-IT- TOKEN
}
REP- | T- TOKEN : : = SEQUENCE ({
tok-id | NTEGER (768), -- shall contain 0300 (hex)
context-id Random | nt eger,
randSrc Random | nt eger,
randTar g Random | nt eger,
t ar g- nane Name,
Src- name Name OPTI ONAL,
key-estb-rep BI T STRI NG OPTI ONAL
}
SPKM ERROR : : = SEQUENCE {
error Token ERROR- TOKEN,
algld Al gorithm dentifier,
integrity Integrity -- "token" is ERROR- TOKEN
}
ERROR- TOKEN ::= SEQUENCE {
tok-id | NTEGER (1024), -- shall contain 0400 (hex)
context-id Random | nt eger
}
SPKM M C :: = SEQUENCE {
nm c- header M c- Header,
i nt-cksum BIT STRI NG
}
M c- Header ::= SEQUENCE ({
tok-id | NTEGER (257), -- shall contain 0101 (hex)
context-id Random I nt eger,

Adans St andar ds Track [Page 41]

RFC 2025

int-alg [0]
snd-seq [1]

}

SegNum : : = SEQUENCE {
num
dir-ind

}

SPKM VRAP : : = SEQUENCE {
wr ap- header
wr ap- body

}

W ap- Header ::= SEQUENCE
tok-id
context-id
int-alg [0]
conf-alg [1]
snd-seq [2]

}

W ap- Body ::= SEQUENCE {
i nt-cksum
dat a

}

Conf-Alg ::= CHO CE {
algld [0]
nul I [1]

}

SPKM DEL :: = SEQUENCE {
del - header
i nt-cksum

}

Del - Header ::= SEQUENCE ({
tok-id
context-id
int-alg [0]
snd-seq [1]

}

-- other types --

Adans

SPKM Oct ober 1996

Al gorithm dentifier OPTI ONAL,
SeqNum OPTI ONAL

| NTEGER,
BOCLEAN

W ap- Header,
W ap- Body

I{NI'EGER (513), --

Random I nt eger,

Al gorithm dentifier OPTI ONAL,
Conf - Al g OPTI ONAL,

SeqNum OPTI ONAL

shall contain 0201 (hex)

BI T STRI NG
BI T STRI NG

Al gorithm dentifier,
NULL

Del - Header,
BI T STRI NG

| NTEGER (769), --
Random | nt eger,

Al gorithm dentifier OPTI ONAL,
SeqNum OPTI ONAL

shall contain 0301 (hex)

St andards Track [Page 42]

RFC 2025

Adans

SPKM

-- from[RFC 1508] --

MechType ::= OBJECT | DENTI FI ER
Initial ContextToken ::= [APPLI CATION O] I MPLICI T SEQUENCE ({

t hi sMech MechType,

i nner Cont ext Token SPKM nner Cont ext Token
} -- when thisMech is SPKM1 or SPKM 2
SPKM nner Cont ext Token ::= CHO CE {

req [0] SPKM REQ

rep-ti [1] SPKM REP-TI

rep-it [2] SPKM REP-IT,

error [3] SPKM ERROR,

mc [4] SPKM M C,

wrap [5] SPKM WRAP,

del [6] SPKM DEL

-- from[RFC 1510] --

Aut hori zationData ::
ad-type | NTECER,
ad-data OCTET STRI NG

= SEQUENCE OF SEQUENCE {

}

obj ect identifier assignnents --
nd5- DES- CBC OBJECT | DENTI FIER :: =
{iso(1l) identified-organization(3)
integrity(3) md5-DES-CBC(1)}

dod(6) internet(1)

sunt4- DES- CBC OBJECT I DENTIFIER :: =
{iso(1l) identified-organization(3)
integrity(3) sumb4- DES- CBC(2)}

dod(6) internet(1)

spkm 1 OBJECT | DENTIFIER :: =
{iso(1l) identified-organization(3)
mechani sns(5) spkn(1) spkm1(1)}

dod(6) internet(1)

spkm 2 OBJECT | DENTI FIER :: =
{iso(1l) identified-organization(3)
mechani sns(5) spkn(1) spkm2(2)}

dod(6) internet(1)

END

St andards Track

Cct ober

1996

security(5b)

security(5b)

security(5b)

security(5)

[Page 43]

RFC 2025

Appendi x B: Inported Types

Thi s appendi x contains, f
i nported from I nformation

(1993), and [PKCS3].
AttributeType ::= OBJECT
AttributeValue ::= ANY

Attribut eval ueAssertion ::
Rel ati veDi sti ngui shedNane ::

-- different syntax fo

SPKM

or conpl et eness,
Framewor k (1993),

| DENTI FI ER

r the above constructs

Oct ober 1996

the relevant ASN. 1 types
Aut henti cat i onFr anmewor k

= SEQUENCE {AttributeType, Attri buteVal ue}
= SET OF Attri buteVal ueAssertion
note that the 1993 | nformati onFramewor k nodul e uses

RDNSequence ::= SEQUENCE OF Rel ativeDi sti ngui shedNane
Di sti ngui shedNane ::= RDNSequence
Nane ::= CHOCE { -- only one for now
rdnSequence RDNSequence
}
Certificate ::= SEQUENCE {
certContents Cert Content s,
alglD Al gorithmdentifier,
si g BI T STRI NG
} -- sig holds the result of applying the signing procedure

CertContents :
version [0]
seri al Nunber
signature
i ssuer
validity
subj ect
subj ect Publ i cKeyl
i ssuerU D [1]
subj ect U D [2]

}
Version ::= | NTEGER {v1(O0
CertificateSerial Nunber
UD::=BIT STRI NG
Validity ::= SEQUENCE ({
not Bef ore
not Af t er
}
Adans

: = SEQUENCE {

Ver si on DEFAULT v1,
CertificateSerial Nunber,
Al gorithm dentifier,

Nanme,
Validity,
Nanme,
nfo Subj ect Publ i cKeyl nf o,

I MPLICI T U D OPTI ONAL,
I MPLICI T U D OPTI ONAL --

),

v2(1)}
| NTEGER

UTCTi ne,
UTCTi ne

St andards Track

specified in algld to the BER-encoded octet string which
results from applying the hashing procedure (also specified in
algld) to the DER-encoded octets of CertContents

used in v2 only
used in v2 only

[Page 44]

RFC 2025 SPKM COct ober 1996

Subj ect Publ i cKeyl nfo ::= SEQUENCE ({
al gorithm Al gorithmdentifier,
subj ect PublicKey BIT STRI NG

}

CertificatePair ::= SEQUENCE {
forward [O] Certificate OPTI ONAL,
reverse [1] Certificate OPTI ONAL
} -- at least one of the pair shall be present

CertificateList ::= SEQUENCE {
certListContents CertListContents,
algld Al gorithmdentifier,
si g BIT STRI NG
} -- sig holds the result of applying the signing procedure
-- specified in algld to the BER encoded octet string which
-- results fromapplying the hashing procedure (also specified in
-- algld) to the DER encoded octets of CertlListContents

CertListContents ::= SEQUENCE {
si ghature Al gorithmdentifier,
i ssuer Nane,
t hi sUpdat e UTCTi e,
next Updat e UTCTi me OPTI ONAL,
revokedCertificates SEQUENCE OF SEQUENCE ({
userCertificate CertificateSerial Nunmber,
revocati onDat e UTCTi ne } OPTI ONAL
}

Al gorithmdentifier ::= SEQUENCE {
al gorithm OBJECT | DENTI FI ER,
par anet er ANY DEFI NED BY al gorithm OPTI ONAL
} -- note that the 1993 Authenticati onFramework nodul e uses
-- different syntax for this construct

--from[PKCS3] (the paraneter to be used with dhKeyAgreenent) --

DHPar anet er ::= SEQUENCE {
prime I NTEGER, -- p
base I NTEGER, -- ¢
privat eVal ueLengt h | NTEGER OPTI ONAL
}

Adans St andar ds Track [Page 45]

