Net wor k Wor ki ng G oup Bill Croft (Stanford University)
Request for Comments: 951 John Gl nore (Sun M crosystens)
Sept enmber 1985

BOOTSTRAP PROTCOCOL (BOOTP)

1. Status of this Menp

This RFC suggests a proposed protocol for the ARPA-Internet
comuni ty, and requests discussion and suggestions for inprovenents.
Distribution of this neno is unlimted.

2. Overview

This RFC describes an | P/ UDP bootstrap protocol (BOOTP) which all ows
a diskless client machine to discover its own |P address, the address
of a server host, and the nanme of a file to be |oaded into nenory and
executed. The bootstrap operation can be thought of as consisting of
TWDO PHASES. This RFC describes the first phase, which could be

| abel ed ’address determ nation and bootfile selection’. After this
address and filenanme information is obtained, control passes to the
second phase of the bootstrap where a file transfer occurs. The file
transfer will typically use the TFTP protocol [9], since it is

i ntended that both phases reside in PROMon the client. However
BOOTP coul d al so work with other protocols such as SFTP [3] or

FTP [6].

We suggest that the client’s PROM software provide a way to do a
conpl ete bootstrap wi thout 'user’ interaction. This is the type of
boot that would occur during an unattended power-up. A mechanism
shoul d be provided for the user to manually supply the necessary
address and filenanme informati on to bypass the BOOTP protocol and
enter the file transfer phase directly. |If non-volatile storage is
avai l abl e, we suggest keeping default settings there and bypassing
the BOOTP protocol unless these settings cause the file transfer
phase to fail. |If the cached information fails, the bootstrap shoul d
fall back to phase 1 and use BOOTP

Here is a brief outline of the protocol:

1. A single packet exchange is perforned. Tinmeouts are used to
retransmit until a reply is received. The sanme packet field

l ayout is used in both directions. Fixed length fields of maxi num
reasonabl e length are used to sinplify structure definition and
par si ng.

2. An 'opcode’ field exists with two values. The client
broadcasts a ’'bootrequest’ packet. The server then answers with a
"bootreply’ packet. The bootrequest contains the client’'s
hardware address and its | P address, if known.

Croft & Glnore [Page 1]

RFC 951 Sept enmber 1985
Boot strap Protocol

3. The request can optionally contain the nane of the server the
client wishes to respond. This is so the client can force the
boot to occur froma specific host (e.g. if nmultiple versions of
the same bootfile exist or if the server is in a far distant
net/donmain). The client does not have to deal with nanme / domain
services; instead this function is pushed off to the BOOTP server

4. The request can optionally contain the 'generic’ filenanme to be

booted. For exanple 'unix’ or 'ethertip’. Wen the server sends
the bootreply, it replaces this field with the fully qualified
pat h name of the appropriate boot file. |In deternining this nane,

the server nmay consult his own database correlating the client’s
address and fil enane request, with a particular boot file

custom zed for that client. If the bootrequest filenane is a nul
string, then the server returns a filename field indicating the
"default’ file to be |oaded for that client.

5. In the case of clients who do not know their |IP addresses, the
server nust al so have a database relating hardware address to I P
address. This client IP address is then placed into a field in

t he bootreply.

6. Certain network topologies (such as Stanford s) may be such
that a given physical cable does not have a TFTP server directly
attached to it (e.g. all the gateways and hosts on a certain cable
may be diskless). Wth the cooperation of neighboring gateways,
BOOTP can allow clients to boot off of servers several hops away,
through these gateways. See the section ’'Booting Through

Gat eways’ below. This part of the protocol requires no special

action on the part of the client. Inplenentation is optional and
requires a small armount of additional code in gateways and
servers.

3. Packet For nat

Al'l nunbers shown are decinmal, unless indicated otherwi se. The BOOTP
packet is enclosed in a standard IP [8] UDP [7] datagram For
sinplicity it is assunmed that the BOOTP packet is never fragnented.
Any nurneric fields shown are packed in ’'standard network byte order’
i.e. high order bits are sent first.

In the I P header of a bootrequest, the client fills inits own IP
source address if known, otherw se zero. When the server address is
unknown, the | P destination address will be the ’'broadcast address’
255. 255. 255. 255. Thi s address neans ' broadcast on the |ocal cable,
(I don’t know ny net nunber)’ [4].

Croft & Glnore [Page 2]

RFC 951 Sept enmber 1985
Boot strap Protocol

The UDP header contains source and destination port nunmbers. The
BOOTP protocol uses two reserved port nunbers, 'BOOTP client’ (68)
and ' BOOTP server’ (67). The client sends requests using 'BOOTP
server’ as the destination port; this is usually a broadcast. The
server sends replies using 'BOOTP client’ as the destination port;
dependi ng on the kernel or driver facilities in the server, this may
or may not be a broadcast (this is explained further in the section
titled ' Chicken/ Egg i ssues’ below). The reason TWO reserved ports
are used, is to avoid 'waking up’ and scheduling the BOOIP server
daenons, when a bootreply nust be broadcast to a client. Since the
server and other hosts won’t be listening on the 'BOOTP client’ port,
any such incom ng broadcasts will be filtered out at the kerne
level. We could not sinply allow the client to pick a ’'random port
nunber for the UDP source port field; since the server reply nay be
broadcast, a randomy chosen port nunber could confuse other hosts

t hat happened to be listening on that port.

The UDP length field is set to the Iength of the UDP plus BOOTP
portions of the packet. The UDP checksumfield can be set to zero by
the client (or server) if desired, to avoid this extra overhead in a
PROM i npl ementation. |In the 'Packet Processing section below the
phrase ' [UDP checksum]’ is used whenever the checksum m ght be

veri fied/ conput ed.

FI ELD BYTES DESCRI PTI ON

op 1 packet op code / nessage type.
1 = BOOTREQUEST, 2 = BOOTREPLY

ht ype 1 har dwar e address type,
see ARP section in "Assigned Nunbers" RFC
1" = 10nb et hernet

hl en 1 har dwar e address | ength
(eg '6" for 10nb ethernet).

hops 1 client sets to zero,
optionally used by gat eways
in cross-gateway booti ng.

Xi d 4 transaction I D, a random nunber,
used to nmatch this boot request with the
responses it generates.

secs 2 filled in by client, seconds el apsed since
client started trying to boot.

Croft & Gl nore [Page 3]

RFC 951 Sept enmber 1985
Boot strap Protocol

-- 2 unused

ciaddr 4 client I|IP address;
filled in by client in bootrequest if known.

yi addr 4 "your’ (client) |IP address;
filled by server if client doesn’t
know its own address (ciaddr was 0).

siaddr 4 server | P address;
returned in bootreply by server.

gi addr 4 gateway | P address,
used in optional cross-gateway booting.

chaddr 16 client hardware address,
filled in by client.

shane 64 opti onal server host nane,
null term nated string.

file 128 boot file nane, null termnated string;
"generic’ nane or null in bootrequest,
fully qualified directory-path
nanme in bootreply.

vend 64 opti onal vendor-specific area,
e.g. could be hardware type/serial on request,
or 'capability’ / renote file system handl e
on reply. This info may be set aside for use
by a third phase bootstrap or kernel.

4. Chicken / Egg |ssues

How can the server send an |P datagramto the client, if the client

doesnt know its own | P address (yet)? \Wenever a bootreply is being

sent, the transmtting machi ne perfornms the foll ow ng operations:
1. If the client knows its own |P address (’'ciaddr’ field is
nonzero), then the IP can be sent 'as normal’, since the client
will respond to ARPs [5].
2. If the client does not yet know its |P address (ciaddr zero),
then the client cannot respond to ARPs sent by the transnitter of
the bootreply. There are two options:

a. If the transmitter has the necessary kernel or driver hooks

Croft & Glnore [Page 4]

RFC 951 Sept enmber 1985
Boot strap Protocol

to 'manual |y’ construct an ARP address cache entry, then it can
fill in an entry using the 'chaddr’ and 'yiaddr’ fields. O
course, this entry should have a tinmeout on it, just like any
other entry nade by the normal ARP code itself. The
transmtter of the bootreply can then sinply send the bootreply
to the client’s IP address. UN X (4.2 BSD) has this
capability.

b. If the transnmitter |lacks these kernel hooks, it can sinply
send the bootreply to the I P broadcast address on the
appropriate interface. This is only one additional broadcast
over the previous case.

5. dient Use of ARP

The client PROM nmust contain a sinple inplenentation of ARP, e.g. the
address cache could be just one entry in size. This will allow a
second- phase-only boot (TFTP) to be perfornmed when the client knows
the | P addresses and bootfil e nane.

Any time the client is expecting to receive a TFTP or BOOTP reply, it
shoul d be prepared to answer an ARP request for its owmn IP to
har dwar e address mapping (if known).

Since the bootreply will contain (in the hardware encapsul ation) the
har dwar e source address of the server/gateway, the client MAY be able
to avoid sending an ARP request for the server/gateway |P address to
be used in the followi ng TFTP phase. However this should be treated
only as a special case, since it is desirable to still allow a
second- phase-only boot as described above.

6. Conparison to RARP

An earlier protocol, Reverse Address Resol ution Protocol (RARP) [1]
was proposed to allow a client to deternmine its |IP address, given
that it knew its hardware address. However RARP had the di sadvant age
that it was a hardware link | evel protocol (not |IP/UDP based). This
means that RARP could only be inplemented on hosts containing special
kernel or driver nodifications to access these 'raw packets. Since
there are many network kernels existent now, with each source

mai nt ai ned by different organi zations, a boot protocol that does not
require kernel nodifications is a decided advant age.

BOOTP provides this hardware to | P address | ookup function, in

addition to the other useful features described in the sections
above.

Croft & Gl nore [Page 5]

RFC 951 Sept enmber 1985
Boot strap Protocol

7. Packet Processing
7.1. dient Transm ssion

Before setting up the packet for the first time, it is a good idea
to clear the entire packet buffer to all zeros; this will place
all fields in their default state. The client then creates a
packet with the following fields.

The | P destination address is set to 255.255.255.255. (the

br oadcast address) or to the server’s IP address (if known). The
| P source address and ’'ciaddr’ are set to the client’s I P address
if known, else 0. The UDP header is set with the proper |ength;
source port = 'BOOTP client’ port destination port = 'BOOIP
server’ port.

"op’ is set to 'l , BOOTREQUEST. 'htype’ is set to the hardware
address type as assigned in the ARP section of the "Assigned
Nunbers" RFC. "hlen’ is set to the length of the hardware address,
e.g. '6" for 10nmb ethernet.

"xid is set to a 'random transaction id. ’'secs’ is set to the
nunber of seconds that have el apsed since the client has started
booting. This will let the servers know how |l ong a client has

been trying. As the nunber gets larger, certain servers nay fee
nore 'synpathetic’ towards a client they don’t normally service.
If a client lacks a suitable clock, it could construct a rough
estimate using a loop tinmer. O it could choose to sinply send
this field as always a fixed value, say 100 seconds.

If the client knows its |IP address, 'ciaddr’ (and the |IP source
address) are set to this value. ’'chaddr’ is filled in with the
client’s hardware address.

If the client wishes to restrict booting to a particular server
name, it may place a null-termnated string in 'snane’. The nane
used shoul d be any of the all owabl e nanes or ni cknanes of the
desired host.

The client has several options for filling the "file nane field.
If left null, the neaning is I want to boot the default file for
nmy machine’. A null file name can also nean '| amonly interested
in finding out client/server/gateway |P addresses, | dont care
about file nanes’.

The field can also be a 'generic’ nanme such as ’unix’ or

Croft & Gl nore [Page 6]

RFC 951 Sept enmber 1985
Boot strap Protocol

"gateway’; this nmeans ’'boot the named program configured for ny
machine’. Finally the field can be a fully directory qualified
pat h nane.

The "vend field can be filled in by the client with
vendor - specific strings or structures. For exanple the nachine
hardware type or serial nunber may be placed here. However the
operation of the BOOTP server should not DEPEND on this

i nformati on existing.

If the "vend field is used, it is recormmended that a 4 byte
"magi ¢ nunber’ be the first itemwithin "vend'. This lets a
server determne what kind of information it is seeing in this
field. Nunbers can be assignhed by the usual 'magi c nunber’
process --you pick one and it’s magic. A different magi c nunber
could be used for bootreply’s than bootrequest’s to allow the
client to take special action with the reply information

[UDP checksum]
7.2. Cient Retransmni ssion Strategy

If noreply is received for a certain length of time, the client
should retransnmit the request. The tinme interval nust be chosen
carefully so as not to flood the network. Consider the case of a
cabl e containing 100 nmachines that are just com ng up after a
power failure. Sinply retransnmitting the request every four
seconds will inundate the net.

As a possible strategy, you m ght consider backing off
exponentially, simlar to the way ethernet backs off on a
collision. So for exanple if the first packet is at tinme 0:00,
the second would be at :04, then :08, then :16, then :32, then
:64. You should also randoni ze each tinme; this would be done
simlar to the ethernet specification by starting with a mask and
"and’ing that with with a random nunber to get the first backoff.
On each succeedi ng backoff, the mask is increased in |length by one
bit. This doubles the average delay on each backoff.

After the 'average’ backoff reaches about 60 seconds, it should be
i ncreased no further, but still random zed.

Bef ore each retransm ssion, the client should update the 'secs
field. [UDP checksum]

Croft & Glnore [Page 7]

RFC 951 Sept enmber 1985
Boot strap Protocol

7.3. Server Receives BOOTREQUEST

[UDP checksum] If the UDP destination port does not match the
" BOOTP server’ port, discard the packet.

If the server nanme field (snane) is null (no particular server
specified), or snane is specified and matches our nane or
ni cknane, then continue w th packet processing.

If the snane field is specified, but does not match 'us’, then

there are several options:
1. You may choose to sinply discard this packet.

2. If a name | ookup on snane shows it to be on this sane cabl e,
di scard the packet.

3. If snane is on a different net, you may choose to forward
the packet to that address. |f so, check the ’'giaddr’ (gateway
address) field. |If "giaddr’ is zero, fill it in with ny
address or the address of a gateway that can be used to get to
that net. Then forward the packet.

If the client | P address (ciaddr) is zero, then the client does
not know its own IP address. Attenpt to | ookup the client

har dwar e address (chaddr, hlen, htype) in our database. |If no
mat ch is found, discard the packet. Oherwi se we now have an |P
address for this client; fill it into the "yiaddr’ (your IP
address) field.

We now check the boot file nanme field (file). The field will be
null if the client is not interested in filenanmes, or wants the
default bootfile. |If the field is non-null, it is used as a

| ookup key in a database, along with the client’s |IP address. |If

there is a default file or generic file (possibly indexed by the
client address) or a fully-specified path nane that matches, then
replace the 'file field with the fully-specified path name of the

sel ected boot file. |If the field is non-null and no match was
found, then the client is asking for a file we dont have; discard
the packet, perhaps sone ot her BOOTP server will have it.

The 'vend’ vendor-specific data field should now be checked and if
a recogni zed type of data is provided, client-specific actions

shoul d be taken, and a response placed in the 'vend data field of
the reply packet. For exanple, a workstation client could provide

Croft & Gl nore [Page 8]

RFC 951 Sept enmber 1985
Boot strap Protocol

an authentication key and receive fromthe server a capability for
renote file access, or a set of configuration options, which can
be passed to the operating systemthat will shortly be booted in.
Place ny (server) |IP address in the 'siaddr’ field. Set the ’op’
field to BOOTREPLY. The UDP destination port is set to ' BOOTP
client’. |If the client address ’ciaddr’ is nonzero, send the
packet there; else if the gateway address ’'giaddr’ is nonzero, set
the UDP destination port to 'BOOTP server’ and send the packet to
"giaddr’; else the client is on one of our cables but it doesnt
know its own | P address yet --use a nethod described in the 'Egg’
section above to send it to the client. If "Egg" is used and we
have nmultiple interfaces on this host, use the ’'yiaddr’ (your IP
address) field to figure out which net (cable/interface) to send
the packet to. [UDP checksum]

7.4. Server/Gateway Receives BOOTREPLY

[UDP checksum] If 'yiaddr’ (your [the client’s] |P address)
refers to one of our cables, use one of the ’'Egg’ nmethods above to
forward it to the client. Be sure to send it to the 'BOOIP
client’ UDP destination port.

7.5. dient Reception

Don't forget to process ARP requests for my own | P address (if |
know it). [UDP checksum] The client should discard incom ng
packets that: are not | P/ UDPs addressed to the boot port; are not
BOOTREPLYs; do not match my | P address (if | knowit) or ny

har dwar e address; do not match ny transaction id. QOherw se we

have received a successful reply. 'yiaddr’ will contain nmy IP
address, if | didnt knowit before. ’'file is the name of the
file nane to TFTP 'read request’. The server address is in
"siaddr’. If 'giaddr’ (gateway address) is nonzero, then the
packets should be forwarded there first, in order to get to the
server.

8. Booting Through Gat eways

This part of the protocol is optional and requires sone additional
code in cooperating gateways and servers, but it allows cross-gateway
booting. This is mainly useful when gateways are di skl ess machi nes.
Gat eways containing disks (e.g. a UNl X machi ne acting as a gateway),
m ght as well run their own BOOTP/ TFTP servers.

Gat eways listening to broadcast BOOTREQUESTs nmay decide to forward or
rebroadcast these requests 'when appropriate’. For exanple, the

Croft & Gl nore [Page 9]

RFC 951 Sept enmber 1985
Boot strap Protocol

gateway could have, as part of his configuration tables, a list of
ot her networks or hosts to receive a copy of any broadcast
BOOTREQUESTs. Even though a "hops’ field exists, it is a poor idea
to sinmply gl obally rebroadcast the requests, since broadcast | oops
will alnpost certainly occur.

The forwardi ng could begin imediately, or wait until the ’'secs’
(seconds client has been trying) field passes a certain threshol d.

If a gateway does decide to forward the request, it should | ook at
the 'giaddr’ (gateway | P address) field. |If zero, it should plug its
own | P address (on the receiving cable) into this field. It may also
use the "hops' field to optionally control how far the packet is

ref orwarded. Hops shoul d be increnented on each forwarding. For
exanple, if hops passes '3, the packet shoul d probably be discarded.
[UDP checksum]

Here we have recomended placing this special forwarding function in
the gateways. But that does not have to be the case. As long as
some ' BOOTP forwardi ng agent’ exists on the net with the booting
client, the agent can do the forwardi ng when appropriate. Thus this
service may or may not be co-located with the gateway.

In the case of a forwarding agent not located in the gateway, the
agent could save hinself sonme work by plugging the broadcast address
of the interface receiving the bootrequest into the 'giaddr’ field.
Thus the reply woul d get forwarded using normal gateways, not

i nvolving the forwarding agent. O course the disadvantage here is
that you lose the ability to use the 'Egg’ non-broadcast method of
sending the reply, causing extra overhead for every host on the
client cable.

9. Sanpl e BOOTP Server Database

As a suggestion, we show a sanple text file database that the BOOTP
server program m ght use. The database has two sections, delimted
by a line containing an percent in colum 1. The first section
contains a 'default directory’ and nappings from generic names to
di rectory/ pat hnanes. The first generic nane in this section is the
"default file you get when the bootrequest contains a null "file’
string.

The second section maps hardware addresstype/address into an

i paddress. Optionally you can al so overide the default generic nane
by supplying a ipaddress specific genericname. A 'suffix’ itemis

al so an option; if supplied, any generic nanes specified by the
client will be accessed by first appending 'suffix’ to the ’pathnane’

Croft & Glnore [Page 10]

RFC 951 Sept enmber 1985
Boot strap Protocol

appropriate to that generic name. |If that file is not found, then
the plain 'pathnanme’ will be tried. This 'suffix’ option allows a
whol e set of custom generics to be setup without a lot of effort.
Bel ow i s shown the general format; fields are delimted by one or
nore spaces or tabs; trailing enpty fields may be onmitted; bl ank
lines and lines beginning with *# are ignored.

conment |ine

honmedi rectory

generi cnamel pat hnanel

generi cname2 pat hname2

% end of generic nanes, start of address mappi ngs

host nanel har dwar et ype hardwareaddr1 i paddrl genericnanme suffix

host nane2 har dwar et ype har dwar eaddr 2 i paddr 2 generi cname suffix

Here is a specific exanple. Note the 'hardwaretype’ nunber is the
sane as that shown in the ARP section of the ’Assigned Nunbers’ RFC
The " hardwaretype’ and ’'ipaddr’ nunbers are in decimal

"hardwar eaddr’ is in hex.

|l ast updated by smith

[usr/ boot

vimuni x vimuni x

tip ethertip

wat ch [usr/ di ag/ et herwat ch
gate gat e.

% end of generic nanes, start of address mappi ngs

ham | t on 1 02. 60. 8c. 06. 34. 98 36.19.0.5

burr 1 02.60.8c.34.11.78 36.44.0.12

101- gat eway 1 02.60. 8c. 23. ab. 35 36.44.0. 32 gate 101
nj h- gat eway 1 02.60.8c. 12. 32. bc 36.42.0.64 gate njh
wel ch-ti pa 1 02.60. 8c. 22. 65. 32 36.47.0. 14 tip

wel ch-ti pb 1 02.60.8c.12.15.c8 36.46.0. 12 tip

In the exanpl e above, if ’'njh-gateway’ does a default boot, it wll
get the file "/usr/boot/gate.njh .

Croft & Glnore [Page 11]

RFC 951 Sept enmber 1985
Boot strap Protocol
10. Acknow edgenents

Ross Finlayson (et. al.) produced two earlier RFC s discussing TFTP
boot straping [2] using RARP [1].

We would also |ike to acknow edge the previ ous work and conments of
Noel Chi appa, Bob Lyon, Jeff Mogul, Mark Lewi s, and David Pl umrer.

REFERENCES

1. Ross Finlayson, Tinothy Mann, Jeffrey Mogul, Marvin Theinmer. A
Reverse Address Resol ution Protocol. RFC 903, NIC, June, 1984.

2. Ross Finlayson. Bootstrap Loading using TFTP. RFC 906, NI C,
June, 1984.

3. Mark Lottor. Sinple File Transfer Protocol. RFC 913, N C,
Sept enber, 1984.

4. Jeffrey Mgul. Broadcasting Internet Packets. RFC 919, N C,
Cct ober, 1984.

5. David Plumer. An Ethernet Address Resolution Protocol. RFC
826, NI C, Septenber, 1982.

6. Jon Postel. File Transfer Protocol. RFC 765, N C, June, 1980.
7. Jon Postel. User Datagram Protocol. RFC 768, N C, August, 1980.
8. Jon Postel. Internet Protocol. RFC 791, NIC, Septenber, 1981

9. K R Sollins, Noel Chiappa. The TFTP Protocol. RFC 783, N C,
June, 1981.

Croft & Glnore [Page 12]

