Net wor k Wor ki ng Group Dave Wl den
Request for Comments: 61 Bolt Beranek and Newran
July 17, 1970

A Note on Interprocess Comunication
in a Resource Sharing Conputer Network

The attached note is a draft of a study | amstill working on. It
may be of general interest to network participants.

Wl den [Page 1]

RFC 61 I nterprocess Conmuni cation in a Conputer Network July 1970

I nt er process Conmuni cati on
ina
Resour ce Sharing Conputer Network

| NTRODUCTI ON

"A resource sharing conputer network is defined to be a set of

aut ononous, i ndependent conputer systens, interconnected so as to
permt each conputer systemto utilize all of the resources of each
ot her conputer system That is, a programrunning in one conputer
system shoul d be able to call on the resources of the other conputer
systens nmuch as it would normally call a subroutine." This
definition of a network and the desirability of such a network is
expounded upon by Roberts and Wessler in [1].

The actual act of resource sharing can be perfornmed in two ways: in a
pai rwi se ad hoc manner between all pairs of conputer systems in the
network or according to a systematic network wi de standard. This
paper devel ops one possible network w de system for resource sharing.

| believe it is natural to think of resources as being associ ated
with processes [2] and therefore view the fundanental problem of
resource sharing to be the problem of interprocess conmmunication. |
al so share with Carr, Crocker, and Cerf [3] the view that

i nterprocess conmmuni cati on over a network is a subcase of genera

i nterprocess communi cation in a multiprogranmed environment.

These views pervade this study and have led to a two part study.
First, a nodel for a tine-sharing system having capabilities
particularly suitable for enabling interprocess comunication is
constructed. Next, it is shown that these capabilities can be easily
used in a generalized manner which pernits interprocess comunication
bet ween processes distributed over a conputer network.

This note contains ideas based on many sources. Particularly
influential were -- 1) an early sketch of a Host protocol for the
ARPA Network [1][3][4] by W Crowt her of Bolt Beranek and Newman | nc.
(BBN) and S. Crocker of UCLA; 2) Ackerman and Plunmer’s paper on the
MT PDP-1 time sharing system[5]; and 3) discussion with R Kahn of
BBN about Host protocol, nessage control, and routing for the ARPA
Net wor k. Hopefully, there are also sone original ideas in this note.
| alone amresponsible for the collection of all of these ideas into
the system described herein, and | amtherefore responsible for any

i nconsi stencies or bugs in this system

It nmust be enphasized that this note does not represent an official
BBN position on Host protocol for the ARPA Conputer Network.

Wl den [Page 2]

RFC 61 I nterprocess Conmuni cation in a Conputer Network July 1970

A MODEL FOR A TI ME- SHARI NG SYSTEM

This section describes a nodel tine-sharing systemwhich | think is
particularly suitable for performnming interprocess comunication. The
basic structure of this nodel tinme-sharing systemis not origina

[SI[9].

The nodel tinme-sharing systemhas two pieces: the nonitor and the
processes. The nonitor performs several functions, including

swi tching control from process to process as appropriate (e.g., when
a process has used "enough" tinme or when an interrupt occurs),
managi ng core and the swappi ng nedium controlling the passing of
control fromone process to another (i.e., protection nechanisms),
creating processes, caring for sleeping processes, etc.

The processes performnost of the functions normally thought of as
bei ng supervisor functions in a time-sharing system (system
processes) as well as the nornmal user functions (user processes). A
typi cal system process is the disc handler or the file system For
efficiency reasons it may be useful to think of system processes as
bei ng | ocked in core.

A process can call on the nonitor to performseveral functions: start
anot her, equal, autononous process (i.e., load a programor find a
copy of a program sonewhere that can be shared, start it, and pass it
some initial paranmeters); halt the running process; put the current
process to sleep pending a specified event; send a nessage to a
speci fi ed process; beconme available to receive a nmessage froma

speci fied process; beconme available to receive a nessage from any
process; send a nessage to a process able to receive from any
process; and request a unique nunber. There undoubtedly should al so
be other nmonitor functions. It is left as an exercise to the reader
to convince hinself that the nonitor he is saddled with can be nade
to provide these functions -- nobst can.

Il will not concern nyself with protection considerations here, but
instead will assunme all of the processes are "good" processes which
never make any mistakes. |If the reader needs a protection structure
to keep in mind while he reads this note, the _capability_ system
described in [5][6][7][8] should be satisfying.

W now ook a little closer at the eight operations |isted above that
a process can ask the nonitor to perform

Wl den [Page 3]

RFC 61 I nterprocess Conmuni cation in a Conputer Network July 1970

START. This operation starts another process. It has two
paraneters -- sonme kind of identification for the programthat is to
be | oaded and a paraneter list for that program Once the program
is loaded, it is started at its given entry point and passed its
paraneter list in sone well known manner. The process will continue
to exist until it halts itself.

HALT. This operation puts the currently running process to sleep
pendi ng the conpletion of sone event. The operation has one
paraneter, the event to be waited for. Sanple events are arrival of
a hardware interrupt, arrival of a nessage from another process, etc.
The process is restarted at the instruction after the SLEEP conmand.
The nmonitor never unilaterally puts a process to sl eep except when
the process overflows its quantum

RECEI VE. This operation allows another process to send a nessage to
this process. The operation has four paranmeters: the port (defined
bel ow) awaiting the nmessage, the port a nessage will be accepted
from a specification of the buffer available to receive the nessage,
and a |location of transfer to when the transmission is conplete. [In
other words, an interrupt location. Any nessage port may be used to
allow interrupts, event channels, etc. The user progranms what he
want s. |

SEND. This operation sends a nessage to sonme other process. [I
suppose a process could also send a nessage to itself.] It has four
paraneters: a port to send the nessage to, the port the nessage is
bei ng sent from the nessage, and a location to transfer to when the
transm ssion is conplete.

RECEI VE ANY. This operation allows any process to send a nessage to
this process. The operation has four parameters: the port awaiting

t he nessage, the buffer available to receive the nessage, a | ocation
to transfer to when the nessage is received, and a | ocation where the
port which sent the nmessage nmay be noted.

SEND FROM ANY. This operation allows a process to send a nessage to
a process able to receive a nessage fromany process. It has the
same four paraneters as SEND. The necessity for this operation will
be di scussed bel ow.

UNI QUE. This operation obtains a unique nunber fromthe nonitor

A port_is a particular data path to or froma process. Al ports
have an associ ated uni que nunber which is used to identify the port.
Ports are used in transmtting nmessages from one process to another
in the follow ng fashion. Consider two processes, A and B, w shing
to communi cate. Process A executes a RECEIVE at port N fromport M

Wl den [Page 4]

RFC 61 I nterprocess Conmuni cation in a Conputer Network July 1970

Process B executes a SEND to port N fromport M The nonitor natches
up the port nunbers and transfers the nessage from process B to
process A. As soon as the buffer has been fully transmtted out of
process B, process Bis restarted at the location specified in the
SEND operation. As soon as the nessage is fully received at process
A, process Ais restarted at the location specified in the RECEI VE
operation. Just how the processes cone by the correct port nunbers
with which to communi cate with other processes is not the concern of
the nmonitor -- this problemis left to the processes.

An exanple. Suppose that our nodel tinme-sharing systemis
initialized to have several processes always running. Additionally,
t hese permanent processes have sone universally known and permanently
assigned ports. [O perhaps there is only one pernanently known port
whi ch belongs to a directory-process which keeps a table of

per manent - process/ wel | - known- port associ ations.] Suppose that two of
the pernmanently running processes are the | ogger-process and the

tel et ype-scanner-process. Wen the tel etype-scanner-process first
starts running, it puts itself to sleep awaiting an interrupt from
the hardware tel etype scanner. The |logger-process initially puts
itself to sleep awaiting a nessage fromthe tel etype-scanner-process
via wel | -known pernmanent SEND and RECEI VE ports. The teletype-
scanner - process keeps a table indexed by tel etype nunber containing
in each entry a port to send characters fromthat teletype to, and a
port at which to receive characters for that teletype. If a
character arrives (waking up the tel etype-scanner-process) and the
process does not have any entry for that teletype, it gets a pair of
uni que nunbers fromthe nonitor (via UNIQUE) and sends a nessage
containing this pair of nunbers to the | ogger-process using the ports
that the | ogger-process is known to have a RECElI VE pendi ng for.
[Actual |y, the scanner process could al ways use the same pair of port
nunbers for a particular teletype as long as they were passed on to
only one copy of the executive at a tinme.] The scanner-process al so
enters the pair of nunbers in the teletype table, and sends the
characters and all future characters fromthis teletype to the port
with the first nunber fromthe port with the second nunber. The
scanner - process probably al so passes a second pair of unique nunbers
to the logger-process for it to use for teletype output and does a
RECEI VE usi ng these nunbers. The | ogger-process when it receives the
nmessage fromthe scanner-process, starts up a copy of what SDS 940
TSS [12] users call the executive (that program which prints file
directories, tells who is on other tel etypes, runs subsystens, etc.)
and passes this copy of the executive, the port nunbers so this
executive-process can also do its in's and out’s to the tel etype
using these ports. |If the |ogger-process wants to get a job nunber
and password fromthe user, it can tenporarily use the port nunbers
to conmunicate with the user before it passes themon to the

executi ve.

Wl den [Page 5]

RFC 61 I nterprocess Conmuni cation in a Conputer Network July 1970

Port nunbers are often passed anong processes. More rarely, a port
is transferred to another process. It is crucial that once a process
transfers a _port_ to sone other process that the first process no

| onger use the port. W could add a nmechani smthat enforces this.
The protected object systemof [8] is one such nechanism [O
course, if the protected object systemis available to us, there is
really no need for two port nunbers to be specified before a

transni ssion can take place. The fact that a process knows an

exi sting RECElIVE port nunber is prinma facie evidence of the process’
right to send to that port. The difference between RECElI VE and
RECEI VE ANY ports then depends solely on the nunber of copies of a
particul ar port number that have been passed out. A system based on
this approach would clearly be preferable to the one described here
if it was possible to assunme all of the autononobus tine-sharing
systemin a network woul d adopt this protection nechanism |[If this
assunption cannot be nmade, it seens nore practical to require both
port numnbers.]

Note that sonewhere in the nonitor there nust be a table of port
nunbers associated with processes and restart |ocations. The table
entries are cleared after each SEND/ RECEI VE match is made. Also note
that if a process is running (perhaps asleep), and has RECEI VE ANY
pendi ng, then any process knowi ng the receive port nunber can talk to
that process wi thout going through | oggers or any of that. This is
obvi ously essential within a local time-sharing systemand seens very
useful in a nore general network if the ideal of resource sharing is
to be reached.

When a SEND i s executed, nothing happens until a matching RECEIVE is
executed. |If a proper RECEIVE is not executed for sonme tinme the SEND
is tined out after a while and the SENDing process is notified. |If a
RECEI VE i s executed but the nmatching SEND does not happen for a | ong
time, the RECEIVE is tinmed out and the RECEI Ving process is notified.

A RECEI VE ANY never tines out, but nmay be taken back. A SEND FROM

ANY nmessage is always sent inmediately and will be discarded if a
proper receiver does not exist. An error nessage is not returned and
acknowl edgnent, if any, is up to the processes. |f the table where

the SEND and RECEI VE are matched up ever overfl ows, a process
originating a further SEND or RECEIVE is notified just as if the SEND
or RECEI VE tined out.

Generally, well known, permanently assigned ports are used via
RECEI VE ANY and SEND FROM ANY. The permanent ports will nost often
be used for starting processes going and consequently little data
will be sent via them

Wl den [Page 6]

RFC 61 I nterprocess Conmuni cation in a Conputer Network July 1970

Still another exanple, this time a denonstration of the use of the
FORTRAN conpiler. W have already expl ai ned how a user sits down at
his tel etype and gets connected to an executive. W go on from
there. The user is typing in and out of the executive which is doing
SENDs and RECEI VEs. Eventually the user types RUN FORTRAN and the
executive asks the nonitor to start up a copy of the FORTRAN conpil er
and passes to FORTRAN as start up paraneters the two ports the
executive was using to talk to the teletype. FORTRAN is of course
expecting these paraneters and does SENDs and RECEI VEs to these ports
to di scover what input and output files the user wants to use.
FORTRAN types I NPUT FILE? to the user who responds FO01l. FORTRAN
then sends a nessage to the file-system process which is asleep
waiting for something to do. The nessage is sent via well-known
ports and it asks the file systemto open FOO1l for input. The
nmessage al so contains a pair of ports that the file-system process
can use to send its reply. The file-system| ooks up FOOl, opens it
for input, makes sonme entries in its open file tables, and sends a
nmessage back to FORTRAN which contains the ports which FORTRAN can
use to read the file. The same procedure is followed for the output
file. Wen the conpilation is conplete, FORTRAN returns the tel etype
port nunbers back to the executive which has been asleep waiting for
a message from FORTRAN, and then FORTRAN halts itself. The file-
system process goes back to sleep when it has nothing else to do.

[The reader should have noticed by now that | do not |ike to think of
a new process (consisting of a new conceptual copy of a program
being started up each tinme another user wi shes to use the program
Rather, | like to think of the programas a single process which
knows it is being used sinultaneously by many other processes and
consciously multiplexes anong the users or delays service to users
until it can get around to them]

Again, the file-system process can keep a snall collection of port
nunbers which it uses over and over if it can get file systemusers
to return the port nunbers when they are done with them O course,
when this collection of port nunbers has eventually dribbl ed away,
the file systemcan get sone new uni que nunbers fromthe nonitor

Not e that when two processes wish to communi cate they set up the
connection thenselves, and they are free to do it in a mutually
conveni ent manner. For instance, they can exchange port nunbers or
one process can pick all the port nunbers and instruct the other
process which to use. O course, in a particular inplenentation of a
time-sharing system the builders of the system m ght choose to
restrict the processes’ execution of SENDs and RECElI VEs and m ght
forbid arbitrary passing around of port nunbers, requiring instead
that the nmonitor be called (or sone other special program) to perform
t hese functi ons.

Wl den [Page 7]

RFC 61 I nterprocess Conmuni cation in a Conputer Network July 1970

Fl ow control is provided in this systemby the sinple nmethod of never
starting a SEND from one process until a RECElIVE is executed by the
receiver. O course, interprocess nessages nmay be sent back and
forth suggesting that a process stop sending or that space be

al l ocated, etc.

| NTERPROCESS COVMUNI CATI ON BETWEEN REMOTE PROCESS

The system described in the previous section easily generalizes to
al l ow i nterprocess comuni cati on between processes at geographically
different |ocations as, for exanple, within a conputer network.

Consi der first a sinple configuration of processes distributed around
the points of a star. At each point of the star there is an

aut ononous tine-sharing system A rather |arge, smart conputer
system called the Network Controller, exists at the center of the
star. No processes can run in this center system but rather it
shoul d be thought of as an extension of the nonitor of each time-
sharing systemin the network.

It should be obvious to the reader that if the Network Controller is
able to performthe operations SEND, RECElIVE, SEND FROM ANY, RECEI VE
ANY, and UNIQUE and that if all of the nonitors in all of the tine-
sharing systens in the network do not performthese operations

t hensel ves but rather ask the Network Controller to performthese
operations for them then we have solved the problem of interprocess
comuni cati on between renote processes. W have no further change to
meke.

The reason everything continues to work when we postul ate the

exi stence of the Network Controller is that the Network Controller
can keep track of which RECElI VEs have been executed and whi ch SENDs
have been executed and nmatch themup just as the nonitor did in the
nodel tine-sharing system A networkw de port nunbering scheme is
al so possible with the Network Controller knowi ng where (i.e., at
which site) a particular port is at a particular tine.

Next, consider a nore conplex network in which there is no comon
center point making it necessary to distribute the functions

perforned by the Network Controll er anong the network nodes. In the
rest of this section |l will showthat it is possible to efficiently
and conveniently distribute the functions perforned by the star

Net work Control |l er anong the many network sites and still enable

general interprocess communi cati on between renote processes.
Sone changes nust be made to each of the four SEND/ RECEI VE operations

descri bed above to adapt themfor use in a distributed network. To
RECEI VE i s added a paraneter specifying a site to which the RECElI VE

Wl den [Page 8]

RFC 61 I nterprocess Conmuni cation in a Conputer Network July 1970

is to be sent. To SEND FROM ANY and SEND i s added a site to send the
SEND to although this is normally the local site. Both RECElIVE and
RECEI VE ANY have added the provision for obtain the source site of
any received nessage. Thus, when a RECEIVE is executed, the RECElIVE
is sent to the site specified, possibly a renote site. Concurrently
a SEND is sent to the sane site, normally the local site of the
process executing the SEND. At this site, called the rendezvous
site, the RECEIVE is matched with the proper SEND and t he nessage
transnission is allowed to take place to the site from whence the
RECEI VE cane.

A RECEI VE ANY never leaves its originating site and therein lies the
necessity for SEND FROM ANY. It nust be possible to send a nessage
to a RECEI VE ANY port and not have the nessage bl ocked waiting for
RECEI VE at the sending site. O course, it wuld be possible to
construct the system so the SEND/ RECElI VE rendezvous takes pl ace at
the RECEI VE site and elimnate the SEND FROM ANY operation, but in ny
judgnent the ability to block a normal SEND transmni ssion at the
source site nore than nakes up for the added conplexity.

Sonewhere at each site a rendezvous table is kept. This table
contains an entry for each unmatched SEND or RECEI VE received at that
site and also an entry for all RECEIVE ANYs given at that site. A
mat chi ng SEND/ RECEI VE pair is cleared fromthe table as soon as the
mat ch takes place or perhaps when the transmission is conplete. As
inthe simlar table kept in the nodel tinme-sharing system SEND and
RECEI VE entries are timed out if unmatched for too | ong and the
originator is notified. RECEIVE ANY entries are cleared fromthe
table when a fulfilling nessage arrives.

The final change necessary to distribute the Network Controller
functions is to give each site a portion of the unique nunbers to
distribute via its UNIQUE operation. |’Il discuss this topic further
bel ow.

To nake it clear to the reader how the distributed Network Controller
wor ks, an exanple follows. The details of what process picks port
nunbers, etc. are only exenplary and are not a standard specified as
part of the system

Suppose there are two sites in the network: K and L. Process A at

site K wishes to communicate with process B at site L. Process B has
a RECEI VE ANY pending at port M

Wl den [Page 9]

RFC 61 I nterprocess Conmuni cation in a Conputer Network July 1970

SITE K SITE L
/ \ / \
/ \ / \

/ \ / \
| Process A | | Process B |
I I I I
I I I I
\ / \ /
\ / \ port M/

\- / \ o~

I
RECEI VE ANY

Process A, fortunately, knows of the existence of port Mat site L
and sends nessages using the SEND FROM ANY operation fromport N to
port M The message contains two port nunbers and instructions for
process B to SEND nessages to process Ato port P fromport Q Site
K's site nunber is appended to this nessage along with the nessage’s
SEND port N.

SITE K SITE L
/ \ / \
/ \ / \

/ \ / \
| Process A | | Process B |
I I I I
I I I I

\ / \ /

\ port N /--->SEND FROM --->\ port M /
\ / ANY \ /

to port M site L
containing K, N, P, & Q

Process A now executes a RECElIVE at port P fromport Q Process A
specifies the rendezvous site to be site L.

Wl den [Page 10]

RFC 61 I nterprocess Conmuni cation in a Conputer Network July 1970

SITE K SITE L

________ R

/ \ e |/ \

/ \ n T/ \
/ \ d a \
| | e b Process B |
| Process A | z | |
I I v e I
\ / o\ /
\ port P / RECEIVE --->u \ /

\- / MESSAGE s __ /

to site L

containing P, Q & K

A RECEI VE nessage is sent fromsite Kto site L and is entered in the
rendezvous table at site L. At some other time, process B executes a
SEND to port P fromport Q specifying site L as the rendezvous site.

SITE K SITE L

________ R

/ \ e |/ \

/ \ n T/ \
/ \ d a \
| | e b Process B |
| Process A | z | |
I I v e I
\ / o\ /
\ port P / u<--- port Q/

\ / SEND s \ /

to site L
containing P & Q

A rendezvous is nmade, the rendezvous table entry is cleared, and the
transnission to port P at site K takes place. The SEND site numnber

(and conceivably the SEND port nunber) are appended to the nessages

of the transmi ssion for the edification of the receiving process.

Wl den [Page 11]

RFC 61 I nterprocess Conmuni cation in a Conputer Network July 1970

SITE K SITE L
/ \ / \
/ \ / \

/ \ / \
| Process A | | Process B |
I I I I
I I I I

\ port P / \' port Q /

\ /| <---- transmssion <---- \ /
\-- / to port T, site K \-- /

contai ning data and L

Process B may sinmultaneously wish to execute a RECEIVE fromport N at
port M

Note that there is only one inportant control nessage in this system
whi ch noves between sites, the type of nessage that is called a
Host/ Host protocol nessage in [3]. This control nessage is the
RECEI VE nessage. There are two other possible intersite control
nmessages: an error nessage to the originating site when a RECEl VE or
SEND is tined out, and the SEND nessage in the rare case when the
rendezvous site is not the SEND site.

O course there nust also be a standard format for nmessages between
ports. For exanple, the follow ng:

Wl den [Page 12]

RFC 61 I nterprocess Conmuni cation in a Conputer Network July 1970

Fom e e e o oo R Sy T ot Sy +
| rendezvous site | | destination site|] | source site |
Fom e e e o oo R Sy T ot Sy +
| RECEI VE port | | RECElIVE port | | RECEIVE port |
Fom e e e o oo R Sy T ot Sy +
| SEND port | | SEND port [SEND port |
Fom e e e o oo R Sy T ot Sy +
| | | source port | |
| | o |
I | || I
I | || I
I | || I
I | || I
I | || I
| dat a | dat a [dat a |
I | || I
I | || I
I | || I
I | || I
I | || I
I | | I
Fom e e e o oo R Sy T ot Sy +

transmtted transmtted recei ved

by SEND by Net wor k by RECEI VE

process Controller process

Note: for a SEND FROM ANY nessage, the rendezvous site is the
destination site.

In the nodel tine-sharing systemit was possible to pass a port from
process to process. This is still possible with a distributed
Network Controller. [The reader unconvinced of the utility of port
passing is directed to read the section on reconnection in [11].]

Renenber that for a nmessage to be sent fromone process to another, a
SEND to port Mfromport N and a RECEI VE at port Mfrom port N nust
rendezvous, normally at the SEND site. Both processes keep track of
where they think the rendezvous site is and supply this site as a

par anet er of appropriate operations. The RECElIVE process thinks it
is the SEND site and the SEND process normally thinks it is the SEND
site also. Since once a SEND and a RECEI VE rendezvous, the

transm ssion is sent to the source of the RECEIVE and the entry in
the rendezvous table is cleared and nust be set up again for each
further transmssion fromNto M it is easy for a RECElIVE port to be
noved. |If a process sends both the port nunbers and the rendezvous
site nunber to a new process at some other site which executes a
RECEI VE usi ng these sane old port nunbers and rendezvous site

speci fication, the SENDer never knows the RECEIVEr has noved. It is

Wl den [Page 13]

RFC 61 I nterprocess Conmuni cation in a Conputer Network July 1970

slightly harder for a SEND port to nove. However, if it does, the
pair of port nunmbers that has been being used for a SEND and the
original rendezvous site nunber are passed to the new site. The
process at the new SEND site specifies the old rendezvous site with
the first SEND fromthe new site. The RECEIVE process will also
still think the rendezvous site is the old site, so the SEND and
RECEIVE will neet at the old site. Wen they neet, the entry in the
table at that site is cleared, the rendezvous site nunber for the
SEND nessage is changed to the site which originated the SEND nessage
and both the SEND and RECEI VE nessages are sent to the new SEND site
just as if they had been destined for there in the first place. The
SEND and RECEI VE then neet again at the new rendezvous site and
transni ssion may continue as if the port had never noved. Since al
transm ssions contain the source site nunber, further RECElIVEsS w ||
be sent to the new rendezvous site. It is possible to discover that
this special manipul ati on nust take place because a SEND nessage is
received at a site which did not originate the SEND nessage.
Everything is so easily changed because there are no permanent
connections to break and nove as in the once proposed reconnection
schene for the ARPA network [10][11] that is, connections only exist
fleetingly in the system described here and can therefore be remade
bet ween any pair of processes which at any tinme happen to know each
other’s port nunbers and have some clue where they each are.

O course, all of this could have been done by the processes sending

nmessages back and forth announci ng any potential noves and the new
site nunbers.

Wal den [Page 14]

RFC 61 I nterprocess Conmuni cation in a Conputer Network July 1970

REFERENCES

[1] L. Roberts and B. Wessler, Conputer Network Devel opment to
achi eve Resource Sharing, Proceedings 1970 SJCC.

[2] V. Wssotsky, F. F. Corbato, and R Gaham Structure of the
MULTI CS Supervi sor, Proceedi ngs 1965 FJCC.

[3] C Carr, S. Crocker, and V. Cerf, Host/Host Conmunication
Protocol in the ARPA Network, Proceedings 1970 SJCC.

[4] F. Heart, et al, The Interface Message Processor for the ARPA
Comput er Network, Proceedi ngs 1970 SJCC.

[5] W Ackerman and W Plunmrer, An |Inplenmentation of Milti-
processi ng Conputer System Proceedings Gatlinburg Synposium on
Operating System Principles.

[6] J. Dennis and E. Van Horn, Progranm ng Semantics for
Mul ti progranmi ng Conput ation, Proceedings of the San Di nes
Conf erence on Programr ng Language and Pragmati cs.

[7] B. Lanpson, Dynamic Protection Structures, Proceedings FJCC
1969.

[8] B. Lanpson, An Overview of the CAL Tinme-Sharing System Conputer
Center, University of Calif., Berkeley.

[9] P. Hansen, The Nucl eus of a Miltiprogramr ng System CACM April
1970.

[10] S. Crocker, ARPA Network Working G oup Note #36.
[11] J. Postel and S. Crocker, ARPA Network Working G oup Note #48.

[12] B. Lanpson, 940 Lectures.

Wl den [Page 15]

RFC 61 I nterprocess Conmuni cation in a Conputer Network July 1970

APPENDI X: AN APPLI CATI ON

Only one resource sharing conputer network currently exists, the

af orenenti oned ARPA network. In this Appendix, | hope to show that
the systemthat was described in this note can be applied to the ARPA
network. A significant body of work exists on interprocess

comuni cation within the ARPA network. This work cones in several

al nost distinct pieces: the Host/IMP protocol, |M/IM protocol, and
t he Host/Host protocol. | assume famliarity with this work in the
subsequent discussion. [See references [1][3][4][10][11];
Specifications for the Inter-connection of a Host to an | MP, BBN
Report No. 1822; and ARPA Network Working G oup Notes #37, 38, 39,
42, 44, 46, 47, 48, 49, 50, 54, 55, 56, 57, 56, 59.]

In the ARPA network, the | M s have sole responsibility for correctly
transmtting bits fromone site to another. The Hosts have sole
responsibility for making interprocess connections. Both the Host
and | MP are concerned and take a little responsibility for flow
control and nessage sequencing. Application of the interprocess
comuni cati on system | have described | eads ne to different

al l ocation of responsibility. The IMP still continues to correctly
nove bits fromone site to another, but the Network Controller also
resides in the IMP, and flow control is conpletely in the hands of
the processes running in the Hosts although perhaps they use
mechani sns provi ded by the | MPs.

The | MPs provide the SEND, RECEIVE, SEND FROM ANY, RECEI VE ANY, and
UNI QUE operations in slightly altered fornms for the Hosts and al so

mai ntai n the rendezvous tabl es including noving of SEND ports when

necessary.

It is perhaps easiest to step through the five operations again.

SEND. The Host gives the IMP a SEND port nunber, a RECEI VE port
nunber, the rendezvous site, and a buffer specification=20 (e.g.

start and end, beginning and length). The SEND is sent to the
rendezvous site, normally the local site. Wen the matching RECElI VE
arrives, the Host is notified of the RECElIVE port of the just arrived
recei ve nessage. This port nunber is sufficient to identify the
SENDi ng process although a given tinme-sharing system nmay have to keep
internal tables mapping this port nunber into useful internal process
identifiers. Sinultaneously, the IMP will begin to ask the Host for
speci fic chunks of the data buffer. These chunks will be sent off to
the destination as the IMPs RFNM control allows. |If a RFNMis not
received for too long, inplying a nessage has been lost in the
network, the Host is asked for the sane chunk of data again [which

al so all ows nessages to be conpletely throwm away by the | MP network

Wl den [Page 16]

RFC 61 I nterprocess Conmuni cation in a Conputer Network July 1970

if that should ever be useful], but the Host has the option to abort
the transmission at this time. Wiile a transm ssion is taking place,
the Host may ask the IMP to perform other operations including other
SENDs. A second SEND over a pair of ports already in the act of
transm ssion is noted and the SEND becones active as soon as the
first transmssion is conplete. A third identical SEND results in an
error nmessage to the Host. |If a SEND tinmes out, an error is returned
al so.

RECEI VE. The Host gives the |MP a SEND port, a RECEI VE port, a
rendezvous site, and a buffer description. The RECElIVE nessage is
sent to the rendezvous site. \Wien chunks of a transm ssion arrive
for the RECEI VE port they are passed to the Host al ong with RECElI VE
port nunber (and perhaps the SEND port number), and an indication to
the Host where to put the data in its input buffer. Wen the |ast of
the SEND buffer is passed into the Host, it is marked accordingly and
the Host can then detect this. A second RECEI VE over the sanme port
pair is allowed. A third results in an error nessage to the Host.
The mechani sm described in this and the previous paragraphs allows a
pair of processes to always have both a transmission in progress and
t he next one pending. Therefore, no efficiency is lost. On the

ot her hand, each transm ssion nust be preceded by a RECEIVE into a
specified buffer, thus providing conplete flow control. (It is
concei vabl e that the RECEIVE nessage could allocate a piece of
networ k bandwi dth while making its network traverse to the rendezvous
site.)

RECEI VE ANY. The Host gives the IMP a RECEIVE port and a buffer
descriptor. This works the same as RECEI VE but assunes the | ocal
site to be the rendezvous site.

SEND FROM ANY. The Host gives the | MP RECEI VE and SEND ports, the
destination site, and a buffer descriptor. The |IM requests and
transnits the buffer as fast as possible. A SEND FROM ANY for a
non- exi stent port is discarded at the destination site.

RFNM s are tied to the transmi ssion of a particular chunk of buffer
just as acknow edgnents are now tied to packets and they performthe
sane function. |If the Hosts allow the IMPs to reassenble buffers in
the Hosts by the IMP telling the Host where it should put a buffer
chunk as descri bed above, chunks of a single buffer can be
transmtted in parallel and several RFNVMs can be outstandi ng

si mul taneously. Packet reassenbly is still done in the | Ms.

A final operation nust be provided by the IMP -- the UN QUE
operation. There are nmany ways to naintain uni que nunbers and three
are presented here. The first possibility is for the Hosts to ask
the I MPs for the unique nunbers originally and then guarantee the

Wl den [Page 17]

RFC 61 I nterprocess Conmuni cation in a Conputer Network July 1970

integrity of any unique nunbers currently owned by | ocal processes
and prograns using whatever neans the Host has at its disposal. In
this case the | MPs would provide a nethod for a unique nunber to be
sent from one host to another and woul d vouch for the nunber’s
identity at the new site.

The second nethod is to sinply give the unique nunbers to the
processes that are using them depending on the non-malicious
behavi or of the processes to preserve the unique nunbers, or if an
acci dent shoul d happen, the two passwords (SEND and RECEI VE ports)
that are required to initiate a transmssion. |[If the unique nunbers
are given out in a non-sequential manner and are reasonably |ong (say
32 bits) there is little danger.

In the final nethod, a user identification is included in the port
nunbers and the individual tinme-sharing systens guarantee the
integrity of these identification bits. Thus a process, while not
able to be sure that the correct port is transmtting to him can be
sure that some port of the correct user is transmtting. This is the
so-call ed virtual net concept suggested by W Crow her [3].

Random Contents. Putting these operations in the IMP requires the
Host/ Host protocol programto be witten only once, rather than nany
times as is currently being done in the ARPA Network. The |IMPs can
stop a specific host transm ssion (by not asking for the next chunk
for a while) if that should seem necessary to alleviate congestion
probl ems in the communi cations subnet. And the |IM mght know the
approximate tine it takes for a RECEIVE to get to a particul ar other
site and warn the Host to wake up a process shortly before it becones
i mmi nent that a nessage for that process will be arriving.

[This RFC was put into machine readable formfor entry |
[into the online RFC archives by Katsunori Tanaka 4/99]

Wl den [Page 18]

