Net wor k Wor ki ng Group R Glligan
Request for Comments: 2133 Freegate
Cat egory: I nfornmational S. Thonson
Bel | core

J. Bound

Digital

W Stevens

Consul t ant

April 1997

Basi ¢ Socket |Interface Extensions for |Pv6
Status of this Meno

This meno provides information for the Internet community. This neno
does not specify an Internet standard of any kind. Distribution of
this meno is unlimted.

Abstract

The de facto standard application programinterface (API) for TCP/IP
applications is the "sockets" interface. Although this APl was

devel oped for Unix in the early 1980s it has al so been inplenmented on
a wide variety of non-Unix systenms. TCP/IP applications witten
usi ng the sockets APl have in the past enjoyed a high degree of
portability and we would |ike the sane portability with | Pv6
applications. But changes are required to the sockets APl to support
| Pv6 and this nmeno describes these changes. These include a new
socket address structure to carry | Pv6 addresses, new address
conversion functions, and some new socket options. These extensions
are designed to provide access to the basic |Pv6 features required by
TCP and UDP applications, including rmulticasting, while introducing a
m ni nrum of change into the system and providing conpl ete
conmpatibility for existing IPv4 applications. Additional extensions
for advanced | Pv6 features (raw sockets and access to the |IPv6
extensi on headers) are defined in another docunment [5].

Tabl e of Contents

1. I NntroduCti ON ...t e e e 2
2. Design Considerati ONSt 3
2.1. What Needs to be Changed 3
2.2 Dat @& TYPES . .o 5
2. 3. Header s 5
2.4 S UCT U B o it e e e e e e e e e e e e e e e e e 5
3. Socket Interface 5
3.1. |1Pv6 Address Family and Protocol Family 5
3.2. IPv6 Address Structure 6

Glligan, et. al. I nf or mat i onal [Page 1]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

3.3. Socket Address Structure for 4.3BSD Based Systens 6
3.4. Socket Address Structure for 4.4BSD- Based Systens 7
3.5. The Socket FUNCLiONS, 8
3.6. Conpatibility with IPv4 Applications 9
3.7. Conpatibility with IPv4 Nodes 9
3.8. IPve Widcard AdAress i, 10
3.9. 1 Pv6 Loopback AdAress i 11
4. Interface ldentification 12
4.1, Name-to-l1ndeX e 13
4.2, Index-to-Name e 13
4.3. Return Al Interface Nanmes and Indexes 14
4.4, Free MemDrY 14
5. Socket OptiONS 14
5.1. Changing Socket Type 15
5.2. Unicast Hop Limt e 16
5.3. Sending and Receiving Milticast Packets 17
6. Library Functions 19
6.1. Hostnane-to-Address Translation 19
6.2. Address To Hostnane Translation 22
6.3. Protocol -1 ndependent Hostnane and Service Nane Translation 22
6.4. Socket Address Structure to Hostnane and Service Nane 25
6.5. Address Conversion Functions 27
6.6. Address Testing MACIOSttt 28
7. Summary of New Definitions 29
8. Security Considerations it 31
9. ACKNOW edgmBNnt S 31
10. References 31
11. AUt hors’ AddresSSEeS it e e 32
1. Introduction

While | Pv4 addresses are 32 bits long, IPv6 interfaces are identified
by 128-bit addresses. The socket interface nake the size of an IP
address quite visible to an application; virtually all TCP/IP
applications for BSD- based systems have know edge of the size of an

| P address. Those parts of the APl that expose the addresses nust be

changed to accomodate the larger | Pv6 address size. |Pv6 also
i ntroduces new features (e.g., flow label and priority), sone of
whi ch nust be made visible to applications via the API. This neno

defines a set of extensions to the socket interface to support the
| arger address size and new features of |Pv6.

Glligan, et. al. I nf or mat i onal [Page 2]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

2.

2.

Desi gn Consi derati ons

There are a nunber of inportant considerations in designing changes
to this well-worn API:

- The APl changes shoul d provide both source and binary
conpatibility for prograns witten to the original API. That is,
exi sting program binaries should continue to operate when run on
a system supporting the new API. |In addition, existing
applications that are re-conpiled and run on a system supporting
the new APl should continue to operate. Sinply put, the AP
changes for | Pv6 should not break existing prograns.

- The changes to the APl should be as small as possible in order to
sinmplify the task of converting existing | Pv4 applications to
| Pv6.

- \Where possible, applications should be able to use this APl to
interoperate with both IPv6 and | Pv4 hosts. Applications shoul d
not need to know which type of host they are communicating with.

- | Pv6 addresses carried in data structures should be 64-bit
aligned. This is necessary in order to obtain optinmm
performance on 64-bit machi ne architectures.

Because of the inportance of providing |Pv4 conpatibility in the API,

these extensions are explicitly designed to operate on machi nes that

provi de conpl ete support for both IPv4 and | Pv6. A subset of this

APl coul d probably be designed for operation on systens that support

only I Pv6. However, this is not addressed in this neno.

VWhat Needs to be Changed
The socket interface APl consists of a few distinct conponents:
- Core socket functions.
- Address data structures.
- Nane-to-address translation functions.

- Address conversi on functions.

The core socket functions -- those functions that deal with such
things as setting up and teari ng dowmn TCP connections, and sendi ng
and receiving UDP packets -- were designed to be transport

i ndependent. \Where protocol addresses are passed as function
argunents, they are carried via opaque pointers. A protocol-specific

Glligan, et. al. I nf or mat i onal [Page 3]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

address data structure is defined for each protocol that the socket
functions support. Applications nmust cast pointers to these
protocol -specific address structures into pointers to the generic
"sockaddr" address structure when using the socket functions. These
functions need not change for |IPv6, but a new | Pv6-specific address
data structure is needed.

The "sockaddr _in" structure is the protocol -specific data structure
for IPv4. This data structure actually includes 8-octets of unused
space, and it is tenpting to try to use this space to adapt the
sockaddr _in structure to IPv6. Unfortunately, the sockaddr_in
structure is not large enough to hold the 16-octet |Pv6 address as
well as the other information (address famly and port numnber) that
is needed. So a new address data structure nust be defined for |Pv6.

The name-to-address translation functions in the socket interface are
get host bynane() and get hostbyaddr(). These nust be nodified to
support |1 Pv6 and the semantics defined nust provide 100% backward
conpatibility for all existing |IPv4 applications, along with | Pv6
support for new applications. Additionally, the PCSI X 1003.g work in
progress [4] specifies a new hostname-to-address translation function
whi ch is protocol independent. This function can also be used wth

| Pv6.

The address conversion functions -- inet_ntoa() and inet_addr() --
convert | Pv4 addresses between binary and printable form These
functions are quite specific to 32-bit |1Pv4 addresses. W have
desi gned two anal ogous functions that convert both IPv4 and | Pv6
addresses, and carry an address type paraneter so that they can be
extended to other protocol fanilies as well.

Finally, a few niscell aneous features are needed to support |Pv6.
New i nterfaces are needed to support the IPv6 flow | abel, priority,
and hop limt header fields. New socket options are needed to
control the sending and receiving of IPv6 multicast packets.

The socket interface will be enhanced in the future to provide access
to other IPv6 features. These extensions are described in [5].

Glligan, et. al. I nf or mat i onal [Page 4]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

2.

2.

2.

3.

3.

2. Data Types

The data types of the structure elenents given in this nmeno are

i ntended to be exanpl es, not absolute requirenments. Wenever
possi bl e, PCOSI X 1003. 1g data types are used: u_intN_t neans an

unsi gned integer of exactly N bits (e.g., u_int16_t) and u_int Nmt
means an unsigned integer of at least N bits (e.g., u_int32mt). W
al so assune the argument data types from 1003. 1g when possible (e.g.
the final argunment to setsockopt() is a size_t value). Wenever
buffer sizes are specified, the POSI X 1003.1 size t data type is used
(e.g., the two length argunments to getnaneinfo()).

3. Headers

When function prototypes and structures are shown we show t he headers
that nust be #i ncluded to cause that itemto be defined.

4, Structures

When structures are described the nmenbers shown are the ones that
nmust appear in an inplenentation. Additional, nonstandard nenbers
may al so be defined by an inplenentation.

The ordering shown for the nenbers of a structure is the recomended
ordering, given alignment considerations of multibyte nenbers, but an
i npl erentation may order the nenbers differently.

Socket Interface
This section specifies the socket interface changes for |Pv6.
1. |1Pv6 Address Fanily and Protocol Family
A new address fanmily nanme, AF_INET6, is defined in <sys/socket. h>.
The AF_I NET6 definition distinguishes between the original
sockaddr _in address data structure, and the new sockaddr_i n6 data
structure.
A new protocol family nane, PF_INET6, is defined in <sys/socket.h>.
Li ke nost of the other protocol fanmily names, this will usually be
defined to have the sane value as the corresponding address famly
name:

#define PF_I NET6 AF_| NET6

The PF_INET6 is used in the first argunment to the socket() function
to indicate that an I Pv6 socket is being created.

Glligan, et. al. I nf or mat i onal [Page 5]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

3.2. | Pvbe Address Structure

A new data structure to hold a single | Pv6 address is defined as
foll ows:

#i ncl ude <netinet/in. h>

struct in6_addr {
uint8 t s6_addr[16]; /* 1 Pv6 address */
}

This data structure contains an array of sixteen 8-bit el enents,
whi ch make up one 128-bit | Pv6 address. The |IPv6 address is stored
in network byte order.

3.3. Socket Address Structure for 4.3BSD Based Systens

In the socket interface, a different protocol-specific data structure
is defined to carry the addresses for each protocol suite. Each
protocol -specific data structure is designed so it can be cast into a
prot ocol -i ndependent data structure -- the "sockaddr" structure.

Each has a "family" field that overlays the "sa famly" of the
sockaddr data structure. This field identifies the type of the data
structure.

The sockaddr _in structure is the protocol-specific address data
structure for IPv4. It is used to pass addresses between
applications and the systemin the socket functions. The foll ow ng
structure is defined to carry | Pv6 addresses:

#i ncl ude <netinet/in.h>

struct sockaddr_in6 {

u_intlémt sin6_famly; /* AF_I NET6 */

u_intlémt si n6_port; /* transport |ayer port # */
u_int32mt sin6_flowinfo; /* IPv6 flow information */
struct in6_addr sin6_addr; /* 1 Pv6 address */

b

This structure is designed to be conpatible with the sockaddr data
structure used in the 4.3BSD rel ease.

The sin6_famly field identifies this as a sockaddr_in6 structure.

This field overlays the sa_famly field when the buffer is cast to a
sockaddr data structure. The value of this field nust be AF_| NET6.

Glligan, et. al. I nf or mat i onal [Page 6]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

The sin6_port field contains the 16-bit UDP or TCP port nunber. This
field is used in the same way as the sin_port field of the
sockaddr _in structure. The port nunber is stored in network byte

or der.

The sin6_flowinfo field is a 32-bit field that contains two pieces of
information: the 24-bit IPv6 flow |l abel and the 4-bit priority field.
The contents and interpretation of this menber is unspecified at this
tinme.

The sin6_addr field is a single in6_addr structure (defined in the
previous section). This field holds one 128-bit | Pv6 address. The
address is stored in network byte order.

The ordering of elenments in this structure is specifically designed
so that the sin6_addr field will be aligned on a 64-bit boundary.
This is done for optinmum performance on 64-bit architectures.

Notice that the sockaddr_in6 structure will normally be I arger than
the generic sockaddr structure. On many existing inplenmentations the
si zeof (struct sockaddr_in) equals sizeof (struct sockaddr), with both
being 16 bytes. Any existing code that nakes this assunption needs
to be exam ned carefully when converting to | Pv6.

3.4. Socket Address Structure for 4.4BSD Based Systens

The 4.4BSD rel ease includes a small, but inconpatible change to the
socket interface. The "sa fanmily" field of the sockaddr data
structure was changed froma 16-bit value to an 8-bit value, and the
space saved used to hold a length field, naned "sa_len". The
sockaddr _in6 data structure given in the previous section cannot be
correctly cast into the newer sockaddr data structure. For this
reason, the following alternative | Pv6 address data structure is
provi ded to be used on systens based on 4. 4BSD:

#i ncl ude <netinet/in. h>
#define SIN6_LEN

struct sockaddr_in6 {

u_char sin6_|I en; /* length of this struct */
u_char sin6_famly; /* AF_I NET6 */

u_intlémt si n6_port; /* transport |ayer port # */
u_int32mt sin6_flowinfo; /* IPv6 flow information */
struct in6_addr sin6_addr; /* 1 Pv6 address */

b

Glligan, et. al. I nf or mat i onal [Page 7]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

The only differences between this data structure and the 4.3BSD
variant are the inclusion of the length field, and the change of the
famly field to a 8-bit data type. The definitions of all the other
fields are identical to the structure defined in the previous

secti on.

Systens that provide this version of the sockaddr_in6 data structure
nmust al so declare SIN6_LEN as a result of including the
<netinet/in.h> header. This nacro allows applications to deternine
whet her they are being built on a systemthat supports the 4.3BSD or
4.4BSD variants of the data structure.

3.5. The Socket Functions

Applications call the socket() function to create a socket descriptor
that represents a conmunication endpoint. The argunents to the
socket () function tell the system which protocol to use, and what
format address structure will be used in subsequent functions. For
exanple, to create an | Pv4/ TCP socket, applications nake the call:

s = socket (PF_I NET, SOCK_STREAM O0);
To create an | Pv4/UDP socket, applications nake the call
s = socket (PF_I NET, SOCK_DGRAM 0);

Applications may create | Pv6/ TCP and | Pv6/ UDP sockets by sinply using
the constant PF_INET6 instead of PF_INET in the first argunent. For
exanple, to create an | Pv6/ TCP socket, applications nake the call:

s = socket (PF_I NET6, SOCK_STREAM 0);
To create an | Pv6/ UDP socket, applications nake the call
s = socket (PF_I NET6, SOCK DGRAM O0);

Once the application has created a PF_INET6 socket, it must use the
sockaddr i n6 address structure when passing addresses in to the
system The functions that the application uses to pass addresses
into the systemare

bi nd()
connect ()
sendnsg()
sendt o()

Glligan, et. al. I nf or mat i onal [Page 8]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

The systemwi ||l use the sockaddr_in6 address structure to return
addresses to applications that are using PF_INET6 sockets. The
functions that return an address fromthe systemto an application
are:

accept ()
recvfrom)
recvnsg()

get peer nane()
get socknane()

No changes to the syntax of the socket functions are needed to
support 1 Pv6, since all of the "address carrying" functions use an
opaque address pointer, and carry an address length as a function
argunent .

3.6. Conpatibility with I Pv4 Applications

In order to support the |arge base of applications using the original
APl , system i npl ementations nust provide conplete source and binary
conmpatibility with the original API. This neans that systens nust
continue to support PF_I NET sockets and the sockaddr_in address
structure. Applications nmust be able to create |Pv4/TCP and | Pv4/ UDP
sockets using the PF_INET constant in the socket() function, as
described in the previous section. Applications should be able to
hol d a conbi nati on of |Pv4/TCP, |Pv4/UDP, |1Pv6/ TCP and | Pv6/ UDP
sockets sinultaneously within the sane process.

Applications using the original APl should continue to operate as
they did on systens supporting only IPv4. That is, they should
continue to interoperate with | Pv4 nodes.

3.7. Conpatibility with I Pv4 Nodes

The APl al so provides a different type of conpatibility: the ability
for IPv6 applications to interoperate with IPv4 applications. This
feature uses the | Pv4-napped | Pv6 address format defined in the | Pv6
addressing architecture specification [2]. This address format
allows the I Pv4 address of an I Pv4 node to be represented as an | Pv6
address. The |IPv4 address is encoded into the | ow order 32 bits of
the | Pv6 address, and the high-order 96 bits hold the fixed prefix
0:0:0:0:0: FFFF. | Pv4-mapped addresses are witten as foll ows:

.. FFFF: <l Pv4- addr ess>
These addresses are often generated automatically by the

get host bynanme() function when the specified host has only | Pv4
addresses (as described in Section 6.1).

Glligan, et. al. I nf or mat i onal [Page 9]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

Applications may use PF_INET6 sockets to open TCP connections to | Pv4
nodes, or send UDP packets to |Pv4 nodes, by sinply encoding the
destination's | Pv4 address as an | Pv4-mapped | Pv6 address, and
passi ng that address, within a sockaddr _in6 structure, in the
connect () or sendto() call. Wen applications use PF_I NET6 sockets
to accept TCP connections from | Pv4 nodes, or receive UDP packets
fromlPv4d nodes, the systemreturns the peer’s address to the
application in the accept(), recvfrom(), or getpeernanme() call using
a sockaddr _in6 structure encoded this way.

Few applications will likely need to know which type of node they are
interoperating with. However, for those applications that do need to
know, the IN6_I S ADDR VAMAPPED() macro, defined in Section 6.6, is
provi ded.

3.8. | Pv6 WIldcard Address

Wil e the bind() function allows applications to select the source IP
address of UDP packets and TCP connections, applications often want
the systemto select the source address for them Wth |IPv4, one
specifies the address as the synbolic constant | NADDR_ANY (called the
"wi | dcard" address) in the bind() call, or sinply omits the bind()
entirely.

Since the | Pv6 address type is a structure (struct in6_addr), a
synmbol i ¢ constant can be used to initialize an | Pv6 address vari abl e,
but cannot be used in an assignnent. Therefore systens provide the

| Pv6 wildcard address in two forns.

The first version is a global variable naned "i n6addr_any" that is an
i n6_addr structure. The extern declaration for this variable is
defined in <netinet/in.h>:

extern const struct in6_addr in6addr_any;

Glligan, et. al. I nf or mat i onal [Page 10]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

Applications use in6addr_any sinmilarly to the way they use | NADDR _ANY
in IPv4d. For exanple, to bind a socket to port nunber 23, but |et
the system sel ect the source address, an application could use the
foll owi ng code:

struct sockaddr _i n6 sin6;

sin6.sin6_famly = AF_I NET6;

sin6.sin6_flowi nfo = 0;

sin6.sin6_port = htons(23);

si n6.si n6_addr = in6addr_any; [/* structure assignnent */

if tbind(s, (struct sockaddr *) &sin6, sizeof(sin6)) == -1)
The other version is a synbolic constant named | NGADDR_ANY_INIT and

is defined in <netinet/in.h> This constant can be used to
initialize an in6_addr structure:

struct in6_addr anyaddr = | N6GADDR_ANY_I NI T;
Note that this constant can be used ONLY at declaration tinme. It can
not be used to assign a previously declared in6_addr structure. For
exanmpl e, the follow ng code will not work:

/* This is the WRONG way to assign an unspecified address */
struct sockaddr _i n6 si n6;

siné.éinG_addr = IN6GADDR ANY_INIT; /* will NOT conpile */

Be aware that the I Pv4 | NADDR xxx constants are all defined in host
byte order but the IPv6 | NBADDR xxx constants and the |Pv6
i n6addr _xxx externals are defined in network byte order.

3.9. |1Pv6 Loopback Address

Applications may need to send UDP packets to, or originate TCP
connections to, services residing on the local node. 1In IPv4, they
can do this by using the constant |Pv4 address | NADDR LOOPBACK i n
their connect(), sendto(), or sendmsg() call.

| Pv6 al so provides a | oopback address to contact |ocal TCP and UDP

services. Like the unspecified address, the | Pv6 | oopback address is
provided in two forns -- a global variable and a synbolic constant.

Glligan, et. al. | nf or mat i onal [Page 11]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

The gl obal variable is an in6_addr structure naned
"in6addr _| oopback." The extern declaration for this variable is
defined in <netinet/in.h>:

extern const struct in6_addr in6addr_| oopback;

Applications use in6addr_| oopback as they woul d use | NADDR_LOOPBACK
in |Pv4 applications (but beware of the byte ordering difference
mentioned at the end of the previous section). For exanple, to open
a TCP connection to the local telnet server, an application could use
the foll owi ng code:

struct sockaddr _i n6 si n6;

sin6.sin6_famly = AF_I NET6;

sin6.sin6_flowi nfo = 0;

si n6. si n6_port ht ons(23);

si n6. si n6_addr i n6addr _| oopback; /* structure assignnent */

if tcbnnect(s, (struct sockaddr *) &sin6, sizeof(sin6)) == -1)

The synbolic constant is named | N6GADDR LOOPBACK INIT and is defined
in <netinet/in.h> It can be used at declaration tinme ONLY;, for
exanpl e:

struct in6_addr | oopbackaddr = | NGADDR_LOOPBACK | NI T;

Li ke | NGADDR_ANY_INI'T, this constant cannot be used in an assignnent
to a previously declared | Pv6 address vari abl e.

4. Interface ldentification

This APl uses an interface index (a snmall positive integer) to
identify the local interface on which a nulticast group is joined
(Section 5.3). Additionally, the advanced APl [5] uses these sane
interface indexes to identify the interface on which a datagramis
received, or to specify the interface on which a datagramis to be
sent .

Interfaces are normally known by nanes such as "le0", "sl1", "ppp2",
and the Iike. On Berkeley-derived inplenentations, when an interface
is made known to the system the kernel assigns a unique positive
integer value (called the interface index) to that interface. These
are small positive integers that start at 1. (Note that 0 is never
used for an interface index.) There may be gaps so that there is no
current interface for a particular positive interface index.

Glligan, et. al. | nf or mat i onal [Page 12]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

This APl defines two functions that map between an interface name and
index, a third function that returns all the interface nanes and

i ndexes, and a fourth function to return the dynanic nmenory all ocated
by the previous function. How these functions are inplenented is
left up to the inplenentation. 4.4BSD inplenentations can inplenment
these functions using the existing sysctl() function with the

NET_RT_LI ST comand. Oher inplenmentations may wish to use ioctl ()
for this purpose.

4.1. Nane-to-I|ndex

The first function maps an interface nane into its correspondi ng
i ndex.

#i ncl ude <net/if.h>
unsigned int if_nametoindex(const char *ifnane);
If the specified interface does not exist, the return value is O.
4.2. | ndex-to-Nanme

The second function maps an interface index into its correspondi ng
namne.

#include <net/if.h>
char *if_i ndextonane(unsigned int ifindex, char *ifnane);

The ifname argunent nust point to a buffer of at |east | FNAMSI Z bytes
into which the interface nane corresponding to the specified index is
returned. (IFNAMSIZ is also defined in <net/if.h> and its val ue
includes a termnating null byte at the end of the interface nane.)
This pointer is also the return value of the function. |If thereis
no interface corresponding to the specified index, NULL is returned.

Glligan, et. al. I nf or mat i onal [Page 13]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

4. 3.

4.

4.

Return Al Interface Nanes and | ndexes

The final function returns an array of if_namei ndex structures, one
structure per interface.

#i ncl ude <net/if.h>

struct if_namei ndex {
unsi gned int if_index; [/* 1, 2, ... */
char *i f _name; /* null term nated nane: "leO", ... */

} ’
struct if_nanei ndex *if_nanei ndex(void);

The end of the array of structures is indicated by a structure with
an if_index of 0 and an if_name of NULL. The function returns a NULL
poi nter upon an error.

The menory used for this array of structures along with the interface
nanes pointed to by the if_nanme nmenbers is obtained dynamically.
This nenory is freed by the next function.

Free Menory

The followi ng function frees the dynanic nenory that was all ocated by
i f_nanei ndex().

#i ncl ude <net/if.h>
void if_freenanei ndex(struct if_nanmei ndex *ptr);

The argunent to this function nust be a pointer that was returned by
i f_nanei ndex().

Socket Options

A nunber of new socket options are defined for IPv6. Al of these
new options are at the IPPROTO IPV6 |evel. That is, the "level"
paraneter in the getsockopt() and setsockopt() calls is | PPROTO_|I PV6
when using these options. The constant name prefix IPV6_ is used in
all of the new socket options. This serves to clearly identify these
options as applying to I Pv6.

The declaration for |IPPROTO | PV6, the new | Pv6 socket options, and
rel ated constants defined in this section are obtained by including
t he header <netinet/in.h>.

Glligan, et. al. | nf or mat i onal [Page 14]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

5.1. Changi ng Socket Type

Uni x all ows open sockets to be passed between processes via the
exec() call and other neans. It is a relatively conmon application
practice to pass open sockets across exec() calls. Thus it is
possi bl e for an application using the original APl to pass an open
PF_I NET socket to an application that is expecting to receive a

PF_I NET6 socket. Simlarly, it is possible for an application using
the extended API to pass an open PF_INET6 socket to an application
using the original APlI, which would be equipped only to deal with
PF_I NET sockets. Either of these cases could cause probl ens, because
the application that is passed the open socket m ght not know how to
decode the address structures returned in subsequent socket

functi ons.

To renedy this problem a new setsockopt() option is defined that
allows an application to "convert” a PF_INET6 socket into a PF_I NET
socket and vice versa.

An | Pv6 application that is passed an open socket from an unknown
process nay use the | PV6_ADDRFORM set sockopt() option to "convert"
the socket to PF_INET6. Once that has been done, the systemwl|
return sockaddr _in6 address structures in subsequent socket
functions.

An |1 Pv6 application that is about to pass an open PF_I NET6 socket to
a programthat is not be | Pv6 capabl e can "downgrade" the socket to
PF_I NET before calling exec(). After that, the systemw | return
sockaddr _in address structures to the application that was exec()’ ed.
Be aware that you cannot downgrade an | Pv6 socket to an |Pv4 socket
unl ess all nonwi |l dcard addresses al ready associated with the | Pv6
socket are | Pv4-napped | Pv6 addresses.

The | PV6_ADDRFORM option is valid at both the | PPROTO_|I P and

| PPROTO_| PV6 | evels. The only valid option values are PF_I NET6 and
PF_INET. For exanple, to convert a PF_INET6 socket to PF_INET, a
program woul d call:

int addrform = PF_I NET;
if (setsockopt(s, |PPROTO_IPV6, |PV6_ADDRFORM

(char *) &addrform sizeof(addrform) == -1)
perror("setsockopt |PV6_ADDRFORM') ;

Glligan, et. al. I nf or mat i onal [Page 15]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

An application my use | PV6_ADDRFORM wi t h get sockopt() to learn
whet her an open socket is a PF_INET of PF_INET6 socket. For exanple:

int addrform
size_t len = sizeof(addrform;

if (getsockopt(s, |PPROTO_IPV6, |PV6_ADDRFORM
(char *) &addrform & en) == -1)
perror ("getsockopt |PV6_ADDRFORM') ;
el se if (addrform == PF_I NET)
printf("This is an | Pv4 socket.\n");
else if (addrform == PF_I NET6)
printf("This is an | Pv6 socket.\n");
el se
printf("This systemis broken.\n");

5.2. Unicast Hop Limt

A new setsockopt () option controls the hop Iinit used in outgoing
uni cast | Pv6 packets. The nane of this option is |PV6_UN CAST_HOPS,
and it is used at the IPPROTO_ I PV6 | ayer. The follow ng exanple
illustrates howit is used:

int hoplimt = 10;

if (setsockopt(s, |PPROTO_|IPV6, |PV6_UN CAST_HOPS
(char *) &hoplinmt, sizeof(hoplinmt)) == -1)
perror ("setsockopt |PV6_UN CAST_HOPS");

When the | PV6_UNI CAST_HOPS option is set with setsockopt(), the
option value given is used as the hop lint for all subsequent

uni cast packets sent via that socket. |If the option is not set, the
system sel ects a default value. The integer hop Iimt value (called
X) is interpreted as foll ows:

X < -1: return an error of ElI NVAL
x == -1: use kernel default

0 <= x <= 255: use X

X >= 256: return an error of ElI NVAL

Glligan, et. al. I nf or mat i onal [Page 16]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

The | PV6_UNI CAST_HOPS option nmay be used with getsockopt() to
determne the hop limt value that the systemw |l use for subsequent
uni cast packets sent via that socket. For exanple:

int hoplimt;
size_t len = sizeof(hoplimt);

if (getsockopt(s, |PPROTO_I|IPV6, |PV6_UN CAST_HOPS
(char *) &hoplint, & en) == -1)
perror ("getsockopt |PV6_UN CAST_HOPS");
el se
printf("Using %d for hop limt.\n", hoplimt);

.3. Sending and Receiving Milticast Packets

| Pv6 applications may send UDP nul ti cast packets by sinply specifying
an | Pv6 nmulticast address in the address argunent of the sendto()
function.

Three socket options at the | PPROTO_| PV6 | ayer control some of the
paraneters for sending nulticast packets. Setting these options is
not required: applications may send nulticast packets w thout using
these options. The setsockopt() options for controlling the sending
of nmulticast packets are sunmmari zed bel ow.

| PV6_MULTI CAST | F

Set the interface to use for outgoing nulticast packets. The
argunment is the index of the interface to use.

Argunent type: unsigned int
| PV6_MULTI CAST_HOPS

Set the hop limt to use for outgoing nulticast packets.
(Note a separate option - |1 PV6_UNI CAST _HOPS - is provided to
set the hop linmit to use for outgoing unicast packets.) The
interpretation of the argunent is the sane as for the

| PV6_UNI CAST_HOPS opti on:

X < -1: return an error of ElI NVAL
x == -1: use kernel default

0 <= x <= 255: use X

X >= 256: return an error of ElI NVAL

Argurent type: int

Glligan, et. al. | nf or mat i onal [Page 17]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

| PV6_MULTI CAST_LOCP

Control s whet her outgoing multicast packets sent should be
delivered back to the local application. A toggle. |If the
option is set to 1, nulticast packets are | ooped back. If it
is set to 0, they are not.

Argunent type: unsigned int

The reception of nulticast packets is controlled by the two
set sockopt () options summari zed bel ow.

| PV6_ADD_MEMBERSHI P

Join a nulticast group on a specified local interface. |If
the interface index is specified as 0, the kernel chooses the
|l ocal interface. For exanple, sone kernels | ook up the

mul ticast group in the normal |1 Pv6 routing table and using
the resulting interface.

Argunent type: struct ipv6_nreq

| PV6_DROP_MEMBERSHI P
Leave a nulticast group on a specified interface.
Argunent type: struct ipv6_nreq

The argunent type of both of these options is the ipv6_nreq
structure, defined as:

#i ncl ude <netinet/in. h>

struct ipv6_nreq {
struct in6_addr ipvenr_multiaddr; /* IPv6 nulticast addr */
unsi gned i nt i pvénr _interface; /* interface index */

b

Note that to receive nulticast datagrans a process nust join the
mul ti cast group and bind the UDP port to which datagrams will be
sent. Sone processes also bind the nmulticast group address to the
socket, in addition to the port, to prevent other datagrans destined
to that same port from being delivered to the socket.

Glligan, et. al. I nf or mat i onal [Page 18]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

6.

6.

Li brary Functi ons

New | i brary functions are needed to performa variety of operations
with I Pv6 addresses. Functions are needed to | ookup | Pv6 addresses
in the Domain Nane System (DNS). Both forward | ookup (hostnane-to-
address translation) and reverse | ookup (address-to-hostnane

transl ation) need to be supported. Functions are also needed to
convert | Pv6 addresses between their binary and textual form

Host nane-t o- Addr ess Transl ati on

The comonly used function gethostbynanme() renains unchanged as does
the hostent structure to which it returns a pointer. Existing
applications that call this function continue to receive only |Pv4
addresses that are the result of a query in the DNS for A records.
(We assune the DNS is being used; sonme environnments may be using a
hosts file or sonme other nane resolution system either of which may
i npede renunbering. W also assune that the RES USE_| NET6 resol ver
option is not set, which we describe in nore detail shortly.)

Two new changes are nade to support |Pv6 addresses. First, the
follow ng function is new

#i ncl ude <sys/socket. h>
#i ncl ude <netdb. h>

struct hostent *gethostbynanme2(const char *nane, int af);

The af argunment specifies the address famly. The default operation
of this function is sinple:

- If the af argunent is AF_INET, then a query is made for A
records. |If successful, |Pv4 addresses are returned and the
h_l ength menber of the hostent structure will be 4, else the
function returns a NULL pointer.

- If the af argument is AF_INET6, then a query is nade for AAAA
records. |If successful, IPv6 addresses are returned and the
h_l engt h menber of the hostent structure will be 16, else the
function returns a NULL pointer.

Glligan, et. al. I nf or mat i onal [Page 19]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

The second change, that provides additional functionality, is a new
resol ver option RES USE | NET6, which is defined as a result of

i ncluding the <resolv.h> header. (This option is provided starting
with the BIND 4.9.4 release.) There are three ways to set this

opti on.

- The first way is

res_init();
_res.options | = RES USE_I NET6;

and then call either gethostbynanme() or gethostbynane2(). This
option then affects only the process that is calling the
resol ver.

- The second way to set this option is to set the environnment
variable RES OPTIONS, as in RES OPTIONS=inet6. (This example is
for the Bourne and Korn shells.) This nethod affects any
processes that see this environnent variable.

- The third way is to set this option in the resolver configuration
file (normally /etc/resolv.conf) and the option then affects al
applications on the host. This final method should not be done
until all applications on the host are capable of dealing with
| Pv6 addresses.

There is no priority anong these three nethods. When the
RES USE | NET6 option is set, two changes occur:

- gethostbynane(host) first calls gethostbynane2(host, AF_|I NET6)
| ooking for AAAA records, and if this fails it then calls
get host bynanme2(host, AF_INET) |ooking for A records.

- gethost bynane2(host, AF_INET) always returns |Pv4-nmapped | Pv6
addresses with the h_length menber of the hostent structure set

to 16.
An application nust not enable the RES USE | NET6 option until it is
prepared to deal with 16-byte addresses in the returned hostent
structure.

Glligan, et. al. I nf or mat i onal [Page 20]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

The followi ng table sumrmari zes the operation of the existing
get host bynanme() function, the new function gethostbynane2(), along
with the new resol ver option RES_USE_ | NET6.

o e e oo oo o m o m o e o e o e o e e e e e e e e e e e e e e e e e e eeooo-- +
| | RES_USE_| NET6 option |
| o m e e e e e e e i iaaa--- o m e e e e e e e i aaoao-- +
| | of f | on |
o e e oo oo o e e e e e e o e e e e e oo +
	Search for A records.	Search for AAAA records.		
gethost bynane	If found, return	IPv4	If found, return	Pv6
(host)	addresses (h_length=4).	addresses (h_I ength=16).		
	Else error.	Else search for A		
		records. [If found,		
	Provi des backward	return I Pv4-mapped	Pv6	

| | compatibility with all | addresses (h_Iength=16).

| | existing | Pv4 appls. | Else error. |
o e e oo oo o e e e e e e o e e e e e oo +
	Search for A records.	Search for A records.		
gethost bynane2	If found, return	IPv4	If found, return	
(host, AF_INET)	addresses (h_length=4).		Pv4-mapped	Pv6
	Else error.	addresses (h_length=16).		
		Else error.		
o e e oo oo o e e e e e e o e e e e e oo +				
	Search for AAAA records.	Search for AAAA records.		
gethost bynane2	If found, return	Pv6	If found, return	Pv6
(host, AF_INET6)	addresses (h_length=16).	addresses (h_length=16).		
	Else error.	Else error.		
o e e oo oo o e e e e e e o e e e e e oo +

It is expected that when a typical naive application that calls

get host bynane() today is nodified to use IPv6, it sinply changes the
programto use | Pv6 sockets and then enables the RES_USE | NET6

resol ver option before calling gethostbynane(). This application
will then work with either I Pv4 or | Pv6 peers.

Not e that gethostbynane() and get host bynanme2() are not thread-safe,
since both return a pointer to a static hostent structure. But
several vendors have defined a thread-safe gethostbynanme_r() function
that requires four additional argunents. W expect these vendors to
al so define a gethostbynanme2_r() function

Glligan, et. al. | nf or mat i onal [Page 21]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

6.2. Address To Hostnane Transl ati on

The existing gethostbyaddr() function already requires an address
fam |y argunment and can therefore work with | Pv6 addresses:

#i ncl ude <sys/socket. h>
#i ncl ude <netdb. h>

struct hostent *gethostbyaddr(const char *src, int len, int af);

One possi bl e source of confusion is the handling of |Pv4-nmapped | Pv6
addresses and | Pv4-conpatible | Pv6 addresses. This is addressed in
[6] and involves the follow ng |ogic:

1. If af is AF_INET6, and if len equals 16, and if the | Pv6 address
is an | Pv4-mapped | Pv6 address or an | Pv4-conpatible | Pv6
address, then skip over the first 12 bytes of the | Pv6 address,
set af to AF_INET, and set len to 4.

2. If af is AF_INET, then query for a PTRrecord in the in-
addr . ar pa donai n.

3. If af is AF_INET6, then query for a PTR record in the ip6.int
domai n.

4. |If the function is returning success, and if af equals AF_I NET,
and if the RES_USE | NET6 option was set, then the single address
that is returned in the hostent structure (a copy of the first
argunent to the function) is returned as an | Pv4-nmapped | Pv6
address and the h_length nenber is set to 16.

Al four steps listed are performed, in order. The same caveats
regardi ng a thread-safe version of gethostbynane() that were nade at
the end of the previous section apply here as well.

6.3. Protocol -1 ndependent Hostnane and Service Nane Transl ation

Host nane-t o- address translation is done in a protocol -i ndependent
fashion using the getaddrinfo() function that is taken fromthe
Institute of Electrical and El ectronic Engineers (I1EEE) POSI X 1003. 1g
(Protocol |ndependent Interfaces) work in progress specification [4].

The official specification for this function will be the final POSIX
standard. W are providing this independent description of the
functi on because POSI X standards are not freely available (as are

| ETF docunents). Should there be any discrepanci es between this
description and the PCSI X description, the POSI X description takes
pr ecedence.

Glligan, et. al. | nf or mat i onal [Page 22]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997
#i ncl ude <sys/socket. h>
#i ncl ude <netdb. h>
i nt getaddrinfo(const char *hostnane, const char *servnane,
const struct addrinfo *hints,
struct addrinfo **res);

The addrinfo structure is defined as:

#i ncl ude <sys/socket. h>
#i ncl ude <netdb. h>

struct addrinfo {

i nt ai _fl ags; /* Al _PASSI VE, Al _CANONNAME */

i nt ai _famly; [* PF_xxx */

i nt ai _socktype; [/* SOCK xxx */

i nt ai_protocol; /* 0 or IPPROTO xxx for IPv4 and | Pv6 */
size_t ai_addrlen; /* length of ai_addr */

char *ai _canonnane; /* canoni cal nane for hostname */
struct sockaddr *ai_addr; /* binary address */
struct addrinfo *ai_next; /* next structure in linked list */

3
The return value fromthe function is 0 upon success or a nonzero
error code. The follow ng names are the nonzero error codes from
getaddrinfo(), and are defined in <netdb. h>

EAl _ADDRFAM LY address fanmily for hostname not supported

EAl _AGAI N tenmporary failure in name resol ution

EAl _BADFLAGS invalid value for ai_flags

EAl _FAI L non-recoverable failure in name resol ution
EAl _FAM LY ai_famly not supported

EAl _ MVEMORY menory allocation failure

EAlI _NCDATA no address associ ated with hostname

EAI _NONAME host name nor servnanme provided, or not known
EAl _SERVI CE servname not supported for ai_socktype

EAl _SOCKTYPE ai _socktype not supported

EAl _SYSTEM systemerror returned in errno

The host name and servname argunents are pointers to null-term nated
strings or NULL. One or both of these two argunents nust be a non-
NULL pointer. 1In the norrmal client scenario, both the hostnane and
servname are specified. In the nornmal server scenario, only the
servname is specified. A non-NULL hostnane string can be either a
host name or a nuneric host address string (i.e., a dotted-decinm

| Pv4 address or an | Pv6 hex address). A non-NULL servnane string can
be either a service name or a decinmal port nunber.

Glligan, et. al. I nf or mat i onal [Page 23]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

The caller can optionally pass an addrinfo structure, pointed to by
the third argunment, to provide hints concerning the type of socket
that the caller supports. |In this hints structure all nenbers ot her
than ai _flags, ai _fanily, ai_socktype, and ai_protocol nust be zero
or a NULL pointer. A value of PF_UNSPEC for ai_fanily means the

caller will accept any protocol famly. A value of 0 for ai_socktype
means the caller will accept any socket type. A value of 0 for
ai _protocol neans the caller will accept any protocol. For exanple,

if the caller handles only TCP and not UDP, then the ai_socktype
menber of the hints structure should be set to SOCK_STREAM when
getaddrinfo() is called. |If the caller handles only |IPv4 and not

| Pv6, then the ai_famly menber of the hints structure should be set
to PF_I NET when getaddrinfo() is called. |If the third argunment to
getaddrinfo() is a NULL pointer, this is the same as if the caller
had filled in an addrinfo structure initialized to zero with
ai_famly set to PF_UNSPEC

Upon successful return a pointer to a linked Iist of one or nore
addrinfo structures is returned through the final argunent. The
caller can process each addrinfo structure in this list by follow ng
the ai _next pointer, until a NULL pointer is encountered. |In each
returned addrinfo structure the three nenbers ai _famly, ai_socktype,
and ai _protocol are the corresponding argunents for a call to the
socket () function. In each addrinfo structure the ai_addr nenber
points to a filled-in socket address structure whose length is
specified by the ai _addrl en nenber.

If the Al _PASSIVE bit is set in the ai_flags nenber of the hints
structure, then the caller plans to use the returned socket address
structure in a call to bind(). In this case, if the hostname
argunment is a NULL pointer, then the I P address portion of the socket
address structure will be set to | NADDR_ANY for an | Pv4 address or

| NGADDR_ANY_INIT for an | Pv6 address.

If the Al _PASSIVE bit is not set in the ai_flags nenber of the hints
structure, then the returned socket address structure will be ready
for a call to connect() (for a connection-oriented protocol) or

ei ther connect(), sendto(), or sendnsg() (for a connectionless
protocol). In this case, if the hostname argunent is a NULL pointer
then the I P address portion of the socket address structure will be
set to the | oopback address.

If the Al _CANONNAME bit is set in the ai_flags nenber of the hints
structure, then upon successful return the ai_canonnanme nenber of the

first addrinfo structure in the linked Iist will point to a null-
ternminated string containing the canoni cal nane of the specified
host nane.

Glligan, et. al. | nf or mat i onal [Page 24]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

Al of the information returned by getaddrinfo() is dynamcally

al l ocated: the addrinfo structures, and the socket address structures
and canoni cal host name strings pointed to by the addrinfo
structures. To return this information to the systemthe function
freeaddrinfo() is called:

#i ncl ude <sys/socket. h>
#i ncl ude <netdb. h>

void freeaddrinfo(struct addrinfo *ai);

The addrinfo structure pointed to by the ai argunent is freed, along
with any dynanic storage pointed to by the structure. This operation
is repeated until a NULL ai _next pointer is encountered.

To aid applications in printing error nmessages based on the EAl _xxx
codes returned by getaddrinfo(), the followi ng function is defined.

#i ncl ude <sys/socket. h>
#i ncl ude <netdb. h>

char *gai _strerror(int ecode);

The argunent is one of the EAl _xxx val ues defined earlier and the
eturn value points to a string describing the error. |If the argunent
is not one of the EAl _xxx values, the function still returns a
pointer to a string whose contents indicate an unknown error

6.4. Socket Address Structure to Hostname and Service Name

The POSI X 1003. 1g specification includes no function to performthe
reverse conversion fromgetaddrinfo(): to look up a hostnane and
servi ce nanme, given the binary address and port. Therefore, we
define the follow ng function:

#i ncl ude <sys/socket. h>
#i ncl ude <netdb. h>

i nt getnamei nfo(const struct sockaddr *sa, size_t salen
char *host, size_t hostlen,
char *serv, size_t servlen
int flags);

This function | ooks up an | P address and port nunber provided by the
caller in the DNS and system specific database, and returns text
strings for both in buffers provided by the caller. The function

i ndi cates successful conpletion by a zero return value; a non-zero
return value indicates failure.

Glligan, et. al. I nf or mat i onal [Page 25]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

The first argunment, sa, points to either a sockaddr_in structure (for
| Pv4) or a sockaddr_in6 structure (for IPv6) that holds the IP
address and port nunber. The salen argunment gives the length of the
sockaddr _in or sockaddr _in6 structure.

The function returns the hostname associated with the IP address in
the buffer pointed to by the host argunent. The caller provides the
size of this buffer via the hostlen argunent. The service name
associated with the port nunber is returned in the buffer pointed to
by serv, and the servlen argunent gives the length of this buffer.
The caller specifies not to return either string by providing a zero
val ue for the hostlen or servlen argunents. Qherw se, the caller
nmust provide buffers [arge enough to hold the hostnanme and the
service nane, including the term nating null characters.

Unfortunately nost systenms do not provide constants that specify the
maxi mum si ze of either a fully-qualified domain name or a service
nane. Therefore to aid the application in allocating buffers for
these two returned strings the followi ng constants are defined in
<net db. h>:

#define N _MAXHOST 1025
#defi ne N _MAXSERV 32

The first value is actually defined as the constant MAXDNAME in
recent versions of BIND s <arpal/naneser. h> header (ol der versions of
BI ND define this constant to be 256) and the second is a guess based
on the services listed in the current Assigned Numbers RFC

The final argunment is a flag that changes the default actions of this
function. By default the fully-qualified domain name (FQDN) for the
host is |ooked up in the DNS and returned. |If the flag bit N _NOFQDN
is set, only the hostnane portion of the FQDN is returned for |ocal
host s.

If the flag bit N _NUMERI CHOST is set, or if the host’s nane cannot
be located in the DNS, the nuneric formof the host’'s address is
returned instead of its name (e.g., by calling inet_ntop() instead of
gethostbyaddr()). |If the flag bit NI _NAMEREQD is set, an error is
returned if the host’s nane cannot be |ocated in the DNS

If the flag bit NI_NUVERI CSERV is set, the numeric formof the
service address is returned (e.g., its port nunber) instead of its
nane. The two NI _NUMERI Cxxx flags are required to support the "-n"
flag that many comrands provi de.

Glligan, et. al. I nf or mat i onal [Page 26]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

Afifth flag bit, NI_DGRAM specifies that the service is a datagram
servi ce, and causes getservbyport() to be called with a second
argunent of "udp" instead of its default of "tcp". This is required
for the few ports (512-514) that have different services for UDP and
TCP.

These NI _xxx flags are defined in <netdb.h> along with the Al _xxx
flags already defined for getaddrinfo().

6.5. Address Conversi on Functions

The two functions inet_addr() and inet_ntoa() convert an |Pv4 address

between binary and text form [|Pv6 applications need simlar
functions. The following two functions convert both IPv6é and | Pv4d
addr esses:

#i ncl ude <sys/socket. h>
#i ncl ude <arpalinet.h>

int inet_pton(int af, const char *src, void *dst);

const char *inet_ntop(int af, const void *src,
char *dst, size_t size);

The inet_pton() function converts an address in its standard text
presentation forminto its numeric binary form The af argunent
specifies the famly of the address. Currently the AF_INET and

AF_I NET6 address families are supported. The src argunent points to
the string being passed in. The dst argunent points to a buffer into
whi ch the function stores the nuneric address. The address is
returned in network byte order. Inet_pton() returns 1 if the
conversion succeeds, O if the input is not a valid |IPv4 dotted-
decimal string or a valid |IPv6 address string, or -1 with errno set
to EAFNOSUPPORT if the af argunent is unknown. The calling
application nust ensure that the buffer referred to by dst is |arge
enough to hold the nunmeric address (e.g., 4 bytes for AF_INET or 16
bytes for AF_I NET6).

If the af argunment is AF_INET, the function accepts a string in the
standard | Pv4 dotted-deci mal form

ddd. ddd. ddd. ddd

where ddd is a one to three digit deci mal nunmber between 0 and 255.
Note that many inplenentations of the existing inet_addr() and

i net_aton() functions accept nonstandard input: octal nunbers,
hexadeci nal nunbers, and fewer than four nunbers. inet_pton() does
not accept these formats.

Glligan, et. al. | nf or mat i onal [Page 27]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

6.

6.

If the af argunment is AF_INET6, then the function accepts a string in
one of the standard IPv6 text forns defined in Section 2.2 of the
addressing architecture specification [2].

The inet_ntop() function converts a nuneric address into a text
string suitable for presentation. The af argument specifies the
famly of the address. This can be AF_INET or AF_INET6. The src
argunment points to a buffer holding an | Pv4 address if the af
argunment is AF_INET, or an IPv6 address if the af argunent is

AF_I NET6. The dst argunent points to a buffer where the function
will store the resulting text string. The size argunment specifies
the size of this buffer. The application nust specify a non-NULL dst
argunment. For | Pv6 addresses, the buffer nust be at |east 46-octets.
For 1 Pv4 addresses, the buffer nust be at |east 16-octets. |In order
to allow applications to easily declare buffers of the proper size to
store IPv4 and | Pv6 addresses in string form the follow ng two
constants are defined in <netinet/in.h>:

#define | NET_ADDRSTRLEN 16
#define | NET6_ADDRSTRLEN 46

The inet_ntop() function returns a pointer to the buffer containing
the text string if the conversion succeeds, and NULL ot herw se. Upon
failure, errno is set to EAFNOSUPPORT if the af argument is invalid
or ENOSPC if the size of the result buffer is inadequate.

Addr ess Testing Macros

The followi ng macros can be used to test for special |Pv6 addresses.

#i ncl ude <netinet/in. h>

int IN6_IS ADDR UNSPECI FI ED (const struct in6_addr *);
int [IN6_IS ADDR _LOOPBACK (const struct in6_addr *);
int IN6_IS ADDR MJLTI CAST (const struct in6_addr *);
int IN6_IS ADDR LI NKLOCAL (const struct in6_addr *);
int IN6_IS ADDR S| TELOCAL (const struct in6_addr *);
int [IN6_IS ADDR VAMAPPED (const struct in6_addr *);
int [|IN6_IS ADDR VACOVPAT (const struct in6_addr *);
int IN6_IS ADDR MC NODELOCAL(const struct in6_addr *);
int IN6_IS ADDR MC LI NKLOCAL(const struct in6_addr *);
int IN6_IS ADDR MC SI TELOCAL(const struct in6_addr *);
int IN6_IS ADDR MC ORGLOCAL (const struct in6_addr *);
int IN6_IS ADDR MC GLOBAL (const struct in6_addr *);

Glligan, et. al. I nf or mat i onal [Page 28]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

The first seven macros return true if the address is of the specified
type, or false otherwise. The last five test the scope of a
nmul ti cast address and return true if the address is a multicast
address of the specified scope or false if the address is either not
a multicast address or not of the specified scope.

7. Summary of New Definitions

The following |list sunmarizes the constants, structure, and extern
definitions discussed in this nmeno, sorted by header.

<net/if.h> | FNAMSI Z

<net/if.h> struct if_nanei ndex{};
<net db. h> Al _ CANONNAME

<net db. h> Al _PASSI VE

<net db. h> EAl _ADDRFAM LY

<net db. h> EAl _AGAI N

<net db. h> EAl _BADFLAGS

<net db. h> EAl_FAI L

<net db. h> EAl _FAM LY

<net db. h> EAl _ MEMORY

<net db. h> EAI _NCDATA

<net db. h> EAI _NONAVE

<net db. h> EAl _SERVI CE

<net db. h> EAl _SOCKTYPE

<net db. h> EAl _SYSTEM

<net db. h> NI _DGRAM

<net db. h> NI _ MAXHOST

<net db. h> NI _ MAXSERV

<net db. h> NI _NAMEREQD

<net db. h> NI _NOFQDN

<net db. h> NI _NUVERI CHOST

<net db. h> NI _NUVERI CSERV

<net db. h> struct addrinfo{};
<netinet/in.h> | NGADDR ANY_ INT
<netinet/in.h> | NSADDR LOOPBACK INIT
<netinet/in.h> |NET6_ADDRSTRLEN
<netinet/in.h> | NET_ADDRSTRLEN
<netinet/in.h> |PPROTO | PV6
<netinet/in.h> |PV6_ADDRFORM
<netinet/in.h> |PV6_ADD MEMBERSH P
<netinet/in.h> |PV6_DROP_MEMBERSHI P
<netinet/in.h> |PV6_MITI CAST_HOPS
<netinet/in.h> |PV6_MILTICAST | F
<netinet/in.h> |PV6_MILTI CAST_LOCP
<netinet/in.h> |PV6_UN CAST_HOPS

Glligan, et. al. I nf or mat i onal [Page 29]

RFC 2133

<net i
<net i
<net i
<net i
<net i
<net i

<reso

<sys/
<sys/

net/i
net/i
net/i
net/i
net/i
net/i

5 333335

lv. h>

socket .
socket .

| Pv6 Socket Interface Extensions Apri

.h> SIN6_LEN

.h> extern const struct in6_addr in6addr_any;

.h> extern const struct in6_addr in6addr_| oopback;
.h> struct in6_addr{};

.h> struct ipv6_nreq{};

.h> struct sockaddr _in6{};

RES_USE_| NET6

h> AF_I NET6
h> PF_I NET6

The following list sumarizes the function and macro prototypes
di scussed in this nmeno, sorted by header

<arpalinet.
<arpalinet.

<net/if.h>
<net/if.h>
<net/if.h>
<net/if.h>

<net db. h>

<net db. h>

<net db. h>
<net db. h>
<net db. h>
<net db. h>
<net db. h>

<netinet/i
<netinet/i
<netinet/i
<netinet/i
<netinet/i
<netinet/i
<netinet/i
<netinet/i
<netinet/i
<netinet/i
<netinet/i
<netinet/i

Glligan,

h>
h>

h>
h>
h>
h>
h>
h>
h>
h>
h>
h>
h>
h>

3333303305333 35 S

int inet_pton(int, const char *, void *);
const char *inet_ntop(int, const void *,
char *, size_t);

char *if_i ndextonanme(unsigned int, char *);
unsi gned int if_nametoi ndex(const char *);
void if_freenamei ndex(struct if_nanei ndex *);
struct if_nanei ndex *if_nanei ndex(void);

int getaddrinfo(const char *, const char *,
const struct addrinfo *,
struct addrinfo **);

i nt getnanei nfo(const struct sockaddr *, size_t,

1997

char *, size_t, char *, size_t, int);

voi d freeaddrinfo(struct addrinfo *);
char *gai _strerror(int);
struct hostent *gethostbynane(const char *);

struct hostent *gethostbyaddr(const char *, int, int);

struct hostent *gethostbynanme2(const char *, int);

int IN6_IS ADDR LI NKLOCAL(const struct in6_addr *);

i nt IhB IS ADDR_LOOPBACK(const struct in6_addr *);

i nt IhB IS ADDR MC GLOBAL(const struct in6_addr *);

i nt IN6 IS ADDR MC LI NKLOCAL(const struct in6_addr *);
i nt IN6 IS ADDR MC_NODELOCAL(const struct in6_addr *);
i nt IhB IS ADDR MC_ORGLOCAL(const struct in6_addr *);

i nt IhB IS ADDR MC_SI TELOCAL(const struct in6_addr *);
i nt IhB IS ADDR _ MULTI CAST(const struct in6_addr *);

i nt IhB IS ADDR _SI TELOCAL(const struct in6_addr *);

i nt IN6 IS ADDR_UNSPECI FI ED(const struct in6_addr *);

i nt IhB IS ADDR_VACOWPAT(const struct in6_addr *);

i nt IhB IS ADDR_VAMAPPED(const struct in6_addr *);

I nf or mat i onal [Page 30]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

8. Security Considerations

| Pv6 provides a nunber of new security nechani sns, many of which need
to be accessible to applications. A conpanion neno detailing the
extensions to the socket interfaces to support |Pv6 security is being
witten [3].

9. Acknow edgnents

Thanks to the many people who made suggestions and provi ded feedback
to to the nunmerous revisions of this docunment, including: Werner

Al mesberger, Ran Atkinson, Fred Baker, Dave Borman, Andrew Cherenson
Al ex Conta, Al an Cox, Steve Deering, Richard Draves, Francis Dupont,
Robert Elz, Marc Hasson, Tim Hartrick, Tom Herbert, Bob H nden, Wan-
Yen Hsu, Christian Huitema, Koji |mada, Markus Jork, Ron Lee, Al an
LI oyd, Charles Lynn, Jack McCann, Dan MDonal d, Dave Mtton, Thomas
Narten, Erik Nordmark, Josh Gsborne, Craig Partridge, Jean-Luc

Ri chier, Erik Scoredos, Keith Skl ower, Matt Thonas, Harvey Thonpson,
Dean D. Throop, Karen Tracey, Genn Trewitt, Paul Vixie, David

Wai tzman, Carl WIlians, and Kazuhi ko Yamanot o,

The getaddrinfo() and getnanei nfo() functions are taken from an
earlier Work in Progress by Keith Sklower. As noted in that

docunent, WIliamDurst, Steven Wse, Mchael Karels, and Eric Al man
provi ded many useful discussions on the subject of protocol -

i ndependent nane-to-address translation, and reviewed early versions
of Keith Sklower’s original proposal. Eric Allman inplenented the
first prototype of getaddrinfo(). The observation that specifying
the pair of name and service would suffice for connecting to a

servi ce i ndependent of protocol details was nmade by Marshall Rose in
a proposal to X/ Open for a "Uniform Network Interface"

Craig Metz made many contributions to this docunment. Ramesh Govi ndan
made a nunber of contributions and co-authored an earlier version of
this nmeno.

10. References

[1] Deering, S., and R Hinden, "Internet Protocol, Version 6 (I|Pv6)
Speci fication", RFC 1883, Decenber 1995.

[2] H nden, R, and S. Deering, "IP Version 6 Addressing Architecture"
RFC 1884, Decenber 1995.

[3] McDonald, D., "A Sinple IP Security APl Extension to BSD Sockets"
Wrk in Progress.

Glligan, et. al. I nf or mat i onal [Page 31]

RFC 2133 | Pv6 Socket I|nterface Extensions April 1997

[4] | EEE, "Protocol |ndependent Interfaces", |IEEE Std 1003. 1g, DRAFT
6.3, Novenber 1995.

[5] Stevens, W, and M Thomas, "Advanced Sockets APl for |Pv6",
Wrk in Progress.

[6] Vixie, P., "Reverse Nanme Lookups of Encapsul ated | Pv4 Addresses in
| Pv6", Work in Progress.

11. Authors’ Addresses

Robert E. G lligan
Freegat e Corporation

710 Lakeway Dr. STE 230
Sunnyval e, CA 94086

Phone: +1 408 524 4804
EMail: gilligan@reegate. net

Susan Thonson

Bel | Communi cati ons Research
MRE 2P-343, 445 South Street
Morristown, NJ 07960

Phone: +1 201 829 4514
EMai | . set @ hunper. bel | core. com

Ji m Bound

Di gi tal Equi prent Cor poration
110 Spitbrook Road ZK3-3/Ul4
Nashua, NH 03062-2698

Phone: +1 603 881 0400
Enmmi | : bound@k3. dec. com

W Richard Stevens
1202 E. Paseo del Zorro
Tucson, AZ 85718-2826

Phone: +1 520 297 9416
EMai | : rstevens@ohal a. com

Glligan, et. al. I nf or mat i onal [Page 32]

