Net wor k Wor ki ng Group R Braden, Ed.
Request for Comments: 2205 | S
Cat egory: Standards Track L. Zhang
UCLA

S. Berson

| SI

S. Herzog

| BM Resear ch

S. Jamin

Univ. of M chigan

Sept enber 1997

Resource ReSerVation Protocol (RSVP) --
Version 1 Functional Specification
Status of this Meno

Thi s docunment specifies an Internet standards track protocol for the
Internet conmunity, and requests di scussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this meno is unlimnted.

Abstract
This nenp describes version 1 of RSVP, a resource reservation setup
protocol designed for an integrated services Internet. RSVP provides

receiver-initiated setup of resource reservations for nulticast or
uni cast data flows, with good scaling and robustness properties.

Braden, Ed., et. al. St andar ds Track [Page 1]

RFC 2205 RSVP Sept ember 1997

Tabl e of Contents

L. INtroduCti ON .. 4
1.1 Data Fl OWs ... 7
1.2 Reservation Model 8
1.3 Reservation Styles 11
1.4 Exanples of Styles 14

2. RSVP Protocol Mechanisme e 19
2.1 RSVP MBSSaA0ES . ..ttt it it e 19
2.2 Merging Fl OWSPECS ...ttt 21
2.3 SOft State 22
2.4 TeardoWn 24
2.5 IO S o 25
2.6 Confirmati ON 27
2.7 Policy Control 27
2. 8 SECUIMNI LY ot 28
2.9 NoN-RSVP CloUdS 29
2.10 Host Model 30

3. RSVP Functional Specificationo, 32
3.1 RSVP Message FOrmats 32
3.2 Port Usage 47
3.3 Sending RSVP MESSaQES ... ittt e e e 48
3.4 Avoiding RSVP Message LOoOPSt 50
3.5 Blockade State 54
3.6 Local Repair 56
3.7 Time ParamBt €IS ... 57
3.8 Traffic Policing and Non-Integrated Service Hops 58
3.9 Multihomed HOStS e 59
3.10 Future Conpatibility 61
3.11 RSVP I Nnterfaces e 63

4. ACKNOW edgmBNt S 76

APPENDI X A. Cbject Definitions 77

APPENDI X B. Error Codes and Values 92

APPENDI X C. UDP Encapsulation 98

APPENDI X D. G 0SSaAlY ..ttt ittt e e e e e 102

REFERENCES e 111

SECURI TY CONSI DERATI ONS e 111

AUTHORS' ADDRESSES e 112

Braden, Ed., et. al. St andar ds Track [Page 2]

RFC 2205 RSVP Sept ember 1997

What ' s Changed

This revision contains the follow ng very m nor changes fromthe |D14

version.
0 For clarity, each nmessage type is now defined separately in
Section 3. 1.
0 We added nore precise and conplete rules for accepting Path
nmessages for unicast and nulticast destinations (Section
3.1.3).
0 We added nore precise and conplete rules for processing and

forwardi ng Pat hTear nessages (Section 3.1.5).

0 A note was added that a SCOPE object will be ignored if it
appears in a ResvTear nessage (Section 3.1.6).

0 A note was added that a SENDER TSPEC or ADSPEC object will be
ignored if it appears in a PathTear nessage (Section 3.1.5).

0 The obsol ete error code Anbiguous Filter Spec (09) was
renoved, and a new (and nore consistent) nane was given to
error code 08 (Appendix B).

0 In the generic interface to traffic control, the Adspec was
added as a paraneter to the AddFl ow and ModFl ow cal |'s
(3.11.2). This is needed to accommopdate a node that updates
the slack term (S) of Guaranteed servi ce.

0 An error subtype was added for an Adspec error (Appendi x B)

0 Addi ti onal explanation was added for handling a CONFI RM
obj ect (Section 3.1.4).

0 The rules for forwardi ng objects with unknown cl ass type were
clarified.
o] Addi ti onal discussion was added to the Introduction and to

Section 3.11.2 about the relationship of RSVP to the |ink
| ayer. (Section 3.10).

0 Section 2.7 on Policy and Security was split into two
sections, and sone additional discussion of security was
i ncl uded.

0 There were sone minor editorial inprovenents.

Braden, Ed., et. al. St andar ds Track [Page 3]

RFC 2205 RSVP Sept ember 1997

1

| nt r oducti on

Thi s docunent defines RSVP, a resource reservation setup protocol
designed for an integrated services Internet [RSVP93, RFC 1633]. The
RSVP protocol is used by a host to request specific qualities of
service fromthe network for particular application data streanms or
flows. RSVP is also used by routers to deliver quality-of-service
(QS) requests to all nodes along the path(s) of the flows and to
establish and maintain state to provide the requested service. RSVP
requests will generally result in resources being reserved in each
node al ong the data path.

RSVP requests resources for sinplex flows, i.e., it requests
resources in only one direction. Therefore, RSVP treats a sender as
logically distinct froma receiver, although the sanme application
process nay act as both a sender and a receiver at the sane tine.
RSVP operates on top of I1Pv4 or I1Pv6, occupying the place of a
transport protocol in the protocol stack. However, RSVP does not
transport application data but is rather an Internet contro
protocol, like ICwW, 1GW, or routing protocols. Like the

i npl erent ati ons of routing and nmanagenent protocols, an

i npl ementation of RSVP will typically execute in the background, not
in the data forwarding path, as shown in Figure 1.

RSVP is not itself a routing protocol; RSVP is designed to operate
with current and future unicast and nulticast routing protocols. An
RSVP process consults the | ocal routing database(s) to obtain routes.
In the nulticast case, for exanple, a host sends | GW nessages to
join a multicast group and then sends RSVP nessages to reserve
resources along the delivery path(s) of that group. Routing
protocol s determ ne where packets get forwarded; RSVP is only
concerned with the QS of those packets that are forwarded in
accordance wi th routing.

In order to efficiently acconmodate | arge groups, dynami c group
menber shi p, and het erogeneous receiver requirenents, RSVP makes
receivers responsible for requesting a specific QS [RSVP93]. A QS
request froma receiver host application is passed to the |Iocal RSVP
process. The RSVP protocol then carries the request to all the nodes
(routers and hosts) along the reverse data path(s) to the data
source(s), but only as far as the router where the receiver’s data
path joins the multicast distribution tree. As a result, RSVP s
reservation overhead is in general logarithmc rather than linear in
t he nunber of receivers.

Braden, Ed., et. al. St andar ds Track [Page 4]

RFC 2205 RSVP Sept ember 1997

HOST ROUTER
_______ | | |
T o |
| Appli- | | | | RSVP | | | |
| cation] | RSVP <------mmmmmm i > RSVWP <---------- >
<-->										
		process	___			Routing		process	_	
		-->Pol cy				<--> -->Pol cy				
	.		Cntrl]			process		__.__._		[Cntrl]
dat a [N I									
::l :::::::::::l ::l ::::::::::l	:::l ::::::::::l ::l ::::::::::l									
T R R L]										
		---->Admi s		I	---->Admi s					
V_V V.	Cntrl]]		V_V v [Cntrl							
	I					[
dass-		Packet				Cass-		Packet		
i fi erl ==>Schedul	’	———=—=———=—=——=——====>	f	erl ==>Schedul	’	—==—=—=======>				
l I		data		(I		data				

Figure 1: RSVP in Hosts and Routers

Quality of service is inplenented for a particular data fl ow by
mechani sns col l ectively called "traffic control”. These nechani sns

i nclude (1) a packet classifier, (2) admission control, and (3) a
"packet schedul er” or sone other |ink-1ayer-dependent nechanismto
determ ne when particul ar packets are forwarded. The "packet
classifier" determnmines the QoS class (and perhaps the route) for each
packet. For each outgoing interface, the "packet schedul er” or other
I'i nk-1ayer -dependent mechani sm achi eves the prom sed Q©S. Traffic
control inplenments QS service nodel s defined by the |Integrated

Servi ces Worki ng G oup.

During reservation setup, an RSVP QoS request is passed to two | ocal
deci si on nodul es, "admi ssion control" and "policy control".

Admi ssion control determi nes whether the node has sufficient

avail abl e resources to supply the requested QS. Policy control

Braden, Ed., et. al. St andar ds Track [Page 5]

RFC 2205 RSVP Sept ember 1997

determ nes whet her the user has administrative pernission to nake the
reservation. |If both checks succeed, paraneters are set in the
packet classifier and in the Iink layer interface (e.g., in the
packet scheduler) to obtain the desired QS. |If either check fails,
the RSVP programreturns an error notification to the application
process that originated the request.

RSVP protocol mechani snms provide a general facility for creating and
mai ntai ning distributed reservation state across a nesh of multicast
or unicast delivery paths. RSVP itself transfers and mani pul ates QS
and policy control parameters as opaque data, passing themto the
appropriate traffic control and policy control nodul es for
interpretation. The structure and contents of the QoS paraneters are
docunented in specifications devel oped by the Integrated Services

Wor ki ng Group; see [RFC 2210]. The structure and contents of the
policy paraneters are under devel opment.

Since the nmenbership of a large nulticast group and the resulting

mul ticast tree topology are likely to change with tine, the RSVP
desi gn assunes that state for RSVP and traffic control state is to be
built and destroyed increnentally in routers and hosts. For this

pur pose, RSVP establishes "soft" state; that is, RSVP sends periodic
refresh nessages to maintain the state along the reserved path(s).

In the absence of refresh nessages, the state automatically tines out
and is del eted.

In summary, RSVP has the follow ng attri butes:

o] RSVP nmakes resource reservations for both unicast and nmany-to-
many rmul ti cast applications, adapting dynamically to changing
group nenbership as well as to changi ng routes.

o] RSVP is sinplex, i.e., it nakes reservations for unidirectiona
data fl ows.

0 RSVP is receiver-oriented, i.e., the receiver of a data fl ow
initiates and maintains the resource reservation used for that
flow.

o] RSVP mai ntains "soft" state in routers and hosts, providing

graceful support for dynam c nmenbership changes and automatic
adaptation to routing changes.

o] RSVP is not a routing protocol but depends upon present and
future routing protocols.

o] RSVP transports and maintains traffic control and policy control
paraneters that are opaque to RSVP

Braden, Ed., et. al. St andar ds Track [Page 6]

RFC 2205 RSVP Sept ember 1997

o] RSVP provi des several reservation nodels or "styles" (defined
below) to fit a variety of applications.

o] RSVP provi des transparent operation through routers that do not
support it.

o] RSVP supports both | Pv4 and | Pv6.

Further discussion on the objectives and general justification for
RSVP design are presented in [RSVP93] and [RFC 1633].

The remai nder of this section describes the RSVP reservation
services. Section 2 presents an overview of the RSVP protoco

mechani sns. Section 3 contains the functional specification of RSVP,
while Section 4 presents explicit nessage processing rules. Appendix
A defines the variable-length typed data objects used in the RSVP
protocol. Appendi x B defines error codes and val ues. Appendix C
defines a UDP encapsul ati on of RSVP nessages, for hosts whose
operating systens provide i nadequate raw network |/ O support.

1.1 Data Fl ows

RSVP defines a "session" to be a data flowwith a particular
destination and transport-layer protocol. RSVP treats each
sessi on i ndependently, and this docunent often onmits the inplied
qualification "for the sanme session".

An RSVP session is defined by the triple: (DestAddress, Protocolld
[, DstPort]). Here DestAddress, the |IP destination address of the
dat a packets, nay be a unicast or multicast address. Protocolld
is the IP protocol ID. The optional DstPort paraneter is a
"generalized destination port", i.e., sonme further demultiplexing
point in the transport or application protocol |ayer. DstPort
coul d be defined by a UDP/ TCP destination port field, by an

equi valent field in another transport protocol, or by sone
application-specific information.

Al t hough the RSVP protocol is designed to be easily extensible for
greater generality, the basic protocol docunented here supports
only UDP/ TCP ports as generalized ports. Note that it is not
strictly necessary to include DstPort in the session definition
when Dest Address is multicast, since different sessions can al ways
have different nulticast addresses. However, DstPort is necessary
to all ow nore than one uni cast session addressed to the sane

recei ver host.

Braden, Ed., et. al. St andar ds Track [Page 7]

RFC 2205 RSVP Sept ember 1997

Figure 2 illustrates the flow of data packets in a single RSVP
session, assuming nulticast data distribution. The arrows

i ndicate data flowing fromsenders S1 and S2 to receivers Rl, R2,
and R3, and the cloud represents the distribution nesh created by
mul ticast routing. Milticast distribution forwards a copy of each
data packet froma sender Si to every receiver R ; a unicast

di stribution session has a single receiver R Each sender Si may
be running in a unique Internet host, or a single host may contain
nmul ti pl e senders distinguished by "generalized source ports”

Sender s Recei vers

() ===> R1

S1 ===> (Mul ti cast)
() ===> R2
(di stribution)

S2 ===> ()
(by I nternet) ===> R3
()

Figure 2: Milticast Distribution Session

For uni cast transnission, there will be a single destination host
but there may be nultiple senders; RSVP can set up reservations
for multipoint-to-single-point transm ssion.

1.2 Reservation Model

An el ementary RSVP reservation request consists of a "fl owspec"
together with a "filter spec"; this pair is called a "fl ow

descriptor". The fl owspec specifies a desired QS. The filter
spec, together with a session specification, defines the set of
data packets -- the "flow' -- to receive the QS defined by the

fl owspec. The flowspec is used to set paraneters in the node's
packet scheduler or other link |ayer nechanism while the filter
spec is used to set paraneters in the packet classifier. Data
packets that are addressed to a particul ar session but do not
mat ch any of the filter specs for that session are handl ed as
best-effort traffic.

The flowspec in a reservation request will generally include a
service class and two sets of nuneric paranmeters: (1) an "Rspec"
(R for ‘reserve’) that defines the desired QS, and (2) a "Tspec"
(T for “traffic’) that describes the data flow. The formats and
contents of Tspecs and Rspecs are determ ned by the integrated
service nodel s [RFC 2210] and are generally opaque to RSVP.

Braden, Ed., et. al. St andar ds Track [Page 8]

RFC 2205 RSVP Sept ember 1997

The exact format of a filter spec depends upon whet her |Pv4 or
IPv6 is in use; see Appendix A |In the nost general approach

[RSVP93], filter specs nmay select arbitrary subsets of the packets
in a given session. Such subsets might be defined in terns of
senders (i.e., sender |P address and generalized source port), in
terms of a higher-level protocol, or generally in terns of any
fields in any protocol headers in the packet. For exanmple, filter
specs might be used to select different subflows of a

hi erarchical |l y-encoded vi deo stream by selecting on fields in an
application-layer header. |In the interest of sinplicity (and to
mninze |layer violation), the basic filter spec format defined in
the present RSVP specification has a very restricted form sender

| P address and optionally the UDP/ TCP port nunber SrcPort.

Because the UDP/ TCP port nunbers are used for packet
classification, each router nust be able to exami ne these fields.
This raises three potential problens.

1. It is necessary to avoid IP fragnentation of a data flow for
whi ch a resource reservation is desired.

Docunent [RFC 2210] specifies a procedure for applications
using RSVP facilities to conpute the m ni mum MU over a
multicast tree and return the result to the senders.

2. | Pv6 inserts a variable nunber of variable-length Internet-
| ayer headers before the transport header, increasing the
difficulty and cost of packet classification for QoS.

Efficient classification of IPv6 data packets could be
obt ai ned using the Flow Label field of the IPv6 header. The
details will be provided in the future.

3. | P-1 evel Security, under either IPv4 or |Pv6, may encrypt the
entire transport header, hiding the port nunbers of data
packets frominternmediate routers.

A snmall extension to RSVP for IP Security under |Pv4 and | Pv6
is described separately in [RFC 2207].

RSVP nmessages carrying reservation requests originate at receivers
and are passed upstreamtowards the sender(s). Note: in this
docunment, we define the directional ternms "upstreant vs.
"downstreant, "previous hop" vs. "next hop", and "incom ng
interface" vs "outgoing interface" with respect to the direction
of data fl ow

Braden, Ed., et. al. St andar ds Track [Page 9]

RFC 2205 RSVP Sept ember 1997

At each internedi ate node, a reservation request triggers two
general actions, as foll ows:

1. Make a reservation on a link

The RSVP process passes the request to adnission control and
policy control. |If either test fails, the reservation is
rejected and the RSVP process returns an error nmessage to the
appropriate receiver(s). |If both succeed, the node sets the
packet classifier to select the data packets defined by the
filter spec, and it interacts with the appropriate Ilink |ayer
to obtain the desired QoS defined by the fl owspec.

The detailed rules for satisfying an RSVP QS request depend
upon the particular link |ayer technology in use on each
interface. Specifications are under devel opment in the | SSLL
Working Group for mapping reservation requests into popul ar
link |ayer technologies. For a sinple |leased |line, the
desired QoS will be obtained fromthe packet scheduler in the
link layer driver, for exanple. [If the |ink-Ilayer technol ogy
i npl emrents its own QoS nanagenent capability, then RSVP nust
negotiate with the link layer to obtain the requested QS.
Note that the action to control QoS occurs at the place where
the data enters the link-layer medium i.e., at the upstream
end of the logical or physical |ink, although an RSVP
reservation request originates fromreceiver(s) downstream

2. Forward the request upstream

A reservation request is propagated upstreamtowards the
appropriate senders. The set of sender hosts to which a

gi ven reservation request is propagated is called the "scope"
of that request.

The reservation request that a node forwards upstream nay
differ fromthe request that it received fromdownstream for
two reasons. The traffic control mechani sm may nodify the

fl owspec hop-by-hop. Mre inportantly, reservations from

di fferent downstream branches of the nulticast tree(s) from
the same sender (or set of senders) nust be " merged" as
reservations travel upstream

When a receiver originates a reservation request, it can al so
request a confirmation nessage to indicate that its request was
(probably) installed in the network. A successful reservation
request propagates upstream along the nulticast tree until it
reaches a point where an existing reservation is equal or greater

Braden, Ed., et. al. St andar ds Track [Page 10]

RFC 2205 RSVP Sept ember 1997

than that being requested. At that point, the arriving request is
nerged with the reservation in place and need not be forwarded
further; the node may then send a reservation confirmati on nessage
back to the receiver. Note that the receipt of a confirmation is
only a high-probability indication, not a guarantee, that the
requested service is in place all the way to the sender(s), as
expl ained in Section 2.6.

The basic RSVP reservation nodel is "one pass": a receiver sends a
reservation request upstream and each node in the path either
accepts or rejects the request. This schene provi des no easy way
for a receiver to find out the resulting end-to-end servi ce.
Theref ore, RSVP supports an enhancenent to one-pass service known
as "One Pass Wth Advertising" (OPWA) [OPWA95]. Wth OPWA, RSVP
control packets are sent downstream followi ng the data paths, to
gather information that may be used to predict the end-to-end QoS.
The results ("advertisenments") are delivered by RSVP to the

recei ver hosts and perhaps to the receiver applications. The
advertisenments may then be used by the receiver to construct, or
to dynanically adjust, an appropriate reservation request.

1.3 Reservation Styles

A reservation request includes a set of options that are
collectively called the reservation "style".

One reservation option concerns the treatnment of reservations for
di fferent senders within the sane session: establish a "distinct"
reservation for each upstream sender, or else nake a single
reservation that is "shared" ampong all packets of selected
senders.

Anot her reservation option controls the selection of senders; it
may be an "explicit" list of all selected senders, or a "wldcard"
that inplicitly selects all the senders to the session. In an
explicit sender-selection reservation, each filter spec nust match
exactly one sender, while in a wildcard sender-sel ection no filter
spec i s needed.

Braden, Ed., et. al. St andards Track [Page 11]

RFC 2205 RSVP Sept enmber

(WF) Style

Sender [] Reservati ons:

Sel ection || Di stinct | Shar ed

| I
U . | o

Explicit || Fixed-Filter | Shared-Explicit |
|| (FF) style | (SE) Style |
II I I

Wldcard || (None defined) | WIdcard-Filter
| I I
N I I

Figure 3: Reservation Attributes and Styles

The followi ng styles are currently defined (see Figure 3):

0 Wldcard-Filter (W) Style

1997

The WF style inplies the options: "shared" reservation and
"W | dcard" sender selection. Thus, a Wr-style reservation

creates a single reservation shared by flows fromall

upstream senders. This reservation nmay be thought of as a
shared "pi pe", whose "size" is the |argest of the resource

requests fromall receivers, independent of the nunber of
senders using it. A W-style reservation is propagated
upstreamtowards all sender hosts, and it automatically
extends to new senders as they appear.

Synbolically, we can represent a Wr-style reservation request

by:
W(* {Q)

where the asterisk represents wildcard sender selection and Q

represents the fl owspec.

0 Fixed-Filter (FF) Style

The FF style inplies the options: "distinct" reservations and
"explicit" sender selection. Thus, an elenentary FF-style
reservation request creates a distinct reservation for data
packets froma particular sender, not sharing themwth other

senders’ packets for the sane session

Braden, Ed., et. al. St andards Track [Page 12]

RFC 2205 RSVP Sept ember 1997

Synbolically, we can represent an elenentary FF reservation
request by:

FF(S{Q)

where S is the selected sender and Qis the correspondi ng

fl owspec; the pair forns a flow descriptor. RSVP all ows
multiple elementary FF-style reservations to be requested at
the sanme tinme, using a list of flow descriptors:

FF(Si{Qi}, Ss2{Q}, ...)

The total reservation on a link for a given session is the
‘sum of QL, @, ... for all requested senders.

0 Shared Explicit (SE) Style

The SE style inplies the options: "shared" reservation and
"explicit" sender selection. Thus, an SE-style reservation
creates a single reservation shared by sel ected upstream
senders. Unlike the WF style, the SE style allows a receiver
to explicitly specify the set of senders to be included.

We can represent an SE reservation request containing a
flowspec Q and a list of senders S1, S2, ... by:

SE((SL,S2,...){Q)

Shared reservations, created by WF and SE styles, are appropriate
for those nmulticast applications in which nultiple data sources
are unlikely to transmt sinmultaneously. Packetized audio is an
exanpl e of an application suitable for shared reservations; since
a limted nunber of people talk at once, each receiver night issue
a WF or SE reservation request for twi ce the bandw dth required
for one sender (to allow some over-speaking). On the other hand,
the FF style, which creates distinct reservations for the flows
fromdifferent senders, is appropriate for video signals.

The RSVP rul es disallow nerging of shared reservations with

di stinct reservations, since these nodes are fundanentally

i nconpatible. They also disallow nerging explicit sender
selection with wildcard sender selection, since this mght produce
an unexpected service for a receiver that specified explicit
selection. As a result of these prohibitions, W, SE, and FF
styles are all nutually inconpatible.

Braden, Ed., et. al. St andar ds Track [Page 13]

RFC 2205 RSVP Sept ember 1997

It would seem possible to sinulate the effect of a WF reservation
using the SE style. Wen an application asked for WF, the RSVP
process on the receiver host could use local state to create an
equi val ent SE reservation that explicitly listed all senders.
However, an SE reservation forces the packet classifier in each
node to explicitly select each sender in the list, while a W
all ows the packet classifier to sinply "wild card" the sender
address and port. Wen there is a large list of senders, a W
style reservation can therefore result in considerably |ess
over head than an equival ent SE style reservation. For this
reason, both SE and WF are included in the protocol.

O her reservation options and styles may be defined in the future.
1.4 Exampl es of Styles

This section presents exanpl es of each of the reservation styles
and shows the effects of nerging.

Figure 4 illustrates a router with two incom ng interfaces,

| abel ed (a) and (b), through which flows will arrive, and two
outgoing interfaces, |abeled (c¢) and (d), through which data wll
be forwarded. This topology will be assunmed in the exanpl es that

follow. There are three upstream senders; packets from sender Sl
(S2 and S3) arrive through previous hop (a) ((b), respectively).
There are al so three downstream receivers; packets bound for Rl
(R2 and R3) are routed via outgoing interface (c) ((d),
respectively). W furthernore assunme that outgoing interface (d)
is connected to a broadcast LAN, i.e., that replication occurs in
the network; R2 and R3 are reached via different next hop routers
(not shown).

We nmust al so specify the nmulticast routes within the node of
Figure 4. Assune first that data packets fromeach Si shown in
Figure 4 are routed to both outgoing interfaces. Under this
assunption, Figures 5, 6, and 7 illustrate Wldcard-Filter,

Fi xed-Filter, and Shared-Explicit reservations, respectively.

Braden, Ed., et. al. St andar ds Track [Page 14]

RFC 2205 RSVP Sept ember 1997

(a)l | (c)
((S1) ----cmnn-- >| [P —— > (Rl)
| Rout er |
(b) | | (d) [--->(R2)
(S2,83) ------- >| [------

Figure 4: Router Configuration

For sinplicity, these exanples show fl owspecs as one-di nensi ona
mul ti pl es of sone base resource quantity B. The "Receives" columm
shows the RSVP reservation requests received over outgoing
interfaces (c¢) and (d), and the "Reserves" colum shows the

resulting reservation state for each interface. The " Sends"
col um shows the reservation requests that are sent upstreamto
previ ous hops (a) and (b). In the "Reserves" columm, each box

represents one reserved "pipe" on the outgoing link, with the
correspondi ng fl ow descri ptor.

Figure 5, showing the WF style, illustrates two distinct
situations in which nmerging is required. (1) Each of the two next
hops on interface (d) results in a separate RSVP reservation
request, as shown; these two requests nust be nmerged into the
effective flowspec, 3B, that is used to nake the reservation on
interface (d). (2) The reservations on the interfaces (c) and (d)
nmust be nerged in order to forward the reservation requests
upstream as a result, the larger flowspec 4B is forwarded
upstreamto each previous hop

Braden, Ed., et. al. St andar ds Track [Page 15]

RFC 2205 RSVP Sept ember 1997

Sends I Reserves Recei ves
|
l
WF(*{4B}) <- (a) I (c) I * {48}} (c) <- WF(*{4B})
e
_______________________ I__
WF(*{4B}) <- (b) I (d) I'?'{'ﬁé}'l (d) <- WF(*{3B})

<- WF(*{2B})

Figure 5: Wldcard-Filter (W) Reservation Exanple

Figure 6 shows Fixed-Filter (FF) style reservations. For each
outgoing interface, there is a separate reservation for each
source that has been requested, but this reservation will be
shared anmong all the receivers that nade the request. The flow
descriptors for senders S2 and S3, received through outgoing
interfaces (c¢) and (d), are packed (not nerged) into the request
forwarded to previous hop (b). On the other hand, the three
different flow descriptors specifying sender S1 are nerged into
the single request FF(S1{4B}) that is sent to previous hop (a).

Sends Reserves Recei ves

FF(S1{4B}) <- (a) FF(S1{4B}, S2{5B})

—~
(@)
~

(9]
=
—~
1N
B
—~
(@)
~
N
1

(d) | Si1{3B} | (d) <- FF(S1{3B}, S3{B})
I FF(S1{B})

<- (b)
FF(s2{5B}, S3{B) | |

| S3{B} |

N
1

Figure 6: Fixed-Filter (FF) Reservation Exanple

Braden, Ed., et. al. St andar ds Track [Page 16]

RFC 2205 RSVP Sept ember 1997

Figure 7 shows an exanple of Shared-Explicit (SE) style
reservations. Wen SE-style reservations are nerged, the
resulting filter spec is the union of the original filter specs,
and the resulting flowspec is the | argest flowspec.

Sends I Reserves Recei ves
I
|l
SE(S1{3B}) <- (a) | (c) |(S1,S2) | (c) <- SE((S1,S82){B})
I I {8 |
I

(d) |(SL,S2,S3)| (d) <- SE((S1,S3){3B})
(3B} | <- SE(S2{28B})

<- (b)
SE((S2, S3){3B})

Figure 7: Shared-Explicit (SE) Reservation Exanple

The three exanples just shown assune that data packets from S1,

S2, and S3 are routed to both outgoing interfaces. The top part
of Figure 8 shows another routing assunption: data packets from S2
and S3 are not forwarded to interface (c), e.g., because the
networ k topol ogy provides a shorter path for these senders towards
R1, not traversing this node. The bottompart of Figure 8 shows
WF style reservations under this assunption. Since there is no
route from(b) to (c), the reservation forwarded out interface (b)
considers only the reservation on interface (d).

Braden, Ed., et. al. St andar ds Track [Page 17]

RFC 2205

Sends

WE(*{4B})

WF(*{3B})

Figure 8: W Reservation Exanple --

Braden, Ed., et. al

RSVP
(a)l | (c¢)
] e > |------
I > I
| >
(b) | > | (d)
] >--> | ------
I

Rout er Configuration

|
| Reserves
|
I —
< (@ (e F {4
e
-------- I
<O 1 (@ |+ {38}

St andards Track

Parti al

Sept ember 1997

Rl)

R3)

Recei ves

WE(*{4B})

WE(* {3B})
WE(* {2B})

Rout i ng

[Page 18]

RFC 2205 RSVP Sept ember 1997

2. RSVP Protocol Mechani sns

2.1 RSVP Messages

Pr evi ous I ncom ng Qut goi ng Next
Hops Interfaces Interfaces Hops
	data -->		data -->	
A	-----------	a C	------mmmmm--	C
	Path -->		Path -->	
<-- Resv		<-- Resv		
_____ I ROUTER I	I			
I I I I	--1 D			
B	--] data-->		data -->1	
S ll--------	b d	----------- I		
Pat h-->		Path -->		
_____	<--Resv		<-- Resv	
I		--1 D		
B	--	I I		
I I

Figure 9: Router Using RSVP

Figure 9 illustrates RSVP' s nodel of a router node. Each data
flow arrives froma "previous hop" through a correspondi ng
"incom ng interface" and departs through one or nore "outgoing
interface"(s). The sane interface may act in both the inconing
and outgoing roles for different data flows in the same session
Mul ti pl e previous hops and/or next hops may be reached through a
gi ven physical interface; for exanple, the figure inplies that D
and D are connected to (d) with a broadcast LAN.

There are two fundanmental RSVP nessage types: Resv and Path.

Each receiver host sends RSVP reservation request (Resv) nessages
upstream towards the senders. These nessages nust follow exactly
the reverse of the path(s) the data packets will use, upstreamto
all the sender hosts included in the sender selection. They
create and maintain "reservation state" in each node along the
path(s). Resv nessages nust finally be delivered to the sender
hosts thensel ves, so that the hosts can set up appropriate traffic
control paranmeters for the first hop. The processing of Resv
nessages was di scussed previously in Section 1.2.

Braden, Ed., et. al. St andar ds Track [Page 19]

RFC 2205 RSVP Sept ember 1997

Each RSVP sender host transmits RSVP "Path" nessages downstream

al ong the uni-/multicast routes provided by the routing

protocol (s), followng the paths of the data. These Path nessages
store "path state" in each node along the way. This path state

i ncludes at |east the unicast |IP address of the previous hop node,
which is used to route the Resv nessages hop-by-hop in the reverse
direction. (In the future, some routing protocols may supply
reverse path forwarding information directly, replacing the
reverse-routing function of path state).

A Pat h nessage contains the following information in addition to
t he previous hop address:

0 Sender Tenpl ate

A Path nessage is required to carry a Sender Tenpl ate, which
describes the format of data packets that the sender wll
originate. This tenplate is in the formof a filter spec
that could be used to select this sender’s packets from
others in the sane session on the sane |ink

Sender Tenpl ates have exactly the sanme expressive power and
format as filter specs that appear in Resv nessages.
Therefore a Sender Tenplate nay specify only the sender IP
address and optionally the UDP/ TCP sender port, and it
assunes the protocol 1d specified for the session

0 Sender Tspec

A Path nessage is required to carry a Sender Tspec, which
defines the traffic characteristics of the data flow that the
sender will generate. This Tspec is used by traffic contro
to prevent over-reservation, and perhaps unnecessary

Admi ssion Control failures.

0 Adspec

A Path nessage may carry a package of OPWA adverti sing

i nformati on, known as an "Adspec". An Adspec received in a
Pat h message is passed to the local traffic control, which
returns an updated Adspec; the updated version is then
forwarded in Path nessages sent downstream

Braden, Ed., et. al. St andar ds Track [Page 20]

RFC 2205 RSVP Sept ember 1997

Pat h nmessages are sent with the sane source and destination
addresses as the data, so that they will be routed correctly

t hrough non-RSVP cl ouds (see Section 2.9). On the other hand,
Resv nessages are sent hop-by-hop; each RSVP-speaki ng node
forwards a Resv message to the unicast address of a previous RSVP
hop.

2.2 Merging Fl owspecs

A Resv nessage forwarded to a previous hop carries a fl owspec that
is the "largest" of the flowspecs requested by the next hops to

which the data flow will be sent (however, see Section 3.5 for a
different merging rule used in certain cases). W say the
fl owspecs have been "nerged". The exanples shown in Section 1.4

illustrated anot her case of merging, when there are multiple
reservation requests fromdifferent next hops for the sane session
and with the same filter spec, but RSVP should install only one
reservation on that interface. Here again, the installed
reservation should have an effective flowspec that is the

"l argest" of the flowspecs requested by the different next hops.

Since flowspecs are opaque to RSVP, the actual rules for conparing
fl owspecs nmust be defined and i npl enented outsi de RSVP proper

The conparison rules are defined in the appropriate integrated
servi ce specification docunent. An RSVP inplenentation will need
to call service-specific routines to performflowspec nerging.

Note that flowspecs are generally nulti-dinensional vectors; they
may contain both Tspec and Rspec conponents, each of which nay
itself be multi-dinmensional. Therefore, it may not be possible to
strictly order two flowspecs. For exanple, if one request calls
for a higher bandwi dth and another calls for a tighter delay
bound, one is not "larger" than the other. In such a case,

i nstead of taking the larger, the service-specific nerging
routines nmust be able to return a third fl owspec that is at | east
as large as each; mathematically, this is the "l east upper bound"

(LUB). In sonme cases, a flowspec at |east as small is needed,
this is the "greatest |ower bound" (G.B) G.B (G eatest Lower
Bound) .

The followi ng steps are used to calculate the effective fl owspec
(Re, Te) to be installed on an interface [RFC 2210]. Here Te is
the effective Tspec and Re is the effective Rspec.

Braden, Ed., et. al. St andards Track [Page 21]

RFC 2205 RSVP Sept ember 1997

1. An effective fl owspec is determ ned for the outgoing
interface. Depending upon the |ink-layer technology, this
may require nerging flowspecs fromdifferent next hops; this
means conputing the effective fl owspec as the LUB of the
fl owspecs. Note that what flowspecs to nerge is deternined
by the link | ayer medium (see Section 3.11.2), while howto
nmerge themis deternined by the service nodel in use [RFC
2210] .

The result is a flowspec that is opaque to RSVP but actually
consists of the pair (Re, Resv_Te), where is Re is the
ef fective Rspec and Resv_Te is the effective Tspec.

2. A service-specific calculation of Path_Te, the sum of al
Tspecs that were supplied in Path messages fromdifferent
previ ous hops (e.g., sone or all of A, B, and B in Figure
9), is perforned.

3. (Re, Resv_Te) and Path_Te are passed to traffic control
Traffic control will conmpute the effective flowspec as the
"m ni mum' of Path_Te and Resv_Te, in a service-dependent
manner .

Section 3.11.6 defines a generic set of service-specific calls to
conmpare flowspecs, to conpute the LUB and G.B of flowspecs, and to
conpare and sum Tspecs.

2.3 Soft State

RSVP takes a "soft state" approach to managi ng the reservation
state in routers and hosts. RSVP soft state is created and
periodically refreshed by Path and Resv nessages. The state is
deleted if no matching refresh nessages arrive before the
expiration of a "cleanup tineout" interval. State may al so be
del eted by an explicit "teardown" nessage, described in the next
section. At the expiration of each "refresh tineout"” period and
after a state change, RSVP scans its state to build and forward
Path and Resv refresh nmessages to succeedi ng hops.

Path and Resv nessages are idenpotent. When a route changes, the
next Path nessage will initialize the path state on the new route,
and future Resv nessages will establish reservation state there;
the state on the now unused segnment of the route will tinme out.
Thus, whether a nessage is "new' or a "refresh" is determ ned
separately at each node, dependi ng upon the existence of state at
t hat node.

Braden, Ed., et. al. St andards Track [Page 22]

RFC 2205 RSVP Sept ember 1997

RSVP sends its nessages as | P datagranms with no reliability
enhancenment. Periodic transm ssion of refresh nmessages by hosts
and routers is expected to handl e the occasional |oss of an RSVP
nessage. |If the effective cleanup tinmeout is set to Ktines the
refresh tinmeout period, then RSVP can tolerate K-1 successive RSVP
packet | osses without falsely deleting state. The network traffic
control nechani smshould be statically configured to grant sone

m ni mal bandwi dth for RSVP nessages to protect them from
congestion | osses.

The state mmintai ned by RSVP is dynamic; to change the set of
senders Si or to change any QoS request, a host sinply starts
sendi ng revised Path and/or Resv nessages. The result will be an
appropriate adjustnent in the RSVP state in all nodes al ong the
pat h; unused state will tine out if it is not explicitly torn
down.

In steady state, state is refreshed hop-by-hop to allow nerging.
When the received state differs fromthe stored state, the stored
state is updated. If this update results in nodification of state
to be forwarded in refresh nmessages, these refresh nessages nust
be generated and forwarded i mmediately, so that state changes can
be propagated end-to-end wi thout delay. However, propagation of a
change stops when and if it reaches a point where nerging causes
no resulting state change. This mnimzes RSVP control traffic
due to changes and is essential for scaling to large nulticast

gr oups.

State that is received through a particular interface |I* should
never be forwarded out the sane interface. Conversely, state that
is forwarded out interface |I* nmust be conputed using only state
that arrived on interfaces different froml*. A trivial exanple
of this rule is illustrated in Figure 10, which shows a transit
router with one sender and one receiver on each interface (and
assumes one next/previous hop per interface). Interfaces (a) and
(c) serve as both outgoing and incoming interfaces for this
session. Both receivers are making wildcard-style reservations,
in which the Resv nessages are forwarded to all previous hops for
senders in the group, with the exception of the next hop from
which they cane. The result is independent reservations in the
two directions.

There is an additional rule governing the forwardi ng of Resv
nmessages: state from Resv nessages received from outgoi ng
interface 1o should be forwarded to incomng interface Ii only if
Pat h nmessages fromli are forwarded to |o.

Braden, Ed., et. al. St andar ds Track [Page 23]

RFC 2205

RSVP

Sept ember 1997

Rout er

Send

W(*{3B}) <-- (&)
Recei ve

VE(*{4B}) --> (a)

Reserve on (a)

Fi gure 10:

2.4 Teardown

(c) <-- W(*{3B})
Send
(c) --> W(*{4B})

Reserve on (c¢)

| ndependent Reservati ons

RSVP "t eardown" nessages renmove path or reservation state

i mredi ately.

Al t hough it
an old reservation, we reconmend that al

is not necessary to explicitly tear down

end hosts send a

teardown request as soon as an application finishes.

There are two types of RSVP teardown nessage,
nessage travel s towards al
initiation and del etes path state, as
reservation state, along the way. An

ResvTear.

wel |l as all dependent

A Pat hTear
downstream fromits point of

Pat hTear and
recei vers

Braden, Ed., et. al

ResvTear nessage del etes reservation state and travels towards al
senders upstreamfromits point of initiation. A PathTear
(ResvTear) nessage nay be conceptualized as a reversed-sense Path
nessage (Resv nessage, respectively).

A teardown request may be initiated either by an application in an
end system (sender or receiver), or by a router as the result of
state timeout or service preenption. Once initiated, a teardown
request nust be forwarded hop-by-hop without delay. A teardown
nessage del etes the specified state in the node where it is
received. As always, this state change will be propagated

i Mmedi ately to the next node, but only if there will be a net
change after nmerging. As a result, a ResvTear nessage will prune
the reservation state back (only) as far as possible.

St andards Track [Page 24]

RFC 2205 RSVP Sept ember 1997

Li ke all other RSVP nessages, teardown requests are not delivered

reliably. The | oss of a teardown request nessage will not cause a
protocol failure because the unused state will eventually tine out
even though it is not explicitly deleted. |If a teardown nessage

is lost, the router that failed to receive that nmessage will tine
out its state and initiate a new teardown nessage beyond the | oss
poi nt. Assum ng that RSVP nessage |oss probability is small, the
longest tine to delete state will seldom exceed one refresh

ti meout period.

It should be possible to tear down any subset of the established
state. For path state, the granularity for teardown is a single
sender. For reservation state, the granularity is an individua
filter spec. For exanple, refer to Figure 7. Receiver Rl could
send a ResvTear nessage for sender S2 only (or for any subset of
the filter spec list), leaving S1 in place.

A ResvTear nessage specifies the style and filters; any fl owspec
is ignored. Whatever flowspec is in place will be renoved if all
its filter specs are torn down.

2.5 Errors

There are two RSVP error nessages, ResvErr and PathErr. PathErr
nessages are very sinple; they are sinply sent upstreamto the
sender that created the error, and they do not change path state
in the nodes though which they pass. There are only a few
possi bl e causes of path errors.

However, there are a nunber of ways for a syntactically valid
reservation request to fail at some node along the path. A node
may al so decide to preenpt an established reservation. The
handl i ng of ResvErr nessages is sonewhat conplex (Section 3.5).
Since a request that fails may be the result of nerging a nunber
of requests, a reservation error nust be reported to all of the
responsi bl e receivers. |n addition, merging heterogeneous
requests creates a potential difficulty known as the "killer
reservation"” problem in which one request could deny service to
another. There are actually two killer-reservation problens.

1. The first killer reservation problem (KR 1) arises when there
is already a reservation QQ in place. |f another receiver
now makes a |l arger reservation QL > 0, the result of nerging
Q@ and QL may be rejected by adnission control in sone
upstream node. This nmust not deny service to Q0.

Braden, Ed., et. al. St andar ds Track [Page 25]

RFC 2205 RSVP Sept ember 1997

The solution to this problemis sinple: when adm ssion
control fails for a reservation request, any existing
reservation is left in place.

2. The second killer reservation problem (KR-11) is the
converse: the receiver making a reservation QL is persistent
even t hough Admi ssion Control is failing for QL in sone node.
This nmust not prevent a different receiver from now
establishing a smaller reservation Q that woul d succeed if
not nerged with QL.

To solve this problem a ResvErr nessage establishes

addi tional state, called "bl ockade state", in each node

t hrough which it passes. Blockade state in a node nodifies
the merging procedure to onit the offending flowspec (QL in
the exanple) fromthe nerge, allowing a snaller request to be
forwarded and established. The Ql reservation state is said
to be "blockaded". Detailed rules are presented in Section
3.5.

A reservation request that fails Adm ssion Control creates

bl ockade state but is left in place in nodes downstream of the
failure point. It has been suggested that these reservations
downstream fromthe failure represent "wasted" reservations and
should be tinmed out if not actively deleted. However, the
downstream reservations are left in place, for the follow ng
reasons:

0 There are two possible reasons for a receiver persisting in a
failed reservation: (1) it is polling for resource
availability along the entire path, or (2) it wants to obtain
the desired QS along as nmuch of the path as possible.
Certainly in the second case, and perhaps in the first case,
the receiver will want to hold onto the reservations it has
made downstream fromthe failure.

0 I f these downstream reservati ons were not retained, the
responsi veness of RSVP to certain transient failures would be
i npai red. For exanple, suppose a route "flaps" to an
alternate route that is congested, so an existing reservation
suddenly fails, then quickly recovers to the original route.
The bl ockade state in each downstream router nust not renove
the state or prevent its inmediate refresh

0 If we did not refresh the downstream reservations, they night
time out, to be restored every Tb seconds (where Th is the
bl ockade state timeout interval). Such intermittent behavior
m ght be very distressing for users.

Braden, Ed., et. al. St andar ds Track [Page 26]

RFC 2205 RSVP Sept ember 1997

2.6 Confirnmation

To request a confirmation for its reservation request, a receiver
R includes in the Resv nessage a confirmtion-request object
containing Ri'’s IP address. At each nerge point, only the | argest
fl owspec and any acconpanyi ng confirmati on-request object is
forwarded upstream |If the reservation request fromR is equa
to or smaller than the reservation in place on a node, its Resv is
not forwarded further, and if the Resv included a confirnmation-
request object, a ResvConf nessage is sent back to R. |If the
confirmation request is forwarded, it is forwarded i medi ately,
and no nore than once for each request.

This confirmation nechani smhas the foll owi ng consequences:

0 A new reservation request with a flowspec larger than any in
place for a session will normally result in either a ResvErr
or a ResvConf nessage back to the receiver fromeach sender.
In this case, the ResvConf nessage will be an end-to-end
confirmation

0 The recei pt of a ResvConf gives no guarantees. Assune the
first two reservation requests fromreceivers RL and R2
arrive at the node where they are nerged. R2, whose
reservation was the second to arrive at that node, nmay
receive a ResvConf fromthat node while R1l's request has not
yet propagated all the way to a matchi ng sender and nmay stil
fail. Thus, R2 may receive a ResvConf although there is no
end-to-end reservation in place; furthernore, R2 may receive
a ResvConf followed by a ResvErr.

2.7 Policy Control

RSVP- nedi at ed QoS requests allow particular user(s) to obtain
preferential access to network resources. To prevent abuse, sone
formof back pressure will generally be required on users who nake
reservations. For exanple, such back pressure may be acconpli shed
by administrative access policies, or it nmay depend upon sone form

of user feedback such as real or virtual billing for the "cost" of
a reservation. In any case, reliable user identification and

sel ective admission will generally be needed when a reservation is
request ed.

The term "policy control” is used for the nechanisns required to

support access policies and back pressure for RSVP reservations.
When a new reservation is requested, each node nust answer two
guestions: "Are enough resources available to neet this request?"

Braden, Ed., et. al. St andar ds Track [Page 27]

RFC 2205 RSVP Sept ember 1997

and "Is this user allowed to nmake this reservation?" These two
deci sions are terned the "adni ssion control" decision and the
"policy control" decision, respectively, and both nust be
favorable in order for RSVP to nmake a reservation. Different
adm ni strative domains in the Internet may have different
reservation policies.

The input to policy control is referred to as "policy data", which
RSVP carries in POLI CY_DATA objects. Policy data may incl ude
credentials identifying users or user classes, account nunbers,
limts, quotas, etc. Like flowspecs, policy data is opaque to
RSVP, which sinply passes it to policy control when required.
Simlarly, merging of policy data must be done by the policy
control mechanismrather than by RSVP itself. Note that the nerge
points for policy data are likely to be at the boundaries of

admini strative domains. It may therefore be necessary to carry
accumul at ed and unnerged policy data upstreamthrough nultiple
nodes before reaching one of these nmerge points.

Carrying user-provided policy data in Resv nessages presents a
potential scaling problem Wen a nmulticast group has a | arge
nunmber of receivers, it will be inpossible or undesirable to carry
all receivers’ policy data upstream The policy data will have to
be administratively merged at places near the receivers, to avoid
excessive policy data. Further discussion of these issues and an
exanpl e of a policy control scheme will be found in [Pol Arch96].
Specifications for the format of policy data objects and RSVP
processing rules for them are under devel opnent.

2.8 Security
RSVP rai ses the followi ng security issues.
0 Message integrity and node authentication

Corrupted or spoofed reservation requests could |lead to theft
of service by unauthorized parties or to denial of service
caused by | ocking up network resources. RSVP protects

agai nst such attacks with a hop-by-hop authentication
mechani sm usi ng an encrypted hash function. The mechanismis
supported by INTEGRITY objects that may appear in any RSVP
nmessage. These objects use a keyed cryptographi ¢ di gest
techni que, which assunes that RSVP nei ghbors share a secret.
Al t hough this nmechanismis part of the base RSVP
specification, it is described in a conpani on docunent

[Baker 96] .

Braden, Ed., et. al. St andar ds Track [Page 28]

RFC 2205 RSVP Sept ember 1997

W despread use of the RSVP integrity mechanismwll require
the availability of the |ong-sought key management and
distribution infrastructure for routers. Until that
infrastructure becones avail abl e, manual key managenent wl|l
be required to secure RSVP nessage integrity.

o] User aut hentication

Policy control will depend upon positive authentication of
the user responsible for each reservation request. Policy
data may therefore include cryptographically protected user
certificates. Specification of such certificates is a future
i ssue.

Even without globally-verifiable user certificates, it may be
possible to provide practical user authentication in nmany
cases by establishing a chain of trust, using the hop-by-hop
| NTEGRI TY nechani sm descri bed earlier.

o) Secure data streans

The first two security issues concerned RSVP' s operation. A
third security issue concerns resource reservations for
secure data streams. In particular, the use of IPSEC (IP
Security) in the data stream poses a problemfor RSVP. if
the transport and higher |evel headers are encrypted, RSVP s
general i zed port nunbers cannot be used to define a session
or a sender.

To solve this problem an RSVP extension has been defined in
whi ch the security association identifier (IPSEC SPI) plays a
rol e roughly equivalent to the generalized ports [RFC 2207].

2.9 Non-RSVP d ouds

It is inpossible to deploy RSVP (or any new protocol) at the same
noment throughout the entire Internet. Furthernore, RSVP may

never be depl oyed everywhere. RSVP nust therefore provide correct
protocol operation even when two RSVP-capabl e routers are joi ned
by an arbitrary "cloud" of non-RSVP routers. O course, an

i ntermedi ate cloud that does not support RSVP is unable to perform
resource reservation. However, if such a cloud has sufficient
capacity, it may still provide useful realtine service.

RSVP is designed to operate correctly through such a non- RSVP
cloud. Both RSVP and non-RSVP routers forward Path nessages
towards the destination address using their local uni-/multicast
routing table. Therefore, the routing of Path nessages will be

Braden, Ed., et. al. St andar ds Track [Page 29]

RFC 2205 RSVP Sept ember 1997

unaf fected by non-RSVP routers in the path. Wen a Path nessage
traverses a non-RSVP cloud, it carries to the next RSVP-capable
node the | P address of the | ast RSVP-capabl e router before
entering the cloud. An Resv nessage is then forwarded directly to
the next RSVP-capable router on the path(s) back towards the

sour ce.

Even though RSVP operates correctly through a non-RSVP cloud, the
non- RSVP- capabl e nodes will in general perturb the QoS provided to
a receiver. Therefore, RSVP passes a ‘NonRSVP' flag bit to the
local traffic control mechani smwhen there are non- RSVP-capabl e
hops in the path to a given sender. Traffic control conbines this
flag bit with its own sources of information, and forwards the
conmposed information on integrated service capability along the
path to receivers using Adspecs [RFC 2210].

Some topol ogi es of RSVP routers and non- RSVP routers can cause
Resv nmessages to arrive at the wong RSVP-capabl e node, or to
arrive at the wong interface of the correct node. An RSVP
process nust be prepared to handle either situation. |f the

desti nati on address does not natch any local interface and the
nessage is not a Path or PathTear, the nmessage nust be forwarded
wi t hout further processing by this node. To handle the wong
interface case, a "Logical Interface Handle" (LIH) is used. The
previ ous hop information included in a Path nmessage includes not
only the I P address of the previous node but also an LIH defining
the logical outgoing interface; both values are stored in the path
state. A Resv nessage arriving at the addressed node carries both
the I P address and the LIH of the correct outgoing interface, i.e,
the interface that should receive the requested reservati on,
regardl ess of which interface it arrives on

The LIH may al so be useful when RSVP reservations are made over a
complex link layer, to map between IP layer and |ink |ayer flow
entities.

2.10 Host Mbodel

Before a session can be created, the session identification

(Dest Address, Protocolld [, DstPort]) nust be assigned and
conmmuni cated to all the senders and receivers by sone out-of - band
mechani sm When an RSVP session is being set up, the follow ng
events happen at the end systens.

Braden, Ed., et. al. St andar ds Track [Page 30]

RFC 2205 RSVP Sept ember 1997

H1 A receiver joins the nmulticast group specified by
Dest Addr ess, using | GW.

H2 A potential sender starts sending RSVP Path nessages to the
Dest Addr ess.

H3 A receiver application receives a Path nessage.

H4 A receiver starts sending appropriate Resv nessages,
speci fying the desired fl ow descriptors.

H5 A sender application receives a Resv nessage.
H6 A sender starts sending data packets.
There are several synchroni zation considerations.

0 HL and H2 may happen in either order.

0 Suppose that a new sender starts sending data (H6) but there
are no nulticast routes because no receivers have joined the
group (H1). Then the data will be dropped at sone router

node (whi ch node depends upon the routing protocol) until
recei vers(s) appear.

0 Suppose that a new sender starts sending Path nessages (H2)

and data (H6) sinultaneously, and there are receivers but no
Resv nmessages have reached the sender yet (e.g., because its
Pat h messages have not yet propagated to the receiver(s)).
Then the initial data may arrive at receivers wthout the
desired Q0S. The sender could mitigate this problem by

awai ting arrival of the first Resv nessage (H5); however,
receivers that are farther away may not have reservations in

pl ace yet.
0 If a receiver starts sending Resv nmessages (H4) before
receiving any Path nessages (H3), RSVP will return error

nmessages to the receiver

The receiver may sinply choose to ignore such error nessages,
or it may avoid themby waiting for Path nmessages before
sendi ng Resv nessages.

A specific application programinterface (API) for RSVP is not
defined in this protocol spec, as it may be host system dependent.
However, Section 3.11.1 discusses the general requirenments and
outlines a generic interface.

Braden, Ed., et. al. St andar ds Track [Page 31]

RFC 2205 RSVP Sept ember 1997

3. RSVP Functional Specification
3.1 RSVP Message Formats

An RSVP nessage consists of a conmon header, followed by a body
consi sting of a variable nunber of variable-length, typed
"objects". The foll owing subsections define the formats of the
common header, the standard object header, and each of the RSVP
nessage types.

For each RSVP nessage type, there is a set of rules for the
perm ssi bl e choi ce of object types. These rules are specified
usi ng Backus- Naur Form (BNF) augnented with square brackets
surroundi ng optional sub-sequences. The BNF inplies an order for
the objects in a nessage. However, in many (but not all) cases,
obj ect order makes no |ogical difference. An inplenentation
shoul d create nessages with the objects in the order shown here,
but accept the objects in any perm ssible order.

3.1.1 Common Header

0 1 2 3
NS NS NS NS +
| Vers | Flags| Msg Type | RSVP Checksum |
NS NS NS NS +
| Send _TTL | (Reserved) | RSVP Lengt h |
NS NS NS NS +

The fields in the cormon header are as foll ows:
Vers: 4 bits
Protocol version nunmber. This is version 1.
Fl ags: 4 bits
0x01- 0x08: Reserved
No flag bits are defined yet.
Msg Type: 8 bits

1 = Path

N
1

Resv

Braden, Ed., et. al. St andar ds Track [Page 32]

RFC 2205

RSVP Sept ember 1997

3 = Pat hErr
4 = ResvErr
5 = Pat hTear
6 = ResvTear

7 = ResvConf

RSVP Checksum 16 bits

The one’s conpl enent of the one’s conpl enment sum of the
nmessage, with the checksumfield replaced by zero for the
pur pose of conputing the checksum An all-zero val ue
means that no checksumwas transm tted.

Send_TTL: 8 bits

The I P TTL value with which the nessage was sent. See
Section 3.8.

RSVP Length: 16 bits

The total length of this RSVP nessage in bytes, including
the comon header and the variabl e-1 ength objects that
foll ow.

3.1.2 nject Formats

Br aden,

Every object consists of one or nore 32-bit words with a one-
word header, with the follow ng format:

0 1 2 3
------------- T T J U
Lengt h (bytes) | dass-Num | C Type |
------------- T T J U
I
(CObj ect contents) I
I
------------- T T J U

et. al. St andar ds Track [Page 33]

RFC 2205 RSVP Sept ember 1997

An obj ect header has the follow ng fields:
Lengt h

A 16-bit field containing the total object length in
bytes. Mist always be a nultiple of 4, and at |east 4.

C ass- Num

Identifies the object class; values of this field are
defined in Appendix A Each object class has a nane,
which is always capitalized in this docunent. An RSVP
i mpl ement ati on nmust recogni ze the follow ng classes:

NUL L

A NULL object has a O ass-Num of zero, and its C Type
is ignored. |Its length nust be at |east 4, but can
be any multiple of 4. A NULL object may appear
anywhere in a sequence of objects, and its contents
will be ignored by the receiver.

SESSI ON

Contains the | P destination address (DestAddress),
the IP protocol id, and sone form of generalized
destination port, to define a specific session for
the other objects that follow. Required in every
RSVP nessage

RSVP_HOP

Carries the I P address of the RSVP-capabl e node that
sent this nessage and a | ogical outgoing interface
handl e (LI H, see Section 3.3). This docunment refers
to a RSVP_HOP object as a PHOP ("previous hop")
obj ect for downstream nessages or as a NHOP ("
hop") object for upstream nessages.

next

Tl ME_VALUES
Contains the value for the refresh period R used by

the creator of the nessage; see Section 3.7.
Required in every Path and Resv nessage.

Braden, Ed., et. al. St andar ds Track [Page 34]

RFC 2205

Br aden,

RSVP Sept ember 1997

STYLE

Defines the reservation style plus style-specific
information that is not in FLOASPEC or FILTER SPEC
objects. Required in every Resv nessage.

FLOWSPEC
Defines a desired QS, in a Resv nessage.

FI LTER_SPEC

Defi nes a subset of session data packets that should
receive the desired QS (specified by a FLOAMSPEC
object), in a Resv nessage.

SENDER_TEMPLATE

Contains a sender |P address and perhaps sone
addi tional denultiplexing information to identify a
sender. Required in a Path nessage.

SENDER_TSPEC

Defines the traffic characteristics of a sender’s
data flow Required in a Path nessage.

ADSPEC
Carries OPWA data, in a Path nessage.
ERROR_SPEC

Specifies an error in a PathErr, ResvErr, or a
confirmation in a ResvConf message.

PCLI CY_DATA

Carries information that will allow a | ocal policy
nodul e to deci de whet her an associated reservation is
adm nistratively permtted. My appear in Path,

Resv, PathErr, or ResvErr nessage.

The use of POLI CY_DATA objects is not fully specified
at this tinme; a future docurment will fill this gap

et. al. St andar ds Track [Page 35]

RFC 2205 RSVP Sept ember 1997

| NTEGRI TY

Carries cryptographic data to authenticate the
originating node and to verify the contents of this
RSVP nessage. The use of the INTEGRITY object is
described in [Baker96].

SCOPE

Carries an explicit list of sender hosts towards
which the information in the nmessage is to be
forwarded. May appear in a Resv, ResvErr, or
ResvTear nessage. See Section 3.4.

RESV_CONFI RM

Carries the IP address of a receiver that requested a
confirmation. May appear in a Resv or ResvConf
nessage.

C Type

hj ect type, unique within Cass-Num Values are defi ned
in Appendi x A

The maxi mum obj ect content length is 65528 bytes. The O ass-
Num and C Type fields may be used together as a 16-bit nunber
to define a unique type for each object.

The high-order two bits of the Cass-Numis used to determ ne
what action a node should take if it does not recognize the
Cl ass- Num of an object; see Section 3.10.

3.1.3 Path Messages

Each sender host periodically sends a Path nessage for each
data flowit originates. It contains a SENDER TEMPLATE obj ect
defining the fornmat of the data packets and a SENDER_TSPEC

obj ect specifying the traffic characteristics of the flow
Optionally, it may contain nmay be an ADSPEC obj ect carrying
advertising (OPWA) data for the flow.

A Path nessage travels froma sender to receiver(s) along the
same path(s) used by the data packets. The IP source address
of a Path nmessage nust be an address of the sender it

descri bes, while the destination address nust be the

Dest Address for the session. These addresses assure that the
nmessage will be correctly routed through a non-RSVP cl oud.

Braden, Ed., et. al. St andar ds Track [Page 36]

RFC 2205 RSVP Sept ember 1997

The format of a Path nessage is as foll ows:
<Pat h Message> ::= <Common Header> [<INTEGRI TY>]
<SESSI ON> <RSVP_HOP>
<TlI ME_VALUES>
[<POLI CY_DATA> ...]
[<sender descriptor>]
<sender descriptor> ::= <SENDER_TEMPLATE> <SENDER TSPEC>

[<ADSPEC>]

If the INTEGRITY object is present, it nust inmediately follow
the common header. There are no other requirements on

transni ssion order, although the above order is reconmended.
Any nunber of POLI CY_DATA objects may appear

The PHOP (i.e., RSVP_HOP) object of each Path nessage contains
the previous hop address, i.e., the IP address of the interface
t hrough which the Path nmessage was nost recently sent. It also
carries a logical interface handle (LIH).

Each RSVP-capabl e node al ong the path(s) captures a Path
nmessage and processes it to create path state for the sender
defined by the SENDER TEMPLATE and SESSI ON obj ects. Any

PCLI CY_DATA, SENDER TSPEC, and ADSPEC objects are al so saved in
the path state. |If an error is encountered while processing a
Path nmessage, a PathErr nmessage is sent to the originating
sender of the Path nmessage. Path nessages nust satisfy the
rules on SrcPort and DstPort in Section 3.2.

Periodically, the RSVP process at a node scans the path state
to create new Path nessages to forward towards the receiver(s).
Each nmessage contains a sender descriptor defining one sender,
and carries the original sender’'s IP address as its |P source
address. Path nessages eventually reach the applications on
all receivers; however, they are not |ooped back to a receiver
running in the sane application process as the sender.

The RSVP process forwards Path nmessages and replicates them as
required by multicast sessions, using routing information it
obtains fromthe appropriate uni-/rulticast routing process.
The route depends upon the session Dest Address, and for sone

Braden, Ed., et. al. St andar ds Track [Page 37]

RFC 2205

RSVP Sept ember 1997

routing protocols al so upon the source (sender’s |P) address.
The routing information generally includes the list of zero or
nore outgoing interfaces to which the Path nessage is to be
forwarded. Because each outgoing interface has a different IP
address, the Path nessages sent out different interfaces
contain different PHOP addresses. |In addition, ADSPEC objects
carried in Path nessages will also generally differ for

di fferent outgoing interfaces.

Path state for a given session and sender may not necessarily
have a uni que PHOP or unique incomng interface. There are two
cases, corresponding to nulticast and uni cast sessions.

0 Mul ti cast Sessi ons

Mul ticast routing allows a stable distribution tree in
whi ch Path nessages fromthe sanme sender arrive fromnore
than one PHOP, and RSVP nust be prepared to maintain al
such path state. The RSVP rules for handling this
situation are contained in Section 3.9. RSVP nust not
forward (according to the rules of Section 3.9) Path
nmessages that arrive on an incomng interface different
fromthat provided by routing.

0 Uni cast Sessi ons

For a short period foll owing a unicast route change
upstream a node may receive Path nessages frommultiple
PHOPs for a given (session, sender) pair. The node cannot
reliably determ ne which is the right PHOP, although the
node will receive data fromonly one of the PHOPs at a
time. One inplementation choice for RSVP is to ignore
PHOP i n matchi ng uni cast past state, and allow the PHOP to
flip anong the candi dates. Another inplenentation choice
is to nmaintain path state for each PHOP and to send Resv
nmessages upstreamtowards all such PHOPs. In either case,
the situation is a transient; the unused path state wll
time out or be torn down (because upstream path state
timed out).

3.1.4 Resv Messages

Br aden,

Resv nmessages carry reservation requests hop-by-hop from
receivers to senders, along the reverse paths of data flows for
the session. The IP destination address of a Resv nessage is
the uni cast address of a previous-hop node, obtained fromthe
path state. The IP source address is an address of the node
that sent the nessage.

Ed., et. al. St andar ds Track [Page 38]

RFC 2205 RSVP Sept ember 1997

The Resv nessage format is as foll ows:

<Resv Message> ::= <Common Header> [<INTEGRI TY>]
<SESSI ON> <RSVP_HOP>
<TlI ME_VALUES>
[<RESV_CONFIRM>] [<SCOPE>]
[<POLI CY_DATA> ...]
<STYLE> <fl ow descriptor |ist>

<fl ow descriptor list> ::= <enpty> |

<fl ow descriptor list> <flow descri ptor>

If the INTEGRITY object is present, it nust inmediately follow
the common header. The STYLE object followed by the flow
descriptor list nust occur at the end of the nessage, and
objects within the flow descriptor list nmust follow the BNF
given below. There are no other requirenents on transm ssion
order, although the above order is reconmended.

The NHOP (i.e., the RSVP_HOP) object contains the |IP address of
the interface through which the Resv nessage was sent and the
LIH for the logical interface on which the reservation is
required.

The appearance of a RESV_CONFI RM obj ect signals a request for a
reservation confirmation and carries the | P address of the
receiver to which the ResvConf should be sent. Any nunber of
PCLI CY_DATA obj ects may appear.

The BNF above defines a flow descriptor list as sinply a list
of flow descriptors. The follow ng styl e-dependent rul es
specify in nore detail the conposition of a valid flow
descriptor list for each of the reservation styles.
o] WF Styl e:

<flow descriptor list>::= <W flow descriptor>

<WF fl ow descriptor> ::= <FLONSPEC>

Braden, Ed., et. al. St andar ds Track [Page 39]

RFC 2205

Br aden,

RSVP Sept ember 1997

FF styl e:
<fl ow descriptor list> ::=
<FLOWNSPEC> <FI LTER SPEC> |
<fl ow descriptor |ist> <FF flow descri ptor>
<FF flow descriptor> ::=

[<FLOABPEC>] <FI LTER SPEC>

Each el enmentary FF style request is defined by a single
(FLOWSPEC, FILTER SPEC) pair, and nultiple such requests
may be packed into the flow descriptor list of a single
Resv nmessage. A FLOASPEC object can be onmitted if it is
identical to the nost recent such object that appeared in
the list; the first FF flow descriptor nmust contain a
FLOWSPEC.

SE styl e:
<fl ow descriptor list> ::= <SE fl ow descriptor>
<SE flow descriptor> ::=
<FLOWSPEC> <filter spec list>
<filter spec list> ::= <FILTER SPEC>

| <filter spec list> <FILTER _SPEC>

The reservation scope, i.e., the set of senders towards which a
particular reservation is to be forwarded (after nerging), is
determ ned as foll ows:

(0]

Ed.,

Explicit sender selection

The reservation is forwarded to all senders whose
SENDER_TEMPLATE obj ects recorded in the path state match a
FI LTER_SPEC object in the reservation. This match nust
follow the rules of Section 3.2.

et. al. St andar ds Track [Page 40]

RFC 2205

3.

Br aden,

RSVP Sept ember 1997
o] W dcard sender sel ection
A request with wildcard sender selection will match al

senders that route to the given outgoing interface.

Whenever a Resv nmessage with wildcard sender selection is
forwarded to nore than one previ ous hop, a SCOPE object
nmust be included in the nmessage (see Section 3.4 below);
in this case, the scope for forwarding the reservation is
constrained to just the sender |P addresses explicitly
listed in the SCOPE object.

A Resv nessage that is forwarded by a node is generally
the result of nerging a set of incom ng Resv nessages
(that are not bl ockaded; see Section 3.5). |If one of
these nmerged nessages contains a RESV_CONFI RM obj ect and
has a FLOANSPEC | arger than the FLOASPECs of the other
nmerged reservation requests, then this RESV_CONFI RM obj ect
is forwarded in the outgoi ng Resv nessage. A RESV_CONFI RM
obj ect in one of the other nerged requests (whose

fl owspecs are equal to, smaller than, or inconparable to,
the nmerged fl owspec, and which is not bl ockaded) will
trigger the generation of an ResvConf nmessage containi ng
the RESV_CONFIRM A RESV_CONFI RM object in a request that
is blockaded will be neither forwarded nor returned; it
will be dropped in the current node.

1.5 Path Teardown Messages

Recei pt of a PathTear (path teardown) nessage del etes matching
path state. Matching state nmust have nmatch t he SESSI ON
SENDER_TEMPLATE, and PHOP objects. 1In addition, a PathTear
nmessage for a nulticast session can only match path state for
the incoming interface on which the PathTear arrived. |If there
is no matching path state, a PathTear nessage shoul d be

di scarded and not forwarded.

Pat hTear nmessages are initiated explicitly by senders or by
path state timeout in any node, and they travel downstream
towards all receivers. A unicast PathTear nust not be
forwarded if there is path state for the sane (session, sender)
pair but a different PHOP. Forwarding of nulticast PathTear
nmessages is governed by the rules of Section 3.9.

Ed., et. al. St andar ds Track [Page 41]

RFC 2205

RSVP Sept ember 1997

A Pat hTear nmessage nust be routed exactly |ike the
correspondi ng Path nmessage. Therefore, its |IP destination
address nust be the session DestAddress, and its | P source
address nust be the sender address fromthe path state being
torn down.

<Pat hTear Message> ::= <Common Header> [<INTEGRITY>]
<SESSI O\N> <RSVP_HOP>
[<sender descriptor>]

<sender descriptor> ::= (see earlier definition)

A Pat hTear nmessage may include a SENDER TSPEC or ADSPEC obj ect
inits sender descriptor, but these nmust be ignored. The order
requi rements are as given earlier for a Path nmessage, but the
above order is reconmended.

Del etion of path state as the result of a PathTear nessage or a
ti meout nust al so adjust related reservation state as required
to nmaintain consistency in the | ocal node. The adjustnent
depends upon the reservation style. For exanple, suppose a

Pat hTear deletes the path state for a sender S. If the style
specifies explicit sender selection (FF or SE), any reservation
with a filter spec matching S should be deleted; if the style
has wi | dcard sender selection (W), the reservation should be
deleted if Sis the last sender to the session. These
reservation changes should not trigger an i medi ate Resv
refresh nessage, since the PathTear nessage has al ready nade
the required changes upstream They should not trigger a
ResvErr nmessage, since the result could be to generate a shower
of such nessages.

3.1.6 Resv Teardown Messages

Br aden,

Recei pt of a ResvTear (reservation teardown) nessage del etes
mat chi ng reservation state. Matching reservation state nust
mat ch the SESSI ON, STYLE, and FILTER SPEC objects as well as
the LIHin the RSVP_HOP object. If there is no nmatching
reservation state, a ResvTear nessage should be discarded. A
ResvTear nessage nay tear down any subset of the filter specs
in FF-style or SE-style reservation state.

ResvTear nessages are initiated explicitly by receivers or by

any node in which reservation state has tined out, and they
travel upstreamtowards all matching senders.

Ed., et. al. St andar ds Track [Page 42]

RFC 2205 RSVP Sept ember 1997

A ResvTear nessage nust be routed |ike the correspondi ng Resv
nmessage, and its I P destination address will be the unicast
address of a previous hop.

<ResvTear Message> ::= <Common Header> [<| NTEGRI TY>]
<SESSI ON> <RSVP_HOP>
[<SCOPE>] <STYLE>
<fl ow descriptor list>

<fl ow descriptor list> ::= (see earlier definition)

FLOASPEC obj ects in the flow descriptor |list of a ResvTear
nmessage will be ignored and may be onitted. The order
requirements for I NTEGRI TY object, sender descriptor, STYLE
object, and flow descriptor list are as given earlier for a
Resv nmessage, but the above order is recommended. A ResvTear
nmessage nmay i nclude a SCOPE object, but it nust be ignored.

A ResvTear nmessage will cease to be forwarded at the node where
nmer gi ng woul d have suppressed forwardi ng of the correspondi ng
Resv nmessage. Depending upon the resulting state change in a
node, receipt of a ResvTear nessage nay cause a ResvTear
nmessage to be forwarded, a nodified Resv nessage to be
forwarded, or no nessage to be forwarded. These three cases
can be illustrated in the case of the FF-style reservations
shown in Figure 6.

o] If receiver R2 sends a ResvTear nessage for its
reservation S3{B}, the corresponding reservation is
renoved frominterface (d) and a ResvTear for S3{B} is
forwarded out (b).

o] If receiver RL sends a ResvTear for its reservation
S1{4B}, the corresponding reservation is renoved from
interface (c) and a nodified Resv nessage FF(S1{3B}) is
i medi ately forwarded out (a).

o] If receiver R3 sends a ResvTear nessage for S1{B}, there

is no change in the effective reservation S1{3B} on (d)
and no nmessage i s forwarded.

Braden, Ed., et. al. St andar ds Track [Page 43]

RFC 2205 RSVP Sept ember 1997

3.1.7 Path Error Messages

Pat hErr (path error) nessages report errors in processing Path
nmessages. They are travel upstreamtowards senders and are
routed hop-by-hop using the path state. At each hop, the IP
destination address is the unicast address of a previous hop.
Pat hErr nmessages do not nodify the state of any node through
whi ch they pass; they are only reported to the sender
appl i cati on.

<Pat hErr message> ::= <Common Header> [<INTECRI TY>]
<SESSI ON> <ERROR_SPEC>
[<POLI CY_DATA> ...]
[<sender descriptor>]
<sender descriptor> ::= (see earlier definition)

The ERROR_SPEC obj ect specifies the error and includes the IP
address of the node that detected the error (Error Node
Address). One or nore POLI CY_DATA objects nmay be incl uded
nmessage to provide relevant information. The sender descriptor
is copied fromthe nmessage in error. The object order
requirenents are as given earlier for a Path nessage, but the
above order is reconmended.

3.1.8 Resv Error Messages

ResvErr (reservation error) nmessages report errors in
processi ng Resv nessages, or they may report the spontaneous
di sruption of a reservation, e.g., by admnistrative
preenption.

ResvErr nessages travel downstream towards the appropriate
receivers, routed hop-by-hop using the reservation state. At
each hop, the I P destination address is the unicast address of
a next-hop node.

Braden, Ed., et. al. St andar ds Track [Page 44]

RFC 2205

Br aden,

RSVP Sept ember 1997

<ResvErr Message> ::= <Common Header> [<INTECRITY>]
<SESSI ON> <RSVP_HOP>
<ERROR_SPEC> [<SCOPE>]
[<POLI CY_DATA> ...]

<STYLE> [<error flow descriptor>]

The ERROR_SPEC obj ect specifies the error and includes the IP
address of the node that detected the error (Error Node
Address). One or nore POLI CY_DATA objects may be included in
an error nessage to provide relevant information (e.g.,, when a
policy control error is being reported). The RSVP_HOP obj ect
contains the previous hop address, and the STYLE object is
copied fromthe Resv nessage in error. The use of the SCOPE
object in a ResvErr nessage is defined below in Section 3. 4.
The object order requirenents are as given for Resv nessages,
but the above order is recomended.

The foll owi ng styl e-dependent rules define the conposition of a
valid error flow descriptor; the object order requirenents are
as given earlier for flow descriptor.

o] WF Styl e:

<error flow descriptor> ::= <W flow descriptor>

o] FF styl e:

<FF fl ow descri ptor>

<error flow descriptor> ::

Each flow descriptor in a FF-style Resv nessage must be
processed i ndependently, and a separate ResvErr nessage
nmust be generated for each one that is in error
o] SE styl e:
<error flow descriptor> ::= <SE fl ow descri ptor>
An SE-style ResvErr nmessage nay |ist the subset of the

filter specs in the correspondi ng Resv nessage to which
the error applies.

Ed., et. al. St andar ds Track [Page 45]

RFC 2205

3.

Br aden,

RSVP Sept ember 1997

Note that a ResvErr nessage contains only one flow descriptor.
Therefore, a Resv nessage that contains N> 1 flow descriptors
(FF style) may create up to N separate ResvErr messages.

CGeneral |y speaking, a ResvErr nessage shoul d be forwarded
towards all receivers that may have caused the error being
reported. More specifically:

o] The node that detects an error in a reservation request
sends a ResvErr nessage to the next hop node from which
the erroneous reservation cane.

This ResvErr nessage nust contain the information required
to define the error and to route the error nessage in
|ater hops. It therefore includes an ERROR _SPEC object, a
copy of the STYLE object, and the appropriate error flow
descriptor. If the error is an admission control failure
while attenpting to increase an existing reservation, then
the existing reservation nust be left in place and the
InPlace flag bit nmust be on in the ERROR_SPEC of the
ResvErr nessage.

o] Succeedi ng nodes forward the ResvErr nessage to next hops
that have local reservation state. For reservations with
wi | dcard scope, there is an additional limtation on

forwardi ng ResvErr nessages, to avoid | oops; see Section
3.4. There is also a rule restricting the forwarding of a
Resv nessage after an Admission Control failure; see
Section 3.5.

A ResvErr nmessage that is forwarded should carry the
FILTER_SPEC(s) fromthe correspondi ng reservation state.

o] When a ResvErr nessage reaches a receiver, the STYLE
obj ect, flow descriptor list, and ERROR_SPEC obj ect
(including its flags) should be delivered to the receiver
appl i cati on.

1.9 Confirmation Messages
ResvConf nessages are sent to (probabilistically) acknow edge

reservation requests. A ResvConf nessage is sent as the result
of the appearance of a RESV_CONFI RM obj ect in a Resv nessage.

Ed., et. al. St andar ds Track [Page 46]

RFC 2205 RSVP Sept ember 1997

A ResvConf nessage is sent to the unicast address of a receiver
host; the address is obtained fromthe RESV_CONFI RM obj ect.
However, a ResvConf nessage is forwarded to the receiver hop-
by-hop, to accommpdate the hop-by-hop integrity check

mechani sm
<ResvConf nessage> ::= <Common Header> [<INTEGRITY>]
<SESSI ON> <ERROR_SPEC>
<RESV_CONFI RV
<STYLE> <fl ow descriptor |ist>
<fl ow descriptor list> ::= (see earlier definition)

The object order requirenents are the sane as those given
earlier for a Resv nessage, but the above order is recomended.

The RESV_CONFI RM object is a copy of that object in the Resv
nmessage that triggered the confirmation. The ERROR SPEC is
used only to carry the I P address of the originating node, in
the Error Node Address; the Error Code and Value are zero to
indicate a confirmation. The flow descriptor |ist specifies
the particular reservations that are being confirmed; it may be
a subset of flow descriptor list of the Resv that requested the
confirmation

3.2 Port Usage

An RSVP session is normally defined by the triple: (DestAddress,
Protocolld, DstPort). Here DstPort is a UDP/TCP destination port
field (i.e., a 16-bit quantity carried at octet offset +2 in the
transport header). DstPort nay be omitted (set to zero) if the
Protocol I d specifies a protocol that does not have a destination
port field in the format used by UDP and TCP.

RSVP al | ows any value for Protocolld. However, end-system

i mpl ementati ons of RSVP may know about certain values for this
field, and in particular the values for UDP and TCP (17 and 6,
respectively). An end systemmnay give an error to an application
that either:

0 specifies a non-zero DstPort for a protocol that does not
have UDP/ TCP-1i ke ports, or

Braden, Ed., et. al. St andar ds Track [Page 47]

RFC 2205 RSVP Sept ember 1997

0 specifies a zero DstPort for a protocol that does have
UDP/ TCP- 1 i ke ports.

Filter specs and sender tenplates specify the pair: (SrcAddress,
SrcPort), where SrcPort is a UDP/ TCP source port field (i.e., a
16-bit quantity carried at octet offset +0 in the transport
header) . SrcPort nay be omitted (set to zero) in certain cases.

The followi ng rules hold for the use of zero DstPort and/or
SrcPort fields in RSVP.

1. Destination ports nust be consistent.

Path state and reservation state for the sane Dest Address and
Protocol I d nust each have DstPort values that are all zero or
all non-zero. Violation of this condition in a node is a
"Conflicting Dest Ports" error

2. Destination ports rule.

If DstPort in a session definition is zero, all SrcPort
fields used for that session nust also be zero. The
assunption here is that the protocol does not have UDP/ TCP-

i ke ports. Violation of this condition in a node is a "Bad
Src Ports" error.

3. Source Ports nust be consi stent.

A sender host nust not send path state both with and without
a zero SrcPort. Violation of this condition is a
"Conflicting Sender Port" error.

Note that RSVP has no "wildcard" ports, i.e., a zero port cannot
match a non-zero port.

3.3 Sendi ng RSVP Messages

RSVP nessages are sent hop-by-hop between RSVP-capabl e routers as
"raw' | P datagrans with protocol nunber 46. Raw |IP datagrans are
al so intended to be used between an end system and the first/I ast
hop router, although it is also possible to encapsul ate RSVP
nessages as UDP datagrans for end-system communi cation, as
described in Appendix C. UDP encapsul ation is needed for systens
that cannot do raw network |/Q.

Braden, Ed., et. al. St andar ds Track [Page 48]

RFC 2205 RSVP Sept ember 1997

Pat h, PathTear, and ResvConf nessages nust be sent with the Router
Alert IP option [RFC 2113] in their I P headers. This option may
be used in the fast forwarding path of a high-speed router to

det ect datagrans that require special processing.

Upon the arrival of an RSVP nessage Mthat changes the state, a
node nust forward the state nodification i mediately. However,
this must not trigger sending a nessage out the interface through
which Marrived (which could happen if the inplenmentation sinply
triggered an i medi ate refresh of all state for the session).

This rule is necessary to prevent packet storns on broadcast LANs.

In this version of the spec, each RSVP nessage nust occupy exactly
one | P datagram |If it exceeds the MIU, such a datagramw || be
fragmented by I P and reassenbl ed at the recipient node. This has
several consequences:

0 A single RSVP nessage nay not exceed the nmaxi mum | P dat agram
size, approximately 64K bytes.

0 A congested non-RSVP cloud could | ose individual nessage
fragnents, and any lost fragment will lose the entire
nessage.

Future versions of the protocol will provide solutions for these

problens if they prove burdensone. The nost likely direction wll

be to perform"semantic fragnmentation", i.e., break the path or

reservation state being transmtted into multiple self-contained
nessages, each of an acceptabl e size.

RSVP uses its periodic refresh mechanisns to recover from

occasi onal packet |osses. Under network overload, however,
substantial | osses of RSVP nessages could cause a failure of
resource reservations. To control the queuing delay and dropping
of RSVP packets, routers should be configured to offer thema
preferred class of service. |If RSVP packets experience noticeable
| osses when crossing a congested non-RSVP cl oud, a | arger val ue
can be used for the tineout factor K (see section 3.7).

Some multicast routing protocols provide for "nulticast tunnels",
whi ch do I P encapsul ati on of nulticast packets for transm ssion
through routers that do not have nulticast capability. A

mul ticast tunnel |ooks |ike a |logical outgoing interface that is
mapped i nto sone physical interface. A nulticast routing protocol
that supports tunnels will describe a route using a list of

| ogi cal rather than physical interfaces. RSVP can operate across
such multicast tunnels in the follow ng manner:

Braden, Ed., et. al. St andar ds Track [Page 49]

RFC 2205 RSVP Sept ember 1997

1. Wien a node N forwards a Path nessage out a | ogical outgoing
interface L, it includes in the nessage sone encodi ng of the
identity of L, called the "logical interface handle" or LIH
The LIH value is carried in the RSVP_HOP obj ect.

2. The next hop node N stores the LIH value in its path state.

3. When N sends a Resv nessage to N, it includes the LIH val ue
fromthe path state (again, in the RSVP_HOP object).

4. Wien the Resv nessage arrives at N, its LIH value provides
the informati on necessary to attach the reservation to the
appropriate logical interface. Note that N creates and
interprets the LIH it is an opaque value to N .

Note that this only solves the routing problem posed by tunnels.
The tunnel appears to RSVP as a non-RSVP cloud. To establish RSVP
reservations within the tunnel, additional machinery will be
required, to be defined in the future.

3.4 Avoi ding RSVP Message Loops

Forwar di ng of RSVP nessages nust avoid | ooping. In steady state,
Path and Resv nessages are forwarded on each hop only once per
refresh period. This avoids |ooping packets, but there is still
the possibility of an "auto-refresh” |oop, clocked by the refresh
period. Such auto-refresh |oops keep state active "forever", even
if the end nodes have ceased refreshing it, until the receivers

| eave the nulticast group and/or the senders stop sending Path
nmessages. On the other hand, error and teardown nessages are
forwarded i mmedi ately and are therefore subject to direct |ooping.

Consi der each nessage type.

0 Pat h Messages
Pat h messages are forwarded in exactly the sane way as | P
data packets. Therefore there should be no | oops of Path
nmessages (except perhaps for transient routing |oops, which
we ignore here), even in a topology with cycles.

0 Pat hTear Messages

Pat hTear nmessages use the sane routing as Path nessages and
t herefore cannot | oop

Braden, Ed., et. al. St andar ds Track [Page 50]

RFC 2205 RSVP Sept ember 1997

0 Pat hErr Messages

Si nce Path nmessages do not |oop, they create path state
defining a loop-free reverse path to each sender. PathErr
nmessages are always directed to particul ar senders and

t heref ore cannot | oop

o] Resv Messages

Resv nmessages directed to particular senders (i.e., with
explicit sender selection) cannot |oop. However, Resv
messages with wildcard sender selection (W style) have a
potential for auto-refresh | ooping.

o] ResvTear Messages

Al t hough ResvTear nessages are routed the sane as Resv
nmessages, during the second pass around a |oop there will be
no state so any ResvTear nessage will be dropped. Hence
there is no | ooping probl em here.

o] ResvErr Messages

ResvErr nmessages for W style reservations may |oop for
essentially the sanme reasons that Resv nessages | oop

0 ResvConf Messages

ResvConf nessages are forwarded towards a fixed uni cast
recei ver address and cannot | oop.

If the topology has no | oops, then | ooping of Resv and ResvErr
nmessages with wildcard sender selection can be avoided by sinply
enforcing the rule given earlier: state that is received through a
particular interface nust never be forwarded out the sanme
interface. However, when the topol ogy does have cycles, further
effort is needed to prevent auto-refresh |oops of wldcard Resv
nessages and fast |oops of wildcard ResvErr nessages. The
solution to this problem adopted by this protocol specification is
for such nessages to carry an explicit sender address list in a
SCOPE obj ect .

Braden, Ed., et. al. St andar ds Track [Page 51]

RFC 2205 RSVP Sept ember 1997

When a Resv nmessage with WF style is to be forwarded to a
particul ar previous hop, a new SCOPE object is conputed fromthe
SCOPE objects that were received in matching Resv nessages. |If
the conmputed SCOPE object is enpty, the nmessage is not forwarded
to the previous hop; otherwi se, the nessage is sent containing the
new SCOPE object. The rules for conmputing a new SCOPE obj ect for
a Resv nessage are as follows:

1. The union is fornmed of the sets of sender |P addresses listed
in all SCOPE objects in the reservation state for the given
sessi on.

If reservation state from sonme NHOP does not contain a SCOPE
obj ect, a substitute sender list nust be created and i ncl uded
in the union. For a nessage that arrived on outgoi ng
interface O, the substitute list is the set of senders that
route to 4.

2. Any | ocal senders (i.e., any sender applications on this
node) are renoved fromthis set.

3. If the SCOPE object is to be sent to PHOP, renove fromthe
set any senders that did not cone from PHOP

Figure 11 shows an exanple of wldcard-scoped (W style) Resv
nmessages. The address lists wi thin SCOPE objects are shown in
square brackets. Note that there may be additional connections
anong the nodes, creating |ooping topology that is not shown.

Braden, Ed., et. al. St andar ds Track [Page 52]

RFC 2205

SCOPE obj ects are not necessary if the nulticast
shared trees or
sel ection.

RSVP Sept ember 1997

Rout er <----- > R2, S2, S3

Send on (a): Receive on (c):

<-- WF([$4]) <-- WF([$4, S1])
Send on (b):

<-- WF([S1])

Receive on (a): Send on (c):

WF([S1,S2,S3]) --> WF([S2, S3]) -->
Recei ve on (b):

WF([S2,S3,S4]) -->

Figure 11: SCOPE (bjects in WIdcard-Scope Reservations

routing uses
if the reservation style has explicit sender
Furthernore, attaching a SCOPE object to a reservation

shoul d be deferred to a node which has nore than one previous hop
for the reservation state.

The following rules are used for SCOPE objects in ResvErr nessages

with WF style:

1. The node that detected the error initiates an ResvErr nessage
containing a copy of the SCOPE object associated with the
reservation state or nmessage in error.

2. Suppose a wi |l dcard-style ResvErr nessage arrives at a node
with a SCOPE object containing the sender host address |i st
L. The node forwards the ResvErr nessage using the rules of
Section 3.1.8. However,

Braden, Ed., et. al. St andar ds Track [Page 53]

RFC 2205 RSVP Sept ember 1997

the ResvErr nessage forwarded out O nust contain a SCOPE
obj ect derived fromL by including only those senders that
route to O. |If this SCOPE object is enpty, the ResvErr
nmessage should not be sent out O.

3.5 Bl ockade State

The basic rule for creating a Resv refresh nessage is to nerge the
fl owspecs of the reservation requests in place in the node, by
conputing their LUB. However, this rule is nodified by the

exi stence of "bl ockade state" resulting from ResvErr nessages, to
solve the KR-Il problem (see Section 2.5). The bl ockade state
also enters into the routing of ResvErr nessages for Adm ssion
Control failure

When a ResvErr nessage for an Adm ssion Control failure is
received, its flowspec Qe is used to create or refresh an el enent
of local blockade state. Each el ement of bl ockade state consists
of a bl ockade flowspec Q taken fromthe fl owspec of the ResvErr
nessage, and an associ ated bl ockade tiner Th. Wen a bl ockade

ti mer expires, the correspondi ng bl ockade state is del eted.

The granul arity of blockade state depends upon the style of the
ResvErr nmessage that created it. For an explicit style, there may
be a bl ockade state elenent (Q(S), Tbh(S)) for each sender S. For
a wildcard style, blockade state is per previous hop P

An el ement of bl ockade state with flowspec Qb is said to

"bl ockade" a reservation with flowspec Q if Qb is not (strictly)
greater than Q. For exanple, suppose that the LUB of two

fl owspecs is conputed by taking the max of each of their
correspondi ng conponents. Then Q bl ockades Q if for sone

conponent j, Q[j] <= Q[j].

Suppose that a node receives a ResvErr nessage from previous hop P
(or, if style is explicit, sender S) as the result of an Adm ssion
Control failure upstream Then

1. An el ement of blockade state is created for P (or S) if it
di d not exist.

2. Q@(P) (or Q(S)) is set equal to the flowspec Q¢ fromthe
ResvErr nessage.

3. A correspondi ng bl ockade timer Tb(P) (or Th(S)) is started or
restarted for a time Kb*R. Here Kb is a fixed nultiplier and
Ris the refresh interval for reservation state. Kb should
be configurable.

Braden, Ed., et. al. St andar ds Track [Page 54]

RFC 2205 RSVP Sept ember 1997

4. If there is sonme |local reservation state that is not
bl ockaded (see below), an inmedi ate reservation refresh for P
(or S) is generated.

5. The ResvErr nessage is forwarded to next hops in the
following way. |If the InPlace bit is off, the ResvErr
message is forwarded to all next hops for which there is
reservation state. |If the InPlace bit is on, the ResvErr
nmessage is forwarded only to the next hops whose Q is
bl ockaded by Qb.

Finally, we present the nodified rule for nerging fl owspecs to
create a reservation refresh nessage.

0 If there are any local reservation requests Q that are not
bl ockaded, these are nerged by conputing their LUB. The
bl ockaded reservations are ignored; this allows forwarding of
a smaller reservation that has not failed and may perhaps
succeed, after a larger reservation fails.

0 QO herwi se (all local requests Q are bl ockaded), they are
nmerged by taking the G.B (Greatest Lower Bound) of the Q's.

(The use of sone definition of "m ninmun inproves performance
by bracketing the failure |l evel between the | argest that
succeeds and the smallest that fails. The choice of GB in
particul ar was nmade because it is sinple to define and

i npl enent, and no reason is known for using a different
definition of "mninum here).

This refresh merging algorithmis applied separately to each fl ow
(each sender or PHOP) contributing to a shared reservation (W or
SE style).

Figure 12 shows an exanple of the the application of bl ockade
state for a shared reservation (W style). There are two previous
hops | abeled (a) and (b), and two next hops |abeled (c) and (d).
The larger reservation 4B arrived from(c) first, but it failed
somewhere upstreamvia PHOP (a), but not via PHOP (b). The
figures show the final "steady state" after the smaller
reservation 2B subsequently arrived from (d). This steady state
is perturbed roughly every Kb*R seconds, when the bl ockade state
times out. The next refresh then sends 4B to previous hop (a);

presumably this will fail, sending a ResvErr nessage that wl|
re-establish the bl ockade state, returning to the situati on shown
inthe figure. At the sane tinme, the ResvErr nessage will be

forwarded to next hop (c) and to all receivers downstream
responsi ble for the 4B reservati ons.

Braden, Ed., et. al. St andar ds Track [Page 55]

RFC 2205 RSVP Sept ember 1997

Send Bl ockade | Reserve Recei ve

State {Qo}|

R
(a) < WK(*{2B}) {4B} I I * {48} I W(*{4B}) <- (c)
I
___________________________ [= m e

I
R

(b) <- WK(*{4B}) (none)I | * {28} I WH(*{2B}) <- (d)
Figure 12: Blockading with Shared Style

3.6 Local Repair

When a route changes, the next Path or Resv refresh nessage wl|
establish path or reservation state (respectively) along the new
route. To provide fast adaptation to routing changes wi thout the
over head of short refresh periods, the |local routing protocol
nodul e can notify the RSVP process of route changes for particul ar
destinations. The RSVP process should use this information to
trigger a quick refresh of state for these destinations, using the
new route.

The specific rules are as foll ows:

0 When routing detects a change of the set of outgoing
interfaces for destination G RSVP should update the path
state, wait for a short period W and then send Path
refreshes for all sessions G* (i.e., for any session with
destination G regardl ess of destination port).

The short wait period before sending Path refreshes is to
all ow the routing protocol to settle, and the value for W
shoul d be chosen accordingly. Currently W= 2 sec is
suggest ed; however, this value should be configurable per
i nterface.

0 Wien a Path nessage arrives with a Previous Hop address that

differs fromthe one stored in the path state, RSVP should
send i medi ate Resv refreshes to that PHOP

Braden, Ed., et. al. St andar ds Track [Page 56]

RFC 2205 RSVP Sept ember 1997

3.7 Tine Paraneters

There are two tine parameters relevant to each el enent of RSVP
path or reservation state in a node: the refresh period R between
generation of successive refreshes for the state by the nei ghbor
node, and the local state's lifetime L. Each RSVP Resv or Path
nmessage may contain a TI ME_VALUES obj ect specifying the R val ue
that was used to generate this (refresh) nessage. This R value is
then used to determi ne the value for L when the state is received
and stored. The values for Rand L may vary from hop to hop

In nore detail:

1. Fl oyd and Jacobson [FJ94] have shown that periodic nessages
generated by i ndependent network nodes can becone
synchroni zed. This can lead to disruption in network
services as the periodic nessages contend with ot her network
traffic for link and forwardi ng resources. Since RSVP sends
periodic refresh nessages, it nust avoid nessage
synchroni zati on and ensure that any synchronization that nay
occur is not stable.

For this reason, the refresh tinmer should be randomy set to
a value in the range [0.5R 1.5R].

2. To avoid premature |loss of state, L nust satisfy L >= (K +
0.5)*1.5*R, where Kis a small integer. Then in the worst
case, K-1 successive nmessages may be | ost without state being
deleted. To conpute a lifetime L for a collection of state
with different Rvalues RO, Rl, ..., replace R by max(Ri).

Currently K = 3 is suggested as the default. However, it may
be necessary to set a larger K value for hops with high |oss
rate. K may be set either by manual configuration per
interface, or by sone adaptive technique that has not yet
been specified.

3. Each Path or Resv nessage carries a Tl ME_VALUES obj ect
containing the refresh tine R used to generate refreshes.
The recipient node uses this Rto deternine the lifetinme L of
the stored state created or refreshed by the nessage.

4. The refresh time Ris chosen locally by each node. If the
node does not inplenment |ocal repair of reservations
di srupted by route changes, a snaller R speeds up adaptation
to routing changes, while increasing the RSVP overhead. Wth
| ocal repair, a router can be nore rel axed about R since the
periodic refresh becones only a backstop robustness

Braden, Ed., et. al. St andar ds Track [Page 57]

RFC 2205 RSVP Sept ember 1997

mechanism A node may therefore adjust the effective R
dynamically to control the amount of overhead due to refresh
nessages.

The current suggested default for Ris 30 seconds. However,
the default value Rdef should be configurable per interface.

5. When R is changed dynanically, there is a linmt on how fast
it may increase. Specifically, the ratio of two successive
val ues R2/ Rl nust not exceed 1 + Sl ew. Max.

Currently, Slew. Max is 0.30. Wth K = 3, one packet nay be
| ost without state timeout while R is increasing 30 percent
per refresh cycle.

6. To i nmprove robustness, a node may tenporarily send refreshes
nore often than R after a state change (including initial
state establishnent).

7. The val ues of Rdef, K, and Sl ew Max used in an inplenentation
shoul d be easily nodifiable per interface, as experience nay
lead to different values. The possibility of dynam cally
adapting K and/or Slew Max in response to neasured |oss rates
is for future study.

3.8 Traffic Policing and Non-Integrated Service Hops

Sone QOS services may require traffic policing at some or all of
(1) the edge of the network, (2) a nmerging point for data from
mul ti pl e senders, and/or (3) a branch point where traffic fl ow
fromupstream may be greater than the downstream reservation being
requested. RSVP knows where such points occur and nust so
indicate to the traffic control nmechanism On the other hand,
RSVP does not interpret the service enbodied in the flowspec and
therefore does not know whether policing will actually be applied
in any particul ar case.

The RSVP process passes to traffic control a separate policing
flag for each of these three situations.

0 E Police_Flag -- Entry Policing

This flag is set in the first-hop RSVP node that inplenents
traffic control (and is therefore capable of policing).

For exampl e, sender hosts mnust inplenent RSVP but currently

many of them do not inplenent traffic control. |In this case,
the E_Police_Flag should be off in the sender host, and it

Braden, Ed., et. al. St andar ds Track [Page 58]

RFC 2205 RSVP Sept ember 1997

shoul d only be set on when the first node capable of traffic
control is reached. This is controlled by the E_Police flag
i n SESSI ON obj ect s.

0 M Police Flag -- Merge Policing

This flag should be set on for a reservation using a shared
style (WF or SE) when flows fromnore than one sender are
bei ng nerged.

0 B Police_Flag -- Branch Policing

This flag shoul d be set on when the fl owspec being installed
is smaller than, or inconparable to, a FLOAMSPEC in pl ace on
any other interface, for the sane FILTER SPEC and SESSI ON

RSVP nust al so test for the presence of non-RSVP hops in the path
and pass this information to traffic control. Fromthis flag bit
that the RSVP process supplies and fromits own | ocal know edge,
traffic control can detect the presence of a hop in the path that
is not capable of QS control, and it passes this infornation to
the receivers in Adspecs [RFC 2210].

Wth normal I P forwarding, RSVP can detect a non-RSVP hop by
conmparing the IP TTL with which a Path nessage is sent to the TTL
with which it is received; for this purpose, the transm ssion TTL
is placed in the cormon header. However, the TTL is not always a
reliable indicator of non-RSVP hops, and other neans nust
sonetinmes be used. For exanple, if the routing protocol uses IP
encapsul ating tunnels, then the routing protocol nust inform RSVP
when non- RSVP hops are included. [If no automatic nmechanismwl |
wor k, manual configuration will be required.

3.9 Mul ti homed Hosts

Accomodat i ng mul ti homed hosts requires sonme special rules in
RSVP. W use the term ‘multihomed host’ to cover both hosts (end
systens) with nore than one network interface and routers that are
supporting |l ocal application prograns.

An application executing on a nultihomed host may explicitly
specify which interface any given floww |l use for sending and/or
for receiving data packets, to override the systemspecified
default interface. The RSVP process nust be aware of the default,
and if an application sets a specific interface, it nust also pass
that information to RSVP

Braden, Ed., et. al. St andar ds Track [Page 59]

RFC 2205

Br aden,

RSVP Sept ember 1997

Sendi ng Dat a

A sender application uses an APl call (SENDER in Section
3.11.1) to declare to RSVP the characteristics of the data
flowit will originate. This call may optionally include the
|l ocal IP address of the sender. If it is set by the
application, this paraneter nust be the interface address for
sendi ng the data packets; otherw se, the system default
interface is inplied.

The RSVP process on the host then sends Path nessages for
this application out the specified interface (only).

Maki ng Reservati ons

A receiver application uses an APl call (RESERVE in Section
3.11.1) to request a reservation fromRSVP. This call may
optionally include the |l ocal |IP address of the receiver,
i.e., the interface address for receiving data packets. In
the case of nulticast sessions, this is the interface on
whi ch the group has been joined. |If the paraneter is
omtted, the systemdefault interface is used.

In general, the RSVP process shoul d send Resv nmessages for an
application out the specified interface. However, when the
application is executing on a router and the session is

mul ticast, a nore conplex situation arises. Suppose in this
case that a receiver application joins the group on an
interface lapp that differs fromlsp, the shortest-path
interface to the sender. Then there are two possible ways
for multicast routing to deliver data packets to the
application. The RSVP process nust determ ne which case

hol ds by exanmining the path state, to deci de which incom ng
interface to use for sending Resv nessages.

1. The multicast routing protocol may create a separate
branch of the nulticast distribution ‘tree’ to deliver
to lapp. In this case, there will be path state for

both interfaces Isp and lapp. The path state on |app
should only match a reservation fromthe | ocal
application; it nust be marked "Local _only" by the RSVP
process. |If "Local _only" path state for lapp exists,

t he Resv nessage shoul d be sent out |app.

Note that it is possible for the path state bl ocks for
Isp and lapp to have the same next hop, if there is an
i nterveni ng non- RSVP cl oud.

Ed., et. al. St andar ds Track [Page 60]

RFC 2205 RSVP Sept ember 1997

2. The multicast routing protocol may forward data within
the router fromlsp to lapp. In this case, lapp wll
appear in the list of outgoing interfaces of the path
state for Isp, and the Resv nessage shoul d be sent out

I sp.

3. When Pat h and Pat hTear nessages are forwarded, path
state marked "Local _Only" nust be ignored.

3.10 Future Conpatibility

W may expect that in the future new object C Types will be
defined for existing object classes, and perhaps new obj ect
classes will be defined. It will be desirable to enploy such new

objects within the Internet using ol der inplenentations that do
not recognize them Unfortunately, this is only possible to a
linmted degree with reasonabl e conplexity. The rules are as
follows (‘b’ represents a bit).

1. Unknown C ass

There are three possible ways that an RSVP i npl enentati on can
treat an object with unknown class. This choice is

determ ned by the two high-order bits of the C ass-Num octet,
as foll ows.

0 Cl ass- Num = Obbbbbbb

The entire nessage should be rejected and an "Unknown
hj ect Class" error returned.

0 Cl ass- Num = 10bbbbbb

The node should ignore the object, neither forwarding it
nor sendi ng an error mnessage.

o] Cl ass-Num = 11bbbbbb
The node should ignore the object but forward it,
unexam ned and unnodified, in all nessages resulting
fromthis nmessage.

The followi ng nore detailed rules hold for unknown-cl ass
objects with a O ass-Num of the form 11lbbbbbb

1. Such unknown-cl ass obj ects received in PathTear

ResvTear, PathErr, or ResvErr nessages shoul d be
forwarded inmediately in the sane nessages.

Braden, Ed., et. al. St andar ds Track [Page 61]

RFC 2205

Br aden,

RSVP Sept ember 1997

2. Such unknown-cl ass objects received in Path or Resv
nessages shoul d be saved with the corresponding state
and forwarded in any refresh nmessage resulting fromthat
st at e.

3. When a Resv refresh is generated by merging nultiple
reservation requests, the refresh nessage shoul d include
the union of unknown-cl ass objects fromthe conponent
requests. Only one copy of each uni que unknown-cl ass
obj ect should be included in this union.

4. The original order of such unknown-cl ass objects need
not be retained; however, the nessage that is forwarded
nmust obey the general order requirements for its nessage

type.

Al t hough objects with unknown cl ass cannot be nerged, these
rules will forward such objects until they reach a node that
knows how to nmerge them Forwardi ng objects with unknown

cl ass enabl es increnmental deploynent of new objects; however,
the scaling limtations of doing so nust be carefully

exam ned before a new object class is deployed with both high
bits on.

Unknown C-Type for Known C ass

One might expect the known C ass-Numto provide information
that could allow intelligent handling of such an object.
However, in practice such cl ass-dependent handling is
conplex, and in nany cases it is not useful

General ly, the appearance of an object with unknown C-Type
should result in rejection of the entire nessage and
generation of an error message (ResvErr or PathErr as
appropriate). The error nessage will include the O ass-Num
and C Type that failed (see Appendi x B); the end systemthat
originated the failed nessage may be able to use this
information to retry the request using a different C Type
obj ect, repeating this process until it runs out of
alternatives or succeeds.

bj ects of certain classes (FLOANSPEC, ADSPEC, and

POLI CY_DATA) are opaque to RSVP, which sinply hands themto
traffic control or policy nodules. Depending upon its
internal rules, either of the latter nodules may reject a C
Type and informthe RSVP process; RSVP should then reject the
nmessage and send an error, as described in the previous
par agr aph.

Ed., et. al. St andar ds Track [Page 62]

RFC 2205 RSVP Sept ember 1997

3.11 RSVP Interfaces
RSVP on a router has interfaces to routing and to traffic control.
RSVP on a host has an interface to applications (i.e, an APl) and
also an interface to traffic control (if it exists on the host).
3.11.1 Application/RSVP Interface
This section describes a generic interface between an
application and an RSVP control process. The details of a rea
i nterface nay be operating-system dependent; the follow ng can
only suggest the basic functions to be perfornmed. Sone of
these calls cause information to be returned asynchronously.
o] Regi st er Sessi on
Call: SESSI ON(Dest Address , Protocolld, DstPort
[, SESSI ON object]

[, Upcall _Proc_addr]) -> Session-id

This call initiates RSVP processing for a session, defined
by Dest Address together with Protocolld and possibly a
port number DstPort. |f successful, the SESSI ON cal

returns imediately with a | ocal session identifier
Session-id, which may be used in subsequent calls.

The Upcal | _Proc_addr paraneter defines the address of an
upcal | procedure to receive asynchronous error or event
notification; see below. The SESSI ON_object paraneter is
i ncluded as an escape mechani smto support some nore
general definition of the session ("generalized
destination port"), should that be necessary in the
future. Normally SESSI ON object will be omtted.
o] Def i ne Sender

Cal | : SENDER(Session-id

[, Source_Address] [, Source_Port]

[, Sender_Tenpl ate]

[, Sender_Tspec] [, Adspec]

[, Data _TTL] [, Policy data])

Braden, Ed., et. al. St andar ds Track [Page 63]

RFC 2205

Br aden,

RSVP Sept ember 1997

A sender uses this call to define, or to nodify the
definition of, the attributes of the data flow The first
SENDER cal | for the session registered as ‘Session-id’
will cause RSVP to begin sending Path nessages for this
session; later calls will nodify the path information

The SENDER paraneters are interpreted as foll ows:

- Sour ce_Addr ess
This is the address of the interface from which the
data will be sent. If it is omtted, a default
interface will be used. This paranmeter is needed
only on a nultihomed sender host.

- Sour ce_Port

This is the UDP/ TCP port fromwhich the data will be
sent.

- Sender _Tenpl at e
This paranmeter is included as an escape mechanismto
support a nore general definition of the sender
("generalized source port"). Normally this paraneter
may be onitted.

- Sender _Tspec

This paraneter describes the traffic flowto be sent;
see [RFC 2210].

- Adspec
This paranmeter may be specified to initialize the
comput ati on of QoS properties along the path; see
[RFC 2210].

- Data_TTL
This is the (non-default) | P Time-To-Live paraneter
that is being supplied on the data packets. It is

needed to ensure that Path nessages do not have a
scope larger than nulticast data packets.

et. al. St andar ds Track [Page 64]

RFC 2205

Br aden,

RSVP Sept ember 1997

- Pol i cy_dat a

This optional paraneter passes policy data for the
sender. This data may be supplied by a system
service, with the application treating it as opaque.

Reserve
Call: RESERVE(session-id, [receiver_address ,]
[CONF_flag,] [Policy_data,]

styl e, style-dependent-parns)

A receiver uses this call to make or to nmodify a resource
reservation for the session registered as ‘session-id' .
The first RESERVE call will initiate the periodic

transm ssion of Resv nessages. A |later RESERVE call may
be given to nodify the paraneters of the earlier call (but
note that changing existing reservations may result in
admi ssion control failures).

The optional ‘receiver_address’ paranmeter nmay be used by a
receiver on a nultihoned host (or router); it is the IP
address of one of the node’s interfaces. The CONF_fl ag
shoul d be set on if a reservation confirmation is desired,
of f otherwise. The ‘Policy_data paraneter specifies
policy data for the receiver, while the ‘style’ paraneter

i ndi cates the reservation style. The rest of the

paranet ers depend upon the style; generally these will be
appropriate fl owspecs and filter specs.

The RESERVE call returns imediately. Follow ng a RESERVE

call, an asynchronous ERROR/ EVENT upcall may occur at any
tinme.
Rel ease

Cal | : RELEASE(session-id)

This call rempves RSVP state for the session specified by
session-id. The node then sends appropriate teardown
nessages and ceases sending refreshes for this session-id.

et. al. St andar ds Track [Page 65]

RFC 2205 RSVP Sept ember 1997

o] Error/ Event Upcalls
The general formof a upcall is as follows:
Upcal |l : <Upcall _Proc>() -> session-id, Info_type

i nformati on_paraneters

Here "Upcal |l _Proc" represents the upcall procedure whose

address was supplied in the SESSION call. This upcall may
occur asynchronously at any tinme after a SESSION call and
before a RELEASE call, to indicate an error or an event.

Currently there are five upcall types, distinguished by
the Info_type paraneter. The selection of information
par anet ers depends upon the type.

1. I nfo_type = PATH_EVENT
A Path Event upcall results fromreceipt of the first
Pat h message for this session, indicating to a
recei ver application that there is at |east one
active sender, or if the path state changes.
Upcal I : <Upcall _Proc>() -> session-id,
| nf o_t ype=PATH_EVENT,
Sender _Tspec, Sender_Tenpl ate
[, Adspec] [, Policy_data]
This upcall presents the Sender_Tspec, the
Sender _Tenpl ate, the Adspec, and any policy data from
a Path nessage.
2. I nfo_type = RESV_EVENT
A Resv Event upcall is triggered by the receipt of

the first RESV nessage, or by nodification of a
previ ous reservation state, for this session.

Braden, Ed., et. al. St andar ds Track [Page 66]

RFC 2205 RSVP Sept ember 1997

Upcal I : <Upcall _Proc>() -> session-id,

| nf o_t ype=RESV_EVENT,

Style, Flowspec, Filter_Spec_|ist

[, Policy_ data]
Here ‘' Fl owspec’ will be the effective QS that has
been received. Note that an FF-style Resv nessage
may result in nultiple RESV_EVENT upcalls, one for
each fl ow descriptor.

3. I nfo_type = PATH_ERRCOR

An Path Error event indicates an error in sender
information that was specified in a SENDER cal |

Upcal I : <Upcall _Proc>() -> session-id,
I nf o_t ype=PATH_ERROR,
Error_code , Error_val ue ,
Error _Node , Sender_Tenpl ate
[, Policy data_list]
The Error_code paranmeter will define the error, and

Error_val ue may supply sone additional (perhaps
systemspecific) data about the error. The

Error_Node paraneter will specify the |IP address of
the node that detected the error. The
Policy data_list paraneter, if present, will contain

any POLI CY_DATA objects fromthe failed Path nessage.
4. Info_type = RESV_ERR

An Resv Error event indicates an error in a

reservati on nessage to which this application

contri but ed.

Upcal I : <Upcall _Proc>() -> session-id,

| nf o_t ype=RESV_ERROR,

Braden, Ed., et. al. St andar ds Track [Page 67]

RFC 2205 RSVP Sept ember 1997

Error_code , Error_val ue ,
Error _Node , Error_fl ags
Fl owspec, Filter_spec_li st

[, Policy data_list]

The Error_code paraneter will define the error and
Error_val ue may supply sone additional (perhaps
systemspecific) data. The Error_Node paraneter will
specify the I P address of the node that detected the
event being reported.

There are two Error_fl ags:
- I nPl ace

This flag may be on for an Adm ssion Control
failure, to indicate that there was, and is, a
reservation in place at the failure node. This
flag is set at the failure point and forwarded
in ResvErr nessages.

- Not Gui l ty

This flag may be on for an Adm ssion Control
failure, to indicate that the fl owspec requested
by this receiver was strictly less than the
flowspec that got the error. This flag is set
at the receiver API

Filter_spec_list and Flowspec will contain the
correspondi ng objects fromthe error flow descriptor
(see Section 3.1.8). List_count will specify the
nunber of FILTER SPECS in Filter_spec_list. The
Policy data_list paraneter will contain any
POLI CY_DATA obj ects fromthe ResvErr nessage.

5. I nfo_type = RESV_CONFI RM

A Confirmation event indicates that a ResvConf
nessage was received.

Upcal I : <Upcall _Proc>() -> session-id,

| nf o_t ype=RESV_CONFI RM

Braden, Ed., et. al. St andar ds Track [Page 68]

RFC 2205 RSVP Sept ember 1997

Style, List_count,
Fl owspec, Filter_spec_li st

[, Policy_ data]

The paraneters are interpreted as in the Resv Error
upcal I .

Al t hough RSVP nessages indicating path or resv events nay
be received periodically, the APl should rmake the
correspondi ng asynchronous upcall to the application only
on the first occurrence or when the information to be
reported changes. Al error and confirmation events
shoul d be reported to the application.

3.11.2 RSVP/Traffic Control Interface

It is difficult to present a generic interface to traffic
control, because the details of establishing a reservation
depend strongly upon the particular link layer technology in
use on an interface.

Mergi ng of RSVP reservations is required because of nulticast
data delivery, which replicates data packets for delivery to

di fferent next-hop nodes. At each such replication point, RSVP
nmust nerge reservation requests fromthe correspondi ng next
hops by conputing the "nmaxi nuni of their flowspecs. At a given
router or host, one or nore of the following three replication

| ocations nay be in use.

1. | P |ayer

IP multicast forwarding perforns replication in the IP
layer. In this case, RSVP nust nerge the reservations
that are in place on the correspondi ng outgoing interfaces
in order to forward a request upstream

2. "The networ K"
Replication m ght take place downstream fromthe node

e.g., in a broadcast LAN, in link-layer switches, or in a
nmesh of non- RSVP-capabl e routers (see Section 2.8). In

Braden, Ed., et. al. St andar ds Track [Page 69]

RFC 2205

Br aden,

RSVP Sept ember 1997

these cases, RSVP must nerge the reservations fromthe
different next hops in order to make the reservation on
the single outgoing interface. It nust also nerge
reservations requests fromall outgoing interfaces in
order to forward a request upstream

3. Li nk-1ayer driver

For a nmulti-access technol ogy, replication may occur in
the I'ink layer driver or interface card. For exanple,
this case mght arise when there is a separate ATM poi nt-
to-poi nt VC towards each next hop. RSVP may need to apply
traffic control independently to each VC, w thout nerging
requests fromdifferent next hops.

In general, these conplexities do not inpact the protocol
processing that is required by RSVP, except to determ ne
exactly what reservation requests need to be nerged. It may be
desirable to organize an RSVP inplenmentation into two parts: a
core that perforns |ink-layer-independent processing, and a

i nk-1ayer-dependent adaptation |ayer. However, we present
here a generic interface that assunes that replication can
occur only at the IP layer or in "the network".

o] Make a Reservation
Call: TC_AddFl owspec(Interface, TC_Fl owspec,
TC Tspec, TC Adspec, Police_Flags)

-> RHandl e [, PFwd_Fl owspec]

The TC_Fl owspec paraneter defines the desired effective
QS to admission control; its value is conputed as the
maxi num over the flowspecs of different next hops (see the
Compare_Fl owspecs call below). The TC Tspec paraneter
defines the effective sender Tspec Path_Te (see Section
2.2). The TC_Adspec paraneter defines the effective
Adspec. The Police_Flags paraneter carries the three
flags E_Police_Flag, MPolice_ Flag, and B_Police_Fl ag; see
Section 3.8.

If this call is successful, it establishes a new
reservation channel corresponding to RHandl e; ot herw se,
it returns an error code. The opaque nunber RHandle is
used by the caller for subsequent references to this
reservation. |If the traffic control service updates the

Ed., et. al. St andar ds Track [Page 70]

RFC 2205 RSVP Sept ember 1997
fl owspec, the call will also return the updated object as
Fwd_FI owspec.

o] Modi fy Reservation
Call: TC ModFl owspec(Interface, RHandl e, TC_Fl owspec,

TC Tspec, TC Adspec, Police _flags)
[-> Fwd_Fl owspec]

This call is used to nodify an existing reservation.
TC Fl owspec is passed to Admission Control; if it is
rejected, the current flowspec is left in force. The
corresponding filter specs, if any, are not affected. The
ot her paraneters are defined as in TC _AddFl owspec. |If the
servi ce updates the flowspec, the call will also return
the updated object as Fwd_Fl owspec.

o] Del et e Fl owspec
Call: TC_Del Fl onspec(Interface, RHandl e)
This call will delete an existing reservation, including
the flowspec and all associated filter specs.

o] Add Filter Spec
Call: TC AddFilter(Interface, RHandl e,

Session , FilterSpec) -> FHandl e

This call is used to associate an additional filter spec
with the reservation specified by the given RHandl e,
foll owing a successful TC AddFl owspec call. This cal

returns a filter handl e FHandl e.
o] Delete Filter Spec

Call: TC DelFilter(Interface, FHandl e)

This call is used to renove a specific filter, specified
by FHandl e.

Braden, Ed., et. al. St andar ds Track [Page 71]

RFC 2205

3.

3.

Br aden,

RSVP Sept ember 1997

o] OPVWA Updat e

Call: TC Advertise(Interface, Adspec,
Non_RSVP_Hop_flag) -> New_Adspec

This call is used for OPWA to conpute the outgoing
advertisement New Adspec for a specified interface. The
flag bit Non_RSVP_Hop_flag shoul d be set whenever the RSVP
daenon detects that the previous RSVP hop included one or
nore non- RSVP-capabl e routers. TC Advertise will insert
this information into New Adspec to indicate that a non-
i nt egrat ed-service hop was found; see Section 3.8.

o] Preenpti on Upcall
Upcal l: TC Preenpt() -> RHandl e, Reason_code
In order to grant a new reservation request, the adm ssion
control and/or policy control nodul es nmay preenpt one or
nore existing reservations. This will trigger a
TC Preenpt () upcall to RSVP for each preenpted
reservation, passing the RHandl e of the reservation and a
sub-code indicating the reason.

11.3 RSVP/ Policy Control Interface

This interface will be specified in a future docunent.

11.4 RSVP/ Routing Interface

An RSVP inpl enentation needs the followi ng support fromthe
routi ng nechani snms of the node.

o] Rout e Query

To forward Path and Pat hTear nessages, an RSVP process
nmust be able to query the routing process(s) for routes.

Ucast _Route_Query([SrcAddress,] DestAddress,
Notify flag) -> Qutlnterface

Mcast _Route_Query([SrcAddress,] DestAddress,

Ed., et. al. St andar ds Track [Page 72]

RFC 2205

Br aden,

RSVP Sept ember 1997

Notify_flag)

->[Inclnterface,] Qutinterface_li st

Dependi ng upon the routing protocol, the query nay or nay
not depend upon SrcAddress, i.e., upon the sender host |IP
address, which is also the | P source address of the
nmessage. Here Inclinterface is the interface through which
the packet is expected to arrive; sone nulticast routing
protocols nmay not provide it. |If the Notify flag is True,
routing will save state necessary to issue unsolicited
route change notification callbacks (see bel ow) whenever
the specified route changes.

A nmulticast route query nay return an enpty
Qutinterface list if there are no receivers downstream of
a particular router. A route query may also return a ‘No
such route’ error, probably as a result of a transient

i nconsistency in the routing (since a Path or PathTear
nessage for the requested route did arrive at this node).
In either case, the | ocal state should be updated as
requested by the nessage, which cannot be forwarded
further. Updating |local state will nmake path state

avail able i medi ately for a new |l ocal receiver, or it wll
tear down path state imedi ately.

Rout e Change Notification
If requested by a route query with the Notify flag True,
the routing process may provide an asynchronous cal |l back
to the RSVP process that a specified route has changed.
Ucast _Route_Change() -> [SrcAddress,] DestAddress,
QutInterface

Mcast _Route_Change() -> [SrcAddress,] Dest Address,

[Inclnterface,] Qutlinterface_li st
Interface List Discovery

RSVP nust be able to |l earn what real and virtua
interfaces are active, with their | P addresses.

et. al. St andar ds Track [Page 73]

RFC 2205

RSVP Sept ember 1997

It should be possible to logically disable an interface
for RSVP. Wien an interface is disabled for RSVP, a Path
nessage shoul d never be forwarded out that interface, and
if an RSVP nessage is received on that interface, the
nmessage should be silently discarded (perhaps with |ocal

| oggi nQg) .

3.11.5 RSVP/ Packet I/O Interface

An RSVP inpl enentation needs the followi ng support fromthe
packet 1/0O and forwardi ng nmechani snms of the node.

0o

Braden, Ed.

Prom scuous Receive Mdde for RSVP Messages

Packets received for IP protocol 46 but not addressed to

t he node nust be diverted to the RSVP program for
processi ng, w thout being forwarded. The RSVP nmessages to
be diverted in this manner will include Path, PathTear,
and ResvConf nessages. These nessage types carry the
Router Alert |IP option, which can be used to pick them out
of a high-speed forwarding path. Alternatively, the node
can intercept all protocol 46 packets.

On a router or multi-honmed host, the identity of the
interface (real or virtual) on which a diverted nessage is
received, as well as the | P source address and IP TTL with
which it arrived, nust also be available to the RSVP

pr ocess.

Qut goi ng Link Specification

RSVP nmust be able to force a (nulticast) datagramto be
sent on a specific outgoing real or virtual Iink,
bypassi ng the nornmal routing nmechanism A virtual |ink
m ght be a nulticast tunnel, for exanple. Qutgoing |ink
specification is necessary to send different versions of
an outgoing Path nmessage on different interfaces, and to
avoi d routing | oops in sone cases.

Source Address and TTL Specification

RSVP nmust be able to specify the I P source address and I P
TTL to be used when sendi ng Path nessages.

Router Alert

RSVP nmust be able to cause Path, PathTear, and ResvConf
nmessage to be sent with the Router Alert |IP option

et. al. St andar ds Track [Page 74]

RFC 2205 RSVP Sept ember 1997

3.11.6 Service-Dependent Mani pul ations
Fl owspecs, Tspecs, and Adspecs are opaque objects to RSVP
their contents are defined in service specification docunents.
In order to manipul ate these objects, RSVP process nust have
available to it the foll owi ng service-dependent routines.

o] Compar e Fl owspecs

Conpar e_Fl owspecs(Fl owspec_1, Flowspec 2) ->

result_code

The possible result_codes indicate: flowspecs are equal,

Fl owspec_1 is greater, Flowspec_2 is greater, flowspecs

are inconparable but LUB can be computed, or flowspecs are

i nconmpati bl e.

Note that conparing two flowspecs inplicitly conpares the

Tspecs that are contained. Although the RSVP process

cannot itself parse a flowspec to extract the Tspec, it

can use the Conpare_Fl owspecs call to inplicitly cal cul ate

Resv_Te (see Section 2.2).

o] Comput e LUB of Fl owspecs

LUB of Fl owspecs(Fl owspec_1, Flowspec 2) ->

Fl owspec_LUB

o] Comput e G.B of Fl owspecs

G.B_of Fl owspecs(Flowspec_1, Flowspec 2) ->

Fl owspec_G.B

o] Conpare Tspecs

Conpare_Tspecs(Tspec_1, Tspec_2) -> result_code

Braden, Ed., et. al. St andar ds Track [Page 75]

RFC 2205 RSVP Sept ember 1997

The possible result_codes indicate: Tspecs are equal, or
Tspecs are unequal .

o] Sum Tspecs

Sum Tspecs(Tspec_1, Tspec_2) -> Tspec_sum

This call is used to conmpute Path_Te (see Section 2.2).
4. Acknow edgnents

The design of RSVP is based upon research performed in 1992-1993 by a
col I aboration including Lixia Zhang (UCLA), Deborah Estrin

(Usc/1sl), Scott Shenker (Xerox PARC), Sugih Janmin (USC Xerox PARC),

and Dani el Zappala (USC). Sugih Jam n devel oped the first prototype
i npl emrent ati on of RSVP and successfully denonstrated it in May 1993.

Shai Herzog, and | ater Steve Berson, continued devel opnent of RSVP

pr ot ot ypes.

Since 1993, many nenbers of the Internet research conmunity have
contributed to the design and devel opnent of RSVP;, these include (in
al phabeti cal order) Steve Berson, Bob Braden, Lee Breslau, Dave

Cl ark, Deborah Estrin, Shai Herzog, Craig Partridge, Scott Shenker,
John Wocl awski, Daniel Zappala, and Lixia Zhang. In addition, a
nunber of host and router vendors have made val uabl e contributions to
t he RSVP docunents, particularly Fred Baker (C sco), Mark Baugher
(Intel), Lou Berger (Fore Systens), Don Hof fman (Sun), Steve JakowsKki
(Net Manage), John Krawczyk (Bay Networks), and Bill Nowi cki (SA), as
wel | as many ot hers.

Braden, Ed., et. al. St andar ds Track [Page 76]

RFC 2205 RSVP

APPENDI X A. Obj ect Definitions

Sept ember 1997

C- Types are defined for the two Internet address fanmilies |IPv4 and

| Pv6. To accommodat e ot her address
could easily be defined. These def
Appendi x, to ease updati ng.

Al'l unused fields should be sent as

A.1 SESSI ON d ass

SESSI ON d ass 1.

0 | Pv4/ UDP SESSI ON obj ect: d
NS Fomm oo oo -
I | Pv4 Dest Addr
NS Fomm oo oo -
| Protocol 1d | FI ags
NS Fomm oo oo -
0 | Pv6/ UDP SESSI ON obj ect: d
NS Fomm oo oo -
I
+
I
+ | Pv6 Dest Ad
I
+
I
NS Fomm oo oo -
| Protocol 1d | Fl ags
NS Fomm oo oo -
Dest Addr ess
The | P unicast or nulticast

session. This field nust b

Protocol 1d

The I P Protocol Ildentifier
must be non-zero.

Braden, Ed., et. al. St andar ds

fam lies, additional C Types
initions are contained as an

zero and ignored on receipt.

ass = 1, CType =1
fm e e oo oo - NS +
ess (4 bytes) |
fm e e oo oo - NS +
| Dst Port |
fm e e oo oo - NS +
ass = 1, G Type = 2
fm e e oo oo - NS +
I
+
I
dress (16 bytes) +
I
+
I
fm e e oo oo - NS +
| Dst Port |
fm e e oo oo - NS +
desti nati on address of the
e non-zero.
for the data flow. This field
Track [Page 77]

RFC 2205

FI

Dst Port

Br aden,

ags

0x01

RSVP Sept ember 1997

= E Police flag

The E_Police flag is used in Path messages to detern ne
the effective "edge" of the network, to control traffic
policing. |If the sender host is not itself capable of
traffic policing, it will set this bit on in Path
nmessages it sends. The first node whose RSVP is capable
of traffic policing will do so (if appropriate to the
service) and turn the flag off.

The UDP/ TCP destination port for the session. Zero nmay be
used to indicate ‘none’.

O her SESSI ON C-Types could be defined in the future to
support other denultiplexing conventions in the transport-
| ayer or application |ayer.

Ed.,

et.

al . St andar ds Track [Page 78]

RFC 2205 RSVP Sept ember 1997

A. 2 RSVP_HOP d ass

RSVP_HOP cl ass = 3.

0 | Pv4 RSVP_HOP object: Class = 3, CType =1
NS NS NS NS +
| | Pv4 Next/Previ ous Hop Address |
NS NS NS NS +
| Logi cal Interface Handl e |
NS NS NS NS +

0 | Pv6 RSVP_HOP object: Class = 3, CType = 2
NS NS NS NS +
I I
+ +
| _ |
+ | Pv6 Next/Previous Hop Address +
I I
+ +
I I
NS NS NS NS +
| Logi cal Interface Handl e |
NS NS NS NS +

This object carries the IP address of the interface through which
the | ast RSVP-know edgeabl e hop forwarded this nessage. The

Logi cal Interface Handle (LIH) is used to distinguish Iogical
outgoing interfaces, as discussed in Sections 3.3 and 3.9. A node
receiving an LIHin a Path nmessage saves its value and returns it
in the HOP objects of subsequent Resv nessages sent to the node
that originated the LIH The LIH should be identically zero if
there is no logical interface handl e.

Braden, Ed., et. al. St andar ds Track [Page 79]

RFC 2205 RSVP Sept ember 1997

A.3 INTEGRITY O ass
I NTEGRITY cl ass = 4.
See [Baker 96].

A. 4 TI ME_VALUES O ass
TI ME_VALUES cl ass = 5.

0 TI ME_VALUES (bject: Cass =5, CType =1

NS NS NS NS +
Refresh Period R
NS NS NS NS +

Ref resh Peri od

The refresh tinmeout period R used to generate this nessage;
in mlliseconds.

Braden, Ed., et. al. St andar ds Track [Page 80]

RFC 2205 RSVP Sept ember 1997

A. 5 ERROR_SPEC d ass

ERROR_SPEC cl ass = 6.

0 | Pv4 ERROR _SPEC object: Class = 6, CType =1
NS NS NS NS +
| | Pv4 Error Node Address (4 bytes) |
NS NS NS NS +
| FI ags | Error Code | Error Val ue |
NS NS NS NS +

0 | Pv6 ERROR _SPEC object: Class = 6, C Type = 2
NS NS NS NS +
I I
+ +
I I
+ | Pv6 Error Node Address (16 bytes) +
I I
+ +
I I
NS NS NS NS +
| FI ags | Error Code | Error Val ue |
NS NS NS NS +

Error Node Address
The | P address of the node in which the error was detected.
FI ags
0x01 = InPl ace
This flag is used only for an ERROR_SPEC object in a
ResvErr nessage. |If it on, this flag indicates that
there was, and still is, a reservation in place at the
failure point.

0x02 = NotQuilty

This flag is used only for an ERROR_SPEC object in a
ResvErr nessage, and it is only set in the interface to

Braden, Ed., et. al. St andar ds Track [Page 81]

RFC 2205 RSVP Sept ember 1997

the receiver application. |If it on, this flag indicates
that the FLOASPEC that failed was strictly greater than
the FLOWSPEC requested by this receiver
Error Code
A one-octet error description.

Error Val ue

A two-octet field containing additional information about the
error. Its contents depend upon the Error Type.

The values for Error Code and Error Value are defined in Appendi x
B

Braden, Ed., et. al. St andar ds Track [Page 82]

RFC 2205 RSVP Sept ember 1997

A. 6 SCOPE O ass
SCOPE cl ass = 7.
This object contains a list of |IP addresses, used for routing

nmessages with wildcard scope without |oops. The addresses nust be
listed in ascendi ng numerical order.

0 | Pv4 SCOPE List object: Class = 7, CType =1
NS NS NS NS +
| | Pv4 Src Address (4 bytes) |
NS NS NS NS +
/1 /1
NS NS NS NS +
| | Pv4 Src Address (4 bytes) |
NS NS NS NS +

0 |Pv6 SCOPE list object: Cass =7, CType = 2
NS NS NS NS +
I I
+ +
I I
+ | Pv6 Src Address (16 bytes) +
I I
+ +
I I
NS NS NS NS +
/1 /1
NS NS NS NS +
I I
+ +
I I
+ | Pv6 Src Address (16 bytes) +
I I
+ +
I I
NS NS NS NS +

Braden, Ed., et. al. St andar ds Track [Page 83]

RFC 2205 RSVP Sept ember 1997

A. 7 STYLE d ass
STYLE cl ass = 8.

0 STYLE object: Cass =8, CType =1

Flags: 8 bits
(None assigned yet)
Option Vector: 24 bits

A set of bit fields giving values for the reservation

options. |If new options are added in the future,
corresponding fields in the option vector will be assigned
fromthe least-significant end. |If a node does not recogni ze

a style ID, it may interpret as nmuch of the option vector as
it can, ignoring new fields that may have been defi ned.

The option vector bits are assigned (fromthe left) as
foll ows:

19 bits: Reserved

2 bits: Sharing contro
00b: Reserved
O01b: Distinct reservations
10b: Shared reservations
11b: Reserved

3 bits: Sender selection control
000b: Reserved
001b: W/l dcard

010b: Explicit

Braden, Ed., et. al. St andar ds Track [Page 84]

RFC 2205 RSVP Sept ember 1997

011b - 111b: Reserved

The |l ow order bits of the option vector are determ ned by the
style, as foll ows:

WF 10001b

FF 01010b
SE 10010b

Braden, Ed., et. al. St andar ds Track [Page 85]

RFC 2205 RSVP Sept ember 1997

A. 8 FLOASPEC C ass
FLOASPEC cl ass = 9.
0 Reserved (obsolete) flowspec object: Cass =9, CType =1
0 I nv-serv Fl owspec object: Cass =9, CType = 2
The contents and encoding rules for this object are specified

i n docunments prepared by the int-serv working group [RFC
2210] .

Braden, Ed., et. al. St andar ds Track [Page 86]

RFC 2205 RSVP Sept ember 1997

A. 9 FILTER SPEC O ass

FI LTER_SPEC cl ass = 10.

0 | Pv4 FI LTER _SPEC object: Cass = 10, CType =1
NS NS NS NS +
| | Pv4 SrcAddress (4 bytes) |
NS NS NS NS +
| 111 | 111 | Sr cPort |
NS NS NS NS +

0 | Pv6 FILTER SPEC object: Cass = 10, C Type = 2
NS NS NS NS +
I I
+ +
I I
+ | Pv6 SrcAddress (16 bytes) +
I I
+ +
I I
NS NS NS NS +
| 111 | 111 | Sr cPort |
NS NS NS NS +

0 | Pv6 Fl ow 1| abel FILTER SPEC object: Cass = 10, C Type = 3
NS NS NS NS +
I I
+ +
I I
+ | Pv6 SrcAddress (16 bytes) +
I I
+ +
I I
NS NS NS NS +
| 11Hrrr | Fl ow Label (24 bits) |
NS NS NS NS +

Sr cAddr ess

The | P source address for a sender host. Mist be non-zero.

Braden, Ed., et. al. St andar ds Track [Page 87]

RFC 2205 RSVP Sept ember 1997

Sr cPor t

The UDP/ TCP source port for a sender, or zero to indicate
‘none’ .

FIl ow Label
A 24-bit Flow Label, defined in IPv6. This value nmay be used

by the packet classifier to efficiently identify the packets
bel onging to a particul ar (sender->destination) data flow.

Braden, Ed., et. al. St andar ds Track [Page 88]

RFC 2205 RSVP Sept ember 1997

A. 10 SENDER TEMPLATE C ass

SENDER_TEMPLATE cl ass = 11.

0 | Pv4 SENDER _TEMPLATE object: Cass = 11, C Type =1
Definition sane as | Pv4/ UDP FI LTER_SPEC obj ect.

0 | Pv6 SENDER _TEMPLATE object: Cass = 11, C Type = 2
Definition same as | Pv6/ UDP FI LTER_SPEC obj ect.

0 ng6 FI ow | abel SENDER _TEMPLATE object: Cass = 11, C Type =

A. 11 SENDER _TSPEC O ass
SENDER _TSPEC cl ass = 12.
0 I nt serv SENDER _TSPEC obj ect: Cass = 12, C Type = 2

The contents and encoding rules for this object are specified
in docunents prepared by the int-serv working group

A. 12 ADSPEC d ass
ADSPEC cl ass = 13.
0 I nt serv ADSPEC object: Cass = 13, C Type = 2

The contents and format for this object are specified in
docunents prepared by the int-serv working group

Braden, Ed., et. al. St andar ds Track [Page 89]

RFC 2205 RSVP Sept ember 1997

A. 13 PCLI CY_DATA d ass
POLI CY_DATA cl ass = 14.
0 Type 1 PCLI CY_DATA object: Cass = 14, CType =1

The contents of this object are for further study.

Braden, Ed., et. al. St andar ds Track [Page 90]

RFC 2205 RSVP Sept ember 1997

A. 14 Resv_CONFI RM d ass

RESV_CONFI RM cl ass = 15.

0 | Pv4 RESV_CONFI RM object: Cass = 15, CType =1
NS NS NS NS +
| | Pv4 Receiver Address (4 bytes)
NS NS NS NS +

0 | Pv6 RESV_CONFI RM object: Cass = 15, C Type = 2
NS NS NS NS +
I I
+ +
| _ |
+ | Pv6 Receiver Address (16 bytes) +
I I
+ +
I I
NS NS NS NS +

Braden, Ed., et. al. St andar ds Track [Page 91]

RFC 2205 RSVP Sept ember 1997

APPENDI X B. Error Codes and Val ues
The followi ng Error Codes nay appear in ERROR _SPEC objects and be
passed to end systens. Except where noted, these Error Codes may
appear only in ResvErr messages.
o] Error Code = 00: Confirmation

This code is reserved for use in the ERROR _SPEC object of a
ResvConf nessage. The Error Value will also be zero.

0 Error Code = 01: Admission Control failure

Reservation request was rejected by Adm ssion Control due to
unavai | abl e resources.

For this Error Code, the 16 bits of the Error Value field are:
SsSur cccc cccc cccce

where the bits are:

ss = 00: Low order 12 bits contain a gl obally-defined sub-code
(values listed bel ow).

ss = 10: Low order 12 bits contain a organization-specific sub-
code. RSVP is not expected to be able to interpret this
except as a nuneric val ue.

ss = 11: Low order 12 bits contain a service-specific sub-code.

RSVP is not expected to be able to interpret this except as
a nuneric val ue.

Since the traffic control mechani smnight substitute a
different service, this encoding nay include sone
representation of the service in use.

u=0: RSVP rejects the nessage w thout updating | oca
state.

u =1 RSVP may use nessage to update local state and forward
the nessage. This neans that the nmessage is informational

Braden, Ed., et. al. St andar ds Track [Page 92]

RFC 2205

Br aden,

RSVP Sept ember 1997

r: Reserved bit, should be zero.

cccc cccc cccc: 12 bit code.

The foll ow ng gl obal |l y-defined sub-codes may appear in the | ow
order 12 bits when ssur = 0000:

- Sub-code = 1: Del ay bound cannot be net
- Sub- code = 2: Requested bandw dt h unavail abl e
- Sub-code = 3: MIU in flowspec |larger than interface MIU

Error Code = 02: Policy Control failure

Reservation or path nmessage has been rejected for administrative
reasons, for exanple, required credentials not submtted,

i nsufficient quota or balance, or adninistrative preenption.
This Error Code may appear in a PathErr or ResvErr nessage.

Contents of the Error Value field are to be determned in the
future.

Error Code = 03: No path information for this Resv nessage.

No path state for this session. Resv nessage cannot be
f or war ded.

Error Code = 04: No sender information for this Resv nessage.
There is path state for this session, but it does not include
the sender natching sonme flow descriptor contained in the Resv
nessage. Resv nessage cannot be forwarded.

Error Code = 05: Conflicting reservation style

Reservation style conflicts with style(s) of existing
reservation state. The Error Value field contains the | ow order
16 bits of the Option Vector of the existing style with which
the conflict occurred. This Resv nessage cannot be forwarded.
Error Code = 06: Unknown reservation style

Reservation style is unknown. This Resv nessage cannot be
f orwar ded.

Ed., et. al. St andar ds Track [Page 93]

RFC 2205 RSVP Sept ember 1997

o] Error Code = 07: Conflicting dest ports

Sessions for same destination address and protocol have appeared
with both zero and non-zero dest port fields. This Error Code
may appear in a PathErr or ResvErr mnessage.

o] Error Code = 08: Conflicting sender ports
Sender port is both zero and non-zero in Path messages for the
same session. This Error Code may appear only in a PathErr
nmessage.

o] Error Code 09, 10, 11: (reserved)

o] Error Code = 12: Service preenpted

The service request defined by the STYLE object and the fl ow
descriptor has been adm nistratively preenpted.

For this Error Code, the 16 bits of the Error Value field are:

ssur cccc cccc cccc
Here the high-order bits ssur are as defined under Error Code
01. The gl obally-defined sub-codes that may appear in the | ow
order 12 bits when ssur = 0000 are to be defined in the future.

o] Error Code = 13: Unknown object cl ass
Error Value contains 16-bit value conposed of (d ass-Num C
Type) of unknown object. This error should be sent only if RSVP
is going to reject the nessage, as determnm ned by the high-order
bits of the Cass-Num This Error Code nay appear in a PathErr
or ResvErr nessage.

o] Error Code = 14: Unknown object C Type

Error Value contains 16-bit val ue conposed of (d ass-Num C
Type) of object.

o] Error Code = 15-19: (reserved)
0 Error Code = 20: Reserved for API
Error Value field contains an APl error code, for an APl error

that was detected asynchronously and nmust be reported via an
upcal I .

Braden, Ed., et. al. St andar ds Track [Page 94]

RFC 2205 RSVP Sept ember 1997

o] Error Code = 21: Traffic Control Error
Traffic Control call failed due to the format or contents of the
paraneters to the request. The Resv or Path nessage that caused
the call cannot be forwarded, and repeating the call would be
futile.

For this Error Code, the 16 bits of the Error Value field are:

ss00 cccc cccc cccce
Here the high-order bits ss are as defined under Error Code 01.

The foll ow ng gl obal |l y-defined sub-codes may appear in the | ow
order 12 bits (cccc cccc cccc) when ss = 00:

- Sub-code = 01: Service conflict
Trying to nerge two inconpatible service requests.
- Sub- code = 02: Service unsupported

Traffic control can provide neither the requested service
nor an acceptabl e repl acenent.

- Sub- code = 03: Bad Fl owspec val ue
Mal f or med or unreasonabl e request.
- Sub-code = 04: Bad Tspec val ue
Mal f or med or unreasonabl e request.
- Sub-code = 05: Bad Adspec val ue
Mal f or med or unreasonabl e request.
o] Error Code = 22: Traffic Control System error
A systemerror was detected and reported by the traffic control
nodul es. The Error Value will contain a systemspecific val ue

giving nore information about the error. RSVP is not expected
to be able to interpret this val ue.

Braden, Ed., et. al. St andar ds Track [Page 95]

RFC 2205 RSVP Sept ember 1997

o] Error Code = 23: RSVP System error

The Error Value field will provide inplenmentation-dependent
information on the error. RSVP is not expected to be able to
interpret this val ue.

In general, every RSVP nessage is rebuilt at each hop, and the node
that creates an RSVP nessage is responsible for its correct
construction. Similarly, each node is required to verify the correct
construction of each RSVP nmessage it receives. Should a progranm ng
error allow an RSVP to create a mal formed nessage, the error is not
generally reported to end systens in an ERROR_SPEC obj ect; instead,
the error is sinply I ogged locally, and perhaps reported through

net wor K nmanagenent nechani sns.

The only nessage formatting errors that are reported to end systens
are those that may reflect version m smatches, and which the end
system m ght be able to circunvent, e.g., by falling back to a
previ ous CType for an object; see code 13 and 14 above.

The choice of nmessage formatting errors that an RSVP may detect and
log locally is inplenmentation-specific, but it will typically include
the foll ow ng:

o] Wong-1 ength nessage: RSVP Length field does not match nmessage
| engt h.
o] Unknown or unsupported RSVP version

0 Bad RSVP checksum

o] I NTEGRITY failure
o] Il egal RSVP nessage Type
o] Il egal object length: not a multiple of 4, or less than 4.

o] Next hop/ Previ ous hop address in HOP object is illegal

o] Bad source port: Source port is non-zero in a filter spec or
sender tenplate for a session with destination port zero.

o] Requi red object class (specify) m ssing
o] Il egal object class (specify) in this nmessage type.
o] Vi ol ation of required object order

Braden, Ed., et. al. St andar ds Track [Page 96]

RFC 2205 RSVP Sept ember 1997

o] FIl ow descri ptor count wong for style or nessage type

o] Logi cal Interface Handle invalid

o] Unknown obj ect C ass- Num

o] Destination address of ResvConf nessage does not natch Receiver

Address in the RESV_CONFI RM object it contains.

Braden, Ed., et. al. St andar ds Track [Page 97]

RFC 2205 RSVP Sept ember 1997

APPENDI X C. UDP Encapsul ati on

An RSVP inplenentation will generally require the ability to perform
"raw' network 1/Q i.e., to send and receive |P datagrans using
protocol 46. However, sone inportant classes of host systens may not
support raw network I/O To use RSVP, such hosts nust encapsul ate
RSVP nmessages in UDP

The basic UDP encapsul ati on schene nakes two assunptions:

1. Al'l hosts are capable of sending and receiving nulticast packets
if rmulticast destinations are to be supported.

2. The first/last-hop routers are RSVP-capabl e.
A method of relaxing the second assunption is given |ater.

Let Hu be a "UDP-only" host that requires UDP encapsul ation, and H a
host that can do raw network I/O The UDP encapsul ati on schene nust
all ow RSVP interoperation anong an arbitrary topology of H hosts, Hu
hosts, and routers.

Resv, ResvErr, ResvTear, and PathErr nessages are sent to unicast
addresses learned fromthe path or reservation state in the node. |If
the node keeps track of which previous hops and which interfaces need
UDP encapsul ation, these nessages can be sent using UDP encapsul ation
when necessary. On the other hand, Path and Pat hTear nessages are
sent to the destination address for the session, which may be unicast
or multicast.

The tables in Figures 13 and 14 show the basic rules for UDP
encapsul ati on of Path and Pat hTear nessages, for unicast DestAddress
and mul ti cast Dest Address, respectively. The other nessage types,

whi ch are sent unicast, should follow the unicast rules in Figure 13.
Under the ‘RSVP Send’ columms in these figures, the notation is
‘mode(destaddr, destport)’; destport is onmtted for raw packets. The
‘Receive’ colums show the group that is joined and, where rel evant,
the UDP Listen port.

It is useful to define two flavors of UDP encapsul ati on, one to be
sent by Hu and the other to be sent by H and R to avoid double
processing by the recipient. |In practice, these two flavors are
di stingui shed by differing UDP port nunbers Pu and Pu’.

Braden, Ed., et. al. St andar ds Track [Page 98]

RFC 2205 RSVP Sept ember 1997

The followi ng synbols are used in the tables.
o] Dis the DestAddress for the particular session

o] G is a well-known group address of the form224.0.0.14, i.e., a
group that is limted to the |ocal connected network.

o] Pu and Pu” are two well-known UDP ports for UDP encapsul ati on of
RSVP, with val ues 1698 and 1699.

0 Ra is the | P address of the router interface ‘a’.

0 Router interface is on the |ocal network connected to Hu and

Hr .

a

0
The followi ng notes apply to these figures:
[Note 1] Hu sends a unicast Path nmessage either to the destination
address D, if Dis local, or to the address Ra of the first-hop

router. Ra is presunmably known to the host.

[Note 2] Here Dis the address of the local interface through
whi ch the nmessage arrived.

[Note 3] This assunes that the application has joined the group D

Braden, Ed., et. al. St andar ds Track [Page 99]

RFC 2205 RSVP Sept ember 1997

UNI CAST DESTI NATI ON D

RSVP RSVP
Node Send Recei ve
Hu UDP(¥ Ra, Pu) UDP(D, Pu)
[Note 1] and UDP(D, Pu’)
[Note 2]
Hr Raw(D) Raw()
and i f (UDP) and UDP(D, Pu)
then UDP(D, Pu’) [Note 2]

(I'gnore Pu’)

R (Interface a):

Raw(D) Raw()
and i f (UDP) and UDP(Ra, Pu)
then UDP(D, Pu’) (I'gnore Pu’)

Fi gure 13: UDP Encapsul ation Rules for Unicast Path and Resv Messages

MULTI CAST DESTI NATI ON D

RSVP RSVP
Node Send Recei ve
Hu UDP(G*, Pu) UDP(D, Pu’)
[Note 3]

and UDP(G+, Pu)

Hr Raw D, Tr) Raw()
and i f (UDP) and UDP(G+, Pu)
t hen UDP(D, Pu’) (lgnore Pu’)
R (Interface a):
Raw(D, Tr) Raw()
and i f (UDP) and UDP(G+, Pu)
t hen UDP(D, Pu’) (lgnore Pu’)

Fi gure 14: UDP Encapsul ation Rules for Multicast Path Messages

Braden, Ed., et. al. St andar ds Track [Page 100]

RFC 2205 RSVP Sept ember 1997

A router may deternine if its interface X needs UDP encapsul ati on by
listening for UDP-encapsul ated Path nessages that were sent to either
G (multicast D) or to the address of interface X (unicast D). There
is one failure nmode for this schene: if no host on the connected
network acts as an RSVP sender, there will be no Path nessages to
trigger UDP encapsulation. 1In this (unlikely) case, it will be
necessary to explicitly configure UDP encapsul ation on the | ocal
network interface of the router.

When a UDP- encapsul at ed packet is received, the IP TTL is not

avail able to the application on nost systens. The RSVP process that
recei ves a UDP-encapsul ated Path or Pat hTear nmessage shoul d therefore
use the Send_TTL field of the RSVP compn header as the effective
receive TTL. This may be overridden by nmanual configuration.

W have assuned that the first-hop RSVP-capable router Ris on the
directly-connected network. There are several possible approaches if
this is not the case.

1. Hu can send both unicast and rnulticast sessions to UDP(Ra, Pu)
with TTL=Ta

Here Ta nmust be the TTL to exactly reach R If Ta is too small,
the Path nessage will not reach R If Ta is too large, R and
succeeding routers may forward the UDP packet until its hop
count expires. This will turn on UDP encapsul ati on between
routers within the Internet, perhaps causing bogus UDP traffic.
The host Hu must be explicitly configured with Ra and Ta.

2. A particular host on the LAN connected to Hu coul d be designated
as an "RSVP relay host". A relay host would listen on (G, Pu)
and forward any Path nessages directly to R although it would
not be in the data path. The relay host would have to be
configured with Ra and Ta.

Braden, Ed., et. al. St andar ds Track [Page 101]

RFC 2205

RSVP Sept ember 1997

APPENDI X D. d ossary

0o

Br aden,

Adm ssi on control

Atraffic control function that deci des whet her the packet
schedul er in the node can supply the requested QS while
continuing to provide the QS requested by previously-admtted
requests. See also "policy control" and "traffic control".
Adspec

An Adspec is a data elenment (object) in a Path nessage that
carries a package of OPWA advertising information. See "OPWA".

Auto-refresh | oop

An auto-refresh loop is an error condition that occurs when a
t opol ogi cal loop of routers continues to refresh existing
reservation state even though all receivers have stopped
requesting these reservations. See section 3.4 for nore

i nformati on.

Bl ockade state

Bl ockade state helps to solve a "killer reservation" problem
See sections 2.5 and 3.5, and "killer reservation".

Branch policing

Traffic policing at a nulticast branching point on an outgoing
interface that has "l ess" resources reserved than another
outgoing interface for the same flow. See "traffic policing"

C Type

The class type of an object; unique within class-nane. See
"cl ass- name".

C ass-nane
The class of an object. See "object”.
Dest Addr ess

The | P destination address; part of session identification. See
"session".

Ed., et. al. St andar ds Track [Page 102]

RFC 2205 RSVP Sept ember 1997

o] Di stinct style

A (reservation) style attribute; separate resources are reserved
for each different sender. See also "shared style"

o] Downst r eam
Towards the data receiver(s).
0] Dst Por t

The I P (generalized) destination port used as part of a session.
See "generalized destination port".

o] Entry policing

Traffic policing done at the first RSVP- (and policing-) capable
router on a data path.

0 ERROR_SPEC

Obj ect that carries the error report in a PathErr or ResvErr
nmessage.

o] Explicit sender selection
A (reservation) style attribute; all reserved senders are to be
listed explicitly in the reservati on nessage. See al so
"wi | dcard sender sel ection".

o] FF style

Fixed Filter reservation style, which has explicit sender
selection and distinct attri butes.

o] FilterSpec
Together with the session information, defines the set of data
packets to receive the QoS specified in a flowspec. The
filterspec is used to set paraneters in the packet classifier
function. A filterspec may be carried in a FILTER SPEC or
SENDER_TEMPLATE obj ect .

o] FI ow descri ptor

The conbi nation of a flowspec and a filterspec.

Braden, Ed., et. al. St andar ds Track [Page 103]

RFC 2205 RSVP Sept ember 1997

o] FI owspec

Defines the QS to be provided for a flow The fl owspec is used
to set paraneters in the packet scheduling function to provide
the requested quality of service. A flowspec is carried in a
FLONSPEC obj ect. The flowspec format is opaque to RSVP and is
defined by the Integrated Services Wrking G oup

o] General i zed destination port
The conponent of a session definition that provides further
transport or application protocol |ayer demultiplexing beyond
Dest Address. See "session".

o] General i zed source port
The conponent of a filter spec that provides further transport
or application protocol |ayer demrultiplexing beyond the sender
addr ess.

o] GL.B
G eatest Lower Bound

o] I ncom ng interface

The interface on which data packets are expected to arrive, and
on whi ch Resv nessages are sent.

(o] | NTEGRI TY
Ooj ect of an RSVP control message that contains cryptographic
data to authenticate the originating node and to verify the
contents of an RSVP nessage.

o] Killer reservation problem
The killer reservation problem describes a case where a receiver
attenpting and failing to make a | arge QoS reservation prevents
smal | er QS reservations from being established. See Sections
2.5 and 3.5 for nore information.

(o] LIH

The LIH (Logical Interface Handle) is used to help deal with
non- RSVP cl ouds. See Section 2.9 for nore information.

Braden, Ed., et. al. St andar ds Track [Page 104]

RFC 2205 RSVP Sept ember 1997

o] Local repair

Allows RSVP to rapidly adapt its reservations to changes in
routing. See Section 3.6 for nore infornmation.

0] LPM

Local Policy Mdule. the function that exerts policy control
0] LUB

Least Upper Bound.
o] Mer ge policing

Traffic policing that takes place at data nerge point of a
shared reservati on

o] Mer gi ng
The process of taking the maxi mum (or nore generally the |east
upper bound) of the reservations arriving on outgoing
i nterfaces, and forwardi ng this nmaxi nrum on the inconing
interface. See Section 2.2 for nore information.

o] MU
Maxi mum Transni ssion Unit.

o] Next hop

The next router in the direction of traffic flow

o] NHOP
An object that carries the Next Hop information in RSVP control
nessages.

o] Node

A router or host system
o] Non- RSVP cl ouds
G oups of hosts and routers that do not run RSVP. Dealing with

nodes that do not support RSVP is inportant for backwards
conpatibility. See section 2.9.

Braden, Ed., et. al. St andar ds Track [Page 105]

RFC 2205

Br aden,

RSVP Sept ember 1997

hj ect

An el emrent of an RSVP control nessage; a type, |ength, value
triplet.

OPWA

Abbreviation for "One Pass Wth Advertising". Describes a
reservation setup nodel in which (Path) nessages sent downstream
gather information that the receiver(s) can use to predict the
end-to-end service. The information that is gathered is called
an advertisenent. See also "Adspec".

Qutgoing interface

Interface through which data packets and Path nessages are
f or war ded.

Packet classifier

Traffic control function in the primary data packet forwarding
path that selects a service class for each packet, in accordance
with the reservation state set up by RSVP. The packet
classifier may be conmbined with the routing function. See also
"traffic control".

Packet schedul er

Traffic control function in the primary data packet forwarding
path that inplenments QS for each flow, using one of the service
nodel s defined by the Integrated Services Wrking Goup. See
also " traffic control"

Path state

Information kept in routers and hosts about all RSVP senders.

Pat hEr r

Path Error RSVP control nessage

Pat hTear

Pat h Teardown RSVP control nessage.

Ed., et. al. St andar ds Track [Page 106]

RFC 2205 RSVP Sept ember 1997

o] PHOP
An object that carries the Previous Hop information in RSVP
control nessages.

o] Police
See traffic policing.

o] Policy contro
A function that determ nes whether a new request for quality of
service has adninistrative perm ssion to nake the requested
reservation. Policy control may al so perform accounting (usage
f eedback) for a reservation

o] Pol i cy data
Data carried in a Path or Resv nessage and used as input to
policy control to determ ne authorization and/ or usage feedback
for the given flow.

o] Previ ous hop

The previous router in the direction of traffic flow Resv
nessages flow towards previ ous hops.

0 Protocol I d

The conponent of session identification that specifies the IP
protocol nunmber used by the data stream

o] QS
Quality of Service.
o] Reservation state
I nformation kept in RSVP-capabl e nodes about successful RSVP
reservation requests.
o] Reservation style
Describes a set of attributes for a reservation, including the

sharing attributes and sender selection attributes. See Section
1.3 for details.

Braden, Ed., et. al. St andar ds Track [Page 107]

RFC 2205 RSVP Sept ember 1997

0] Resv nessage

Reservation request RSVP control nessage.

0 ResvConf

Reservation Confirmation RSVP control nessage, confirns
successful installation of a reservation at sonme upstream node.

(o} ResvErr

Reservation Error control nessage, indicates that a reservation
request has failed or an active reservation has been preenpted.

0 ResvTear

Reservation Teardown RSVP control nessage, deletes reservation
st at e.

0] Rspec
The conponent of a flowspec that defines a desired QS. The
Rspec format is opaque to RSVP and is defined by the Integrated
Servi ces Wrking Goup of the | ETF.

0 RSVP_HOP

bj ect of an RSVP control nmessage that carries the PHOP or NHOP
address of the source of the nessage.

o] Scope

The set of sender hosts to which a given reservation request is
to be propagat ed.

o] SE style

Shared Explicit reservation style, which has explicit sender
sel ection and shared attributes.

o] Semantic fragnmentation
A nethod of fragmenting a | arge RSVP nessage using information

about the structure and contents of the nessage, so that each
fragment is a logically conplete RSVP nessage.

Braden, Ed., et. al. St andar ds Track [Page 108]

RFC 2205 RSVP Sept ember 1997

o] Sender tenplate

Paraneter in a Path nmessage that defines a sender; carried in a
SENDER _TEMPLATE object. It has the formof a filter spec that
can be used to select this sender’s packets from ot her packets
in the sanme session on the sane |ink

o] Sender Tspec
Paraneter in a Path nmessage, a Tspec that characterizes the
traffic parameters for the data flow fromthe correspondi ng
sender. It is carried in a SENDER TSPEC obj ect.

o] Sessi on
An RSVP session defines one sinplex unicast or nulticast data
flow for which reservations are required. A session is
identified by the destination address, transport-I|ayer protocol,
and an optional (generalized) destination port.

o] Shared style

A (reservation) style attribute: all reserved senders share the
sanme reserved resources. See also "distinct style".

0 Soft state

Control state in hosts and routers that will expire if not
refreshed within a specified anmount of tine.

(o] STYLE
hj ect of an RSVP nessage that specifies the desired reservation
style.

o] Style

See "reservation style"
0 Tl ME_VALUES

hject in an RSVP control nessage that specifies the tinme period
timer used for refreshing the state in this nessage.

Braden, Ed., et. al. St andar ds Track [Page 109]

RFC 2205 RSVP Sept ember 1997

o] Traffic contro
The entire set of nachinery in the node that supplies requested
QS to data streans. Traffic control includes packet
classifier, packet schedul er, and admni ssion control functions.

o] Traffic policing
The function, performed by traffic control, of forcing a given
data flow into conpliance with the traffic paranmeters inplied by
the reservation. It may involve dropping non-conpliant packets
or sending themw th lower priority, for exanple.

o] TSpec
A traffic paraneter set that describes a flow The format of a
Tspec is opaque to RSVP and is defined by the Integrated Service
Wor ki ng G oup.

o] UDP encapsul ati on
A way for hosts that cannot use raw sockets to participate in
RSVP by encapsul ati ng the RSVP protocol (raw) packets in
ordi nary UDP packets. See Section APPENDI X C for nore
i nformati on.

0] Upstream
Towards the traffic source. RSVP Resv nessages fl ow upstream

o] WF style

Wldcard Filter reservation style, which has wildcard sender
sel ection and shared attributes.

o] W dcard sender selection
A (reservation) style attribute: traffic fromany sender to a

specific session receives the sane Q0S. See also "explicit
sender sel ection".

Braden, Ed., et. al. St andar ds Track [Page 110]

RFC 2205 RSVP Sept ember 1997

Ref er ences

[Baker 96] Baker, F., "RSVP Cryptographi c Authentication", Wrk in
Pr ogr ess.

[RFC 1633] Braden, R, Cark, D, and S. Shenker, "Integrated Services
in the Internet Architecture: an Overview', RFC 1633, ISI, MT, and
PARC, June 1994.

[FJ94] Floyd, S. and V. Jacobson, "Synchronization of Periodic Routing
Messages", | EEE/ ACM Transactions on Networking, Vol. 2, No. 2,
April, 1994.

[RFC 2207] Berger, L. and T. O Malley, "RSVP Extensions for |PSEC Data
Fl ows", RFC 2207, Septenber 1997.

[RFC 2113] Katz, D., "IP Router Alert Option", RFC 2113, cisco Systens,
February 1997.

[RFC 2210] Woclawski, J., "The Use of RSVP with Integrated Services",
RFC 2210, Septenber 1997.

[Pol Arch96] Herzog, S., "Policy Control for RSVP. Architectural
Overview'. Wrk in Progress.

[OPWA95] Shenker, S. and L. Breslau, "Two Issues in Reservation
Establi shnent™, Proc. ACM SI GCOW ' 95, Canbridge, MA, August 1995.

[RSVP93] Zzhang, L., Deering, S., Estrin, D., Shenker, S., and D

Zappal a, "RSVP. A New Resource ReSerVation Protocol", |EEE Network,
Sept enber 1993.

Security Considerations

See Section 2. 8.

Braden, Ed., et. al. St andards Track [Page 111]

RFC 2205 RSVP Sept ember 1997

Aut hor s’ Addresses

Bob Braden

USC Informati on Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292

Phone: (310) 822-1511
EMai | : Braden@ Sl . EDU

Li xi a Zhang

UCLA Comput er Sci ence Depart nment
4531G Boel ter Hall

Los Angel es, CA 90095- 1596 USA

Phone: 310-825-2695
EMai | : |ixia@s. ucla.edu

St eve Berson

USC I nformati on Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292

Phone: (310) 822-1511
EMai | : Berson@ Sl . EDU

Shai Herzog

IBMT. J. Watson Research Center
P. O Box 704

Yor kt own Hei ghts, NY 10598

Phone: (914) 784-6059
EMai | : Her zog@WATSON. | BM COM

Sugi h Janin

Uni versity of M chigan
CSE/ EECS

1301 Beal Ave.

Ann Arbor, M 48109-2122

Phone: (313) 763-1583

EMai | : j am n@ECS. UM CH. EDU

Braden, Ed., et. al. St andards Track [Page 112]

