Net wor k Wor ki ng Group R Srinivasan
Request for Comments: 1831 Sun M crosystens
Cat egory: Standards Track August 1995

RPC. Renote Procedure Call Protocol Specification Version 2
Status of this Meno

Thi s docunment specifies an Internet standards track protocol for the
Internet conmunity, and requests di scussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this meno is unlimnited.

ABSTRACT
Thi s docunent describes the ONC Renmote Procedure Call (ONC RPC
Version 2) protocol as it is currently deployed and accepted. "ONC'
stands for "Open Network Computing".

TABLE OF CONTENTS

1. |1 NTRODUCTI ON 2
2. TERM NOLOGY 2
3. THE RPC MODEL 2
4. TRANSPORTS AND SEMANTI CS 4
5. BI NDI NG AND RENDEZVOUS | NDEPENDENCE 5
6. AUTHENTI CATI ON 5
7. RPC PROTOCOL REQUI REMENTS 5
7.1 RPC Prograns and Procedures 6
7.2 Authentication 7
7.3 Program Nunber Assi gnnent 8
7.4 O her Uses of the RPC Protocol 8
7.4.1 Batching 8
7.4.2 Broadcast Renote Procedure Calls 8
8. THE RPC MESSAGE PROTOCOL 9
9. AUTHENTI CATI ON PROTOCOLS 12
9.1 Null Authentication 13
10. RECORD MARKI NG STANDARD 13
11. THE RPC LANGUAGE 13
11.1 An Exanpl e Service Described in the RPC Language 13
11. 2 The RPC Language Specification 14
11. 3 Syntax Notes 15
APPENDI X A: SYSTEM AUTHENTI CATI ON 16
REFERENCES 17
Security Considerations 18
Aut hor’ s Address 18

Sri ni vasan St andar ds Track [Page 1]

RFC 1831 Renot e Procedure Call Protocol Version 2 August 1995

1

| NTRODUCTI ON

Thi s docunent specifies version two of the nessage protocol used in
ONC Renpte Procedure Call (RPC). The message protocol is specified
with the eXternal Data Representation (XDR) |anguage [9]. This
docunent assunes that the reader is famliar with XDR It does not
attenpt to justify renote procedure calls systens or describe their
use. The paper by Birrell and Nelson [1] is recommended as an
excel | ent background for the renpte procedure call concept.

TERM NOLOGY

Thi s docunent discusses clients, calls, servers, replies, services,
programs, procedures, and versions. Each renote procedure call has
two sides: an active client side that makes the call to a server

whi ch sends back a reply. A network service is a collection of one
or nore renote prograns. A renpte programinplenents one or nore
renote procedures; the procedures, their parameters, and results are
docunented in the specific progranis protocol specification. A
server may support nore than one version of a renbte programin order
to be conpati ble with changing protocols.

For example, a network file service nay be conposed of two prograns.
One program nmay deal with high-1evel applications such as file system
access control and | ocking. The other may deal with lowlevel file

i nput and out put and have procedures like "read" and "wite". A
client of the network file service would call the procedures
associated with the two programs of the service on behalf of the
client.

The terns client and server only apply to a particular transaction; a
particul ar hardware entity (host) or software entity (process or
progran) could operate in both roles at different tinmes. For

exanmpl e, a programthat supplies renote execution service could al so
be a client of a network file service.

THE RPC MODEL

The ONC RPC protocol is based on the renote procedure call nodel

which is sinmlar to the | ocal procedure call nodel. In the I ocal
case, the caller places argunents to a procedure in sone well -
specified I ocation (such as a register window). It then transfers
control to the procedure, and eventually regains control. At that

point, the results of the procedure are extracted fromthe well -
specified | ocation, and the caller continues execution.

Sri ni vasan St andar ds Track [Page 2]

RFC 1831 Renot e Procedure Call Protocol Version 2 August 1995

The renote procedure call nodel is simlar. One thread of contro
logically winds through two processes: the caller’s process, and a
server’'s process. The caller process first sends a call nessage to
the server process and waits (bl ocks) for a reply nessage. The cal
nmessage i ncludes the procedure’s paraneters, and the reply nessage
i ncludes the procedure’s results. Once the reply nessage is
received, the results of the procedure are extracted, and caller’s
execution is resuned.

On the server side, a process is dormant awaiting the arrival of a
call nmessage. When one arrives, the server process extracts the
procedure’ s paraneters, conmputes the results, sends a reply nessage,
and then awaits the next call nessage.

In this nodel, only one of the two processes is active at any given
time. However, this nodel is only given as an exanple. The ONC RPC
protocol makes no restrictions on the concurrency nodel inplenented,
and others are possible. For exanple, an inplenentati on may choose
to have RPC calls be asynchronous, so that the client nay do useful
work while waiting for the reply fromthe server. Another
possibility is to have the server create a separate task to process
an incomng call, so that the original server can be free to receive
ot her requests.

There are a few inportant ways in which renote procedure calls differ
fromlocal procedure calls:

1. Error handling: failures of the renote server or network nust
be handl ed when using renote procedure calls.

2. G obal variables and side-effects: since the server does not
have access to the client’s address space, hidden argunents cannot
be passed as gl obal variables or returned as side effects.

3. Performance: renote procedures usually operate one or nore
orders of magnitude slower than | ocal procedure calls.

4. Authentication: since renpte procedure calls can be transported
over unsecured networks, authentication nmay be necessary.

Aut henti cati on prevents one entity from masqueradi ng as sone ot her
entity.

The conclusion is that even though there are tools to automatically

generate client and server libraries for a given service, protocols
nmust still be designed carefully.

Sri ni vasan St andar ds Track [Page 3]

RFC 1831 Renot e Procedure Call Protocol Version 2 August 1995

4. TRANSPORTS AND SEMANTI CS

The RPC protocol can be inplenmented on several different transport
protocols. The RPC protocol does not care how a nmessage i s passed
fromone process to another, but only with specification and
interpretation of nmessages. However, the application may wish to
obtain informati on about (and perhaps control over) the transport

| ayer through an interface not specified in this docunment. For
exanpl e, the transport protocol may inpose a restriction on the
maxi num si ze of RPC nmessages, or it nay be streamoriented |ike TCP
with no size linit. The client and server nust agree on their
transport protocol choices.

It is inportant to point out that RPC does not try to inplenent any
kind of reliability and that the application may need to be aware of
the type of transport protocol underneath RPC. If it knows it is
running on top of a reliable transport such as TCP [6], then npbst of
the work is already done for it. On the other hand, if it is running
on top of an unreliable transport such as UDP [7], it nust inplenent
its own tine-out, retransnission, and duplicate detection policies as
the RPC protocol does not provide these services.

Because of transport independence, the RPC protocol does not attach
specific semantics to the renote procedures or their execution
requirenments. Semantics can be inferred from (but should be

explicitly specified by) the underlying transport protocol. For
exanpl e, consider RPC running on top of an unreliable transport such
as UDP. If an application retransmts RPC call nessages after tine-
outs, and does not receive a reply, it cannot infer anything about
the nunber of tinmes the procedure was executed. |If it does receive a
reply, then it can infer that the procedure was executed at | east
once.

A server may wi sh to renmenber previously granted requests froma
client and not regrant themin order to insure sonme degree of
execut e- at - nost-once semantics. A server can do this by taking
advantage of the transaction ID that is packaged with every RPC
message. The main use of this transaction IDis by the client RPC
entity in matching replies to calls. However, a client application
may choose to reuse its previous transaction |ID when retransmitting a
call. The server may choose to renenber this ID after executing a
call and not execute calls with the sanme IDin order to achi eve sone
degree of execute-at-nost-once senantics. The server is not all owed
to examine this IDin any other way except as a test for equality.

On the other hand, if using a "reliable" transport such as TCP, the

application can infer froma reply nessage that the procedure was
executed exactly once, but if it receives no reply nessage, it cannot

Sri ni vasan St andar ds Track [Page 4]

RFC 1831 Renot e Procedure Call Protocol Version 2 August 1995

assunme that the renote procedure was not executed. Note that even if
a connection-oriented protocol like TCP is used, an application still
needs tine-outs and reconnection to handl e server crashes.

There are other possibilities for transports besi des datagram or
connection-oriented protocols. For exanple, a request-reply protocol
such as VMIP [2] is perhaps a natural transport for RPC. ONC RPC
uses both TCP and UDP transport protocols. Section 10 (RECORD
MARKI NG STANDARD) descri bes the nechani sm enpl oyed by ONC RPC to
utilize a connection-oriented, streamoriented transport such as TCP

5. BI NDI NG AND RENDEZVOUS | NDEPENDENCE

The act of binding a particular client to a particular service and
transport paranmeters is NOT part of this RPC protocol specification
This inmportant and necessary function is left up to sonme higher-Ievel
sof t war e.

| mpl enentors could think of the RPC protocol as the junp-subroutine
instruction ("JSR') of a network; the | oader (binder) makes JSR
useful, and the |l oader itself uses JSR to acconplish its task

Li kewi se, the binding software makes RPC useful, possibly using RPC
to acconplish this task

6. AUTHENTI CATI ON

The RPC protocol provides the fields necessary for a client to
identify itself to a service, and vice-versa, in each call and reply
nmessage. Security and access control nechanisns can be built on top
of this message authentication. Several different authentication
protocols can be supported. A field in the RPC header indicates

whi ch protocol is being used. More information on specific

aut hentication protocols is in section 9: "Authentication Protocols".

7. RPC PROTOCOL REQUI REMENTS
The RPC protocol nust provide for the foll ow ng:
(1) Unique specification of a procedure to be call ed.
(2) Provisions for matching response nessages to request nessages.

(3) Provisions for authenticating the caller to service and
Vi ce-versa

Sri ni vasan St andar ds Track [Page 5]

RFC 1831 Renot e Procedure Call Protocol Version 2 August 1995

Besi des these requirements, features that detect the following are
worth supporting because of protocol roll-over errors, inplenentation
bugs, user error, and network administration:

(1) RPC protocol m smatches.

(2) Renote program protocol version m smatches.

(3) Protocol errors (such as msspecification of a procedure’s
par ameters).

(4) Reasons why renpte authentication fail ed.

(5) Any other reasons why the desired procedure was not call ed.

7.1 RPC Progranms and Procedures

The RPC call nessage has three unsigned integer fields -- renote
program nunber, renote program version nunber, and renote procedure
nunber -- which uniquely identify the procedure to be call ed.

Program nunbers are adnini stered by a central authority
(rpc@un.comj. Once inplenmentors have a program nunber, they can

i npl ement their renote program the first inplenmentati on woul d nost

i kely have the version nunber 1. Because npbst new protocols evol ve,
a version field of the call message identifies which version of the
protocol the caller is using. Version nunbers enabl e support of both
ol d and new protocols through the same server process.

The procedure nunber identifies the procedure to be called. These
nunbers are docunented in the specific program s protocol
specification. For exanple, a file service's protocol specification
may state that its procedure nunber 5 is "read" and procedure nunber
12 is "wite".

Just as renote program protocols nay change over several versions,
the actual RPC nessage protocol could also change. Therefore, the
call nessage also has in it the RPC version nunber, which is always
equal to two for the version of RPC described here.

The reply nmessage to a request nessage has enough information to
di stinguish the followi ng error conditions:

(1) The renote inplenentation of RPC does not support protocol
version 2. The | owest and hi ghest supported RPC version nunbers
are returned.

(2) The renote programis not available on the renpte system

(3) The renote program does not support the requested version

nunber. The | owest and hi ghest supported renote program version
nunbers are returned.

Sri ni vasan St andar ds Track [Page 6]

RFC 1831 Renot e Procedure Call Protocol Version 2 August 1995

(4) The requested procedure nunber does not exist. (This is
usually a client side protocol or progranmng error.)

(5) The paraneters to the renpte procedure appear to be garbage
fromthe server’s point of view (Again, this is usually caused
by a di sagreenment about the protocol between client and service.)

7.2 Authentication

Provi sions for authentication of caller to service and vice-versa are
provi ded as a part of the RPC protocol. The call nessage has two

aut hentication fields, the credential and verifier. The reply
nmessage has one authentication field, the response verifier. The RPC
protocol specification defines all three fields to be the foll ow ng
opaque type (in the eXternal Data Representation (XDR) |anguage [9]):

enum aut h_fl avor {

AUTH_NONE =0,
AUTH_SYS = 1,
AUTH_SHORT =2
/* and nbre to be defined */

H

struct opaque_auth {
auth_flavor flavor;
opaque body<400>;

In other words, any "opaque_auth" structure is an "auth_flavor"
enuneration followed by up to 400 bytes which are opaque to
(uninterpreted by) the RPC protocol inplenentation.

The interpretation and semantics of the data contained within the
aut hentication fields is specified by individual, independent

aut hentication protocol specifications. (Section 9 defines the
various authentication protocols.)

I f authentication paraneters were rejected, the reply nessage
contains information stating why they were rejected.

Sri ni vasan St andar ds Track [Page 7]

RFC 1831 Renot e Procedure Call Protocol Version 2 August 1995

7.3 Program Nunber Assi gnnent

Program nunbers are given out in groups of hexadeci mal 20000000
(deci mal 536870912) according to the followi ng chart:

0 Ifffffff defined by rpc@un. com
20000000 - 3fffffff defi ned by user
40000000 Sfffffff transi ent
60000000 TIffffff reserved
80000000 of ffffff reserved
a0000000 bf ffffff reserved
c0000000 df ffffff reserved
e0000000 fEffffff reserved

The first group is a range of nunbers admi nistered by rpc@un. com and
shoul d be identical for all sites. The second range is for
applications peculiar to a particular site. This range is intended
primarily for debuggi ng new prograns. Wen a site develops an
application that mght be of general interest, that application
shoul d be given an assigned nunber in the first range. Application
devel opers may apply for blocks of RPC program nunbers in the first
range by sending electronic mail to "rpc@un.com'. The third group
is for applications that generate program nunbers dynamically. The
final groups are reserved for future use, and should not be used.

7.4 O her Uses of the RPC Protocol

The intended use of this protocol is for calling renpte procedures.
Normal | y, each call nmessage is matched with a reply nessage.

However, the protocol itself is a nessage-passing protocol with which
ot her (non-procedure call) protocols can be inplenented.

7.4.1 Batching

Batching is useful when a client wishes to send an arbitrarily |arge
sequence of call messages to a server. Batching typically uses
reliable byte streamprotocols (like TCP) for its transport. 1In the
case of batching, the client never waits for a reply fromthe server
and the server does not send replies to batch calls. A sequence of
batch calls is usually terminated by a legitimte renote procedure
call operation in order to flush the pipeline and get positive
acknow edgenent .

7.4.2 Broadcast Renpte Procedure Calls

I n broadcast protocols, the client sends a broadcast call to the
network and waits for numerous replies. This requires the use of
packet - based protocols (like UDP) as its transport protocol. Servers

Sri ni vasan St andar ds Track [Page 8]

RFC 1831 Renot e Procedure Call Protocol Version 2 August 1995

that support broadcast protocols usually respond only when the call
is successfully processed and are silent in the face of errors, but
this varies with the application.

The principles of broadcast RPC also apply to multicasting - an RPC
request can be sent to a nulticast address.

8. THE RPC MESSAGE PROTOCOL

This section defines the RPC nessage protocol in the XDR data
description | anguage [9].

enum nmsg_type {
CALL 0,
REPLY 1

H

Areply to a call nessage can take on two forms: The nessage was
ei ther accepted or rejected.

enumreply_stat {
MSG_ACCEPTED
MSG_DENI ED

H

G ven that a call nmessage was accepted, the following is the status
of an attenpt to call a renote procedure.

enum accept _stat {
SUCCESS = 0, /* RPC executed successfully */
PROG UNAVAIL =1, /* renpte hasn’'t exported program */
PROG M SMATCH = 2, renote can’t support version # */
PROC UNAVAIL = 3, /* programcan't support procedure */
GARBACE _ARGS = 4, /* procedure can’t decode parans */
SYSTEM ERR =5 /* errors like nenory allocation failure */

1
Reasons why a call nessage was rejected:
enumreject_stat {

RPC_M SMATCH = 0, /* RPC version nunber != 2 */
AUTH_ERROR = 1 /* rempte can’'t authenticate caller */

1
Why aut hentication fail ed:

enum aut h_stat {
AUTH K =0, [/* success */

Sri ni vasan St andar ds Track [Page 9]

RFC 1831 Renot e Procedure Call Protocol Version 2 August 1995

/*

* failed at rempte end

*/
AUTH_BADCRED = 1, [/* bad credential (seal broken) */
AUTH_REJECTEDCRED = 2, /* client nust begin new session */
AUTH_BADVERF = 3, * pbad verifier (seal broken) */
AUTH_REJECTEDVERF = 4, /* verifier expired or replayed */
AUTH_TOOWEAK =5, /* rejected for security reasons */
/*

* failed locally

*/
AUTH_| NVALI DRESP = 6, /* bogus response verifier */
AUTH_FAI LED = 7 |* reason unknown */

1
The RPC nessage:

Al'l nessages start with a transaction identifier, xid, followed by a
two-armed discrinmnated union. The union’s discrinnant is a
nmeg_type which switches to one of the two types of the nmessage. The
xid of a REPLY nessage al ways matches that of the initiating CALL
message. NB: The xid field is only used for clients matching reply
nmessages with call nessages or for servers detecting retransm ssions;
the service side cannot treat this id as any type of sequence nunber.

struct rpc_msg {
unsi gned int xid;
uni on switch (nmsg_type ntype) {

case CALL:
cal |l _body cbhody;
case REPLY:
reply_body rbody;
} body;

Body of an RPC call:

In version 2 of the RPC protocol specification, rpcvers nust be equal
to 2. The fields prog, vers, and proc specify the renote program
its version nunber, and the procedure within the renpbte programto be
called. After these fields are two authentication paraneters: cred
(aut hentication credential) and verf (authentication verifier). The
two aut hentication paraneters are followed by the paraneters to the
renote procedure, which are specified by the specific program

pr ot ocol .

The purpose of the authentication verifier is to validate the
aut hentication credential. Note that these two itens are

Sri ni vasan St andar ds Track [Page 10]

RFC 1831 Renot e Procedure Call Protocol Version 2 August 1995

historically separate, but are always used together as one | ogical
entity.

struct call _body {

unsi gned int rpcvers; /* must be equal to two (2) */
unsi gned int prog;

unsi gned int vers;

unsi gned int proc;

opaque_auth cred;

opaque_auth verf;

/* procedure specific paraneters start here */

1
Body of a reply to an RPC call:

union reply_body switch (reply_stat stat) {
case MSG_ACCEPTED
accepted_reply areply;
case MSG_DEN ED
rejected_reply rreply;
} reply;

Reply to an RPC call that was accepted by the server

There could be an error even though the call was accepted. The first
field is an authentication verifier that the server generates in
order to validate itself to the client. It is followed by a union
whose discrimnant is an enum accept_stat. The SUCCESS arm of the
union is protocol specific. The PROG UNAVAIL, PROC_UNAVAI L,
GARBAGE_ARGS, and SYSTEM ERR arns of the union are void. The
PROG M SMATCH arm specifies the | owest and hi ghest version nunbers of
the renote program supported by the server

struct accepted_reply {
opaque_aut h verf;
uni on switch (accept_stat stat) {

case SUCCESS:
opaque resul ts[0];
/*
* procedure-specific results start here
*/
case PROG M SMATCH:
struct {

unsigned int |ow
unsi gned int high;
} msnmatch_info;
def aul t:
/*

Srini vasan St andards Track [Page 11]

RFC 1831 Renot e Procedure Call Protocol Version 2 August 1995

* Void. Cases include PROG UNAVAI L, PROC_UNAVAI L,
* GARBAGE_ARGS, and SYSTEM ERR
*/
voi d;
} reply_data;

Reply to an RPC call that was rejected by the server

The call can be rejected for two reasons: either the server is not
runni ng a conpati bl e version of the RPC protocol (RPC M SVMATCH), or
the server rejects the identity of the caller (AUTH ERROR). In case
of an RPC version nmismatch, the server returns the | owest and hi ghest
supported RPC version nunbers. |n case of invalid authentication
failure status is returned.

union rejected reply switch (reject_stat stat) {
case RPC_M SMVATCH
struct {
unsi gned int | ow
unsi gned int high;
} msnmatch_info;
case AUTH _ERROR
auth_stat stat;
1

9. AUTHENTI CATI ON PROTOCCLS

As previously stated, authentication paraneters are opaque, but
open-ended to the rest of the RPC protocol. This section defines two
standard "flavors" of authentication. |Inplenentors are free to

i nvent new aut hentication types, with the sane rules of flavor nunber
assignnment as there is for program nunber assignnent. The "flavor"
of a credential or verifier refers to the value of the "flavor" field
in the opaque_auth structure. Flavor nunbers, |ike RPC program
nunbers, are also administered centrally, and devel opers nay assign
new flavor nunbers by applying through electronic nmail to
"rpc@un.conf. Credentials and verifiers are represented as variable
| engt h opaque data (the "body" field in the opaque_auth structure).

In this docunent, two flavors of authentication are described. O
these, Null authentication (described in the next subsection) is
mandatory - it must be available in all inplenmentations. System

aut hentication is described in Appendix A It is strongly
reconmended that inplenmentors include System authentication in their
i npl erentations. Mny applications use this style of authentication,
and availability of this flavor in an inplenmentation will enhance
interoperability.

Srini vasan St andards Track [Page 12]

RFC 1831 Renot e Procedure Call Protocol Version 2 August 1995

9.1 Null Authentication

Oten calls nmust be made where the client does not care about its
identity or the server does not care who the client is. 1In this
case, the flavor of the RPC nessage’s credential, verifier, and reply
verifier is "AUTH NONE'. Opaque data associated with "AUTH NONE" is
undefined. It is recomended that the |l ength of the opaque data be
zero.

10. RECORD MARKI NG STANDARD

When RPC nessages are passed on top of a byte streamtransport
protocol (like TCP), it is necessary to delimt one nmessage from
another in order to detect and possibly recover from protocol errors.
This is called record marking (RM. One RPC nessage fits into one RM
record.

A record is conposed of one or nmore record fragnents. A record
fragment is a four-byte header followed by 0 to (2**31) - 1 bytes of
fragment data. The bytes encode an unsi gned binary nunber; as with
XDR integers, the byte order is fromhighest to | owest. The nunber
encodes two val ues -- a bool ean which indicates whether the fragnment
is the last fragment of the record (bit value 1 inplies the fragnment
is the last fragnment) and a 31-bit unsigned binary value which is the
length in bytes of the fragnent’s data. The bool ean value is the

hi ghest-order bit of the header; the length is the 31 | ow order bits.
(Note that this record specification is NOT in XDR standard form)

11. THE RPC LANGUAGE

Just as there was a need to describe the XDR data-types in a fornal
| anguage, there is also need to describe the procedures that operate

on these XDR data-types in a formal |anguage as well. The RPC
Language is an extension to the XDR | anguage, with the addition of
"program', "procedure", and "version" declarations. The follow ng

exanple is used to describe the essence of the |anguage.
11.1 An Exanpl e Service Described in the RPC Language
Here is an exanple of the specification of a sinple ping program

program Pl NG_PROG {
/*
* Latest and greatest version
*/
ver si on Pl NG_VERS_PI NGBACK {
voi d
Pl NGPROC_NULL(voi d) = 0;

Sri ni vasan St andar ds Track [Page 13]

RFC 1831 Renot e Procedure Call Protocol Version 2 August 1995

11.

/*
* Ping the client, return the round-trip tinme
* (in microseconds). Returns -1 if the operation
* tinmed out.
*/
i nt
Pl NGPROC_PI NGBACK(voi d) = 1;
} =2
/*
* Original version
*/
version PING_VERS ORI G {
voi d
Pl NGPROC_NULL(voi d) = 0;
}o= L
} =L
const PI NG VERS = 2; /* latest version */

The first version described is PING VERS Pl NGBACK with two
procedures, PINGPROC NULL and PI NGPROC PI NGBACK. PI NGPROC _NULL takes
no argunents and returns no results, but it is useful for conputing
round-trip times fromthe client to the server and back again. By
convention, procedure 0 of any RPC protocol should have the sane
semanti cs, and never require any kind of authentication. The second
procedure is used for the client to have the server do a reverse ping
operation back to the client, and it returns the amount of tinme (in
nm croseconds) that the operation used. The next version,

PING VERS ORIG is the original version of the protocol and it does
not contain Pl NGPROC_PlI NGBACK procedure. It is useful for
conpatibility with old client programs, and as this program matures
it may be dropped fromthe protocol entirely.

2 The RPC Language Specification

The RPC | anguage is identical to the XDR | anguage defined in RFC
1014, except for the added definition of a "programdef" described
bel ow.

program def :
"program’ identifier "{"
ver si on- def
ver si on-def *
"}" "=" constant ";"

ver si on-def:
"version" identifier "{"

Srini vasan St andards Track [Page 14]

RFC 1831 Renot e Procedure Call Protocol Version 2 August 1995

pr ocedur e- def
procedur e- def *

"}" "=" constant ";

pr ocedur e- def :
type-specifier identifier "(" type-specifier
("," type-specifier)* ")" "=" constant ";"

11. 3 Syntax Notes

(1) The follow ng keywords are added and cannot be used as
identifiers: "program and "version";

(2) A version nanme cannot occur nore than once within the scope of a
programdefinition. Nor can a version nunber occur nore than once
within the scope of a programdefinition

(3) A procedure nane cannot occur nore than once within the scope of
a version definition. Nor can a procedure nunber occur nore than once
within the scope of version definition

(4) Programidentifiers are in the sane nane space as constant and
type identifiers.

(5) Only unsigned constants can be assigned to prograns, versions and
pr ocedur es.

Sri ni vasan St andar ds Track [Page 15]

RFC 1831 Renot e Procedure Call Protocol Version 2 August 1995

APPENDI X A: SYSTEM AUTHENTI CATI ON

The client may wish to identify itself, for exanple, as it is
identified on a UNl X(tm) system The flavor of the client credential
is "AUTH _SYS'. The opaque data constituting the credential encodes
the followi ng structure

struct authsys_parns {
unsi gned int stanp;
string machi nenane<255>
unsi gned int uid;
unsi gned int gid;
unsi gned int gids<16>;

H

The "stamp" is an arbitrary I D which the caller machi ne may generate.
The "machi nenanme” is the nane of the caller’s machine (like
"krypton"). The "uid" is the caller’'s effective user ID. The "gid"
is the caller’s effective group ID. The "gids" is a counted array of
groups which contain the caller as a nenber. The verifier
acconpanyi ng the credential should have "AUTH NONE" flavor val ue
(defined above). Note this credential is only unique within a
particul ar domai n of machi ne nanes, uids, and gids.

The flavor value of the verifier received in the reply nmessage from
the server may be "AUTH NONE' or "AUTH SHORT". |In the case of

"AUTH SHORT", the bytes of the reply verifier’'s string encode an
opaque structure. This new opaque structure may now be passed to the
server instead of the original "AUTH SYS" flavor credential. The
server may keep a cache which maps shorthand opaque structures
(passed back by way of an "AUTH SHORT" style reply verifier) to the
original credentials of the caller. The caller can save network
bandwi dth and server cpu cycles by using the shorthand credenti al .

The server may flush the shorthand opaque structure at any tinme. |If
this happens, the renpte procedure call nmessage will be rejected due
to an authentication error. The reason for the failure will be

"AUTH _REJECTEDCRED'. At this point, the client may wish to try the
original "AUTH SYS' style of credential.

It should be noted that use of this flavor of authentication does not
guarantee any security for the users or providers of a service, in
itself. The authentication provided by this scheme can be consi dered
legitinmate only when applications using this schenme and the network
can be secured externally, and privileged transport addresses are
used for the communi cating end-points (an exanple of this is the use
of privileged TCP/UDP ports in Unix systems - note that not al
systens enforce privileged transport address nechani sns).

Sri ni vasan St andar ds Track [Page 16]

RFC 1831 Renot e Procedure Call Protocol Version 2 August 1995

REFERENCES

[1] Birrell, A D. & Nelson, B. J., "lInplenenting Renpte Procedure
Cal I s", XEROX CSL-83-7, Cctober 1983.

[2] Cheriton, D., "VMIP:. Versatile Message Transaction Protocol ",
Prelimnary Version 0.3, Stanford University, January 1987.

[3] Diffie & Hellman, "New Directions in Cryptography", |EEE
Transactions on Information Theory |T-22, Novenber 1976.

[4] MIls, D, "Network Tinme Protocol", RFC 1305, UDEL,
March 1992.

[5] National Bureau of Standards, "Data Encryption Standard”,
Federal Information Processing Standards Publication 46, January
1977.

[6] Postel, J., "Transm ssion Control Protocol - DARPA Internet
Program Protocol Specification", STD 7, RFC 793, USC I nformation
Sci ences Institute, Septenber 1981.

[7] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
USC/ | nformati on Sciences Institute, August 1980.

[8] Reynolds, J., and Postel, J., "Assigned Nunbers", STD 2,
RFC 1700, USC/ Information Sciences |Institute, Cctober 1994.

[9] Srinivasan, R, "XDR External Data Representation Standard",
RFC 1832, Sun M crosystens, Inc., August 1995.

[10] MIler, S., Neuman, C., Schiller, J., and J. Saltzer, "Section
E.2.1: Kerberos Authentication and Authorization Systent,
MI.T. Project Athena, Canbridge, Massachusetts, Decenber 21,
1987.

[11] Steiner, J., Neuman, C., and J. Schiller, "Kerberos: An
Aut hentication Service for Open Network Systems", pp. 191-202 in
Useni x Conference Proceedi ngs, Dallas, Texas, February 1988.

[12] Kohl, J. and C. Neuman, "The Kerberos Network Authentication

Service (V5)", RFC 1510, Digital Equi pment Corporation,
USC/ I nformation Sciences Institute, Septenber 1993.

Srini vasan St andards Track [Page 17]

RFC 1831 Renot e Procedure Call Protocol Version 2 August 1995

Security Considerations
Security issues are not discussed in this neno.
Aut hor’ s Address

Raj Srinivasan

Sun M crosystens, |nc.
ONC Technol ogi es

2550 Garcia Avenue

M S MIV-5-40

Mountain View, CA 94043
USA

Phone: 415-336-2478

Fax: 415- 336- 6015
EMai | : raj @ng. sun.com

Sri ni vasan St andar ds Track [Page 18]

