Net wor k Wor ki ng Group 4691

RFC- 5 Jeff Rulifso
n
June 2, 1969
DEL
: DEL, 02/06/69 1010: 58 JFR : .DSN=1; .LSP=0; ['=] AND NOT SP ; ['7?];

dual transm ssion?
ABSTRACT

The Decode- Encode Language (DEL) is a machi ne i ndependent | anguage
tailored to two specific conmputer network tasks:

accepting input codes frominteractive consoles, giving i mediate
f eedback, and packing the resulting information into nessage
packets for network transm ssin.

and accepting nessage packets from anot her conputer, unpacking
them building trees of display information, and sendi ng ot her
information to the user at his interactive station

This is a working docunent for the evolution of the DEL | anguage.
Conmment s shoul d be nmade through Jeff Rulifson at SRI.

FORWARD

The initial ARPA network working group net at SRl on Cctober 25-26,
1968.

It was generally agreed beforehand that the runmming of interactive
prograns across the network was the first problemthat woul d be
faced.

This group, already in agreenent about the underlaying notions of
a DEL-I1i ke approach, set down some terni nol ogy, expectations for
DEL progranms, and |lists of proposed semantic capability.

At the neeting were Andrews, Baray, Carr, Crocker, Rulifson, and
St ought on

A second round of neetings was then held in a piecenmeal way.

Crocker neet with Rulifson at SRI on Novenber 18, 1968. This
resulted in the incorporation of formal co-routines.

and Stoughton neet with Rulifson at SRI on Decenbeer 12, 1968. It
was decided to neet again, as a group, probably at UTAH in late
January 1969.

The first public release of this paper was at the BBN NET neeting in
Canbri dge on February 13, 1969.

NET STANDARD TRANSLATORS

NST The NST library is the set of prograns necessary to mesh
efficiently with the code conpiled at the user sites fromthe DEL
prograns it receives. The NST-DEL approach to NET interactive system
conmuni cation is intended to operate over a broad spectrum

The |l owest | evel of NST-DEL usage is direct transmi ssion to the
server-host, infornmation in the same format that user prograns
woul d receive at the user-host.

In this node, the NST defaults to inaction. The DEL program
does not receive universal hardware representation input but
input in the normal fashion for the user-host.

And the DEL 1 program becones nerely a nessage buil der and
sender.

A nore internmedi ate use of NST-DEL is to have echo tables for a
TTY at the user-host.

In this nmode, the DEL programwould run a full duplex TTY for
t he user.

It would echo characters, translate themto the character set
of the server-host, pack the translated characters in nessages,
and on appropriate break characters send the nessages.

When nmessages come fromthe server-host, the DEL program woul d
translate themto the user-host character set and print themon
his TTY.

A nore anbitious task for DEL is the operation of |arge,
di spl ay-oriented systens fromrenote consol es over the NET.

Large interactive systens usually offer a |l ot of feedback to
the user. The unusual nature of the feedback make it

i mpossible to nodel with echo table, and thus a user program
nmust be activated in a TSS each tinme a button state is changed.

This puts an unnecessarily large load on a TSS, and if the
systemis being run through the NET it could easily |load two
syst ens.

To avoid this double overloading of TSS, a DEL program wi ||
run on the user-host. It will handle all the i mediate
feedback, much like a conplicated echo table. At appropriate
button pushes, nmessage will be sent to the server-host and

di spl ay updates received in return

One of the nore difficult, and often neglected, problens is the
effective simul ati on of one nonstandard consol e on anot her non-
st andard consol e.

W attenpt to offer a means of solving this problemthrough
the co-routine structure of DEL progranms. For the
conplicated interactive systens, part of the DEL prograns
wi Il be constructed by the server-host programmers.
Interfaces between this program and the input stream may
easily be inserted by programers at the user-host site.

UNI VERSAL HARDWARE REPRESENTATI ON

To minimze the nunber of translators needed to map any facility’'s
user codes to any other facility, there is a universal hardware
representation.

This is sinply a way of talking, in general ternms, about all the
hardware devices at all the interactive display stations in the initia
net wor k.

For exanmple, a display is thought of as being a square, the

nm d- poi nt has coordinates (0.0), the range is -1 to 1 on both
axes. A point may now be specified to any accuracy, regardless of
the particular nunber of density of rastor points on a display.

The representation is discussed in the semantic expl anations
acconpanyi ng the fornmal description of DEL.

| NTRODUCTI ON TO THE NETWORK STANDARD TRANSLATOR (NST)

Suppose that a user at a renpte site, say Utah, is entered in the
AH system and wants to run NLS

The first step is to enter NLS in the normal way. At that tine
the Utah systemw ||l request a synbolic program from NLS.

REP This programis witten in DEL. It is called the NLS
Renot e Encode Program (REP).

The program accepts input in the Universal Hardware
Representation and translates it to a formusable by NLS.

It may pack characters in a buffer, also do sone |ocal
f eedback.

Wien the programis first received at Uah it is conpiled and
| oaded to be run in conjunction with a standard library.

Al input fromthe U ah console first goes to the NLS NEP. It is
processed, parsed, blocked, translated, etc. Wen NEP receives a
character appropriate to its state it may finally initiate
transfers to the 940. The bits transferred are in a form
acceptable to the 940, and maybe in a standard formso that the
NLSW need not differentiate between Utah and ot her NET users.

ADVANTAGES OF NST

After each node has inplenented the library part of the NST, it
need only wite one program for each subsystem nanely the
synbolic file it sends to each user that maps the NET hardware
representation into its own special bit formats.

This is the mni num progranmr ng that can be expected if
console is used to its fullest extent.

Since the NST which runs the encode translation is coded at the
user site, it can take advantage of hardware at its consoles to
the fullest extent. It can also add or renove hardware
features without requiring new or different translation tables
fromthe host.

Local users are also kept up to date on any changes in the system
offered at the host site. As new features are added,

the host progranmers change the synbolic encode program Wen
this new programis conpiled and used at the user site, the new
features are automatically included.

The advant ages of having the encode transl ation prograns
transferred synbolically should be obvious.

Each site can translate any way it sees fit. Thus nachi ne code
for each site can be produced to fit that site; faster run
times and greater code density will be the result.

Mor eover, extra symbolic progranms, coded at the user site, may

be easily interfaced between the user’s nonitor system and the
DEL program from the host machine. This should ease the
probl em of consol e extension (e.g. accommodati ng unusual keys and
buttons) without |oss of the flexibility needed for man-nmachine

i nteraction.

It is expected that when there is matching hardware, the synbolic
programs will take this into account and avoi d any unnecessary
computing. This is imediately possible through the code

transl ation constructs of DEL. It may soneday be possible through
program conposition (when Crocker tells us how??)

AH NLS - USER CONSOLE COMMUNI CATI ON - AN EXAMPLE
BLOCK DI AGRAM

The right side of the picture represents functions done at the
user's main conputer; the left side represents those done at the
host computer.

Each |l abel in the picture corresponds to a statenment with the
same nane.

There are four trails associated with this picture. The first
links (in a forward direction) the | abels which are concerned
only with network information. The second |inks the total
information flow (again in a forward direction). The last two
are equivalent to the first two but in a backward direction
They nay be set with pointers t1 through t4 respectively.

[">tif:] ORI"™ >nif"]; ["<tif:] OR["<nif"];
USER- TO- HOST TRANSM SSI ON

Keyboard is the set of input devices at the user’s console.

Input bits fromstations, after drifting through | evels of nonitor
and interrupt handlers, eventually come to the encode transl ator.
[>ni f (encode)]

Encode maps the semi-raw input bits into an input streamin a
formsuited to the serving-host subsystemwhich will process the
input. [>nif(hrt)<nif(keyboard)]

The Encode program was supplied by the server-host subsystem
when the subsystemwas first requested. It is sent to the user
machine in synbolic formand is conpiled at the user machi ne
into code particularly suited to that nachine.

It may pack to break characters, map nmultiple characters to
singl e characters and vice versa, do character translation, and
gi ve i medi ate feedback to the user

1 dm | medi at e feedback fromthe encode translator first goes to
| ocal display nmanagenent, where it is mapped fromthe NET standard
to the local display hardware.

A wi de range of echo output nay cone fromthe encode
translator. Sinple character echoes would be a nmininmm while
command and nachi ne-state feedback will be comon.

It is reasonable to expect control and feedback functions not
even done at the server-host user stations to be done in |ocal

di splay control. For exanple, people wth high-speed displays
may want to selectively clear curves on a Culler display, a
function which is inpossible on a storage tube.

Qut put fromthe encode translator for the server-host goes to the
invisible IMP, is broken into appropriate sizes and | abel ed by the
encode translator, and then goes to the NET-to-host transl ator.

Qutput fromthe user may be nore than on-line input. It may be
larger itens such as conputer-generated data, or files
generated and used exclusively at the server-host site but
stored at the user-host site.

Information of this kind may avoid translation, if it is already in
server-host format, or it may undergo yet another kind of translation
if it is a block of data.

hrp It finally gets to the host, and nmust then go through the

host reception program This maps and reorders the standard
transni ssion-styl e packets of bits sent by the encode prograns
into nmessages acceptable to the host. This programmy well be
part of the nonitor of the host machine. [>tif(net npde)<nif(code)]

HOST- TO- USER TRANSM SSI ON

decode Qutput fromthe server-host initially goes through decode,
a translation nmap simlar to, and perhaps nore conplicated than,
the encode map. [>nif(urt)>tif(inp ctrl)<tif(net node)]

This nap at least formats display output into a sinplified
| ogical -entity output stream of which nmeaningful pieces may be
dealt with in various ways at the user site.

The Decode programwas sent to the host machine at the sane
time that the Encode programwas sent to the user nachine.
The programis initially in synbolic formand is conpil ed
for efficient running at the host machi ne.

Li nes of charaters should be logically identified so that
different Iine widths can be handl ed at the user site.

Sone formof logical line identification nust also be made.
For exanple, if a straight line is to be drawn across the
display this fact should be transnitted, rather than a
series of 500 short vectors.

As things firmup, nore and nore conplicated structura

di splay information (in the manner of LEAP) shoul d be sent
and acconmodated at user sites so that the responsibility for
real -tinme display mani pul ation may shift closer to the user.

inmp ctrl The server-host may al so want to send contro
information to IMPs. Fornmatting of this information is done by
the host decoder. [>tif(urt) <tif(decode)]

The other control information supplied by the host decoder is
nmessage break up and identification so that proper assenbly and
sorting can be done at the user site.

From the host decoder, infornmation does to the invisible I MP, and
directly to the NET-to-user translator. The only operation done
on the nessages is that they nmay be shuffl ed.

urt The user reception translator accepts nmessages fromthe

user-site IMP 1 and fixes themup for user-site display.
[>nif(d ctrl)>tif(prgmctrl)<tif(inp ctrl)<nif(decode)]

The minimal action is a reordering of the nmessage pieces.

dctrl For di splay output, however, nore needs to be done. The
NET | ogical display information nust be put in the format of

the user site. Display control does this job. Since it
coordi nat es between (encode) and (decode) it is able to offer
features of display nanagenent | ocal to the user site.
[>nif(display)<nif(urt)]

prgnctrl Anot her action may be the selective translation and
routing of information to particular user-site subsystens.
[>tif(dctrl)<tif(urt)]
For exampl e, blocks of floating-point information rmay be
converted to user-style words and sent, in block form to a
subsystem for processing or storage.
The styles and translation of this information may well be a
conpact binary format suitable for quick translation, rather
than a print-inmage-oriented format.

(di spl ay) is the output to the user. [<nif(d ctrl)]

USER- TO- HOST | NDI RECT TRANSM SSI ON
(net node) This is the node where a renote user can link to a node
indirectly through another node. [<ni f (decode)<tif(hrt)]
DEL SYNTAX
NOTES FOR NLS USERS

Al'l statenents in this branch which are not part of the conpiler
must end with a peri od.

To conpile the DEL conpiler

Set this pattern for the content analyzer ((synbol for up arrow) Pl
SE(P1) <-"-;). The pointer "del" is on the first character of patte

rn.
Jump to the first statement of the conpiler. The pointer "c"
is on this statenent.
And output the conpiler to file ('/A-DEL’). The pointer "f"
is on the nane of the file for the conpiler output -
PROGRAMS

SYNTAX
-neta file (k=100.n=300, n=20, s=900)
file = nesdecl $decl aration $procedure "FI Nl SH';
procedure =

procnane (

(

type "FUNCTI ON' /
"PROCEDURE") .id (type .id / -enpty)) /
"CO ROUTINE") ' [/
$decl aration | abel edst $(labeledst ;) "endp."
| abel edst = ((left arrow synbol).id ': / .enpty) statenent;
type = "I NTEGER' / "REAL"
procname = .id;

Functions are differentiated from procedures to aid conpilers in
better code production and run tinme checks.

Functions return val ues.
Procedures do not return val ues.

Co-routines do not have names or argunents. Their initial
envocation points are given the pipe declaration.

It is not clear just how gl obal declarations are to be??
DECLARATI ONS
SYNTAX

decl arati on = nunbertype / structuredtype / |abel / |cl2uhr /
uhr2rm / pipetype;

nunbertype = : ("REAL" / "INTEGER') (" CONSTANT" conlist /
varlist);
conlist =

.id " (left arrow synbol)const ant

$('. .id '(left arrow synbol)constant);
varlist =

.id (" (left arrow synbol)constant / .enpty)

$('. .id(’(left arrow synbol)constant / .enpty));
idlist = .id $('. .id);
structuredtype = (tree" / "pointer"” / "buffer") idlist;
| abel = "LABEL1" idlist;

pi petype = PIPE" pairedids $(', pairedids);

pairedids = .id .id;
procnanme = .id;
i ntegerv = .id;

i d;

pi penane

| abelv = .id;

Vari abl es which are declared to be constant, may be put in
read-only nenory at run tinme.

The | abel declaration is to declare cells which may contain the
machi ne addresses of labels in the programas their values. This
is not the B5500 | abel declaration.

In the pipe declaration the first .ID of each pair is the nanme of
the pipe, the second is thke initial starting point for the pipe.

ARI THVETI C

SYNTAX

exp "I F* conjunct "THEN' exp "ELSE" exp;
sum = term (
"+ sum/
- sum/
-enpty);
term= factor (
"* term/
"/ term/
"(up arrow synbol) term/
.enpty);
factor = '- factor / bitop;
bitop = conplinent (
"/’ bitop /
"/'\ bitop /
"& bitop / (
.enpty);
compliment = "--" primary / prinmary;
(symbol for up arrow) means nod. and /\ neans exclusive or.

Notice that the uniary mnus is allowable, and parsed so you can
wite x*-vy.

Since there is no standard convention with bitw se operators, they
all have the sanme precedence, and parentheses nust be used for

gr oupi ng.
Conpliment is the |I’'s conplinent.

It is assuned that all arithmetic and bit operations take place in
the node and style of the machine running the code. Anyone who

t akes advantage of word lengths, twod’'s conplinent arithnmetic, etc.
will eventually have problens.

PRI MARY
SYNTAX
primary =
constant /
builtin/
variable / (
bl ock /
" exp T);
variable = .id (
"(synbol for left arrow) exp /
"(block ") [/
.enpty);
constant = integer / real / string;
builtin =
mesinfo /
cortnin /
("MN" / "MAX") exp $('. exp) '/ ;

par ent hesi zed expressions may be a series of expressions. The
value of a series is the value of the last one executed at run timne.

Subroutines may have one call by nanme argunent.

Expressions may be nixed. Strings are a big problen? Rulifson
al so wants to get rid of real nunbers!

CONJUNCTI VE EXPRESSI ON
SYNTAX

conjunct = disjunct ("AND' conjunct / .enpty);

di sjunct = negation ("OR' negation / .enpty);

"NOT" relation / relation

negati on

relation

"(conjunct ") /

sum (
m <=Il Sum /
m >=Il Sum /

"< sum/

"> sum /

= sum/

sum /

.enpty);
The conjunct construct is rigged in such a way that a conjunct
which is not a sum need not have a value, and may be eval uat ed
using junps in the code. Reference to the conjunct is nade only

in places where a |ogical decision is called for (e.g. if and
whil e statenents).

We hope that nost conpilers will be smart enough to skip
unnecessary evaluations at run tinme. 1l.e a conjunct in which the
left part is false or a disjunct with the left part true need not
have the corresponding right part eval uated.

ARI THVETI C EXPRESSI ON

SYNTAX
statenent = conditional / unconditional;

unconditional = loopst / cases / cibtrikst / uist / treest /
block / null [/ exp

conditional = "IF" conjunct "THEN' unconditional (
"ELSE" conditional /
.enpty);

bl ock = "begin" exp $('; exp) "end";

An expressions may be a statement. |In conditional statenents the
el se part is optional while in expressions it is mandatory. This
is a side effect of the way the left part of the syntax rules are
or der ed.

SEM - TREE MANI PULATI ON AND TESTI NG

SYNTAX

treest = setpntr / insertpntr / del etepntr;

setpntr "set" "pointer" pntrname "to" pntrexp;
pntrexp = direction pntrexp / pntrnaneg;
insertpntr = "insert" pntrexp "as"

(("left" [/ "right") "brother") /

(("first"™ / "last:) "daughter") "of" pntrexp
direction =

"up" /
"down" /

"forward" /

"backward: /

"head" /

"tail";
pl antree = "replace" pntrnane "with" pntrexp
del etepntr = "del ete: pntrnane;
tree = " (treel ') ;

treel = nodenane $nodenane

nodenane = termnal / ' (treel ’);

terminal = treenane / buffernane / point ernaneg;
treename = id;
treedecl = "pointer” .id / "tree" .id;

Extra parentheses in tree building results in linear subcategorization,
just as in LISP

FLOW AND CONTRCL
control st = gost / subst / |oopstr / casest;
GO TO STATEMENTS
gost = "GO "TO' (labelv / .id);
assignl abel = "ASSIGN' .id "TO' |abelv;
SUBROUTI NES
subst = callst / returnst / cortnout;
call st = "CALL" prochane (exp / .enptyu);

"RETURN' (exp / .enpty);

returnst
cortnout = "STUFF" exp "IN' pipenane;
cortnin = "FETCH' pi penane;

FETCH is a builtin function whose value is conputed by envoki ng
the nanmed co-routi ne.

LOOP STATEMENTS
SYNTAX

| oopst = whilest / untilst / forst;

whil est = "WH LE" conjunct "DO' statenent;
untilst = "UNTIL" conjunct "DQO' statenent;
forst = "FOR' integerv '- exp ("BY" exp / .enpty) "TO' exp

"DJ' statenents;

The value of while and until statenments is defined to be fal se

and true (or O and non-zero) respectively.

For statenents evaluate their initial exp, by part, and to part
once, at initialization time. The running index of for
statements is not available for change within the loop, it may

only be read. If, some conpilers can take advantage of this
(say put it in a register) all the better. The increnent and
the to bound will both be rounded to integers during the

initialization.

CASE STATEMENTS

SYNTAX
casest = ithcasest / condcasest;
ithcasest = "| THCASE" exp "OF" "BEA N' statement $(’;

statenent) "END';

condcasest = "CASE' exp "OF" "BEG N' condcs $('; condcs)
"OTHERW SE" st atenent "END';

condcs = conj unct st at enent ;

The val ue of a case statement is the value of the |ast case executed.
EXTRA STATEMENTS

nul I = "NULL";
| / O STATEMENTS

i ost = nmessagest / dspyst ;

MESSAGES

SYNTAX

nmessagest = buil dnmes / denmand;

buil dmest = startnes / appendnes / sendnes;

startnmes = "start" "nessage",
appendnes = "append" "nmessage" "byute" exp;
sendnmes = "send" "nessage";
demandnes = "demand" "Message"
mesinfo =
"get" "nessage" "byte"
"messagel” "length" /

"message" enmpty: ' ?;
nmesdecl = "nessage" "bytes" "are" ,byn "bits" |ong"
DI SPLAY BUFFERS

SYNTAX

dspyst = startbuffer / bufappend / estab;
startbuffer - "start" "buffer"”;
buf append = "append" bufstuff $(’' & bufstuff);
buf stuff = :
"paraneters" dspyparm $(’. dspyparn) /
"character" exp /

"string"l strilng /

"vector" ("fronml exp ':exp / .enpty) "to" exp exp /

"position" (onoff / .enpty) "beam® "to" exp '= exp/

curve" ;

dspyparm F :
"intensity" "to" exp /
"character" "width" "to" exp /

"bli nk" onoff /
"italics" onff;
onoff = "on" / "off";

"establ i sh" buffernane;

estab
LOG CAL SCREEN

The screen is taken to be a square. The coordi nates are
normalized from-1 to +1 on both axes.

Associated with the screen is a position register, called
PREG. The register is a triple <x.y.r> where x and y
specify a point on the screen and r is a rotation in

radi ans, counter clockw se, fromthe x-axis.

The intensity, called INTENSITY, is a real nunber in the
range fromO to 1. O is black, 1 is as |light as your

di splay can go, and nunbers in between specify the relative
log of the intensity difference.

Character frame size.
Blink bit.

BUFFER BUI LDI NG
The term nal nodes of seni-trees are either seni-tree nanes
or display buffers. A display buffer is a series of |ogical
entities, called bufstuff.
When the buffer is initilized, it is enpty. If no
paraneters are initially appended, those in effect at the

end of the display of the last node in the senmi-tree will be in
effect for the display of this node.

As the buffer is built, the logical entities are added to it.
When it is established as a buffernane, the buffer is
cl osed, and further appends are prohibited. It is only a
buf f ernane has been established that it nmay be used in a tree
bui I di ng st atenent.
LOd CAL | NPUT DEVI CES
Wand
Joy Stick
Keyboard
But t ons
Li ght Pens
M ce
AUDI O QUTPUT DEVI CES

. end

SAMPLE PROGRAMS
Programto run display and keyboard as tty.
to run NLS
i nput part
di spl ay part
DEMAND MESSAGE;
Whil e LENGTH " O DO
| THCASE GETBYTE OF Begin
| THCASE GETBYTE OF % il e area ui pdate% BEG N
%iteral area%
%ressage area%
Y%ame ar ea%
%ug%
%sequence specs%
%ilter specs%
% ormat specs%
%command feedback |ine%
%iler area%
Yglate ti me%

%echo register%

BEGA N “DEL control %
DI STRI BUTI ON LI ST

Steve Carr
Depart ment of Conmputer Science
Uni versity of Utah
Salt Lake City, Utah 84112
Phone 801-322-7211 X8224

St eve Crocker

Boel ter Hall

University of California
Los Angeles, California
Phone 213-825-4864

Jeff Rulifson

Stanford Research Institute
333 Ravenswood

Menl o Park, California 94035
Phone 415-326-6200 X4116

Ron St ought on

Conput er Research Laboratory
University of California

Santa Barbara, California 93106
Phone 805-961- 3221

Mehmet Bar ay

Corey Hall

University of California
Berkel ey, California 94720
Phone 415-843-2621

