Loader Debugger Protocol

RFC- 909

Chri stopher Welles

BBN Conmmuni cati ons Corporation

VWalter MIIiken

BBN Laboratori es

July 1984
Status of This Meno
This RFC specifies a proposed protocol for the ARPA I|nternet

comuni ty, and requests discussion and suggestions for
i nprovenents. Distribution of this meno is unlimted.

PN R e e
N -

NN

W0 W W w
ORrrRWNEF

BRABBRAS

WWWNN -

aoaanoaoo
O~NOOUITA~WN -

COOOOO O
OO WNE

Tabl e of Contents

Introducti on. e 1
Purpose of This Document.............. 1
Summary of Features........... 2

General DesCription........ ..., 3
Motivati ONn. 3
Relation to Gther Protocols............ 4

.1 Transport Service Requirements.................... 5
Protocol Operation.......... 9
OV VI BW. . ot o 9
Session Management 9
Command SeqUeNnCIi Ng.t 10
Data Packing and Transmission...................... 10
Inplementati ons. ... 12
Commands and FOormats. 15
Packet Format.......... i, 15
Command Format........... i 16
.1 Command Header.......... 16

AdAr €SSi NG. . . oot 19
.1 Long Address Format.............. ... 20
.2 Short Address Format............., 25

Protocol Commands. 29
HELLO CommBnd. e e et et et e 29
HELLO REPLY. . .. e 29
SYNCH Command. e 33
SYNCH REPLY. . .o 34
ABORT Command.ttt e e 35
ABORT_DONE Reply. ... e 35
ERROR Reply. ... 36
ERRACK Acknowl edgement............... 39

Data Transfer Commands.................iuiiiiinnun... 41
VWRITE Command.t e e e 42
READ Command. e e 43
READ DATA ReSpONSe. e e 45
READ DONE Reply. ... e 47
MOVE Command.t e 48
MOVE_DATA ReSPONSE.ot 50

oo
© o~

NNNNNNNSAN
~NoUuAWNR

©© 0000 m 00000000 m 000 MmO 00®

10

10.
10.
10.
10.

11

11.
11.
11.
11.
11.

O©CO~NOUIAWNPE

1

b wWwN -

b wWwN -

MOVE_DONE Reply. ... e 52

REPEAT _DAT A. . o e 53
VWRI TE_MASK Conmand (Optional)...................... 54
Control Commands., 59
START Conmrand. e e e 59
STOP Command.t e e e 61
CONTINUE Command. et 62
STEP Command. 62
REPORT Command., 63
STATUS Reply. ..o e 64
EXCEPTION Trap. .. oot e e e e e 66
Management COMMANAS.ttt e 69
CREATE Command. 69
CREATE_DONE Reply. ... 74
DELETE Command. i e e 75
DELETE_DONE Reply. 76
LI ST_ADDRESSES Command., 76
ADDRESS LIST Reply. 77
LI ST_BREAKPO NTS Conmmand.c.. ... 79
BREAKPO NT_LIST Reply. ... 80
LI ST_PROCESSES Command.ciiuiinn.n. 82
PROCESS LIST Reply. ...« 83

LI ST_NAMES Command.ttt e 84
NAME LI ST Reply. ... e 85
GET_PHYS_ADDR Command.uiiiinnnn. 87
GOT_PHYS_ADDR Reply. ... 88
GET_OBJECT Command.ot 90
GOT_OBJECT Reply. ..o 91
Breakpoints and Watchpoints............... 93
BREAKPO NT_DATA Command., 95
Conditional Conmands. 99
Condition Command Format......................... 100
COUNT ConditiONnS.ot 101
CHANGED Condition. 102
COVPARE Condition. 103
TEST Condition....... i, 105
Breakpoint Commands. 109
I NCREMENT Command. 109
INC_COUNT Command.oi e 110
OR CommBNd. e 111
SET_PTR Command. 112
SET_STATE Command. 113

Page ii

o O W >

Diagram Conventi OnsS.t 115

Command SUMMBIY.o e 117
Commands, Responses and Replies..................... 121
G 0SSarY. o ot 123

Page iii

O©CO~NOUITAWNPE

FlI GURES

Relation to Gher Protocols........... 4
Form of Data Exchange Between Layers................... 6
Packing of 16-bit Words. 11
Packi ng of 20-bit Words. i, 12
Network Packet Format.............. 15
LDP Command Header Format................, 16
Conmand C aSSeS. ... v it 17
Command TYPES. . . ot 18
Long Address FOormat. 20
Long Address Modes.t 21
Short Address Format.............. ... 26
Short Address Modes. 27
HELLO Command FOrmBt. 29
HELLO REPLY Format. 30
SysStem TyPesS. . .. 31
Target Address Codes...........ciiiiinann. 31
Feature Level s. e 32
OOt ONS. o 33
SYNCH Command Format. @i, 33
SYNCH REPLY Format. 34
ABORT Command Format............ i 35
ABORT_DONE Reply Format.............. ... 36
ERROR Reply Format....... 37
ERROR Codes. .. .ttt e e e e e 38
ERRACK Command Format............. 40
WRI TE Conmand Format. 42
READ Command Format. 44
DATA Response Format............. ..., 46
READ DONE Reply Format......... 47
MOVE Command Format. 49
MOVE_DATA Response Format............. 51
MOVE_DONE Reply Format............ ..., 52
REPEAT_DATA Command Format................. 54
WRITE_ MASK Format e 56
START Command Format. 60
STOP Command Format. 61
CONTINUE Command Format............ ... 62
STEP Command Format............. 63
REPORT Command Format............. 64
STATUS Reply Format. 65
EXCEPTION Format e e e e 66
CREATE Conmand Format........... 70

Page iv

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

Create TYPeS. . 71
CREATE BREAKPOI NT Format.............ouuiininnnn... 71
CREATE MEMORY_OBJECT Format...............cuuiin .. 73
CREATE_DONE Reply Format.............. ... 74
DELETE Command Format............ 75
DELETE_DONE Reply Format......... 76
LI ST_ADDRESSES Conmand Format........................ 77
ADDRESS LIST Reply Format........... 78
LI ST_BREAKPO NTS Conmand Format...................... 80
BREAKPO NT_LIST Reply Format............... 81
LI ST_PROCESSES Conmand Format........................ 82
PROCESS LIST Reply Format..............., 84
LI ST_NAMES Conmmand Format............................ 85
NAVE LIST Reply Format.......... 86
GET_PHYS _ADDR Command Format......................... 88
GOT_PHYS_ADDR Reply Format........... 89
GET_OBJECT Command Format............................ 90
GOT_OBJECT Reply Format............. 91
Commands to Mani pul ate Breakpoints................... 93
Breakpoi nt Conditional Command Lists................. 95
BREAKPO NT_DATA Command Format....................... 96
Breakpoint Data StreamFormat........................ 97
Condi tional Conmand Summary...................ovuu.... 99
Condition Command Header............. 101
COUNT Condition Format............... ... 101
CHANGED Condition. 102
COVWPARE Condition......... ..., 104
TEST Condition. e 106
Breakpoi nt Command Summary. 109
I NCREMENT Command Format............................ 110
I NC_COUNT Command Format.............. 111
OR Conmand Format. 111
SET_PTR Command Format., 112
SET_STATE Conmand Format............... ..., 113
Sanple Diagram 115
Command SUMMBIY. e 118
Commands, Responses and Replies..................... 122

Page v

CHAPTER 1

| nt r oducti on

The Loader - Debugger Protocol (LDP) is an application |ayer

pr ot ocol for ||oading, dunping and debugging target machines
fromhosts in a network environment. This protocol is designed
to accompdate a variety of target cpu types. It provides a
powerful set of debugging services. At the sane tinme, it is

structured so that a sinple subset nmay be inplenmented in
applications like boot | oading where efficiency and space are
at a prenium

The authors would like to thank Dan Franklin and Peter
Cudhea for providing many of the ideas on which this protocol is
based.

1.1 Purpose of This Docunent

This is a technical specification for the LDP protocol. It
is intended to be conprehensive enough to be used by inplenentors
of the protocol. It contains detailed descriptions of the

formats and usage of over forty commands. Readers interested in
an overview of LDP should read the Sunmary of Features, bel ow,
and skim Sections 2 through 3.1. Al so see Appendix B, the
Command Sunmary. The remrmi nder of the docunment reads best when
acconpani ed by strong coffee or tea.

Page 1

RFC- 909 July 1984

1.2 Summary of Features
LDP has the followi ng features:
0 commands to performl oadi ng, dunping and debuggi ng
0 support for multiple connections to a single target
0 reliable performance in an internet environnent
0 a small protocol subset for target |oaders

0 addressing nodes and commands to support mul tiple
nmachi ne types

0 br eakpoi nts and wat chpoints which run in the target
machi ne.

Page 2

LDP Specification General Description

CHAPTER 2

General Description

2.1 NMbtivation

LDP is an application protocol that provides a set of
commands used by application progranms for |oading, dunping and
debuggi ng target machi nes across a networKk.

The goal s of this protocol are shown in the following |ist:

0 The protocol should support various processor types and
operating systens. Overhead and conplexity should be
nmninized for sinpler cases.

0 The protocol should provide support for applications in
which nore than one user can debug the sane target
machine. This inplies an underlying transport nechanism
that supports nultiple connections between a host-target
pair.

0 LDP shoul d have a m nimal subset of commands for boot
| oadi ng and dunping. Target machi ne inplenentations of
these applications are often restricted in the anmount of
code-space they my take. The services needed for
| oadi ng and dunping should be provided in a snall,
easily inplenented set of comands.

o0 There should be a neans for conmuni cati ng exceptions and
errors fromthe target LDP process to the host process.

0 LDP should allow the application to inplenent a full set
of debuggi ng functions w thout crippling the perfornmance
of the target’s application (i.e., PSN, PAD, gateway).
For exanple, a breakpoint nechanism that halts the
target nmachi ne whil e breakpoi nt commands are sent from
the host to the target is of linmited useful ness, since
the target will be wunable to service the real-tinme

Page 3

RFC- 909 July 1984

demands of its application.

2.2 Relation to Oher Protocols

LDP is an application protocol that fits into the |ayered
internet protocol environment. Figure 1 illustrates the place of
LDP in the protocol hierarchy.

o m e e e e e maoooo-o- +
LDP Application
T + Layer
I I
I I
I I
Fomm e oo + I +
| RDP | or | TCP | Transport Layer
Fomm e oo + I +
| or | I
I I I
I e +
| | Internet Protocol | I nt er net wor k
I e + Layer
I I
o m e e e e e maoooo-o- +
| Net wor k Access Protocol | Net wor k Layer
o m e e e e e maoooo-o- +

Rel ation to G her Protocols
Figure 1

Page 4

LDP Specification General Description

2.2.1 Transport Service Requirenents

LDP requires that the underlying transport |ayer:

0 al | ow connections to be opened by specifying a network
(or internet) address. Support passive and active
opens.

0 for each connection, specify the maxi num nessage si ze.

0 provi de a nechani smfor sending and receiving nmessages
over an open connection

0 deliver nessages reliably and in sequence

0 support multiple connections, and distinguish mnessages
associated wth different connections. This is only a
requi rement where LDP is expected to support severa
users at the same tine.

0 explictly return the outcome (success/failure) of each
request (open, send, receive), and provide a neans of
querying the status of a connection (unacknow edged
nessage count, etc.).

Data is passed fromthe application programto the LDP user
process in the formof commands. |In the case of an LDP server
process, command responses originate in LDP itself. Below LDP is
the transport protocol. The Reliable Data Protocol (RDP --

RFC 908) is the recommended transport procotol. Data is passed
across the LDP/RDP interface in the formof nessages. (TCP may
be used in place of RDP, but it will be less efficient and it
will require nore resources to inplenent.) An internet |ayer

(IP) normally conmes between RDP and the network [ayer, but RDP
may exchange data packets directly with the network | ayer.

Figure 2 shows the flow of data across the protocol
i nterfaces:

Page 5

RFC- 909 July 1984

Fo-m oo - +
|
| Appli -|
| cati on|
I I
Fo-m oo - +

N

Conmmands |

V
Fo-m oo - +
I I
| LDP |
I I
Fo-m oo - +
N
Messages |
V
F--- - - +
I I
| ROP |
I I
F--- - - +
N
Segnent s |
V
+----+
I I
| 1P|
I I
+----+
N
Dat agrans |
V
* I
$ = N +
*
> | nt er net
, ?
!)
* % $

Form of Data Exchange Between Layers
Fi gure 2

Page 6

LDP Specification General Description

Page 7

RFC- 909 July 1984

Page 8

LDP Specification Prot ocol Operation

CHAPTER 3

Prot ocol Qperation

3.1 Overview

An LDP session consists of an exchange of conmands and
responses between an LDP user process and an LDP server process.
Normal ly, the wuser process resides on a host nachine (a
ti mesharing conputer wused for network nonitoring and control),
and the server process resides on a target machine (PSN, PAD
gateway, etc.). Throughout this docunment, host and target are
used as synonyns for user process and server pr ocess,
respectively, although in sone inplenentations (the Butterfly,
for exanple) this correspondence may be reversed. The host
controls the session by sending cormands to the target. Some
commands elicit responses, and all commands nmay elicit an error

reply.

The protocol contains five classes of conmands: protocol,
data transfer, managenent, control and breakpoint. Protocol
commands are used to verify the command sequenci ng mechani sm and
to handl e erroneous commands. Data transfer conmands involve the
transfer of data fromone place to another, such as for nenory
exam ne/ deposit, or |oading. Managenent conmands are used for
creating and del eti ng obj ects (processes, br eakpoi nt s,
wat chpoints, etc.) in the target machine. Control commands are
used to control the execution of target code and breakpoints.
Br eakpoi nt commands are used to control the execution of conmmands
i nsi de breakpoi nts and wat chpoi nts.

3.2 Session Managenent

An LDP session consists of a series of commands sent from a
host LDP to a target LDP, sonme of which may be foll owed by
responses fromthe target. A session begins when a host opens a
transport connection to a target listening on a well known port.
LDP uses RDP port nunber zzz or TCP port nunber yyy. When the
connection has been established, the host sends a HELLO conmand,
and the target replies with a HELLO REPLY. The HELLO REPLY
contains paraneters that describe the target’s inplenentation of
LDP, including protocol version, inplenentation |level, system

Page 9

RFC- 909 July 1984

type, and address format. The session termninates when the host
cl oses the underlying transport connection. Wien the target
detects that the transport connection has been closed, it should
deal | ocate any resources dedicated to the session

The target process is the passive partner in an LDP session,
and it waits for the host process to ternminate the session. As
an i npl enentation consideration, either LDP or the under | yi ng

transport protocol in the target should have a nethod for
detecting if the host process has died. Q herwi se, an LDP
target that supported only one connection could be rendered
usel ess by a host that crashed in the middle of a session. The

problem of detecting half-dead connections can be avoided by
taking a different tack: the target could all ow new connections
to wusurp inactive connections. A connection with no activity
could be declared 'dead’, but would not be wusurped until the
connection resource was needed. However, this would still
require the transport layer to support two connection channels:
one to receive connection requests, and another to use for an
active connecti on.

3.3 Conmmand Sequenci ng

Each command sent fromthe host to the target has a sequence
nunber . The sequence nunber is used by the target to refer to
the cormand in normal replies and error replies. To save space,
these nunbers are not actually included in host conmands.
| nstead, each command sent fromthe host is assigned an inplicit
sequence nunber. The sequence nunber starts at zero at the
begi nning of the LDP session and increases by one for each
command sent. The host and target each keep track of the current
nunber. The SYNCH <sequence nunber> comand rmay be used by the
host to synchroni ze the sequence nunber.

3.4 Data Packing and Transm ssion

The convention for the order of data packing was chosen for
its sinplicity: data are packed nost significant bit first, in
order of increasing target address, into eight-bit octets. The
octets of packed data are transnitted in sequential order.

Page 10

LDP Specification Prot ocol Operation

Data are al ways packed according to the address format of

the target nachine. For exanple, in an LDP session between a
20-bit host and a 16-bit target, 16-bit words (packed into
octets) are transnmitted in both directions. For ease of
di scussion, targets are treated here as if they have wuniform
address spaces. |In practice, the size of address units may vary
within a target -- 16-bit nmacronmenory, 32-bit mcronenory, 10-bit
di spatch nmenory, etc. Dat a packi ng between host and target is

tailored to the units of the current target address space.

Fi gures showi ng the packing of data for targets with various
address unit sizes are given below. The order of transm ssion
with respect to the diagrans is top to bottom Bit nunbering in
the follow ng diagrans refers to significance in the octet: bit
zero is the least significant bit in an octet. For an
expl anation of the bit nunbering convention that applies in the
rest of this docunent, please see Appendix A

The packing of data for targets with word |lengths that are
mul tiples of 8 is straightforward. The follow ng diagram
illustrates 16-bit packing:

7 0
octet 0 | WORD O bits 15-08 |
otet 1| WORD O bits 07-00 |
octet 2 | WORD 1 bits 15-08 |
octet 3 | WORD 1 bits 07-00 |
cotet 2n-1| WORD n bits 07-00 |

Packi ng of 16-bit Words
Figure 3

Page 11

RFC- 909 July 1984

Packing for targets wth peculiar word | engt hs is nor e
conpl i cat ed. For 20-bit machines, 2 words of data are packed
into 5 octets. Wien an odd nunmber of 20-bit words are

transnitted, the partially used octet is included in the length
of the command, and the octet is padded to the right with zeroes.

7 0
octet 0 | WORD O bits 19-12 |
otet 1| WORD O bits 11-04 |
Cctet 2 | VIORD 0 03-00 | WORD 1 19-16 |
octet 3 | WORD 1 bits 15-08 |
octet 4 | WORD 1 bits 07-00 |

Packi ng of 20-bit Words
Figure 4

3.5 Inplenentations

A subset of LDP commands may be inplenented in targets where

machine resources are linmted and the full capabilities of LDP
are not needed. There are three basic levels of t ar get
i npl enent ati ons: LOADER_DUMPER, BASI C_DEBUGGER and

FULL_DEBUGGER. The target conmunicates its LDP inplenentation
level to the host during session initiation. The inplenmentation
| evel s are descri bed bel ow

Page 12

LDP Specification Prot ocol Operation

LCADER_DUMPER

Used for | oadi ng/ dunpi ng of t he t ar get nmachi ne.
I ncl udes all protocol class commands and replies; data
transfer conmands READ, WRITE, MOWE and their responses;
control conmand START and control reply EXCEPTI ON
Under st ands at | east PHYS MACRO and HOST addressing nodes;
others if desired.

BAS| C_DEBUGGER

I mpl erents LOADER _DUMPER commands, all control conmands,

all addressing nodes appropriate to the target nmachi ne, but
does not have finite state machine (FSM breakpoints or
wat chpoi nt s. Def ault breakpoints are inplenented. The

target understands | ong addressi ng node.

FULL_DEBUGGER
I mpl enents all conmands and addressi nhg nodes appropriate to
the target nmachine, and includes breakpoint conmands,

condi ti onal conmands and BREAKPO NT_DATA. Wat chpoints are
opti onal

Page 13

RFC- 909 July 1984

Page 14

LDP Specification Commands and Formats

CHAPTER 4

Commands and Formats

4.1 Packet Format

LDP conmands are enclosed in RDP transport nessages. An RDP
nmessage nmay contain nore than one comand, but each conmmand nust
fit entirely within a single nmessage. Network packets contai ning
LDP conmands have the format shown in Figure 5.

o e e e oo oo oo +
| Local Network |
| Header (s) |
o e e e oo oo oo +
| | P Header |
o e e e oo oo oo +
| RDP Header |
o e e e oo oo oo + +- +
| LDP Command | |
| Header | |
Feom e e e e e oo oo - + |
| Opt i onal | |
. LDP . | LDP Comand
Dat a | For nmat
I I I
I + |
| LDP Paddi ng | |
o e e e oo oo oo + +- +
| Addi ti onal |
LDP .
Conmands
o e e e oo oo oo +

Net wor k Packet For nat
Figure 5

Page 15

RFC- 909 July 1984

4.2 Command For mat

LDP comrands consi st of a standard two-word header foll owed
optionally by additional data. To facilitate parsing of nulti-
command nessages, all commands contain an even nunber of octets.
Commands that contain an odd nunber of data octets nmust be padded
with a null octet.

The commands defined by the LDP specification are intended
to be of universal application to provide a common basis for al
i npl erentations. Command class and type codes fromO to 63. are

reserved by the protocol. Codes above 63. are available for the
i npl erent ati on of target-specific conmands.

4.2.1 Command Header
LDP commands begin with a fixed | ength header. The header
specifies the type of command and its length in octets.

0 00 1 1
0123456789012345

LDP Command Header For mat
Figure 6
HEADER FI ELDS
Command Lengt h
The command | ength gives the total nunber of octets in the
command, including the length field and data, and excl uding

paddi ng.

Command d ass
Command Type

Page 16

LDP Specification Commands and Formats

The command cl ass and type together specify a particular

conmmand. The class selects one of six command categori es,
and the type gives the conmand within that category. Al
codes are decimal. The synbols given in Figures 7 and 8 for

command cl asses and types are used in the renmai nder of this
docunent for reference.

The commmand cl asses that have been defined are:

| PROTOCCOL

| DATA TRANSFER
| CONTROL

| MANAGEMENT

| BREAKPQO NT

| CONDI TI ON

| <reserved>

Conmmand C asses
Figure 7

Command type codes are assigned in order of expected
frequency of use. Commands and their responses/replies are
nunbered sequentially. The conmand types, ordered by
command cl ass, are:

Page 17

RFC- 909

Command d ass

DATA TRANSFER

CONTROL

MANAGEMENT

Page 18

OCO~NOUTA,WNE

PPRPOO~NOOR,WNE

1 -

O~NO O~ WN P

OCO~NOUTA,WNE

63

63

63

Command Type |

July 1984

HELLO
HELLO REPLY
SYNCH
SYNCH_REPLY
ERROR
ERRACK
ABCRT
ABORT_DONE
<r eserved>

VR TE

READ
READ_DONE
READ_DATA
MOVE
MOVE_DONE
MOVE_DATA
REPEAT _DATA
BREAKPO NT_DATA
VRl TE_MASK
<r eserved>

START

STOP

CONTI NUE
STEP
REPORT
STATUS
EXCEPTI ON
<r eserved>

CREATE
CREATE_DONE
DELETE
DELETE_DONE

LI ST_ADDRESSES
ADDRESS LI ST
GET_PHYS_ADDRESS
GOT_PHYS_ADDRESS
GET_OBJECT
GOT_OBJECT

LI ST_BREAKPO NTS
BREAKPO NT_LI ST

LDP Specification Commands and Formats

LI ST_NAMES
NAMVE LI ST

LI ST_PROCESSES
PROCESS LI ST
<r eserved>
BREAKPO NT I NCREMENT
| NC_COUNT
CR
SET_PTR
SET_STATE
<r eserved>

OO WNPF

CHANGED
COVPARE
COUNT_EQ
COUNT_GT
COUNT_LT
TEST

<r eserved>

CONDI TI ON

NOoO ok WNPE

Command Types
Fi gure 8

4.3 Addressing

Addresses are used in LDP commands to refer to nmenory
| ocations, processes, buffers, breakpoints and other entities.
Many of these entities are machi ne-dependent; some nachi nes have
naned objects, sonme nachines have multiple address spaces, the
size of address spaces varies, etc. The format for specifying
addresses needs to be general enough to handle all of these
cases. This speaks for a large, hierarchically structured
address fornmat. However, the disadvantage of a large format is
that it inmposes extra overhead on conmunication with targets that
have sinpl er address schenes.

LDP resolves this conflict by enploying two address formats:
a short three-word format for addressing sinpler targets, and a
long five-word format for others. Each target LDP is required to
i npl erent at | east one of these fornmats. At the start of an LDP
session, the target specifies the address format(s) it wuses in

Page 19

RFC- 909 July 1984

the Flag field of the HELLO REPLY nessage. In each address, the
first bit of the node octet is a format flag: O indicates LONG
address format, and 1 indicates SHORT fornat.

4.3.1 Long Address For mat

The | ong address format is five words |long and consists of a
three-word address descriptor and a two-word offset (see Figure
9). The descriptor specifies an address space to which the offset
is applied. The descriptor is subdivided into several fields, as
descri bed below. The structuring of the descriptor is designed
to support conplex addressing nodes. For exanple, on targets
with nmultiple processes, descriptors may reference virtua
addresses, registers, and other entities wthin a particular
process.

The addressi ng nodes defined bel ow are intended as a base to
which target-specific nodes nmay be added. Mdes up to 63. are
reserved by the protocol. The range 64. to 127. may be used for
target-specific address nopdes.

Long Format - Format bit is LONG=0

0 00 1 1
0123456789012345

o e m e o e o e e e oo + +-+

| O] Mode | Mode Arg | |

o m e m e e e e e e maaoo- + |

| (31-16) | | Descriptor

+-- - I D B |

I (15-0) I

o e m e o e o e e e oo + +-+

I (31-16) I

+---- O fset ---+ | Ofset

I (15-0) I

o e m e o e o e e e oo + +-+

Long Address For mat
Figure 9

LONG ADDRESS FI ELDS

Page 20

LDP Specification Commands and Formats

Mode

The address node identifies the type of address space
r ef er enced. The node is qualified by the node argunment and
the ID field. |Inplenmentation of nodes other than physical
and host is machi ne-dependent. Currently defined nodes and

bei ng

the address space they reference

are shown in Figure 10.

Mode | Synbol Addr ess space
_____ o
0 HOST Host
1 PHYS_MACRO Macr onenory
2 PHYS M CRO M cr onenory
3 PHYS 1/ 0O I/ O space
4 PHYS_MACRO_PTR Macro contains a pointer
5 PHYS_REG Regi st er
6 PHYS_REG _OFFSET Regi ster plus offset
7 PHYS_REG | NDI RECT Regi ster contains address
of a pointer
8 PROCESS_CCDE Process code space
9 PROCESS_DATA Process data space
10 PROCESS_DATA_PTR Process data contains a ptr
11 PROCESS_REG Process virtual register
12 PROCESS_REG_OFFSET Process register plus offset
13 PROCESS_REG | NDI RECT Process register contains
address of a pointer
14 OBJECT_OFFSET Menory object (queue, pool)
15 OBJECT_HEADER System header for an object
16 BREAKPO NT Br eakpoi nt
17 WATCHPO NT Wat chpoi nt
18 BPT_PTR_OFFSET Br eakpoi nt ptr plus offset
19 BPT_PTR_| NDI RECT Breakpoi nt ptr plus offset
gi ves address of a pointer
20 - <reserved>
63

Long Address Modes
Fi gure 10

Mode Argunent

Page 21

RFC- 909 July 1984

Provides a nuneric argunent to the node field. Specifies
the register in physical and process REG and REG OFFSET
nodes.

ID Field

Identifies a particul ar process, buffer or object.
O fset

The offset into the |inear address space defined by the
node. The size of the nachine word determ nes the nunber of
significant bits in the offset. Li kewi se, the addressing
units of the target are the units of the offset.

The interpretation of the node argunent, ID field and offset for
each address node is given bel ow

HOST

The ID and offset fields are nunbers assigned arbitrarily by
the host side of the debugger. These nunbers are used in
MOVE and MOVE_DATA nessages. MOVE_DATA responses contai ni ng
this node as the destination are sent by the target to the
host. This may occur in debuggi ng when data is sent to the
host fromthe target breakpoint.

PHYS_MACRO
The offset <contains the 32-bit physical address of a
| ocation in macronenory. The node argunment and ID field are
not used. For exanple, node=PHYS MACRO and offset=1000
specifies location 1000 in physical nenory.
PHYS_M CRO
Li ke PHYS MACRO, but the location is in mcronenory.
PHYS I/ 0O
Li ke PHYS_MACRO, but the location is in I/O space.
PHYS_MACRO PTR
The offset contains the address of a pointer in macronenory.

The location pointed to (the effective address) is also in
macronmenory. The node argunent and ID field are unused.

Page 22

LDP Specification Commands and Formats

PHYS REG
The node argunent gives the physical register. If the
register is wused by the LDP target process, then the saved
copy from the previous context is wused. This coment
applies to PHYS REG OFFSET node as well. The IDfield is
not used.

PHYS_REG OFFSET

The offset is added to the contents of a register given as
the node argunent. The result is used as a physical address
in macronmenory. |IDis unused.

PHYS_REG | NDI RECT

The register specified in the node arg contains the address
of a pointer in nmacromenory. The effective address is the
macronenory | ocation specified in the pointer, plus the
offset. The IDfield is unused.

PROCESS_CODE

The IDis a process ID, the offset is into the code space
for this process. Mde argunent is not used.

PROCESS_DATA

The IDis a process ID, the offset is into the data space
for this process. Mode argunent is not used. On systens
that do not distinguish between code and data space, these
two nodes are equivalent, and reference the virtual address
space of the process.

PROCESS_DATA PTR

The of fset contains the address of a pointer in the data
space of the process specified by the ID. The location
pointed to (the effective address) is also in the data
space. The node argunent is not used.

PROCESS REG
Accesses the registers (and other system data) of the
process given by the IDfield. Mde argunent 0 starts the

registers. After the registers, the npde argunent is an
of fset into the systemarea for the process.

Page 23

RFC- 909 July 1984

PROCESS_REG OFFSET

The offset plus the contents of the register given in the
node argunent specifies a location in the data space of the
process specified by the ID.

PROCESS_REG | NDI RECT

The register specified in the node arg contains the address
of a pointer in the data space of the process given by the
ID. The effective address is the location in process data
space specified in the pointer, plus the offset.

OBJECT_OFFSET (optional)

The offset is into the nmenory space defined by the object ID
in | D. Recomended for renmpte control of paraneter
segnent s.

OBJECT_HEADER (opti onal)

The offset is into the system header for the object
specified by the ID. Intended for use with the Butterfly.

BREAKPO NT

The descriptor specifies a breakpoint. The offset is never
used, this type is only used in descriptors referring to
breakpoi nts. (See Breakpoi nts and Watchpoints, below, for
an expl anation of breakpoint descriptors.)

WATCHPO NT

The descriptor specifies a watchpoint. The offset is never
used, this type is only used in descriptors referring to
wat chpoi nts. (See Breakpoints and Wat chpoints, below, for
an expl anation of watchpoint descriptors).

BPT_PTR_OFFSET

For this nopde and BPT_PTR IND RECT, the node argunent
specifies one of two breakpoint pointer variables local to
t he breakpoint in which this address occurs. These pointers
and the SET_PTR conmand whi ch mani pul ates them provide for
an arbitrary anount of address indirection. They are
i ntended for use in traversing data structures: for exanple,
chasi ng queues. In BPT_PTR OFFSET, the offset is added to

Page 24

LDP Specification Commands and Formats

the pointer variable to give the effective address. 1In
targets which support multiple processes, the locationis in
the data space of the process given by the ID. O herwi se,
the location is a physical address in macr o- Nenory.
BPT_PTR. * nodes are val i d only in breakpoints and
wat chpoi nt s.

BPT_PTR_| NDI RECT

Li ke BPT_PTR_OFFSET, except that it uses one nore |evel of

i ndirection. The pointer variable given by the nopde
argunment plus the offset specify an address which points to
t he ef fective addr ess. See t he description of
BPT_PTR _OFFSET for a discussion of wusage, Ilimtations and

addr ess space.

4.3.2 Short Address Format

The short address fornmat is i nt ended for use in
i npl erentati ons where protocol overhead nmust be nmininized. This
format is a subset of the long address format: it contains the
same fields except for the |ID field. Therefore, the short
addressing format supports only HOST and PHYS * address npdes.
Only the LOADER _DUMPER i npl enentation | evel commands may be used
with the short addressing format. The short address format is
three words long, consisting of a 16-bit word describing the
address space, and a 32-bit offset.

Page 25

RFC- 909 July 1984

Short Format - Format bit is SHORT=1

0 00 1 1
0123456789012345

o m e e o e e e e e e e e eao - +

| 1] Mode | Mode Argunent |

o m e e o e e e e e e e e eao - + -+

I (31-16) |

+---- O f set ---+ | Ofset

I (15-0) |

o m e e o e e e e e e e e eao - + -+

Short Address For mat
Figure 11

SHORT ADDRESS FI ELDS:
Mode

The high-order bit is 1, indicating the short address
format. A list of the address nobdes supported is given
bel ow. The interpretation of the remaining fields is as
descri bed above for the |ong addressing format.

Page 26

LDP Specification Commands and Formats

Mode | Synbol | Address space
_____ o
0 HOST Host
1 PHYS_MACRO Macr o- menory
2 PHYS M CRO M cr o- menory
3 PHYS 1/ 0O I/ O space
4 PHYS MACRO PTR Macro contains a pointer
5 PHYS_REG Regi st er
6 PHYS_REG _OFFSET Regi ster plus of fset
7 PHYS_REG | NDI RECT Regi ster contai ns address
of a pointer
8 -
32 <reserved>

Short Address Modes
Fi gure 12

Page 27

RFC- 909 July 1984

Page 28

LDP Specification Prot ocol Conmmands

CHAPTER 5

Pr ot ocol Conmands

Protocol conmmands are wused for error handl i ng, for
synchroni zing the command sequence nunber, and for conmunicating
protocol inplenentation paranmeters. Every protocol comand has a
corresponding reply. Al'l protocol commands are sent fromthe

host to the target, wth replies flowing in the opposite
di rection.

5.1 HELLO Conmmand

The HELLO command is sent by the host to signal the start of
an LDP session. The target responds with HELLO REPLY.

0 00 1 1
0123456789012345
oo oo +
0 | 4 I
oo oo +
1| PROTOCOL | HELLO |
oo oo +

HELLO Command For nat
Fi gure 13

5.2 HELLO REPLY

A HELLO REPLY is sent by the target in response to the HELLO
coormand at the start of an LDP session. This reply is used to
i nformthe host about the target’s inplenentation of LDP.

Page 29

RFC- 909 July 1984

0 00 1 1
0123456789012345
S S +
0 | 10 I
S S +
1| PROTOCOL | HELLO REPLY |
S S +
2 | LDP Version | System Type
S S +
3 | Options |WS| I nplenmentation
S S +
4 | Address Code | Reserved |
S S +

HELLO REPLY For mat

Figure 14
HELLO REPLY FI ELDS:
LDP Versi on
The target’s LDP protocol version. | f t he current

host protocol version does not agree wth the target’'s
protocol version, the host may terminate the session, or
may continue it, at the discretion of the inmplenmentor. The
current version nunber is 2.

System Type

The type of systemrunning on the target. This is used as a
check against what the host thinks the target is. The host
is expected to have a table of target system types wth
informati on about target address spaces, target-specific
commands and addressi ng nodes, and so forth.

Currently defined systemtypes are shown in Figure 15. This
list includes sonme systens normally thought of as ’hosts’
(e.g. Cr0, VAX), for inplenmentations where targets actively
initiate and direct a |load of thenselves.

Page 30

LDP Specification Prot ocol Conmmands

Code | System | Description
________ o
1 C30_16 _BIT BBN 16-bit C30
2 C30 20 BIT BBN 20-bit C30
3 H316 Honeywel | - 316
4 BUTTERFLY BBN Butterfly
5 PDP- 11 DEC PDP-11
6 C10 BBN C10
7 C50 BBN C50
8 PLURI BUS BBN Pl uri bus
9 C70 BBN C70
10 VAX DEC VAX
11 MACI NTOSH Appl e Macl nt osh

Syst em Types
Fi gure 15

Addr ess Code

The address code indicates which LDP address format(s) the
target is prepared to use. Address codes are show in Figure
16.

Address Code | Synbol | Description

1 LONG_ADDRESS Five word address fornmat.
Supports all address nodes
and commands.

2 SHORT_ADDRESS Three word address fornat.
Supports only physical and
host address nodes. Only
the LOADER DUMPER set of
commands are support ed.

Target Address Codes
Fi gure 16

| npl emrent ati on

Page 31

RFC- 909 July 1984

The inpl ementation | evel specifies which features of
t he pr ot ocol are inmplenented in the target. There are
three | evels of protocol inplenentation. These levels are
intended to correspond to the three nost likely applications
of LDP:. sinple |oading and dunpi ng, basic debugging, and
full debugging. (Pl ease see | nplenentations, above, for a
detail ed description of inplenentation levels.) There are
are also several optional features that are not included in
any particular |evel.

I nmpl erentation |evels are cunul ative, that is, each higher
level includes the features of all previous levels. The
| evel s are shown in Figure 17.

Feature Level | Synbol | Description

______________ e
1 LOADER DUMPER Loader/ dunper subset of LDP
2 BASI C_DEBUGCGER Control commands, CREATE
3 FULL_DEBUGGER FSM br eakpoi nts

Feature Levels

Fi gure 17
Opti ons
The options field (see Figure 18) is an eight-bit flag
field. Bit flags are wused to indicate if the target has
i mpl emented particular optional conmands. Not all optional

commands are referenced in this field. Comuands whose
i mpl enent ati on depends on target nmachine features are
om tted. The LDP application is expected to 'know about
target features that are not intrinsic to the protocol
Exanpl es of target-dependent conmands are conmands that
refer to named objects (CREATE, LI ST_NAMES)

Page 32

LDP Specification Prot ocol Conmmands

Mask | Synbol | Description
------ S
1 STEP The STEP conmand is inpl enented
2 WATCHPO NTS Wat chpoints are inpl enent ed
Opti ons
Fi gure 18

5.3 SYNCH Command

The SYNCH command is sent by the host to the target. The
target responds wth a SYNCH REPLY. The SYNCH - SYNCH REPLY
exchange serves two functions: it synchronizes the host-to-target
inmplicit sequence nunber and acts as a cunul ati ve acknow edgenent

of the receipt and execution of all host commands up to the
SYNCH
0 00 1 1
0123456789012345
S S +
0| 6 I
S S +
1| PROTOCOL | SYNCH |
S S +
2 | Sequence Number |
S S +

SYNCH Command For mat
Fi gure 19

SYNCH FI ELDS

Sequence Number

Page 33

RFC- 909 July 1984

The sequence nunmber of this command. |If this is not what
the target is expecting, the target will reset to it and
respond with an ERROR reply.

5.4 SYNCH_REPLY

A SYNCH REPLY is sent by the target in reponse to a valid
SYNCH comand. A SYNCH command is valid if its sequence nunber
agrees with the sequence nunber the target is expecti ng.
O herwi se, the target will reset its sequence nunber to the SYNCH
conmand and send an ERROR reply.

0 00 1 1

0123456789012345
S S +

0| 6 I
S S +

1| PROTOCOL | SYNCH REPLY |
S S +

2 | Sequence Number |
S S +

SYNCH_REPLY For mat
Fi gure 20

SYNCH_REPLY FI ELDS:
Sequence Number

The sequence nunmber of the SYNCH command to which this
SYNCH_REPLY is the response.

Page 34

LDP Specification Prot ocol Conmmands

5.5 ABORT Conmmand

The ABORT command is sent fromthe host to abort all pending
operations at the target. The target responds w th ABORT_DONE
This is primarily intended to stop |large data transfers from the
target. A likely application would be during a debuggi ng session
when the user types an interrupt to abort a large printout of
data from the target. The ABORT command has no effect on any
breakpoi nts or watchpoints that nmay be enabled in the target.

As a practical matter, the ABORT command may be difficult to
i npl erent on sone targets. Its ability to interrupt conmand
processi ng on the target depends on the target being able to | ook
ahead at incom ng commands and receive an out-of-band signal from
the host. However, the effect of an ABORT may be achieved by
sinmply closing and reopening the transport connection.

0 00 1 1
0123456789012345
oo oo +
0 | 4 I
oo oo +
1| PROTOCOL | ABORT |
oo oo +

ABORT Conmmand For nat
Figure 21

5.6 ABORT_DONE Reply

The ABORT_DONE reply is sent fromthe target to the host in
response to an ABORT conmand. This indicates that the target has
termnated all operations that were pending when the ABORT
command was received. The sequence nunber of the ABORT comrand
is included in the reply.

Page 35

RFC- 909 July 1984

0 00 1 1

0123456789012345
S S +

0| 4 I
S S +

1| PROTOCOL | ABORT_DONE |
S S +

2 | Sequence Number |
S S +

ABORT_DONE Reply For nmat
Fi gure 22

ABORT_DONE FI ELDS:
Sequence Number

The sequence nunber of the ABORT command that elicited this
reply. This enabl es the host to distinguish between
replies to multiple aborts.

5.7 ERROR Reply

The ERROR reply is sent by the target in response to a bad
comand. The ERROR reply gives the sequence nunber of the
of fendi ng conmand and a reason code. The target ignores further
comands until an ERRACK command is received. The reason for
i gnoring commands is that the proper operation of outstanding
commands may be predicated on the execution of the erroneous
comand.

Page 36

LDP Specification Prot ocol Conmmands

0 00 1 1
0123456789012345
S S +
0 | Command Length |
S S +
1| PROTOCOL | ERROR |
S S +
2 | Command Sequence Nunber |
S S +
3 | Error code |
S S +
4 | Optional Data |
S S +
*
*
*
S S +
n Optional Data
S S +

ERROR Reply For mat
Fi gure 23
ERROR Reply FI ELDS
Command Sequence Nunber
The inplicit sequence nunber of the erroneous conmand.
Error Code

A code specifying what error has taken place. The currently
defined codes are shown in Figure 24.

Page 37

RFC- 909 July 1984

Error Code | Synbol

BAD_COVVAND
BAD_ADDRESS_MODE
BAD_ADDRESS_| D
BAD_ADDRESS_OFFSET
BAD_CREATE_TYPE
NO_RESOURCES
NO_OBJECT
OUT_OF_SYNCH

| N_BREAKPO NT

OCO~NOUTA,WNE

ERROR Codes
Fi gure 24

An expl anation of each of these error codes follows:
BAD_COMVAND

The command was not neaningful to the target nachine.
This includes commands that are valid but uninpl emented
inthis target. Al so, the command was not wvalid in
this context. For exanple, a comrand given by the host
that is only legal in a Dbreakpoint (e.q. | F,
SET_STATE) .

BAD_ADDRESS MODE <of f endi ng- addr ess>
The node of an address given in the command is not
meani ngful to this target system For exanple, a

PROCESS address node on a target that does not support
mul ti - processing.

BAD_ADDRESS | D <of f endi ng- addr ess>
The ID field of an address didn't correspond to an
appropriate thing. For exanple, for a PROCESS address
node, the ID of a non-existent process.

BAD_ADDRESS OFFSET <of f endi ng- addr ess>
The offset field of the address was outside the I egal

range for the thing addressed. For exanple, an offset
of 200, 000 in PHYS MACRO npde on a target with 64K of

Page 38

LDP Specification Prot ocol Conmmands

Macr o- Nenory.
BAD_CREATE_TYPE

The object type in a CREATE command was unknown.
NO_RESOURCES

A CREATE command failed due to lack of necessary
resour ces.

NO_OBJECT
A GET_OBJECT command failed to find the naned object.
OUT_OF_SYNCH

The sequence nunber of the SYNCH command was not
expected by the target. The target has resynchronized
toit.

I N BREAKPO NT <br eakpoi nt - descri ptor> <breakpoi nt - sequence#>
<r eason- code> [<opti onal -i nf 0>]

An error occurred within a breakpoint conmand |Iist.
The given 16-bit sequence-nunber refers to the sequence
nunber of the CREATE command t hat created t he
breakpoint, while breakpoint-sequence# refers to the
sequence nunber of the command wthin the breakpoint
gi ven by <breakpoi nt-descri ptor>.

5.8 ERRACK Acknow edgenent
An ERRACK is sent by the host in response to an ERROR

reply from the target. The ERRACK is used to acknow edge t hat
t he host has received the ERROR reply.

Page 39

RFC- 909 July 1984

0 00 1 1

0123456789012345
oo oo +

0 | 4 I
oo oo +

1| PROTOCOL | ERRACK |
oo oo +

ERRACK Command For nat
Fi gure 25

Page 40

LDP Specification Dat a Transfer Conmmands

CHAPTER 6

Dat a Transfer Commands

Data transfer commands transfer data between the host and
the target. These commands are used for |oading and dunping the
target, and exam ning and depositing locations on the target.
The READ conmmand reads data fromthe target, the MOVE conmand
noves data within the target or from the target to another
entity, and the WRITE conmmand wites data to the target.
REPEAT_DATA makes copies of a pattern to the target -- it 1is
useful for zeroing nenory. WRITE MASK wites data with a mask
and is intended for nodifying target paraneter tables.

Data transmitted to and fromthe target always contains a
target address. In wites to the target, this is used as the
destination of the data. |In reads fromthe target, the target
address is wused by the host to identify where in the target the
data cane from |In addition, the MOE command may contain a
"host’ address as its destination; this pernits the host to
further discrimninate between possible sources of data from the
target -- fromdifferent breakpoints, debuggi ng wi ndows, etc.

A read request to the target nmay generate one or nore
response messages. In particular, responses to requests for
| arge anmounts of data -- core dunps, for exanple -- nust be
broken wup into nmultiple nessages, if the block of data requested
pl us the LDP header exceeds the transport |ayer nessage si ze.

In commands which contain data (WRI TE, READ _DATA, MOVE_DATA
and REPEAT_DATA), if there are an odd nunber of data octets, then
a null octet is appended. This is so that the next conmand in
the nessage, if any, will begin on an even octet. The conmand
length is the sumof the nunber of octets in the conmand header
and the nunber of octets of data, excluding the null octet, if
any.

The addressing fornmats which nmay be used with data transfer
commands are specified for each LDP session at the start of the
session by the target in the HELLO REPLY response. See the

section entitled 'Addressing’, above, for a description of LDP
addressing formats and nodes. In the command diagrans given
below, the short addressing format is illustrated. For LDP

sessi ons using |long addressing, addresses are five words |ong,

Page 41

RFC- 909 July 1984

i nstead of three words, as shown here. |In both addressing nodes,
descriptors are three words and offsets are two words.

6.1 WRI TE Command

The WRI TE command is used to send octets of data from the
host to the target. This command specifies the address in the
target where the data is to be stored, followed by a stream of

data octets. If the data stream contains an odd nunber of
octets, then a null octet is appended so that the next command,
if any, wll begin on an even octet. Since LDP nust observe

nmessage size limtations inposed by the wunderlying transport
layer, a single logical wite my need to be broken up into
multiple WRITES in separate transport nessages.

0 00 1 1
0123456789012345
S S +
0 | Command Length |
S S +
1 | DATA TRANSFER | WRI TE |
S S +
2| I
+- - Tar get --+
3| Start |
+- - Addr ess --+
4 | I
S S +
5| Data Cctet | Data Cctet |
S S +

*

*

*
S S +
n | Data Cctet | Data or Null |
S S +

WRI TE Conmand For nat
Fi gure 26

Page 42

LDP Specification Dat a Transfer Conmmands

VWRI TE FI ELDS:
Command Length

The command length gives the nunber of octets in the
command, including data octets, but excluding the padding
octet, if any.

Target Start Address

This is the address to begin storing data in the target.
The length of the data to be stored may be inferred by the
target fromthe command | ength. An illegal address or range
will generate an ERROR reply.

Data Cctets

Cctets of data to be stored in the target. Data are packed
according to the packing convention described above. Ends
with a null octet if there are an odd nunber of data octets.

6.2 READ Conmmand

The host uses the READ command to ask t he target to
send back a contiguous block of data. The data is specified by
a target starting address and a count. The target returns the
data in one or nmore READ DATA commands, which give the starting
address (in the target) of each segnent of returned data. VWhen
the transfer is conpleted, the target sends a READ DONE conmand
to the host.

Page 43

RFC- 909 July 1984

0 00 1 1
0123456789012345
S S +
0 | 14 |
S S +
1 | DATA TRANSFER | READ |
S S +
2| I
+- - Tar get --+
3| Start |
+- - Addr ess --+
4 | I
S S +
5 Addr ess |
+- - Uni t --+
6 | Count |
S S +

READ Conmmand For nat
Fi gure 27

READ FI ELDS:
Target Start Address

The starting address of the requested bl ock of target data.
The target sends an ERROR reply if the starting address is
illegal, if the ending address conmputed fromthe sumof the
start and the count is illegal, or if holes are encountered
in the middle of the range.

Address Unit Count

The count of the nunber of target indivisibly-addressable
units to be transferred. For exanple, if the address space
is PHYS MACRO, a count of two and a start address of 1000
selects the contents of |ocations 1000 and 1001. ’Count’ is
used instead of 'length’ to avoid the problem of determning
units the Ilength should be denom nated in (octets, words,
etc.). The size and type of the unit will vary depending on
the address space selected by the target start address. The
target should reply wth an error (if it is able to

Page 44

LDP Specification Dat a Transfer Conmmands

determine in advance of a transfer) if the inclusive range
of addresses specified by the start address and the count
contains an illegal or nonexistent address.

6.3 READ _DATA Response

The target uses the READ DATA response to transmit data
requested by a host READ comand. One or nore READ DATA

responses may be needed to fulfill a given READ conmand,
depending on the size of the data block requested and the
transport |ayer nessage size limts. Each READ DATA response
gives the target starting address of its segnment of data. |If the

response contains an odd nunber of data octets, the target ends
the response with a null octet.

Page 45

RFC- 909 July 1984

0 00 1 1
0123456789012345
S S +
0 | Command Length |
S S +
1 | DATA TRANSFER | READ DATA |
S S +
2| I
+- - Tar get --+
3| Start |
+- - Addr ess --+
4 | I
S S + +-+
5| Data Cctet | Data Cctet | |
o e e e e oo o Fom e e e e oo o + |
* I
* | Data
* I
o e e e e oo o Fom e e e e oo o + |
n | Data Cctet | Data or Null | |
S S + +-+

DATA Response For mat
Fi gure 28

READ DATA FI ELDS:
Command Length

The command length gives the nunber of octets in the
command, including data octets, but excluding the padding
octet, if any. The host can calculate the Ilength of the
data by subtracting the header Ilength fromthe conmand
length. Since the target address nay be either three words
(short format) or five words (long format), the address node
nmust be checked to determ ne which is being used.

Target Start Address
This is the starting address of the data segnent in this

nessage. The host nmay infer the length of the data fromthe
command | ength. The address format (short or long) is the

Page 46

LDP Specification Dat a Transfer Conmmands

sanme as on the initial READ conmand.
Data Cctets
Octets of data fromthe target. Data are packed according

to the packing convention described above. Ends with a null
octet if there are an odd nunber of data octets.

6.4 READ DONE Reply

The target sends a READ DONE reply to the host after it has
finished transferring the data requested by a READ comand.
READ DONE specifies the sequence nunber of the READ command.

0 00 1 1
0123456789012345
S S +
0| 6 |
S S +
1 | DATA TRANSFER | READ DONE |
S S +
2 | READ Sequence Number |
S S +

READ DONE Reply For mat
Fi gure 29

READ_DONE FI ELDS:

READ Sequence Number

The sequence nunber of the READ command this is a reply to.

Page 47

RFC- 909 July 1984

6.5 MOVE Conmand

The MOVE command is sent by the host to nove a block of data
from the target to a specified destination. The destination
address may specify a location in the target, in the host, or in
another target (for |oading one target fromanother). The data
is specified by a target starting address and an address unit

count. The target sends an ERROR reply if the starting address
isillegal, if the ending address conputed fromthe sum of the
start and the count is illegal, or if holes are encountered in

the mddle of the range. |If the MOVE destination is off-target,
the target noves the data in one or MOVE DATAs. O her comands
arriving at the target during the transfer should be processed in
a tinely fashion, particularly the ABORT comand. Wen the data
has been noved, the target sends a MXNE DONE to the host.
However, a MWE within a breakpoint wll not generate a
MOVE_DONE.

A MOVE with a host destination differs froma READ in that
it contains a host address. This field is specified by the host
in the MOVE command and copied by the target into the responding
MOVE_DATA(S) . The address may be wused by the host to
differentiate data returned fromnultiple MWE requests. Thi s
i nformati on may be wuseful in breakpoints, in rmulti-w ndow
debugging and in communication wth targets wth mul tiple
processors. For exampl e, the host sends the MOVE conmmand to the
target to be executed during a breakpoint. The ID field in
the host address m ght be an index into a host breakpoint table.
When t he breakpoint executes, the host would use the ID to
associ ate the returning MOVE_DATA with this breakpoint.

Page 48

LDP Specification Dat a Transfer Conmmands

0 00 1 1
0123456789012345
S S +
0 | Command Length |
S S +
1 | DATA TRANSFER | MOVE |
S S +
2 | I
+- - Sour ce --+
3| Start |
+- - Addr ess --+
4 | I
S S +
5 Addr ess |
+- - Uni t --+
6 | Count |
S S +
7 _ _ I
+- - Desti nati on --+
8 | Start |
+- - Addr ess --+
9 | I
S S +

MOVE Conmmand For nat
Fi gure 30

MOVE FIl ELDS:
Source Start Address

The starting address of the requested bl ock of target data.
An illegal address type will generate an error reply.

Address Unit Count

The count of the nunmber of target indivisibly-addressable
units to be transferred. For exanple, if the address space
is PHYS MACRO, a count of two and a start address of 1000
selects the contents of |ocations 1000 and 1001. ’Count’ is
used instead of 'length’ to avoid the problem of determning
units the Ilength should be denom nated in (octets, words,

Page 49

RFC- 909 July 1984

etc.). The size and type of the unit will vary depending on
the address space selected by the target start address. The
target should reply with an error (if it is able to
determine in advance of a transfer) if the inclusive range
of addresses specified by the start address and the count
contains an illegal or nonexistent address.

Desti nati on Address

The destination of the MOVE. If the address space is on the
target, the address unit size should agree with that of the

source address space. |If the address node is HOST, t he
values and interpretations of the remaining address fields
are arbitrary, and are determ ned by the host
i mpl emrent ati on. For exanple, the node argunent m ght

specify a table (breakpoint, debuggi ng wi ndow, etc.) and the
IDfield an index into the table.

6.6 MOVE_DATA Response

The target uses the MOVE _DATA responses to transmit data
requested by a host MWNE command. One or nore MOVE _DATA

responses nmay be needed to fulfill a given MNE conmand,
depending on the size of the data block requested and the
transport |ayer nessage size limts. Each MOVE _DATA response
gives the target starting address of its segnment of data. |If the

response contains an odd nunber of data octets, the target should
end the response with a null octet.

Page 50

LDP Specification Dat a Transfer Conmmands
0 00 1 1
0123456789012345

Sy +
0 | Command Length |
Sy +
1 | DATA TRANSFER | MOVE_DATA |
Sy +
2| I
+- - Sour ce --+
3| Start |
+- - Addr ess --+
4| I
Sy +
5| o I
+- - Desti nation --+
6 | Start |
+- - Addr ess --+
7 I
Sy + +- +
8 | Data Cctet Data Cct et | |
o e e e e e e e e e e e o e oo + |
I
| Data
I
o e e e e e e e e e e e o e oo + |
n | Data Cctet Data or Null | |
Sy + +- +
MOVE_DATA Response For mat
Fi gure 31
MOVE_DATA FI ELDS
Command Lengt h
The command length gives the nunber of octets in the
command, including data octets, but excluding the padding
octet, if any.

Source Start Address

This is the starting address of the

dat a

segnent in this

Page 51

RFC- 909 July 1984

nessage. The host nmay infer length of the data fromthe
conmmand | engt h.

Desti nati on Address
The destinati on address copied fromthe MWE comand that
initiated this transfer. |In the case of HOST MOVEs, this is
used by the host to identify the source of the data.

Data Cctets
Octets of data fromthe target. Data are packed according

to the packing convention descri bed above. Ends with a null
octet if there are an odd nunber of data octets.

6.7 MOVE_DONE Reply

The target sends a MOVE_ DONE reply to the host after it has
finished transferring the data requested by a MOVE comand.
MOVE_DONE specifies the sequence nunber of the MOVE command.

0 00 1 1
0123456789012345
S S +
0| 6 I
S S +
1 | DATA TRANSFER | MOVE_DONE |
S S +
2 | MOVE Sequence Number |
S S +

MOVE_DONE Reply For mat
Fi gure 32

MOVE_DONE FI ELDS:

MOVE Sequence Number

The sequence nunber of the MOVE command this is a reply to.

Page 52

LDP Specification Dat a Transfer Conmmands

6.8 REPEAT_DATA

The REPEAT_DATA conmand is sent by the host to wite copies

of a specified pattern into the target. This provides an
efficient way of zeroing target nmenory and initializing target
data structures. The conmand specifies the target starting

address, the nunber of copies of the pattern to be nade, and a
stream of octets that constitutes the pattern

This command differs fromthe other data transfer conmmands
in that the effect of a REPEAT _DATA with a large pattern cannot
be duplicated by sending the data in snaller chunks over severa
commands. Therefore, the maxi num size of a pattern that can be
copi ed with REPEAT_DATA will depend on the nessage size limts of
the transport |ayer.

0 00 1 1
0123456789012345
S S +
0 | Command Length |
S S +
1 | DATA TRANSFER | REPEAT DATA |
S S +
2| I
+- - Tar get --+
3| Start |
+- - Addr ess --+
4 | I
S S +
6 | Repeat Count |
S S + +-+
7 | Data Cctet | Data Cctet | |
o e e e e oo o Fom e e e e oo o + |
* I
* | Pattern
* I
o e e e e oo o Fom e e e e oo o + |
n | Data Cctet | Data or Null | |
S S + +-+

REPEAT_DATA Conmmand For mat
Fi gure 33

Page 53

RFC- 909 July 1984

REPEAT_DATA FI ELDS:
Command Length

The command length gives the nunber of octets in the
command, including data octets in the pattern, but excluding
the paddi ng octet, if any.

Target Start Address

This is the starting address where the first copy of the
pattern should be witten in the target. Successive copies
of the pattern are nmade contiguously starting at this
addr ess.

Repeat Count

The repeat count specifies the nunber of copies of the
pattern that should be nade in the target. The repeat count
shoul d be greater than zero.

Pattern

The pattern to be copied into the target, packed into a
stream of octets. Data are packed according to the packing
convention described above. Ends with a null octet if there
are an odd nunber of data octets.

6.9 WRI TE_MASK Command (Optional)

The host sends a WRI TE_MASK command to the target to wite
one or nore nasked values. The command uses an address to
specify a target base |ocation, followd by one or nore offset-
mask-value triplets. Each triplet gives an offset fromthe base,
a value, and a mask indicating which bits in the location at the
of fset are to be changed.

This optional conmmand is intended for use in controlling the
target by changing locations in a table. For exanple, it may be

used to change entries in a target paraneter table. The
operation of nodifying a specified |ocation with a masked val ue
is intended to be atonic. In other words, another target process

should not be able to access the |location to be nodified between

Page 54

LDP Specification Dat a Transfer Conmmands

the start and the end of the nodification.

Page 55

ue

ue

RFC- 909

Page 56

0 o0 1 1
0123456789012345
o e e e e oo o Fom e e e e oo o +
0 | Command Length |
o e e e e oo o Fom e e e e oo o +
1 | DATA TRANSFER | WRI TE_MASK |
o e e e e oo o Fom e e e e oo o +
2 | I
+- - Tar get --+
3 | Base |
+- - Addr ess --+
4| I
o e e e e oo o Fom e e e e oo o +
5 | I
+- - O fset --+
6 | I
o e e e e oo o Fom e e e e oo o +
7 I
+- - Mask --+
8 | I
o e e e e oo o Fom e e e e oo o +
9 | I
+- - Val ue --+
10| |
o e e e e oo o Fom e e e e oo o +
o e e e e oo o Fom e e e e oo o +
I I
+- - O fset --+
I I
o e e e e oo o Fom e e e e oo o +
I I
+- - Mask --+
I I
o e e e e oo o Fom e e e e oo o +
I I
+- - Val ue --+
I I
o e e e e oo o Fom e e e e oo o +

VWRI TE_MASK For mat
Fi gure 34

+-+

I
I
I
I
I
I
I
+-+

+-+

July 1984

O f set - Mask- Val

Tri pl et

O f set - Mask- Val

Tri pl et

LDP Specification Dat a Transfer Conmmands

WRI TE_MASK FI ELDS
Command Length

The command length gives the nunber of octets in the
command. The nunber of offset-value pairs may be cal cul at ed
fromthis, since the coomand header is either 10 or 12
octets long (short or 1long address format), and each
of f set - mask-value triplet is 12 octets |ong.

Target Base Address

Specifies the target location to which the offset is added
to yield the location to be nodifi ed.

O f set
An offset to be added to the base to select a |location to be
nodi fi ed.

Mask
Specifies which bits in the value are to be copied into the
| ocati on.

Val ue

A value to be stored at the specified offset fromthe base.
The set bits in the nask determ ne which bits in the val ue
are applied to the location. The following algorithm wll
achieve the intended result: take the one's conpl enent of
the mask and AND it with the location, leaving the result in
the |l ocation. Then AND t he mask and the value, and OR the
result into the location

Page 57

RFC- 909 July 1984

Page 58

LDP Specification Control Conmands

CHAPTER 7

Control Commands

Control conmands are used to control the execution of target
code, breakpoints and watchpoints. They are also used to read
and report the state of these objects. The object to be
controlled or reported on is specified with a descriptor. Valid
descriptor nmodes include PHYS * (for sone conmands) PROCESS CODE
BREAKPO NT and WATCHPQO NT. Control comuands whi ch change the
state of the target are START, STOP, CONTINUE and STEP. REPORT
requests a STATUS report on a target object. EXCEPTIONis a
spont aneous report on an object, used to report asynchronous
events such as hardware traps. The host may verify the action of
a START, STOP, STEP or CONTINUE conmand by following it wth a
REPORT command.

7.1 START Cormmand

The START command is sent by the host to start execution of
a specified object in the target. For targets which support
mul ti pl e processes, a PROCESS CODE address specifies the process
to be started. Oherw se, one of the PHYS * nodes may specify
a location in nacro-nenory where execution is to continue.
Applied to a breakpoint or watchpoint, START sets the val ue of
the object’s state variable, and activates the breakpoint. The
breakpoi nt counter and pointer variables are initialized to zero.

Page 59

RFC- 909 July 1984

0 00 1 1
0123456789012345
o e e e e Fom e e e e +
0 | 14 |
o e e e e Fom e e e e +
1| CONTROL | START |
o e e e e Fom e e e e + +-+
2 | Mbde | 0 |
o e e e e oo o Fom e e e e oo o + |
3 | I I
+- - I D --+ |
4 | Field | | Address
o mm e e e e e e e e e e eaao o + |
5 | I I
+- - O fset --+ |
6 | I I
ot e e e e e e e e e e e e e + +-+

START Conmand For mat

Fi gure 35
START FI ELDS:
Addr ess
The descriptor specifies the object to be started. If the

node is PROCESS CODE, ID specifies the process to be
started, and offset gives the process virtual address to
start at. If the node is PHYS *, execution of the target is
conti nued at the specified address.

For nodes of BREAKPO NT and WATCHPO NT, the offset specifies

the new value of the FSMstate variable. This is for FSM
br eakpoi nts and wat chpoi nts.

Page 60

LDP Specification Control Conmands

7.2 STOP Conmmand

The STOP command is sent by the host to stop execution of a

specified object in the target. A descriptor specifies the
object. Applied to a breakpoint or watchpoint, STOP deactivates
it. The breakpoi nt/wat chpoint may be re-activated by issuing a

START or a CONTI NUE command for it.

0 00 1 1
0123456789012345
o e e e e oo o Fom e e e e oo o +
0 | 10 |
o e e e e oo o Fom e e e e oo o +
1| CONTROL | STOP |
o e e e e oo o Fom e e e e oo o + +-+
2 | Mode | 0 | |
o e e e e oo o Fom e e e e oo o + |
3| | | Descriptor
+- - I D --+ |
4 | Field | |
o mm e e e e e e e e e e eaao o + +-+

STOP Cormmand For mat
Fi gure 36

STOP FI ELDS:

Descri pt or
The descriptor specifies the object to be stopped or
disarned. |If the node is PROCESS CODE, the |ID specifies the
process to be stopped.
For nodes of BREAKPO NT and WATCHPO NT, the specified

breakpoint or watchpoint 1is deactivated. It may be re-
activated by a CONTINUE or START comrand.

Page 61

RFC- 909 July 1984

7.3 CONTI NUE Conmand

The CONTINUE command is sent by the host to resune execution
of a specified object in the target. A descriptor specifies the
object. Applied to a breakpoint or watchpoint, CONTINUE activates
it.

0 00 1 1
0123456789012345
o e e e e oo o Fom e e e e oo o +
0 | 10 |
o e e e e oo o Fom e e e e oo o +
1| CONTROL | CONTI NUE |
o e e e e oo o Fom e e e e oo o + +-+
2 | Mode | 0 | |
o e e e e oo o Fom e e e e oo o + |
3| | | Descriptor
+- - I D --+ |
4 | Field | |
o mm e e e e e e e e e e eaao o + +-+

CONTI NUE Command For nat
Fi gure 37

CONTI NUE FI ELDS:

Descri pt or
The descriptor specifies the object to be resuned or arned.
If the node is PROCESS CODE, the ID specifies the process to
be resuned.

For nodes of BREAKPO NT and WATCHPO NT, the specified
br eakpoi nt or watchpoint is arned.

7.4 STEP Command
The STEP command is sent by the host to the target. It

requests the execution of one instruction (or appropriate
operation) in the object specified by the descriptor.

Page 62

LDP Specification Control Conmands

0 00 1 1
0123456789012345
o e e e e oo o Fom e e e e oo o +
0 | 10 |
o e e e e oo o Fom e e e e oo o +
1| CONTROL | STEP |
o e e e e oo o Fom e e e e oo o + +-+
2 | Mode | 0 | |
o e e e e oo o Fom e e e e oo o + |
3| | | Descriptor
+- - I D --+ |
4 | Field | |
o mm e e e e e e e e e e eaao o + +-+

STEP Conmand For mat

Fi gure 38
STEP FI ELDS:
Descri pt or
The descriptor specifies the object to be stepped. If the

node is PROCESS CODE, the I D specifies a process.

7.5 REPORT Commrand
The REPORT command is sent by the host to request a status

report on a specified target object. The status is returned in a
STATUS reply.

Page 63

RFC- 909 July 1984

0 00 1 1
0123456789012345
o e e e e oo o Fom e e e e oo o +
0 | 10 I
o e e e e oo o Fom e e e e oo o +
1| CONTROL | REPORT |
o e e e e oo o Fom e e e e oo o + +-+
2 | Mode | 0 | |
o e e e e oo o Fom e e e e oo o + |
3| | | Descriptor
+- - I D --+ |
4 | Field | |
o mm e e e e e e e e e e eaao o + +-+

REPORT Command For nat
Fi gure 39

REPORT FI ELDS

Descri pt or

The descriptor specifies the object for which a STATUS
report is requested. For a node of PROCESS CODE, the ID
specifies a process. Qher valid nbdes are PHYS MACRO, to
guery the status of the target application, and BREAKPO NT
and WATCHPOI NT, to get the status of a breakpoint or
wat chpoi nt .

7. STATUS Reply

The target sends a STATUS reply in response to a REPORT
command from the host. STATUS gives the state of a specified
object. For exanple, it may tell whether a particular target

process i s running or stopped.

Page 64

LDP Specification Control Conmands

0 00 1 1
0123456789012345
S S +
0 | Command Lengt h |
S S +
1| CONTROL | STATUS |
S S + +-+
2 | Mode | 0 | |
o e e e e oo o Fom e e e e oo o + |
3| | | Descriptor
+- - I D --+ |
4 | Field | |
o m e e e e e e e e eeaoo- + +-+
5 St at us |
o m e e e e e e e e eeaoo- + +-+
* I
* I
* | Oher Data
o mm e e e e e e e e e e eaao o + |
n O her Data | |
o m e e e e e e e e eeaoo- + +-+

STATUS Reply For mat
Fi gure 40
STATUS FI ELDS:
Descri pt or
The descriptor specifies the object whose status is being
given. If the node is PROCESS CODE, then the ID specifies a
process. |If the node is PHYS MACRO then the status is that
of the target application.
St at us
The status code describes the status of the object. St at us
codes are O0O=STOPPED and 1=RUNNI NG For breakpoi nts and
wat chpoi nts, STOPPED neans di sarned and RUNNI NG neans ar ned.
O her Data

For breakpoints and watchpoints, Oher Data consists of a

Page 65

RFC- 909 July 1984

16-bit word giving the current value of the FSMstate
vari abl e.

7.7 EXCEPTION Trap

An EXCEPTION i s a spontaneous nessage sent from the target
i ndi cating a target-machine exception associated wth a
particul ar object. The object is specified by an address.

0 00 1 1
0123456789012345
S S +
0 | Command Lengt h |
S S +
1| CONTROL | EXCEPTION |
S S + +-+
2 | Mode | 0 | |
o e e e e oo o Fom e e e e oo o + |
3| |
+- - I D --+ |
4 | Field | | Address
o mm e e e e e e e e e e eaao o + |
5| |
+- - O fset --+ |
6 | |
o m e e e e e e e e eeaoo- + +-+
7 Type I
o m e e e e e e e e eeaoo- + +-+
* I
* I
* | Oher Data
o mm e e e e e e e e e e eaao o + |
n O her Data | |
o m e e e e e e e e eeaoo- + +-+

EXCEPTI ON For mat
Fi gure 41

EXCEPTI ON FI ELDS:

Addr ess

Page 66

LDP Specification Control Conmands

The address specifies the object the exception is for.
Type

The type of exception. Values are target-dependent.
O her Data

Val ues are target-dependent.

Page 67

RFC- 909 July 1984

Page 68

LDP Specification Managenent Conmands

CHAPTER 8

Managenent Commands

Managenent conmands are used to control resources in the
target machi ne. There are two kinds of commands: those that
interrogate the renote machi ne about resources, and those that
allocate and free resources. There are nanagenent conmands to
create, list and delete breakpoints. All comands have
corresponding replies which include the sequence nunber of the
request conmand. Failing requests produce ERROR repli es.

There are two resource allocation commands, CREATE and
DELETE, which create and delete objects in the renote nachine.
There are a nunmber of listing comands for listing a variety of
target objects -- breakpoints, watchpoints, processes, and nanes.
The ampunt of data returned by listing commands nmay vary in
| ength, depending on the state of the target. If alist is too
large to fit in a single nessage, the target wll send it in
several list replies. A flag in each reply specifies whether
nore nmessages are to foll ow

8.1 CREATE Conmand

The CREATE command is sent fromthe host to the target to
create a target object. |If the CREATE is successful, the target
returns a CREATE DONE reply, which contains a descri pt or
associated wth the CREATEd object. The types of objects that
may be specified in a CREATE include breakpoints, processes,
menory objects and descriptors. Al are optional except for
br eakpoi nt s.

Page 69

RFC- 909 July 1984

0 00 1 1
0123456789012345
S S +
0 | Command Length |
S S +
1 | MANAGEMENT | CREATE |
S S +
2 | Create Type |
S S + +- +
* I
* | Create
* | Argunents
o e e e e oo o Fom e e e e oo o + |
n Create Argunents |
S S + +- +

CREATE Conmand For mat
Fi gure 42

CREATE FI ELDS:
Create Type

The type of object to be created. Argunents vary with the
type. Currently defined types are shown in Figure 43. Al
are optional except for BREAKPO NT.

Create Type | Synbol

0 BREAKPOl NT
1 WATCHPOl NT

2 PROCESS

3 MEMORY_OBJECT
4 DESCRI PTOR

Create Types
Fi gure 43

Page 70

LDP Specification Managenent Conmands

Create Argunents

Create argunents depend on the type of object being created.
The formats for each type of object are described bel ow

0 00 1 1
0123456789012345
S S +

0 | 22 |
S S +

1| MANAGEMENT | CREATE |
S S +

2 | BREAKPO NT |
S S + +-+

3| Mode | Mbde Argunent | |
o e e e e oo o Fom e e e e oo o + |

4 | |
+- - I D --+ | Create

5 | Field | | BREAKPO NT
A R R R R + | Argunents

6 | |
+- - O fset --+ |

7 |
o mm e e e e e e e e e e eaao o + |

8 | Maxi mum St at es | |
o e e e e oo o Fom e e e e oo o + |

9 | Maxi mum Si ze | |
o e e e e oo o Fom e e e e oo o + |

10| Maxi mum Local Vari abl es | |
S S + +-+

CREATE BREAKPO NT For mat
Fi gure 44

BREAKPO NT and WATCHPQO NT
The format is the same for CREATE BREAKPO NT and CREATE
WATCHPO NT. In the follow ng discussion, ’breakpoint’ may
be taken to nean either breakpoint or watchpoint.

The address is the location where the breakpoint is to be
set. In the case of watchpoints it is the location to be

Page 71

RFC- 909 July 1984

wat ched. Valid nodes are any PHYS * npde that addresses
macr o- menory, PROCESS CODE for breakpoints and PROCESS_DATA
for wat chpoints.

"Maxi mum states’ is the nunber of states the finite state
machine for this breakpoint wll have. A value of zero
i ndicates a default breakpoint, for targets which do not
i mplement finite state nachine (FSM breakpoints. A default
breakpoint is the sane as an FSMwith one state consisting
of a STOP and a REPORT conmmand for the process containing
t he breakpoint.

"Maxi mum size' is the total size, in octets, of the
breakpoint data to be sent via subsequent BREAKPO NT_DATA
commands. This is the size of the data only, and does not
i nclude the LDP command headers and breakpoi nt descriptors.
"Maxi mum | ocal variables’ is the nunber of 32-bit longs to
reserve for |local variables for this breakpoint. Normally
this value will be zero
PROCESS

Creates a new process. Argunents are target-dependent.

Page 72

LDP Specification

0 0
01234567
o e e e e e e e e o=
0 | Conmmand
o e e e e e e e e o=
1| MANAGEMENT |
o e e e e e e e e o=
2 | MEMORY _
o e e e e e e e e o=
3 | hj ect
o e e e e e e e e o=
4 | Nane
o e e e e e e e e e e oo -
5 | Name char |
o e e e e e e e e e e oo -
o e e e e e e e e o=
n| O or Name char |
o e e e e e e e e o=

Managenent Conmands

0 1 1
89012345
_______________ +
Lengt h |
_______________ +

CREATE |
_______________ +
OBJECT |
_______________ +
Si ze |
_______________ +
Si ze |
--------------- + +-+
Nane char | |
--------------- + |

| nject
| Name

............... .|

0 |
--------------- + +-+

CREATE MEMORY_OBJECT For mat
Fi gure 45

MEMORY_OBJECT

Creates an object of size (bj

ect Size, with the given nane.

hject Size is in target dependent units. The nanme may be
the null string for unnanmed objects. Nane Size gives the
nunber of characters in bject Nane, and nust be even
Al ways ends with a null octect.

DESCRI PTOR
Used for obtaining descriptors fromIDs on target systens
where |IDs are longer than 32 bits. There is a single
argunment, Long I D, whose length is target dependent.

Page 73

RFC- 909 July 1984

8.2 CREATE_DONE Reply

The target sends a CREATE DONE reply to the host in response
to a successful CREATE conmand. The reply contains the sequence
nunber of the CREATE request, and a descriptor for the object
creat ed. This descriptor is wused by the host to specify the
obj ect in subsequent commands referring to it. Commands whi ch
refer to created objects include LIST_* commands, DELETE and
BREAKPO NT_DATA. For exanple, to delete a CREATEd object, the
host sends a DELETE conmand that specifies the descriptor
returned by the CREATE DONE reply.

0 00 1 1
0123456789012345
S S +

0 | 12 I
S S +

1| MANAGEMENT | CREATE _DONE |
S S +

2 | Creat e Sequence Nunber |
S S + +-+

3| Mode | Mbde Argruent | |
A L A L + | Created

4 | | | Object
+- - | D --+ | Descriptor

5 | Field | |
S S + +-+

CREATE_DONE Reply For nmat
Fi gure 46

CREATE_DONE FI ELDS
Creat e Sequence Number

The sequence nunber of the CREATE command to which this is
the reply.

Created Object Descriptor

A descriptor assigned by the target to the created object.
The contents of the descriptor fields are arbitrarily

Page 74

LDP Specification Managenent Conmands

assigned by the target at its convenience. The host treats
the descriptor as a unitary object, used for referring to
the created object in subsequent commuands.

8.3 DELETE Conmmand

The host sends a DELETE command to renbve an object created
by an earlier CREATE conmand. The object to be deleted is
specified with a descriptor. The descriptor is from the
CREATE_DONE reply to the original CREATE comand.

0 00 1 1
0123456789012345
S S +

0 | 10 |
S S +

1| MANAGEMENT | DELETE |
S S + +-+

2 | Mode | Mbde Argunent | |
o e e e e oo o Fom e e e e oo o + |

3 | | | Created
+- - I D --+ | nject

4 | Field | | Descriptor
S S + +-+

DELETE Command For nat
Fi gure 47

DELETE FI ELDS:
Created Obj ect Descriptor
Specifies the object to be deleted. This is the descriptor

that was returned by the target in the CREATE DONE reply to
the original CREATE conmmand.

Page 75

RFC- 909 July 1984

8.4 DELETE_DONE Reply

The target sends a DELETE DONE reply to the host in response
to a successful DELETE command. The reply contains the sequence
nunber of the DELETE request.

0 00 1 1
0123456789012345
S S +
0| 6 I
S S +
1| MANAGEMENT | DELETE_DONE |
S S +
2 | Del et e Sequence Number |
S S +

DELETE_DONE Reply For mat
Fi gure 48

DELETE_DONE FI ELDS
Request Sequence Numnber

The sequence nunber of the DELETE command to which this is
the reply.

8.5 LI ST_ADDRESSES Comrand

The host sends a LI ST_ADDRESSES command to request a |ist of
val i d address ranges for a specified object. The object is given
by a descriptor. Typical objects are a target process, or the
target physi cal machi ne. The target responds with an
ADDRESS LI ST reply. This command is used for obtaining the size
of dynam c address spaces and for determ ni ng dunp ranges.

Page 76

LDP Specification Managenent Conmands

0 00 1 1
0123456789012345
S S +
0 | 10 I
S S +
1| MANAGEMENT | LI ST_ADDRESSES|
S S + +-+
2 | Mode | Mbde Argunent | |
A L A L + | QObject
3| | | Descriptor
+- - I D --+ |
4 | Field | |
S S + +-+
LI ST_ADDRESSES Conmand For mat
Fi gure 49
LI ST_ADDRESSES FI ELDS:
Obj ect Descri ptor
Speci fies the object whose address ranges are to be isted.

Valid nodes include PHYS MACRO, PHYS M CRO, PROCESS CODE,
and PROCESS_DATA.

8.6 ADDRESS LI ST Reply

The target sends an ADDRESS LIST reply to the host in
response to a successful LIST_ADDRESSES conmand. The reply
contai ns the sequence nunber of the LI ST_ADDRESSES request, the
descriptor of the object being listed, and a list of the valid
address ranges within the object.

Page 77

RFC- 909

Page 78

0 00 1 1
0123456789012345
S S +
0 | Command Length |
S S +
1| MANAGEMENT | ADDRESS LI ST |
S S +
2 | Li st Sequence Number |
S S +
3 | FI ags |M [Item Count |
S S +
4 | I
+- - --+
5 | Descri ptor |
+- - --+
6 | I
S S +
7 I
+- - First Address --+
8 | I
o m e e e e e e e e eeaoo- +
9 | I
+- - Last Address --+
10| |
o m e e e e e e e e eeaoo- +
*
S S +
I I
+- - First Address --+
I I
o m e e e e e e e e eeaoo- +
I I
+- - Last Address --+
I I
o m e e e e e e e e eeaoo- +

ADDRESS LI ST Reply For nat

Fi gure 50

July 1984

First
Addr ess
Range

Last
Addr ess
Range

LDP Specification Managenent Conmands

ADDRESS LI ST FI ELDS:
Li st Sequence Number

The sequence nunber of the LI ST_ADDRESSES command to which
this is the reply.

Fl ags
If M1, the address list is continued in one or nore
subsequent ADDRESS LIST replies. If MO, this is the final
ADDRESS LI ST.
I t em Count
The nunber of address ranges described in this comrand.
Descri pt or
The descriptor of the object being listed.
Addr ess Range

Each address range is conposed of a pair of 32-bit addresses

which give the first and | ast addresses of the range. |If
there are "holes’ in the address space of the object, then
multiple address ranges will be used to describe the valid

addr ess space.

8.7 LI ST_BREAKPAO NTS Comrand
The host sends a LI ST_BREAKPO NTS command to request a |ist

of all breakpoints associated with the current connection. The
target replies with BREAKPO NT_LI ST

Page 79

RFC- 909 July 1984

0 00 1 1
0123456789012345
oo oo +
0 | 4 I
Fom o oo +
1| MANAGEMENT | LI ST_BREAKPO NTS
Fom o Fom e +

LI ST_BREAKPO NTS Commrand For mat
Fi gure 51

8.8 BREAKPOI NT_LI ST Reply

The target sends a BREAKPO NT_LIST reply to the host in
response to a LIST_BREAKPO NTS command. The reply contains the
sequence nunber of the LIST_BREAKPO NTS request, and a list of
all breakpoints associated with the current connection. The
descriptor and address of each breakpoint are |isted.

Page 80

ess

LDP Specification

0 00 1 1
0123456789012345
S S +
0 | Command Length |
S S +
1| MANAGEMVENT | BREAKPO NT_LI ST|
S S +
2 | Li st Sequence Number |
S S +
3 | FI ags |M [Item Count |
S S +
4 | Mode | 0 |
S S +
5| I
+- - | D -+
6 | Field |
S S +
7 | Mode | Mbde Argunent |
S S +
8 | I
+- - | D -+
9 | Field |
o m e e e e e e e e eeaoo- +
10| |
+- - O fset --+
11] |
o m e e e e e e e e eeaoo- +
*

BREAKPO NT_LI ST Reply For mat
Fi gure 52

BREAKPO NT_LI ST FI ELDS:

Li st Sequence Number

Managenent Conmands

Br eakpoi nt
Descri pt or

Br eakpoi nt
Addr ess

Addi ti onal
Descri pt or - Addr

Pairs

The sequence nunber of the LI ST_BREAKPO NTS command to which

this is the reply.

Fl ags

Page 81

RFC- 909 July 1984

If M1, the breakpoint list is continued in one or nore
subsequent BREAKPO NT_LI ST replies. If MO, this is the
fi nal BREAKPO NT_LI ST.

I t em Count
The nunber of breakpoints described in this Iist.

Br eakpoi nt Descri ptor
A descriptor assigned by the target to this breakpoint.
Used by t he host to specify this breakpoint in
BREAKPO NT_DATA and DELETE commands.

Br eakpoi nt Address

The address at which this breakpoint is set.

8.9 LI ST_PROCESSES Comrand

The host sends a LI ST_PROCESSES command to request a |ist of
descriptors for all processes on the target. The target replies
wi t h PROCESS LI ST.

0 00 1 1
0123456789012345
oo oo +
0| 4 |
Fom o oo +
1| MANAGEMENT | LI ST_PROCESSES |
Fom o Fom e +

LI ST_PROCESSES Conmand For mat
Fi gure 53

Page 82

LDP Specification Managenent Conmands

8.10 PROCESS_LI ST Reply

The target sends a PROCESS LIST reply to the host in
response to a LIST_PROCESSES command. The reply contains the
sequence nunber of the LIST_PROCESSES request, and a list of al
processes in the target. For each process, a descriptor and a
t ar get - dependent anmpunt of process data are given

0 00 1 1
0123456789012345
S S +
0 | Command Length |
S S +
1| MANAGEMENT | PROCESS LI ST |
S S +
2 | Li st Sequence Number |
S S +
3 | FI ags |M [Item Count |
S S + +-+
4 | PROCESS_CODE | 0 | |
o e e e e oo o Fom e e e e oo o + |
5 | | Process
+- - | D --+ | Descriptor
6 | Field | |
S S + +-+
7 | Process data count | |
o e e e e oo o Fom e e e e oo o + |
8 | Process data | Process data | |
A R R R R + | Process
* | Data
* I
* I
o e e e e oo o Fom e e e e oo o + |
n| Process data | Process data | |
o m e e e e e e e e eeaoo- + +-+
| Additional

| Descriptor-Data

| Pairs

PROCESS LI ST Reply For mat
Fi gure 54

Page 83

RFC- 909 July 1984

PROCESS LI ST FI ELDS:
Li st Sequence Number

The sequence nunber of the LI ST_PROCESSES command to which
this is the reply.

Fl ags
If M1, the process list is continued in one or nore
subsequent PROCESS LIST replies. If MO, this is the final
PROCESS_LI ST.

I t em Count
The nunber of processes described in this list. For each

process there is a descriptor and a variable nunber of
octets of process data.

Process Descri ptor

A descriptor assigned by the target to this process. Used
by the host to specify this PROCESS in a DELETE comand.

Process Data Count

Nunber of octets of process data for this process. Mist be
even.

Process Data

Tar get - dependent infornmati on about this process. Nunber of
octets is given by the process data count.

8.11 LI ST_NAMES Conmand

The host sends a LI ST_NAMES command to request a |list of
avai |l abl e nanmes as strings. The target replies with NAME LI ST.

Page 84

LDP Specification Managenent Conmands

0 00 1 1
0123456789012345
oo oo +
0| 4 |
Fom o oo +
1| MANAGEMENT | LIST_NAMES |
Fom o Fom o +

LI ST_NAMES Conmmand For mat
Fi gure 55

8.12 NAME_LI ST Reply

The target sends a NAME LIST reply to the host in response
to a LIST_NAMES command. The reply contains the sequence nunber

of the LI ST_NAMES request, and a list of all target names, as
strings.

Page 85

RFC- 909 July 1984

0 00 1 1
0123456789012345
S S +
0 | Command Length |
S S +
1| MANAGEMENT | NAME_LI ST |
S S +
2 | Li st Sequence Number |
S S +
3 | FI ags |M [Item Count |
S S + +-+
4 | Nane Size | |
o e e e e oo o Fom e e e e oo o + |
5] Nanme Char | Nanme Char | | Name
R L R + | String
* I
*
: |
o e e e e oo o Fom e e e e oo o + |
n| O or Name Char | 0 | |
S S + +-+
| Additional
| Name
| Strings

NAVE LI ST Reply For mat
Fi gure 56

NAME_LI ST FI ELDS:
Li st Sequence Number

The sequence nunber of the LIST_NAMES command to which this
is the reply.

Page 86

LDP Specification Managenent Conmands

Fl ags

If Me1l, the name list is continued in one or nore subsequent
NAMVE LI ST replies. If MO, this is the final NAME LI ST.

I t em Count
The nunber of nane strings in this list. Each nane string
consists of a character count and a null-term nated string
of characters.

Name Size

The nunber of octets in this name string. Mist be even

Nane Characters

A string of octets conposing the nane. Ends with a null
octet. The nunber of characters nust be even, so if the
terminating null conmes on an odd octet, another null is
appended.

8.13 GET_PHYS_ADDR Comrand

The host sends a GET_PHYS_ADDR conmand to convert an address
into physical form The target returns the physical address in a
GOT_PHYS_ADDR reply. For exanple, the host could send a
GET_PHYS_ADDR command containing a register-offset address, and
the target would return the physical address derived fromthis in
a GOT_PHYS_ADDR reply.

Page 87

RFC- 909 July 1984

0 00 1 1
0123456789012345
S S +
0 | 14 |
S S +
1| MANAGEMENT | CGET_PHYS ADDR |
S S + +-+
2 | Mode | Mbde Argunent | |
o e e e e oo o Fom e e e e oo o + |
3| | D | |
+- - Field --+ |
4 | | | Address
o e e e e oo o Fom e e e e oo o + |
5| |
+- - O fset --+ |
6 | |
S S + +-+

GET_PHYS_ADDR Comrand For mat
Fi gure 57

GET_PHYS_ADDR FI ELDS:
Addr ess

The address to be converted to a physical address. The node
may be one of PHYS_REG_OFFSET, PHYS_REG | NDI RECT,
PHYS MACRO PTR, any OBJECT_* nopde, and any PROCESS * npde
except for PROCESS REG

8.14 GOT_PHYS_ADDR Reply

The target sends a GOI_PHYS ADDR reply to the host in
response to a successful GET_PHYS ADDR conmand. The reply
contains the sequence nunber of the GET_PHYS_ADDR request, and
the specified address converted into a physical address.

Page 88

LDP Specification Managenent Conmands

0 00 1 1
0123456789012345
S S +

0 | 16 |
S S +

1| MANAGEMENT | GOT_PHYS ADDR |
S S +

2 | Get Sequence Nunber |
S S + +-+

3 | PHYS_MACRO | 0 | |
o e e e e oo o Fom e e e e oo o + |

4 | |
+- - 0 --+ |

5 | | Address
o e e e e oo o Fom e e e e oo o + |

6 | |
+- - O fset --+ |

7 |
S S + +-+

GOT_PHYS_ADDR Reply For mat
Fi gure 58

GOT_PHYS_ADDR FI ELDS:
Get Sequence Number

The sequence nunmber of the GET_PHYS ADDR command to which
this is the reply.

Addr ess

The address resulting fromtranslating the address given in
the GET_PHYS_ADDR conmand into a physical address. Mdde is
al ways PHYS MACRO and | D and node argunent are always zero.
O fset gives the 32-bit physical address.

Page 89

RFC- 909 July 1984

8.15 CGET_OBJECT Comand

The host sends a GET_OBJECT conmand to convert a name string
into a descriptor. The target returns the descriptor in a
GOT_OBJECT reply. Intended for use in finding control paraneter
obj ect s.

0 00 1 1
0123456789012345
S S +
0 | Command Length |
S S +
1| MANAGEMENT | CGET_OBJECT |
S S + +-+
2 | Nane Size | |
o e e e e oo o Fom e e e e oo o + |
3 | Nanme Char | Nanme Char | | Name
R L R + | String
* I
*
: |
o e e e e oo o Fom e e e e oo o + |
n| O or Name Char | 0 | |
S S + +-+

GET_OBJECT Command For mat
Fi gure 59

GET_OBJECT FI ELDS:
Name String
The name of an object.
Name Size
The nunber of octets in this name string. Mist be even.
Name Characters

A string of octets conposing the nane. Ends with a null
octet. The nunber of characters nust be even, so if the

Page 90

LDP Specification Managenent Conmands

terminating null cones on an odd octet, another null is
appended.

8.16 GOT_OBJECT Reply

The target sends a GOI_OBJECT reply to the host in response
to a successful GET_OBJECT conmand. The reply contains the
sequence nunber of the GET_OBJECT request, and the specified
obj ect nane converted into a descriptor.

0 00 1 1
0123456789012345
S S +

0 | 12 I
S S +

1| MANAGEMENT | GOT_OBJECT |
S S +

2 | Get Sequence Nunber |
S S + +-+

3 | Mode | Mbde Argunent | |
o e e e e oo o Fom e e e e oo o + |

4 | |
e I D -+ | nject

5 | | | Descriptor
S S + +-+

GOT_OBJECT Reply For mat
Fi gure 60

GOT_OBJECT FI ELDS:
Get Sequence Number

The sequence nunber of the GET_OBJECT command to which this
is the reply.

Descri pt or

Page 91

RFC- 909 July 1984

The descriptor of the object named in the GET_OBJECT
command.

Page 92

LDP Specification Br eakpoi nt s and Wt chpoints

CHAPTER 9

Br eakpoi nts and Wt chpoi nts

Breakpoints and watchpoints are used in debuggi ng
applications. Each breakpoint or watchpoint is associated with
one debugger connection and one address. Wen a breakpoint or
wat chpoint is triggered, the target executes one or nore conmmands
associated with it. A breakpoint is triggered when its address
is executed. A watchpoint is triggered when its address is
nodi fi ed. The sane nechanismis used for structuring breakpoint
and watchpoint comands. For brevity's sake, 'breakpoint’ wll
be used in the remainder of this docunent to refer to either a
breakpoi nt or a wat chpoi nt.

The commands used by the host to mani pul ate breakpoints are
given in Figure 61, in the order in which they are normally used.
Al'l comands are sent fromthe host to the target, and each
speci fies the descriptor of a breakpoint.

Conmand Descri ption
_____________________ o e o e ==
CREATE Create a breakpoint
BREAKPO NT_DATA Send commuands to be executed in an
FSM br eakpoi nt
START Activate a breakpoint, set state
and initialize breakpoint variables
STOP Deactivate a breakpoi nt
CONTI NUE Activate a breakpoint
LI ST_BREAKPO NTS Li st all breakpoints
REPORT Report the status of a breakpoint
DELETE Del ete a breakpoi nt

Commands to Mani pul at e Breakpoints
Fi gure 61

Page 93

RFC- 909 July 1984

There are two kinds of breakpoints: default breakpoints and
finite state machine (FSM breakpoints. They differ in their use
of conmands.

Defaul t breakpoints do not contain any comuands. When
triggered, a default breakpoint stops the target object (i.e.,
target process or application) it is located in. A STATUS report
on the stopped object is sent to the host. At this point, the
host may send further commands to debug the target.

An FSM br eakpoi nt has one or nore conditional command |ists,
organi zed into a finite state machine. Wen an FSM breakpoint is
created, the total nunmber of states is specified. The host then
sends conmmands (usi ng BREAKPO NT_DATA) to be associated with each
state. The target naintains a state variable for the breakpoint,
which determines which comuand list wll be executed if the
breakpoint is triggered. Wen the breakpoint is created its
state variable is initialized to zero (zero is the first state).
A breakpoi nt comrand, SET_STATE, nmay be used within a breakpoint
to change the value of the state variable. A REPORT conmand
applied to a breakpoint descriptor returns its address, whether
it is arned or disarned, and the value of its state variable.

Commands valid in breakpoints include all inplenented data
transfer and control conmmands, a set of conditional comrands, and
a set of breakpoint conmands. The conditional commands and the
breakpoi nt conmmands act on a set of |ocal breakpoint variables.
The Dbreakpoint variables consist of the state variable, a
counter, and two pointer variables. The conditional commands
control the execution of breakpoint cormand lists based on the
contents of one of the Dbreakpoint variables. The breakpoint
conmands are used to set the value of the breakpoint variables:
SET_STATE sets the state variable, SET_PTR sets one of the
poi nter variables, and |INC COUNT increnents the br eakpoi nt

counter. There may be inplenentation restrictions on the nunber
of breakpoints, the nunber of states, the nunmber of conditions,
and the size of the command lists. Managenent commands and

protocol conmands are forbidden in breakpoints.

In FSM br eakpoi nts, the execution of commands is controlled

as follows. When a breakpoint is triggered, the breakpoint’'s
state variable selects a particular state. One or nor e
conditional comand lists is associated with this state. A
conditional comand list consists of a list of conditions
followed by a list of comands which are executed if the
condition list is satisfied. The debugger starts a breakpoint by
executing the first of these lists. |If the condition list is

Page 94

LDP Specification Br eakpoi nt s and Wt chpoints

sati sfied, the debugger executes the associated conmand |ist and
| eaves the breakpoint. |If the condition list fails, the debugger
skips to the next conditional conmand 1ist. This process
continues wuntil the debugger either encounters a successful
condition list, or exhausts all the conditional conmand lists for
the state. The relationship of conmands, lists and states is
shown in Figure 62 (IFs, THENs and ELSEs are wused below to
clarify the logical structure within a state; they are not part
of the protocol).

State O
| F <condition list 0>
THEN <command |ist 0>
ELSE | F <condition list 1>
THEN <command |ist 1>
ELSE | F <condition list n>
THEN <conmmand |ist n>
ELSE <exit>
*
State n

Br eakpoi nt Conditional Command Lists
Fi gure 62

9.1 BREAKPO NT_DATA Command

BREAKPO NT_DATA is a data transfer comuand used by the host
to send commands to be executed in breakpoints and watchpoints.
The command specifies the descriptor of the breakpoi nt or
wat chpoi nt, and a stream of conmands to be appended to the end of
the Dbreakpoint’s command |ist. BREAKPO NT_DATA is applied
sequentially to successive breakpoint states, and successive

Page 95

RFC- 909 July 1984

conmand lists within each state. Miltiple BREAKPO NT_DATAs nay
be sent for a given breakpoint. Breaks between BREAKPO NT_DATA
commands may occur anywhere within the data stream even wthin
i ndi vidual commands in the data. Sufficient space to store the
data nust have been allocated by the nmaximumsize field in the
CREATE BREAKPO NT/ WATCHPO NT conmand.

0 00 1 1
0123456789012345
SRS SRS +
0 | Command Length |
SRS SRS +
1 | DATA_TRANSFER | BREAKPO NT_DATA|
SRS SRS + +-+
2 | Mode | Mode Argunent | |
A A + | Breakpoint or
3| | | Wat chpoi nt
+- - ID --+ | Descriptor
4 | Field | |
o e m e o e o e e e oo + +-+
5 Dat a | Data | |
o m e m e e e e e e maaoo- + |
* I
* | Data
* I
S S + |
n Dat a | Data or O | |
SRS SRS + +-+
BREAKPO NT_DATA Conmand For mat
Fi gure 63
BREAKPQO NT_DATA FI ELDS:
Command Lengt h
Total length of this command in octets, including data,

excluding the final padding octet, if any.
Dat a
A streamof data to be appended to the data for this

breakpoint or watchpoint. This streamhas the form of one
or nore states, each containing one or nore conditional

Page 96

LDP Specification Br eakpoi nt s and Wt chpoints

command lists. The first BREAKPO NT_DATA command sent for a
br eakpoi nt contains data starting with state zero. The data
for each state starts with the state size. A conditional
command list is conposed of two parts: a condition list, and
a command list. Each list begins with a word that gives its
size in octets.

<state O size>
<condition list O size> <condition list 0>
<comand list O size> <command |ist 0>

*
*
*

<condition list n size> <condition list n>
<command list n size> <command |ist n>
<state 1 size>
<etc>

<state n size>

Br eakpoi nt Data Stream For mat
Fi gure 64

Page 97

RFC- 909 July 1984

Si zes

Al sizes are stored in 16-bit words, and include their own
| engt h. The state size gives the total nunber of octets of
breakpoint data for the state. The <condition Ilist size
gives the total octets of breakpoint data for the follow ng
condition list. A condition list size of 2 indicates an
enpty condition list: in this case the follow ng conmand
list is executed unconditionally. The conmand [list size
gives the total octets of breakpoint data for the follow ng
command i st.

Li sts

Condition and command lists cone in pairs. Wien the
breakpoi nt occurs, the condition list controls whether the
foll ow ng command |ist should be executed. A condition |ist
consists of one or nore conmands fromthe CONDI TI ON conmand
class. A conmand |ist consists one or nore LDP comuands.
Val i d commands are any comands from the BREAKPO NT
DATA_TRANSFER or CONTROL conmand cl asses.

Page 98

LDP Specification Condi ti onal Conmands

CHAPTER 10

Condi ti onal Conmnmands

Condi ti onal conmands are used in breakpoints to control the

execution of breakpoint commands. One or nore conditions in
sequence forma condition list. |If a condition list is satisfied
(evaluates to TRUE), the breakpoint comand |Iist inmediately
following it is executed. (See Breakpoints and Wtchpoints,

above, for a discussion of the logic flow in conditional/command
lists.) Conditional comands performtests on |ocal breakpoint
variables, and other |[|ocations. Each condition evaluates to
either TRUE or FALSE Figure 65 contains a summary of
condi ti onal conmands:

Conmand Descri ption

CHANGED <l oc> Determine if a |location has changed
COVMPARE <l ocl1l> <mask> <l oc2> Compare two | ocations, using a nask
COUNT_[EQ | GTI | LT] <value> Conpare the counter to a val ue
TEST <l oc> <mask> <val ue> Conmpare a location to a val ue

Condi ti onal Conmand Sunmmary
Fi gure 65

The rules for formng and evaluating condition |lists are:

0 consecutive conditions have an inplicit logical AND between
them A sequence of such conditions is called an "and_list’.
and_lists are delinited by an OR conmand and by the end of
the condition list.

o the breakpoint OR comand may be inserted between any pair of
condi tions

o] AND t akes precedence over OR

o] nested condition lists are not supported. A condition |ist
is sinply one or nore and_lists, separated by ORs.

Page 99

RFC- 909 July 1984

o] the condition list is evaluated in sequence wuntil either a
TRUE and_list is found (condition list <- TRUE), or the end
of the condition list is reached (condition list <- FALSE).
An and list is TRUEif all its conditions are TRUE.

The distillation of these rules into BNF is:

<condition_list> :== <and_|list> [OR <and_list>]*
<and_l i st> : == <condi tion> [AND <condi tion>]*
<condi ti on> : == CHANGED | COWPARE | COUNT | TEST

where: OR is a breakpoint conmand
AND is inmplicit for any pair of consecutive conditions

For example, the following condition list, with one conmand per
l'i ne,

COUNT_EQ 1
OoR
COUNT_GT 10
COUNT_LT 20
eval uates to:
(COUNT = 1) OR (COUNT > 10 AND COUNT < 20)

and will cause the command list that follows it to be executed if
the counter is equal to one, or is between 10 and 20.

10.1 Condition Conmmand For nat

Condition conmands start wth the standard f our - oct et

conmand header. The high-order bit of the conmand type byte is
used as a negate flag: if this bit is set, the bool ean value of
the condition is negated. This flag applies to one condition

only, and not to other conditions in the condition list.

Page 100

LDP Specification Condi ti onal Conmands

0 00 1 1
0123456789012345
SRS SRS +
0 | Command Length |
SRS SRS +
1 | CONDITION [N Type |
SRS SRS +

Condi ti on Conmand Header
Fi gure 66

10.2 COUNT Conditions

The COUNT conditions (COUNT_EQ COUNT_GI and COUNT_LT) are
used to conpare the breakpoint counter to a specified value. The
counter is set to zero when the breakpoint is STARTed, and is
increnented by the I NC_COUNT breakpoint command. The format is
the same for the COUNT_EQ COUNT_GI and COUNT_LT conditions.

0 00 1 1
0123456789012345
SRS SRS +
0 | 8 I
SRS SRS +
1 | CONDITION [N Type |
SRS SRS +
2 | I
+- - Val ue --+
3 | I
SRS SRS +

COUNT Condi ti on For mat
Fi gure 67

COUNT_* Condition FIELDS

Page 101

RFC- 909 July 1984

Type

One of COUNT_EQ COUNT_LT and COUNT_GIT. The <condition is
TRUE if the breakpoint counter is [EQ | LT | GI] the
speci fied val ue.

Val ue

A 32-bit value to be conpared to the counter.

10.3 CHANGED Condition

The CHANGED condition is TRUE if the contents of the
specified | ocation have changed since the last tine this
breakpoi nt occurred. Only one location nay be specified as the
obj ect of CHANGED conditions per breakpoint. The CHANGED
condition is always FALSE the first tinme the breakpoint occurs.

0 00 1 1
0123456789012345
SRS SRS +
0 | 14 |
SRS SRS +
1 | CONDITION | N CHANGED |
SRS SRS +
2| I
+- - --+
3| Addr ess |
+- - --+
4 | I
+- - --+
5| I
+- - --+
6 | I
SRS SRS +

CHANGED Condi ti on
Fi gure 68

Page 102

LDP Specification Condi ti onal Conmands

CHANGED FI ELDS
Addr ess

The full 5-word address of the location to be tested by the
CHANGED conmand.

10.4 COWPARE Condition

The COMPARE condition conpares two |ocations using a mask
The condition is TRUE if (<locl> & <mask>) = (<l oc2> & <nask>).

Page 103

RFC- 909

Page 104

0 00 1 1
0123456789012345
SRS SRS +
0 | 28 |
SRS SRS +
1 | CONDI TI ON |N| COVPARE |
SRS SRS +
2 | I
+- - --+
3| Address 1 |
+- - --+
4| I
+- - --+
5| I
+- - --+
6 | I
SRS SRS +
7 I
+- - Mask --+
8 | I
o e m e o e o e e e oo +
9 | I
+- - --+
10| Address 2 |
+- - --+
11] |
+- - --+
12| |
+- - --+
13| |
o e m e o e o e e e oo +

COMPARE Condi ti on
Fi gure 69

July 1984

LDP Specification Condi ti onal Conmands

COVPARE FI ELDS

Address 1
Address 2

The 5-word addresses of the locations to be conpared.

Mask

A 32-bit mask specifying which bits in the |ocations should
be conpar ed.

10.5 TEST Condition
The TEST condition is used to conpare a |location to a val ue,

using a nask. The condition is TRUE if (<loc> & <mask>) =
<val ue>.

Page 105

RFC- 909 July 1984

0 00 1 1
0123456789012345
S S +
0 | 22 |
S S +
1 | CONDITION |N| TEST |
S S +
2 | I
+- - --+
3| Addr ess |
+- - --+
4| I
+- - --+
5| I
+- - --+
6 | I
S S +
7 I
+- - Mask --+
8 | I
o m e m e e e e e e maaoo- +
9 | I
+- - Val ue --+
10| |
o m e m e e e e e e maaoo- +
TEST Condition
Fi gure 70
TEST FI ELDS

Addr ess

The 5-word address of the location to be conpared to the
val ue.

Mask

A 32-bit mask specifying which bits in the |ocation should
be conpar ed.

Val ue

A 32-bit value to conpare to the nmasked | ocation

Page 106

LDP Specification Condi ti onal Conmands

Page 107

RFC- 909 July 1984

Page 108

LDP Specification Br eakpoi nt Conmmands

CHAPTER 11

Br eakpoi nt Commrands

Breakpoi nt commands are used to set the value of breakpoint
vari abl es. These commands are only valid within breakpoints and
wat chpoints. They are sent fromthe host to the target as data
i n BREAKPO NT_DATA conmands. Figure 71 contains a sunmary of
br eakpoi nt commands:

Conmand Descri ption

________________________ o e o e m e a ==

| NCREMENT <l ocati on> I ncrenent the specified | ocation

| NC_COUNT I ncrement the breakpoint counter

R OR two breakpoint condition lists

SET_PTR <n> <l ocati on> Set pointer <n> to the contents of
<l ocati on>

SET_STATE <n> Set the breakpoint state variable
to <n>

Br eakpoi nt Conmmand Sunmary
Figure 71

11.1 | NCREMENT Command
The | NCREMENT conmand i ncrenments the contents of a specified

| ocation. The location may be in any address space witable from
LDP.

Page 109

RFC- 909 July 1984

0 00 1 1
0123456789012345
SRS SRS +
0 | 14 |
SRS SRS +
1 | BREAKPQO NT | | NCREMENT |
SRS SRS +
2| I
+- - --+
3| Addr ess |
+- - --+
4 | I
+- - --+
5| I
+- - --+
6 | I
SRS SRS +

| NCREMENT Command For nat
Fi gure 72
| NCREMENT FI ELDS:
Addr ess

The full address of the |ocation whose contents are to be
i ncr enment ed.

11.2 1 NC_COUNT Conmmand

The I NC_COUNT conmand increments the breakpoint counter
There is one counter variable for each breakpoint. It is
initialized to zero when the breakpoint is created, when it is
armed with the START command, and whenever the breakpoint state
changes. The counter is tested by the COUNT_* conditions.

Page 110

LDP Specification Br eakpoi nt Conmmands

0 00 1 1
0123456789012345
oo oo +
0 | 4 I
oo oo +
1 | BREAKPO NT | 1 NC_COUNT
oo m e +

| NC_COUNT Conmand For mat
Fi gure 73

11.3 OR Command

The OR command delineates two and_lists in a breakpoint
condition |ist. A condition list is TRUE if any of the OR
separated and_lists in it are TRUEE A breakpoint condition |Iist
may contain zero, one or, nmany OR conmands. See 'Condition
Commands’ for an explanation of condition |ists.

0 00 1 1
0123456789012345
oo oo +
0 | 4 I
oo oo +
1 | BREAKPO NT | oR |
oo oo +

OR Command For nat
Figure 74

Page 111

RFC- 909 July 1984

11.4 SET_PTR Commrand

The SET_PTR command | oads the specified breakpoint pointer
with the contents of a location. The pointer variables and the
SET_PTR conmand are intended to provide a prinmitive but unlimted

i ndirect addr essi ng capability. Two addr essi ng nodes,
BPT_PTR_OFFSET and BPT_PTR_I NDI RECT, are used for referencing the
br eakpoi nt pointers. For example, to follow a linked |ist, use

SET_PTR to |load a pointer with the start of the Ilist, then use
successive SET_PTR commands with addressi ng node BPT_PTR_OFFSET
to get successive el enents.

0 00 1 1
0123456789012345
o e e e e oo o e e e e oo +
0| 16 |
o e e e e oo o e e e e oo +
1| BREAKPONT | SET_PTR |
o e e e e oo o e e e e oo +
2 | Poi nt er |
o e e e e oo o e e e e oo +
3| |
+- - --+
4 | Addr ess |
+- - --+
5| |
+- - --+
6 | |
+- - --+
7| |
o e e e e oo o e e e e oo +

SET_PTR Conmand For mat
Fi gure 75

SET_PTR FI ELDS
Poi nt er
The pointer to be changed. Allowable values are 0 and 1.

Addr ess

Page 112

LDP Specification Br eakpoi nt Conmmands

The full address of the |ocation whose contents are to be
| oaded into the given pointer variable.

11.5 SET_STATE Command

The SET_STATE conmmand sets the breakpoint state variable to
the specified value. This is the only nmethod of changing a
breakpoint’s state fromwithin a breakpoint. The breakpoint’s
state my be also be changed by a START comand fromthe host.
The state variable is initialized to zero when the breakpoint is
creat ed.

0 00 1 1
0123456789012345
SRS SRS +
0| 6 I
SRS SRS +
1 | BREAKPQO NT | SET_STATE |
SRS SRS +
2 | State Val ue |
o e m e o e o e e e oo +

SET_STATE Conmand For nmat

Fi gure 76
SET_STATE FI ELDS
State Val ue
The new val ue for the breakpoint state variable. Must not

be greater than the maxinmum state value specified in the
CREATE BREAKPO NT command that created this breakpoint.

Page 113

RFC- 909 July 1984

Page 114

LDP Specification Di agram Conventi ons

APPENDI X A

Di agr am Conventi ons

Command and nessage diagranms are used in this docunent to

illustrate the format of these entities. Wrds are listed in
order of transnission down the page. The first word is word
zero. Bits within a word run left to right, nost significant to
| east. However, following a convention observed in other

protocol docunents, bits are nunbered in order of transnission;
the nost significant bit in a wrd is transmtted first. The bit
| abelled "0 is the nost significant bit.

0 00 1 1
0123456789012345
S S +
01[M | L]
S S +
1| Mst Sig Octet| Least S. Cctet]|
S S +
M= nost significant bit in word zero,
transmtted first
L = least significant bit in word zero,

transmtted | ast

Sanpl e Di agram
Fi gure 77

Page 115

RFC- 909 July 1984

Page 116

LDP Specification Command Surmmary

APPENDI X B

Conmmand Summary

The following table lists all non-breakpoint LDP conmands in
al phabetical order, with a brief description of each.

Page 117

RFC- 909

ABORT

ABORT _DONE
ADDRESS LI ST
BREAKPO NT_DATA
BREAKPO NT_LI ST
CONTI NUE

CREATE
CREATE_DONE
DELETE
DELETE_DONE
EXCEPTI ON

ERROR

ERRACK
GET_OBJECT
GET_PHYS_ADDRESS
GOT_OBJECT
GOT_PHYS_ADDRESS
HELLO

HELLO REPLY

LI ST_ADDRESSES
LI ST_BREAKPO NTS
LI ST_NAMES

LI ST_PROCESSES
MOVE

MOVE_DONE
MOVE_DATA
NAVE_LI ST
PROCESS LI ST
READ

READ_DATA
READ_DONE
REPEAT_DATA
REPORT

START

STATUS

STEP

STOP

SYNCH
SYNCH_REPLY

WRI TE

VRl TE_MASK

Page 118

Sender
Host Tar get
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

July 1984

Functi on

Abort outstandi ng commands
Acknow edge ABCORT

Return valid address ranges
Send br eakpoi nt commands
Return Iist of breakpoints
Resunme executi on

Create target object

Acknowl edge CREATE

Del et e target object

Acknow edge DELETE

Report target exception
Report error with a host command
Acknow edge ERROR

Get object descriptor from nane
Get address in physical form
Return obj ect descri ptor
Return physical address
Initiate LDP session

Return LDP paraneters

Request valid address ranges
Request breakpoint |ist
Request nane |i st

Request process |i st

Read data fromtarget

Acknow edge MOVE conpl eti on
Send data request by MOVE
Return nane |i st

Return process |ist

Read data fromtarget

Return data requested by READ
Acknow edge READ conpl eti on
Wite copies of data

Request status of object
Start target object

Return status of object

Step execution of target object
Stop target object

Check sequence nunber
Confirm sequence nunber
Wite data

Wite data with mask

LDP Specification Command Surmmary

Conmmand Summary
Fi gure 78

Page 119

RFC- 909 July 1984

Page 120

LDP Specification Commands, Responses and Repli es

APPENDI X C

Commands, Responses and Replies

The follow ng table shows the relationship between commands,

responses and replies. Conmmands are sent fromthe host to the
target. Sone commands elicit responses and/or replies from the
target. Responses and replies are sent fromthe target to the

host. The distinction between themis that the target sends only
one reply to a comuand, but my send nmultiple responses.
Responses al ways contain data, whereas replies nmay or may not.

Page 121

RFC- 909

ABORT

BREAKPO NT_DATA
CONTI NUE

CREATE

DELETE
GET_OBJECT
GET_PHYS_ADDRESS
HELLO

LI ST_ADDRESSES
LI ST_BREAKPO NTS
LI ST_NAMES

LI ST_PROCESSES
MOVE

READ
REPEAT_DATA
REPORT

START

STEP

STOP

SYNCH

WRI TE

VRl TE_MASK

Conmmands,

Page 122

MOVE_DATA
READ_DATA

July 1984

ABORT _DONE

CREATE_DONE
DELETE_DONE
GOT_OBJECT
GOT_PHYS_ADDRESS
HELLO REPLY
ADDRESS LI ST
BREAKPOI NT_LI ST
NAVE LI ST
PROCESS_LI ST
MOVE_DONE
READ_DONE

STATUS

SYNCH_REPLY

Responses and Replies

Figure 79

LDP Specification d ossary

FSM

host

| ong

octet

RDP

APPENDI X D

G ossary

Finite state nachine. Commands of each breakpoint or
wat chpoi nt are inplenented as part of a finite state
machine. A list of breakpoint commands is associated wth
each state. There are several breakpoint conmands to change
fromone state to another

The "host’ in an LDP session is the tinesharing system on
whi ch the user process runs.

Along is a 32-bit quantity.

An octet is an eight-bit quantity.

The Reliable Data Protocol (RDP) is a transport |ayer
protocol designed as a | owoverhead alternative to TCP. RDP
is a connection oriented protocol that provides reliable,
sequenced nessage delivery.

server process

The LDP server process is the passive participant in an LDP
sessi on. The server process wusually resides on a target
machi ne such as a PAD, PSN or gateway. The server process
waits for a user process to initiate a session, and responds
to commands fromthe user process. In response to user
commands, the server may perform services on the target like
reading and witing nenory |ocations or setting breakpoints.
"Server’ is sonetinmes enployed as a shorthand for ’server
process’.

Page 123

RFC- 909 July 1984

t ar get

user

wor d

Page

The "target’ in an LDP session is the PSN, PAD or gateway
that is being |oaded, dunped or debugged by the host.
Normal |y, LDP will be inplenented in the target as a server
pr ocess. However, in sone targets with strange
requi rements, notably the Butterfly, the target LDP may be a
user process.

process

The LDP user process is the active participant in an LDP
sessi on. The wuser process initiates and term nates the
session and sends commands to the server process which
control the session. The user process usually resides on a
ti mesharing host and is driven by a higher-level entity
(e.g., an application programlike an interactive debugger).
"User’ is sonetines enployed as a shorthand for 'user
process’.

A word is a sixteen-bit quantity.

124

| NDEX

ABORT CONTTBNG. . . .t e e e e e e e e e e e 35
ABORT _DONE reply. ..o e e 36
AAAr BSS. . ottt e e 60, 66
address desCriptor. 20
address format. 19, 25, 31
Addr €SS | D, oo e 22
Aaddr €SS MDAE. . .. 20, 22
address nmode argumBNtt 21
address of fSet. ... i e 20
Addr @SSi NG, . . oo 19
ADDRESS LIST reply. ... e 76, 77
BASI C DEBUGCER.ot e e e e e e e 12, 32
breakpoint... 9, 13, 57, 60, 71, 79, 92, 93, 95, 96, 99, 107
breakpoint commands................. 9, 94, 95, 107
breakpoint counter........................ 94, 100, 101, 110
breakpoint data............ 97, 99
breakpoint state variable........................... 94, 107
breakpoint variables........ 94
BREAKPO NT_DATA comand. 73, 94, 95, 107
BREAKPO NT_LIST reply. ... 79, 80
CHANGED condi t1 0N, ..o e e e e e e e e 102
COMMBNG Cl A@SS. . .ttt e e e e e 16
command length field......... i 16
COVMPARE Condi t1 0N, . oo e e e e e e e e e e e 103
condition command header............ 101
conditional conmands............ 94, 99
CONTI NUE COMMBNG. . . .t e e e e e e e e e e e e e e 62
control COMMBNAS. e e e e e 9, 57
COUNT condi ti ON. ..o v e e e e e e e 110, 111
COUNT_EQ condi tiONn. e e 101
COUNT_GT condi tiOn. e 101
COUNT_LT condi tiOn. e e 101
CREATE conmand. i 69, 70, 73, 75
Creat e tYPeS. . .. 70
CREATE_DONE reply. ..o e 73, 75
data OCt et S. ... 43, 47, 52
data packing. 10
data transfer commands. i 9, 41
data transm SSi ON.ttt 10
dat agrammB. 5
debuggi Ng. 1, 3

Page 125

default breakpoint............ 71, 92

DELETE commBNd.t e e e e 73, 75
DELETE_DONE reply. ... e 75
descriptor........... 20, 57, 61, 62, 63, 64, 65, 73, 75, 93
AU NG, .o 3
BRRACK. . . . 10, 39
ERROR COOES. . . . oot e e e e 38
ERROR reply. ... 37, 67
EXCEPTION trap. ..ot e e e e e e e 66
finite state machine. i 60, 93
FSM breakpoint. i 71, 92, 94
FULL- DEBUGGER. oo e e e e e 12
FULL_DEBUGGER.o e e e e e e e 32
JAl BWAY . . . v ot e 3, 9
GET_OBJECT command. e e e 89, 91
GET_PHYS_ADDR command.t 87, 88
GOT_OBIECT reply. ..o e 89, 91
GOT_PHYS_ADDR reply. ... e 87, 88
HELLO commBNd.o e e e e e e 9, 29
HELLO REPLY. e e e e e e 9, 19, 30
host descCriptor. e 41
inplementation. 12, 31
INC COUNT command. 94, 107, 110, 111
I NCREMENT COMTBNG. o e e e e e e e 109
I NE B NBL . o e 5
internet protocolS. 4
L P, 5
LDP command formats. e e 15
LDP header. e e 15, 16
LDP Vel Si ON. .ottt e e e e e 30
LI ST conmMBNAS. . . . oo e e e e 73
LI ST_ADDRESSES conmand., 76, 77
LI ST_ BREAKPO NTS conmand. 79, 80
LI ST_NAMES command. i i 84, 85
LI ST_PROCESSES command. 82
LOADER DUMPER. e e e e e e e 12, 32
loadi NG. ... e 1, 3
long address format. 20
managenment COMMBNGS.ttt e 67
MENDrY Obj ECt. .. . 73
MOVE conmmand. i e 22, 41, 47, 49
MOVE sequence NUIMDEr.t e 52
MOVE_DATA IeSPONSE. . . .ottt e e et et e 22, 51
MOVE _DONE I eply. ..o e e e e 52
NAVE LI ST reply. ... e 84, 85
Of F Sl . 20, 22
OR COMMBING. . .t e e e e e e e e e e e e e 111

Page 126

Pat t Bl N, . 54
PHYS ADDRESS. ot e e e 57
PHYS MACRO. . . .o ot e e e e e e 60
PROCESS. . . . 57
PROCESS CODE. . . .t ittt e e e e e et e e e e 60
PROCESS LI ST reply. ... e 82
pProtocol COMMBNAS. 9
PSN. . o 3, 9
RDP. . . e 5, 15
READ conmmand. 41, 43, 44
READ sequence NUIMDErt et 47
READ DATA IEeSPONSE. . .o vttt e e e e e e e 45, 46
READ DONE I epl Y. .ot e e e e 47
repeat CoOUNt 54
REPEAT_DATA comand.t i 41, 53
REPORT commBNd.t e e e e 63, 64, 94
SequUeNnCe NUIMDEr e e e e 10, 39
SBS ST O vttt e et e 9
SET_PTR conmand. iy 94, 111, 112
SET_STATE conmand. 94, 107, 113
short address format........... i 25
START COMMBNG. o e e e e e 59, 60
STATUS reply. ... o e 64, 65, 94
STEP command. 62, 63
STOP COmMTBNG.ttt e e e e e e e e 60, 61
SYNCH. . o 10
SYNCH COMTBNG. . . . o oo e e e e e e e e e 33
SYNCH REPLY. . . 34
SYSt M LY P, . . 30
target start address......................... 43, 44, 46, 54
L ANSPOr . . e 9
wat chpoint.......... 13, 57, 60, 71, 92, 93, 95, 96, 99, 107
VWRITE CcONTBNG. e e e e e e e e 41, 42
VRI TE_MASK conmmmBaNnd.o e 56

Page 127

Page 128

