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1. | NTRODUCTI ON

TCP was designed to around the virtual circuit nodel, to support
stream ng of data. Another comon node of comunication is a
client-server interaction, a request nessage followed by a response
nmessage. The request/response paradigmis used by application-|ayer
protocols that inplenment transaction processing or renpte procedure
calls, as well as by a nunmber of network control and managenent
protocols (e.g., DNS and SNMP). Currently, many Internet user
prograns that need request/response conmunication use UDP, and when
they require transport protocol functions such as reliable delivery
they nust effectively build their own private transport protocol at
the application |ayer.

Request/response, or "transaction-oriented", conmunication has the
follow ng features:

(a) The fundanental interaction is a request foll owed by a response.
(b) An explicit open or close phase may i npose excessive overhead.

(c) At-npbst-once semantics is required; that is, a transaction mnust
not be "replayed" as the result of a duplicate request packet.

(d) The mninmumtransaction latency for a client should be RTT +
SPT, where RTT is the round-trip tine and SPT is the server
processing tine.

(e) In favorable circunstances, a reliable request/response
handshake shoul d be achi evable with exactly one packet in each
di recti on.

This nenp concerns T/ TCP, an backwar ds-conpati bl e extension of TCP to
provide efficient transaction-oriented service in addition to

virtual -circuit service. T/ TCP provides all the features |isted
above, except for (e); the m ninum exchange for T/ TCP is three
segnents.

In this meno, we use the term"transaction" for an elenmentary
request/response packet sequence. This is not intended to inply any
of the semantics often associated with application-layer transaction
processing, |ike 3-phase commts. It is expected that T/ TCP can be
used as the transport l|ayer underlying such an application-I|ayer
service, but the semantics of T/TCP is limted to transport-I|ayer
services such as reliable, ordered delivery and at-nost-once
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operati on.

An earlier nmeno [ RFC-1379] presented the concepts involved in T/ TCP
However, the real-world useful ness of these ideas depends upon
practical issues like inplenentation conplexity and performance. To
hel p explore these issues, this nmeno presents a functional
specification for a particul ar enbodi nent of the ideas presented in
RFC- 1379. However, the specific algorithnms in this nmeno represent a
| ater evolution than RFC-1379. |In particular, Appendix A in RFC 1379
explained the difficulties in truncating TIME-WAIT state. However,
experience with an inplenentation of the RFC-1379 algorithns in a
wor kstation |ater showed that accunulation of TCB's in TIME-WAIT
state is an intolerable problem this necessity led to a sinple
solution for truncating TIME-WAI T state, described in this neno.

Section 2 introduces the T/ TCP extensions, and section 3 contains the
conpl ete specification of T/TCP. Section 4 discusses sone

i npl erent ation i ssues, and Appendi x A contains an al gorithmc
sumary. This docunment assunes familiarity with the standard TCP
speci fication [ STD- 007].

2. OVERVI EW

The TCP protocol is highly symmetric between the two ends of a
connection. This symretry is not lost in T/ TCP; for exanple, T/ TCP
supports TCP's symetric simultaneous open from both sides (Section
2.3 below). However, transaction sequences use T/ TCP in a highly
unsynmetrical manner. It is convenient to use the terms "client
host" and "server host" for the host that initiates a connection and
the host that responds, respectively.

The goal of T/TCP is to allow each transaction, i.e., each
request/response sequence, to be efficiently perfornmed as a single

i ncarnation of a TCP connection. Standard TCP inposes two
performance problens for transaction-oriented comunication. First,
a TCP connection is opened with a "3-way handshake", which nust
conpl ete successfully before data can be transferred. The 3-way
handshake adds an extra RTT (round trip tine) to the latency of a
transacti on.

The second performance problemis that closing a TCP connection

| eaves one or both ends in TIME-WAIT state for a tinme 2*MSL, where
MSL is the maxi num segnment lifetinme (defined to be 120 seconds).
TIME-WAIT state severely linmts the rate of successive transactions
bet ween t he sane (host,port) pair, since a new incarnation of the
connection cannot be opened until the TIME-WAIT del ay expires. RFC
1379 expl ained why the alternative approach, using a different user
port for each transaction between a pair of hosts, also limts the
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transaction rate: (1) the 16-bit port space linmits the rate to

2**16/ 240 transactions per second, and (2) nore practically, an
excessi ve amount of kernel space would be occupied by TCP state
blocks in TIME-WAIT state [RFC- 1379].

T/ TCP sol ves these two performance problens for transactions, by (1)
bypassi ng the 3-way handshake (3VWHS) and (2) shortening the delay in
TIME-WAIT state.

2.1 Bypassing the Three-Wy Handshake

T/ TCP introduces a 32-bit incarnation nunber, called a "connection
count” (CC), that is carried in a TCP option in each segnent. A
distinct CC value is assigned to each direction of an open
connection. A T/ TCP inplenmentation assigns nonotonically

i ncreasing CC val ues to successive connections that it opens
actively or passively.

T/ TCP uses the nonotonic property of CC values in initial <SYN>
segnents to bypass the 3WHS, using a nechanismthat we call TCP
Accel erated Open (TAO . Under the TAO nechanism a host caches a
smal | anobunt of state per renote host. Specifically, a T/ TCP host
that is acting as a server keeps a cache containing the last valid
CC value that it has received fromeach different client host. |If
an initial <SYN> segnent (i.e., a segnent containing a SYN bit but
no ACK bit) froma particular client host carries a CC val ue

| arger than the correspondi ng cached val ue, the nonotonic property
of CC s ensures that the <SYN> segnment nust be new and can
therefore be accepted i mediately. Oherw se, the server host
does not know whet her the <SYN> segment is an old duplicate or was
sinmply delivered out of order; it therefore executes a normal 3WHS
to validate the <SYN>. Thus, the TAO nechani sm provi des an

optim zation, with the normal TCP nmechani smas a fall back

The CC value carried in non-<SYN> segnents is used to protect
agai nst old duplicate segnents fromearlier incarnations of the
same connection (we call such segnents 'antique duplicates’ for
short). In the case of short connections (e.g., transactions),
these CC values allow TIME-WAIT state delay to be safely discuss
in Section 2.3.

T/ TCP defines three new TCP options, each of which carries one
32-bit CC value. These options are nanmed CC, CC. NEW and CC. ECHO
The CC option is nornmally used; CC NEWand CC. ECHO have speci al
functions, as foll ows.
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(a) CC. NEW

Correctness of the TAO nechanismrequires that clients
generate nonotonically increasing CC values for successive
connection initiations. These values can be generated using
a sinple global counter. There are certain circunstances

(di scussed below in Section 2.2) when the client knows that
nmonotonicity may be violated; in this case, it sends a CC NEW
rather than a CC option in the initial <SYN> segnent.

Recei ving a CC. NEW causes the server to invalidate its cache
entry and do a 3WHS.

(b) CC ECHO

When a server host sends a <SYN, ACK> segnent, it echoes the
connection count fromthe initial <SYN> in a CC ECHO option
which is used by the client host to validate the <SYN, ACK>
segnent .

Figure 1 illustrates the TAO nmechani sm bypassing a 3WHS. The
cached CC val ues, denoted by cache. C( host], are shown on each
side. The server host conpares the new CC value x in segment #1
agai nst x0, its cached value for client host A, this conparison is
called the "TAO test". Since x > x0, the <SYN> nust be new and
can be accepted i Mmediately; the data in the segnent can therefore
be delivered to the user process B, and the cached value is
updated. If the TAOtest failed (x <= x0), the server host would
do a normal three-way handshake to validate the <SYN> segnent, but
the cache woul d not be updat ed.
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TCP A (dient) TCP B (Server)
cache. CC[ A]
\%
[ x0 ]
#1 --> <SYN, datal, CC=x> --> (TAOtest K (x > x0) =>

dat al- >user_B and
cache. CQ Al = x; )

[ x ]
#2 <-- <SYN, ACK(datal), data2, CC=y, CC. ECHO=x> <--
(dat a2- >user _A;)

Figure 1. TAG Three-Way Handshake is Bypassed

The CC value x is echoed in a CC. ECHO option in the <SYN, ACK>
segnent (#2); the client side uses this option to validate the
segnent. Since segnment #2 is valid, its data2 is delivered to the
client user process. Segnent #2 also carries B's CC value; this
is used by A to validate non-SYN segnents from B, as explained in
Section 2. 4.

I mpl emrenting the T/ TCP ext ensi ons expands the connection contro
bl ock (TCB) to include the two CC values for the connection; cal
these vari abl es TCB. CCsend and TCB. CCrecv (or CCsend, CCrecv for
short). For exanple, the sequence shown in Figure 1 sets

TCB. CCsend = x and TCB.CCrecv =y at host A and vice versa at
host B. Any segnent that is received with a CC option containing
a value SEG CC different from TCB. CCsend will be rejected as an
anti que duplicate.

2.2 Transaction Sequences

Br aden

T/ TCP applies the TAO nechani sm described in the previous section
to performa transaction sequence. Figure 2 shows a mi ni nal
transaction, when the request and response data can each fit into
a single segnent. This requires three segnents and conpletes in
one round-trip time (RTT). |If the TAO test had fail ed on segnent
#1, B woul d have queued datal and the FIN for |ater processing,
and then it would have returned a <SYN, ACK> segnment to A, to
performa normal 3WHS
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TCP A (dient) TCP B (Server)
CLOSED LI STEN
#1 SYN- SENT* --> <SYN, dat al, FI N, CC=x> --> CLOSE- WAI T*

(TAO test OK)
(dat al- >user _B)

<-- LAST- ACK*
#2 TIME-WAIT  <-- <SYN, ACK(FI N), dat a2, FI N, CC=y, CC. ECHO=x>
(dat a2- >user _A)

#3 TIME-WAIT --> <ACK(FIN), CC=x> - -> CLOSED

(timeout)
CLOSED

Figure 2: Mnimal T/ TCP Transaction Sequence

T/ TCP extensions require additional connection states, e.g., the
SYN- SENT*, CLOSE- WAI T*, and LAST- ACK* states shown in Figure 2.
Section 3.3 describes these new connecti on states.

To obtain the mninmal 3-segnment sequence shown in Figure 2, the
server host must delay acknow edgi ng segnment #1 so the response
may be piggy-backed on segnment #2. |f the application takes

I onger than this delay to conmpute the response, the nornmal TCP
retransm ssion nechanismin TCP B will send an acknow edgnent to
forestall a retransmission fromTCP A Figure 3 shows an exanpl e
of a slow server application. Although the sequence in Figure 3
does contain a 3-way handshake, the TAO nmechani sm has al |l owed the
request data to be accepted i mediately, so that the client stil
sees the mninum | atency.
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TCP A (dient) TCP B (Server)
CLOSED LI STEN
#1 SYN- SENT* --> <SYN, dat al, FI N, CC=x> --> CLOSE- WAI T*

(TAO test K =>
dat al- >user _B)

(timeout)
#2 FINWAIT-1 <-- <SYN, ACK(FIN), CC=y, CC. ECHO=x> <-- CLOSE- WAI T*
#3 FINWAIT-1 --> <ACK(SYN), FI N, CC=x> --> CLOSE-WAI T
#4 TIME-WAIT  <-- <ACK(FIN), data2, FI N, CC=y> <-- LAST- ACK
(dat a2- >user _A)
#5 TIME_WAIT --> <ACK(FIN), CC=x> --> CLOSED
(timeout)
CLOSED

Fi gure 3: Acknow edgnment Ti neout in Server

2.3 Protocol Correctness

This section fills in nore details of the TAO nechani sm and
provides an informal sketch of why the T/ TCP protocol works.

CC val ues are 32-bit integers. The TAO test requires the sane
ki nd of nodular arithnetic that is used to conpare two TCP
sequence nunbers. W assune that the boundary between y < z and z
<y for two CC values y and z occurs when they differ by 2**31
i.e., by half the total CC space.

The essential requirement for correctness of T/TCP is this:

CC val ues nust advance at a rate slower than 2**31 [ R1]
counts per 2*MsSL

where MSL denotes the maxi num segnment lifetinme in the Internet.
The requirement [R1] is easily met with a 32-bit CC. For exanple,
it will allow 10**6 transacti ons per second with the very |libera
MSL of 1000 seconds [RFC-1379]. This is well in excess of the
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transaction rates achievable with current operating systens and
networ k | atency.

Assunme for the present that successive connections fromclient A
to server B contain only nonotonically increasing CC values. That
is, if x(i) and x(i+1) are CC values carried in tw successive
initial <SYN> segnents fromthe sane host, then x(i+1) > x(i).
Assum ng the requirenment [R1l], the CC space cannot wap within the
range of segnents that can be outstanding at one tine. Therefore,
those successive <SYN> segnents froma given host that have not
exceeded their MSL nust contain an ordered set of CC val ues:

X(1) < x(2) <x(3) ... <x(n),

where the nodul ar conpari sons have been replaced by sinple
arithmetic conparisons. Here x(n) is the nost recent acceptable
<SYN>, which is cached by the server. |If the server host receives
a <SYN> segment containing a CC option with value y where y >
x(n), that <SYN> nust be newer; an antique duplicate SYNwith CC
val ue greater than x(n) must have exceeded its MSL and vani shed.
Hence, nonotonic CC values and the TAO test prevent erroneous
replay of antique <SYN>s.

There are two possible reasons for a client to generate non-
nonot oni ¢ CC values: (a) the client nay have crashed and
restarted, causing the generated CC values to junp backwards; or
(b) the generated CC val ues may have wapped around the finite
space. Waparound may occur because CC generation is global to
all connections. Suppose that host A sends a transaction to B,
then sends nore than 2**31 transactions to other hosts, and
finally sends another transaction to B. FromB' s viewpoint, CC
wi Il have junped backward relative to its cached val ue.

In either of these two cases, the server nay see the CC val ue junp
backwards only after an interval of at |east MSL since the |ast

<SYN> segnment fromthe sane client host. 1In case (a), client host
restart, this is because T/ TCP retains TCP's explicit "Quiet Tine"
of an MSL interval [STD-007]. 1In case (b). wap around, [R1]

ensures that a tinme of at |east MSL nust have passed before the CC
space waps around. Hence, there is no possibility that a TAO
test will succeed erroneously due to either cause of non-
nonotonicity; i.e., there is no chance of replays due to TAO

However, although CC val ues junping backwards will not cause an
error, it may cause a performance degradati on due to unnecessary
3WHS's. This results fromthe generated CC val ues j unping
backwar ds through approxi mately half their range, so that al
succeeding TAO tests fail until the generated CC val ues catch up
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to the cached value. To avoid this degradation, a client host
sends a CC. NEWoption instead of a CC option in the case of either
systemrestart or CC waparound. Receiving CC. NEWforces a 3VHS,
but when this 3WHS conpl etes successfully the server cache is
updated to the new CC value. To detect CC waparound, the client
nmust cache the last CC value it sent to each server. It therefore
mai nt ai ns cache. CCsent[B] for each server B. |If this cached val ue
is undefined or if it is larger than the next CC val ue generated
at the client, then the client sends a CC. NEWinstead of a CC
option in the next SYN segment.

This is illustrated in Figure 4, which shows the scenario for the
first transaction fromA to B after the client host A has crashed
and recovered. A simlar sequence occurs if x is not greater than
cache.CCsent[B], i.e., if there is a waparound of the generated
CC val ues. Because segnment #1 contains a CC. NEWoption, the
server host invalidates the cache entry and does a 3WHS; however,
it still sets B's TCB.CCrecv for this connection to x. TCP B uses
this CCrecv value to validate the <ACK> segnent (#3) that

conpl etes the 3WHS. Receipt of this segnent updates cache. CC[ A],
since the cache entry was previously undefined. (If a 3WHS al ways
updat ed the cache, then out-of-order SYN segnents could cause the
cached value to junp backwards, possibly allow ng replays).
Finally, the CC ECHO option in the <SYN, ACK> segnent #2 defines
A's cache. CCsent entry.

Thi s al gorithm del ays updati ng cache. CCsent[] until the <SYN> has
been ACK d. This allows the undefined cache. CCsent val ue to used
as a a "first-time switch" to reliable resynchronization of the
cached value at the server after a crash or waparound.

When we use the term "cache", we inply that the value can be
di scarded at any tinme w thout introducing erroneous behavior
al though it nay degrade performance.

(a) |If a server host receives an initial <SYN> fromclient A but
has no cached val ue cache. CCJA], the server sinply forces a
3WHS to validate the <SYN> segnent.

(b) If a client host has no cached val ue cache. CCsent[B] when it
needs to send an initial <SYN> segnent, the client sinply
sends a CC. NEWoption in the segnment. This forces a 3WHS at
t he server.
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TCP A (dient) TCP B (Server)
cache. CCsent [ B] cache. CC[ A]
\% \%

(Crash and restart)
[ 2?2 ] [ x0 ]
#1 --> <SYN, datal, CC. NEWEX> --> (i nval i date cache;

gueue dat al;
3-way handshake)

[ 7?7 ] [ 7?7 ]
#2 <-- <SYN, ACK(datal), CC=y, CC. ECHO=x> <--
(cache. CCsent[B] = x;)
[ x ] [ 2?2 ]
#3 --> <ACK(SYN), CC=x> --> dat al- >user_B;

cache. CC[ Al = x;
[ x ] [ x ]

Figure 4. dCdient Host Restarting

So far, we have considered only correctness of the TAO nechani sm
for bypassing the 3WHS. W nust al so protect a connection agai nst
anti que duplicate non-SYN segnents. In standard TCP, such
protection is one of the functions of the TIME-WAIT state del ay.
(The other function is the TCP full-duplex close semantics, which
we need to preserve; that is discussed belowin Section 2.5). In
order to achieve a high rate of transaction processing, it must be
possible to truncate this TIME-WAIT state del ay wi thout exposure
to antique duplicate segnents [ RFC- 1379].

For short connections (e.g., transactions), the CC val ues assigned
to each direction of the connection can be used to protect against
anti que duplicate non-SYN segnents. Here we define "short" as a
duration less than MSL. Suppose that there is a connection that
uses the CC values TCB.CCsend = x and TCB.CCrecv = y. By the
requirement [R1], neither x nor y can be reused for a new
connection fromthe sane renote host for a tine at |east 2*MSL.

If the connection has been in existence for a tinme |ess than NMBL,
then its CC values will not be reused for a period that exceeds
MSL, and therefore all antique duplicates with that CC val ue nust
vani sh before it is reused. Thus, for "short" connections we can
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guard agai nst anti que non- SYN segnents by sinply checking the CC
value in the segnment againsts TCB.CCrecv. Note that this check
does not use the nonotonic property of the CC values, only that
they not cycle in less than 2*MSL. Again, the quiet tine at
systemrestart protects against errors due to crash with |oss of
st at e.

If the connection duration exceeds MSL, safety fromold duplicates
still requires a TIME-WAIT delay of 2*MSL. Thus, truncation of
TIME-WAIT state is only possible for short connections. (This
probl em has al so been noticed by Shankar and Lee [ ShankarLee93]).
This difference in behavior for long and for short connections
does create a slightly conplex service nodel for applications
using T/ TCP. An application has two different strategies for
mul ti ple connections. For "short" connections, it should use a
fixed port pair and use the T/ TCP nechanismto get rapid and
efficient transaction processing. For connections whose durations
are of the order of MsL or longer, it should use a different user
port for each successive connection, as is the current practice
with unnodified TCP. The latter strategy will cause excessive
overhead (due to TCB's in TIME-WAIT state) if it is applied to

hi gh-frequency short connections. |If an application makes the
wrong choice, its attenpt to open a new connection may fail with a
"busy" error. |If connection durations may range between | ong and
short, an application may have to be able to switch strategies
when one fails.

2.4 Truncating TIME-WAIT State

Truncation of TIME-WAIT state is necessary to achi eve high
transaction rates. As Figure 2 illustrates, a standard
transaction | eaves the client end of the connection in TIME-WAIT
state. This section explains the protocol inplications of
truncating TIME-WAIT state, when it is allowed (i.e., when the
connection has been in existence for less than MSL). In this
case, the client host should be able to interrupt TIME-WAIT state
to initiate a new incarnation of the sanme connection (i.e., using
the same host and ports). This will send an initial <SYN>
segnent .

It is possible for the new <SYN> to arrive at the server before
the retransm ssion state fromthe previous incarnation is gone, as
shown in Figure 5. Here the final <ACK> (segnent #3) fromthe
previous incarnation is |lost, |leaving retransm ssion state at B.
However, the client received segnent #2 and thinks the transaction
compl eted successfully, so it can initiate a new transacti on by
sendi ng <SYN> segrent #4. Wen this <SYN> arrives at the server
host, it must inplicitly acknow edge segnent #2, signalling
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success to the server application, deleting the old TCB, and
creating a new TCB, as shown in Figure 5. Still assuming that the
new <SYN> is known to be valid, the server host marks the new
connection hal f-synchroni zed and delivers data3 to the server
application. (The details of howthis is acconplished are
presented in Section 3.3.)

The earlier discussion of the TAO nechani sm assuned that the
previ ous incarnation was closed before a new <SYN> arrived at the
server. However, TAO cannot be used to validate the <SYN> if

there is still state fromthe previous incarnation, as shown in
Figure 5; in this case, it would be exceedingly awkward to perform
a 3WHS if the TAO test should fail. Fortunately, a nodified
version of the TAO test can still be perfornmed, using the state in

the earlier TCB rather than the cached state.

(A) If the <SYN> segment contains a CC or CC. NEWoption, the
value SEG CC fromthis option is conpared with TCB. CCrecyv,
the CC value in the still-existing state block of the
previous incarnation. |If SEG CC > TCB.CCrecv, the new <SYN>
segnent nust be valid.

(B) Oherwise, the <SYN> is an old duplicate and is sinply
di scar ded.

Truncating TIME-WAI T state nmay be | ooked upon as conposi hg an

ext ended state machine that joins the state nachines of the two

i ncarnations, old and new. It may be described by introduci ng new
internedi ate states (which we call I|-states), with transitions
that join the two diagrans and share sone state fromeach. |-
states are detailed in Section 3. 3.

Noti ce al so segnent #2' in Figure 5. TCP's nmechanismto recover
from hal f-open connections (see Figure 10 of [STD-007]) cause TCP
A to send a RST when 2° arrives, which would incorrectly nmake B
think that the previous transaction did not conplete successfully.
The hal f-open recovery mechani sm nust be defeated in this case, by
A ignoring segnment #2'.
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TCP A (dient) TCP B (Server)
CLOSED LI STEN
#1 --> <...,FIN CC=x> --> LAST- ACK*
#2 <-- <...ACK(FIN), data2, FI N, CC=y, CC. ECHO=x> <--- LAST- ACK*
TIME-VWAIT

(dat a2- >user _A)

#3 TIME-WAIT --> <ACK(FIN), CC=x> --> X (DROP)
(New Active Open) (New Passi ve Open)
#4  SYN- SENT* --> <SYN, data3, CC=z> ...
LI STEN- LA
#2' (discard) <-- <...ACK(FIN),data2, FIN, CC=y> <--- (retransnit)
#4  SYN- SENT* ... <SYN data3, CC=z> --> ESTABLI| SHED*
SYN OK (see text) =>
{Ack seg #2;

Del ete old TCB;
Create new TCB;
dat a3 -> user_B;
cache.CqQ Al = z;}

Figure 5: Truncating TIME-WAIT State: SYN as Inplicit ACK

2.5 Transition to Standard TCP Qperation

T/ TCP includes all normal TCP semantics, and it will continue to
operate exactly |like TCP when the particular assunptions for
transactions do not hold. There is nolinmt on the size of an

i ndi vi dual transaction, and behavior of T/ TCP should nerge

seanl essly frompure transacti on operation as shown in Figure 2,
to pure streaning node for sending large files. All the sequences
shown in [STD-007] are still valid, and the inherent symetry of
TCP is preserved.

Figure 6 shows a possi bl e sequence when the request and response
nessages each require two segnents. Segnent #2 is a non- SYN
segnent that contains a TCP option. To avoid conpatibility
problems with existing TCP i npl enentations, the client side should
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send segment #2 only if cache.CCsent[B] is defined, i.e., only if
host A knows that host B plays the new gane.

TCP A (dient) TCP B (Server)
CLOSED LI STEN
#1 SYN- SENT* --> <SYN, datal, CC=x> --> ESTABLI SHED*

(TAO test K =>
dat al- > user)

#2 SYN- SENT* --> <dat a2, FI N, CC=x> --> CLOSE- WAI T*
(dat a2- > user)

CLOSE- WAI T*
#3 FIN-WAIT-2 <-- <SYN ACK(FIN), dat a3, CC=y, CC. ECHO=x> <- -
(dat a3->user)

#4 TIME_WAIT <-- <ACK(FIN), data4, FIN, CC=y> <-- LAST- ACK*
(dat a4- >user)

#5 TIME-WAIT --> <ACK(FIN), CC=x> --> CLOSED

Figure 6. Milti-Packet Request/Response Sequence
Figure 7 shows a nore conpl ex exanpl e, one possible sequence with

TAO conbi ned wi th sinultaneous open and close. This may be
conpared with Figure 8 of [STD 007].
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#1

#2

#3

#1

#4
#5
#3'
#6

#5'
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TCP A TCP B
CLGCSED CLOSED
SYN- SENT* --> <SYN, dat al, FI N, CC=x> ...
CLGCSI NG <-- <SYN data2, FI N, CC=y> <-- SYN- SENT*

(TAO test K =>
dat a2- >user _A

CLCSI NG --> <FIN, ACK(FI N), CC=x, CC. ECHO=y> . ..
<SYN, dat al, FI N, CC=x> --> CLOSI NG
(TAO test K =>
dat al- >user_B)
TIME-WAIT  <-- <FIN, ACK(FI N), CC=y, CC. ECHO=x> <- - CLCSI NG
TI ME-WAI T --> <ACK(FIN), CC=x> ...
<FI N, ACK( FI N), CC=x, CC. ECHO=y> - -> TIME-VWAI T
TI ME-WAI T <-- <ACK(FIN), CCzy> <--- TI ME- WAI T
TI ME-WAI T ... <ACK(FIN), CC=x> --> TI ME- WAI T
(timeout) (timeout)

CLCSED CLOSED

Figure 7: Sinultaneous Open and C ose
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3.  FUNCTI ONAL SPECI FI CATI ON
3.1 Data Structures

A connection count is an unsigned 32-bit integer, with the val ue
zero excluded. Zero is used to denote an undefined val ue.

A host maintains a global connection count variable CCgen, and
each connection control block (TCB) contains two new connection
count vari ables, TCB.CCsend and TCB. CCrecv. \Wenever a TCB is
created for the active or passive end of a new connection, CCgen
is incremented by 1 and placed in TCB. CCsend of the TCB; however,
if the previous CCgen value was Oxffffffff (-1), then the next

val ue should be 1. TCB.CCrecv is initialized to zero (undefined).

T/ TCP adds a per-host cache to TCP. An entry in this cache for
foreign host fh includes two CC val ues, cache.C(fh] and
cache.CCsent[fh]. It may include other values, as discussed in
Sections 4.3 and 4.4. According to [STD-007], a TCP i s not
permitted to send a segnent |arger than the default size 536
unless it has received a |l arger value in an MSS ( Maxi mum Segnent
Size) option. This could constrain the client to use the default
MSS of 536 bytes for every request. To avoid this constraint, a
T/ TCP may cache the MSS option val ues received fromrenote hosts,
and we allow a TCP to use a cached MsS option value for the
initial SYN segnent.

When the client sends an initial <SYN> segment containing data, it
does not have a send wi ndow for the server host. This is not a
great difficulty; we sinply define a default initial w ndow, our
current suggestion is 4K Such a non-zero default should be be
condi ti oned upon the existence of a cached connection count for
the foreign host, so that data may be included on an initial SYN
segnent only if cache.C foreign host] is non-zero.

In TCP, the window is dynanmically adjusted to provi de congestion

control /avoi dance [Jacobson88]. It is possible that a particular
path m ght not be able to absorb an initial burst of 4096 bytes
wi t hout congestive losses. |If this turns out to be a problem it

shoul d be possible to cache the congestion threshold for the path
and use this value to deternine the maxi mum size of the initial
packet burst created by a request.

3.2 New TCP Options
Three new TCP options are defined: CC, CC.NEW and CC ECHO  Each

carries a connection count SEG CC. The conplete rules for sending
and processing these options are given in Section 3.4 bel ow.
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CC Option
Kind: 11
Length: 6
S S Fomm oo o - S, Fomm oo o - S +
| 00001011] 00000110] Connection Count: SEG CC
S S Fomm oo o - S, Fomm oo o - S +

Br aden

Ki nd=11 Lengt h=6

This option may be sent in an initial SYN segnent, and it may
be sent in other segnents if a CC or CC. NEWoption has been
received for this incarnation of the connection. Its SEG CC
value is the TCB. CCsend val ue fromthe sender’s TCB

. NEW Opt i on

Kind: 12

Length: 6
S S Fomm oo o - S, Fomm oo o - S +
| 00001100] 00000110] Connection Count: SEG CC
S S Fomm oo o - S, Fomm oo o - S +

Ki nd=12 Lengt h=6

This option may be sent instead of a CC option in an initial
<SYN> segment (i.e., SYN but not ACK bit), to indicate that the
SEG CC val ue may not be larger than the previous value. Its
SEG CC value is the TCB. CCsend val ue fromthe sender’s TCB

. ECHO Opti on

Kind: 13

Length: 6
S S Fomm oo o - S, Fomm oo o - S +
| 00001101] 00000110] Connection Count: SEG CC
S S Fomm oo o - S, Fomm oo o - S +

Ki nd=13 Lengt h=6

This option nust be sent (in addition to a CC option) in a
segnent containing both a SYN and an ACK bit, if the initial
SYN segnent contained a CC or CC. NEWoption. |Its SEG CC val ue
is the SEG CC value fromthe initial SYN
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A CC. ECHO option should be sent only in a <SYN, ACK> segnment and
should be ignored if it is received in any other segnent.

3.3 Connection States

T/ TCP requi res new connection states and state transitions.
Figure 8 shows the resulting finite state machi ne; see [ RFC- 1379]
for a detailed development. |If all state nanes ending in stars
are renoved from Figure 8, the state diagramreduces to the
standard TCP state machine (see Figure 6 of [STD-007]), with two
exceptions:

* STD- 007 shows a direct transition from SYN-RECEI VED to FI N
WAI T-1 state when the user issues a CLOSE call. This
transition is suspect; a nore accurate description of the
state machine would seemto require the internediate SYN
RECEI VED* state shown in Figure 8.

* In STD-007, a user CLOSE call in SYN-SENT state causes a
direct transition to CLOSED state. The extended di agram of
Figure 8 forces the connection to open before it closes,
since calling CLOSE to term nate the request in SYN SENT
state is normal behavior for a transaction client. |In the
case that no data has been sent in SYN-SENT state, it is
reasonable for a user CLOSE call to inmediately enter CLOSED
state and delete the TCB

Each of the new states in Figure 8 bears a starred nane, created
by suffixing a star onto a standard TCP state. Each "starred"
state bears a sinple relationship to the correspondi ng "unstarred"
st at e.

o] SYN- SENT* and SYN- RECEI VED* differ fromthe SYN SENT and
SYN- RECEI VED state, respectively, in recording the fact that
a FIN needs to be sent.

o] The other starred states indicate that the connection is
hal f - synchroni zed (hence, a SYN bit needs to be sent).
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Label Event / Action

I

I

|
Active OPEN / create TCB, snd SYN |
Active OPEN / snd SYN |
rcv SYN [no TAQ/ snd ACK(SYN) |
rcv SYN [no TAQ/ snd SYN, ACK( SYN) |
rcv SYN [no TAQ/ snd SYN, FI N, ACK( SYN) |
rcv ACK(SYN) / |
rcv ACK(SYN) / snd FIN |
CLOCSE / snd FIN |
CLOSE / snd SYN, FIN |
rcv FIN/ snd ACK(FIN) |
rcv FIN/ snd SYN, ACK(FIN) |
I

I

I

I

I

I

I

I

I

I

I

I

I

I

rcv FIN/ snd FIN, ACK(FI N)

rcv FIN/ snd SYN FIN, ACK(FI'N)

rcv ACK(FIN) /

rcv ACK(FIN) / delete TCB

CLOSE / delete TCB

passive OPEN / create TCB

(= b) rcv SYN [no TAQ/ snd SYN, ACK( SYN)

rcv SYN [ TAO CK] / snd SYN, ACK( SYN)
rcv SYN [ TAO CK] / snd SYN, FI N, ACK( SYN)
ti meout=2MsL / delete TCB

X" =T STQ P D ODODDDOOO0OO0OTTTO®

Figure 8B. Definition of State Transitions

This sinple correspondence |eads to an alternative state nodel,
whi ch makes it easy to incorporate the new states in an existing
i mpl ementation. Each state in the extended FSMis defined by the
triplet:

(ol d_state, SENDSYN, SENDFI N)

where "ol d _state’ is a standard TCP state and SENDFI N and SENDSYN
are Bool ean flags see Figure 9. The SENDFIN flag is turned on (on
the client side) by a SEND(... EOF=YES) call, to indicate that a
FIN should be sent in a state which would not otherw se send a
FIN. The SENDSYN flag is turned on when the TAO test succeeds to
i ndicate that the connection is only half synchronized; as a
result, a SYNwill be sent in a state which would not otherwi se
send a SYN.
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Figure 9: Alternative State Definitions

I
| New st at e: a d_state: SENDSYN: SENDFI N: |
— — — I
| SYN SENT* => SYN- SENT FALSE TRUE |
I I
| SYN RECEI VED* => SYN- RECEI VED FALSE TRUE |
I I
| ESTABLI SHED* => ESTABLI SHED TRUE FALSE |
I I
| CLOSE-WAIT* => CLOSE-WAI T TRUE FALSE |
I I
| LAST- ACK* => LAST- ACK TRUE FALSE |
I I
| FIN-WAIT-1* => FIN-WAIT-1 TRUE FALSE |
I I
| CLOSI NG => CLGOSI NG TRUE FALSE |
I I
I I
I I
I I

Here is a nore conpl ete description of these bool ean vari abl es.
* SENDFI N

SENDFI N is turned on by the SEND(...ECF=YES) call, and turned
off when FINNWAIT-1 state is entered. It may only be on in
SYN- SENT* and SYN RECEI VED* st at es.

SENDFI N has two effects. First, it causes a FINto be sent
on the | ast segnent of data fromthe user. Second, it causes
the SYN-SENT[*] and SYN-RECEI VED[ *] states to transition
directly to FIN-WAIT-1, skippi ng ESTABLI SHED st at e.

* SENDSYN

The SENDSYN flag is turned on when an initial SYN segnent is
recei ved and passes the TAO test. SENDSYN is turned off when
the SYN is acknow edged (specifically, when there is no RST
or SYN bit and SEG UNA < SND. ACK).

SENDSYN has three effects. First, it causes the SYN bit to
be set in segnents sent with the initial sequence nunber

(I'SN). Second, it causes a transition directly from LI STEN
state to ESTABLI SHED*, if there is no FIN bit, or otherw se
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Br aden

to CLOSE-WAIT*. Finally, it allows data to be received and
processed (passed to the application) even if the segnent
does not contain an ACK bit.

According to the state nodel of the basic TCP specification [ STD
007], the server side nust explicitly issued a passive OPEN call,
creating a TCB in LISTEN state, before an initial SYN may be
accepted. To accommpdate truncation of TIME-WAIT state within
this nodel, it is necessary to add the five "l-states" shown in
Figure 10. The I-states are: LISTEN LA, LISTEN LA*, LI STEN CL,
LI STEN-CL*, and LI STEN-TW These are ’'bridge states’ between two
successive the state diagrans of two successive incarnations.
Here Dis the duration of the previous connection, i.e., the

el apsed tine since the connection opened. The transitions |abeled
with | ower-case letters are taken from Figure 8.

Fortunately, nmany TCP inpl enmentations have a different user
interface nodel, in which the use can issue a generic passive open
("l'isten") call; thereafter, when a matching initial SYN arrives,
a new TCB in LISTEN state is automatically generated. Wth this
user nodel, the |I-states of Figure 10 are unnecessary.

For exanpl e, suppose an initial SYN segnment arrives for a
connection that is in LAST-ACK state. |If this segnent carries a
CC option and if SEG CCis greater than TCB.CCrecv in the existing
TCB, the "q" transition shown in Figure 10 can be nade directly
fromthe LAST-ACK state. That is, the previous TCB is processed
as if an ACK(FIN) had arrived, causing the user to be notified of
a successful CLOSE and the TCB to be deleted. Then processing of
the new SYN segnent is repeated, using a new TCB that is generated
automatically. The sanme principle can be used to avoid

i mpl ementing any of the |-states.
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P: Passive OPEN /

| |
| @ Rcv SYN, special TAO test | d | d|
| (see text) / Delete TCB, | vV ]
| create TCB, snd SYN | | LISTEN- | P | LAST- | |
I I I LAY | <----- |  ACK* | |
| Q: (sanme as Q if D < ML | I | I | |
I I I I I I
| R Rcv ACK(FIN) / Delete TCB,| q c’| c'| |
| create TCB | | | | |
| | | v VA V
| S: Active OPENif D < ML / | | | LI STEN- | P | LAST- |
| Del ete TCB, create TCB, | | | LA | <----- | ACK |
| snd SYN. | [ 1 | [ |
I I || I I
N )
e’ | | P | LI STEN- | | | Vv V
---->| CLOSING| ----- >| cL* | | | LI STEN CLCSED
| I | [
I I Q |
c'| c’| \Y VvV V
| | ESTABLI SHED*
vV v
e’ | | P | LI STEN- |
---->|CLOSING | ------ >| CL |
| I | I
I Rl Q
f Vv V
| LI STEN ESTABLI SHED*
V
e |TIME | P | LISTEN- |
----3 WAIT |------------- >| ™ |
| I | I
/ I I I
S/ T| T Q| |8
| V_ h V. | V
| | |-------- >| | | SYN- SENT
| | CLOSED |<-------- | LISTEN | |
| |- I
I I / | I
| 4 a'/ i| \Y \Y
| | / | ESTABLI SHED*
V V V V
SYN- SENT

Figure 10: I-States for TIME-WAIT Truncati on
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Processi ng Rul es

This section summarizes the rules for sending and processing the
T/ TCP opti ons.

I NI TI ALI ZATI ON

| 1:

SENDI NG

S1:

S2:

S3:

Al'l cache entries cache.CCJ*] and cache.CCsent[*] are
undefined (zero) when a host systeminitializes, and CCgen
is set to a non-zero val ue.

A new TCB is initialized with TCB. CCrecv = 0 and

TCB. CCsend = current CCgen val ue; CCgen is then
incremented. |If the result is zero, CCgen is increnented
agai n.

SEGMVENTS
Sending initial <SYN> Segnent

An initial <SYN> segnment is sent with either a CC option
or a CC.NEWoption. |If cache.CCsent[fh] is undefined or
if TCB.CCsend < cache.CCsent[fh], then the option

CC. NEW TCB. CCsend) is sent and cache.CCsent[fh] is set to
zero. O herwise, the option CC(TCB.CCsend) is sent and
cache. CCsent[fh] is set to CCsend.

Sendi ng <SYN, ACK> Segnent

If the sender’s TCB.CCrecv is non-zero, then a <SYN, ACK>
segnment is sent with both a CC(TCB. CCsend) option and a
CC. ECHO (TCB. CCrecv) option.

Sendi ng Non- SYN Segnent

A non- SYN segnent is sent with a CC(TCB. CCsend) option if
the TCB. CCrecv value is non-zero, or if the state is SYN
SENT or SYN- SENT* and cache. CCsent[fh] is non-zero (this
last is required to send CC options in the segnents
following the first of a nmulti-segnent request nessage;
see segnent #2 in Figure 6).

RECEI VI NG | NI TI AL <SYN> SEGVENT

Suppose that a server host receives a segnment containing a SYN
bit but no ACK bit in LISTEN, SYN SENT, or SYN SENT* state.

Br aden
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RL.1:1f the <SYN> segnent contains a CC or CC. NEW opti on,
SEG CCis stored into TCB. CCrecv of the new TCB.

R1.2:1f the segnent contains a CC option and if the |ocal cache
entry cache.COfh] is defined and if
SEG CC > cache.C(fh], then the TAOtest is passed and the
connection is half-synchronized in the inconmi ng direction.
The server host replaces the cache. CCJfh] val ue by SEG CC,
passes any data in the segment to the user, and processes
a FINDbit if present.

Acknow edgnent of the SYN is delayed to all ow piggybacking
on a response segnent.

R1.3:1f SEG CC <= cache.C(fh] (the TAO test has failed), or if

cache.CC[fh] is undefined, or if there is no CC option
(but possibly a CC. NEWoption), the server host proceeds
with normal TCP processing. |f the connection was in

LI STEN state, then the host executes a 3-way handshake
using the standard TCP rules. In the SYN-SENT or SYN
SENT* state (i.e., the sinultaneous open case), the TCP
sends ACK(SYN) and enters SYN RECEI VED st at e.

R1.4:1f there is no CC option (but possibly a CC. NEW option),
then the server host sets cache. CO fh] undefined (zero).
Receiving an ACK for a SYN (follow ng application of rule
R1.3) will update cache.C(fh], by rule R3.

Suppose that an initial <SYN> segnment containing a CC or CC. NEW
option arrives in an |l-state (i.e., a state with a nanme of the
form’'LI STEN-xx’, where xx is one of TW LA L8, CL, or CL*):

R1.5:1f the state is LISTENNTW then the duration of the
current connection is conpared with MsL. If duration >
MSL then send a RST:

<SEQ=0><ACK=SEG. SEQ+SEG. LEN><CTL=RST, ACK>
drop the packet, and return.

R1l.6: Performa special TAO test: conpare SEG CC with
TCB. CCr ecv.

If SEGCCis greater, then processing is perforned as if
an ACK(FIN) had arrived: signal the application that the
previous cl ose conpleted successfully and delete the
previous TCB. Then create a new TCB in LI STEN state and
reprocess the SYN segnent agai nst the new TCB.
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O herwi se, silently discard the segnent.
RECEI VI NG <SYN, ACK> SEGVENT

Suppose that a client host receives a <SYN, ACK> segnment for a
connection in SYN SENT or SYN SENT* state.

R2.1:1f SEG ACK is not acceptable (see [STD-007]) and
cache. CCsent[fh] is non-zero, then sinply drop the segnent
wi t hout sending a RST. (The new SYN that the client is
(re-)transmtting will eventually acknow edge any
out standing data and FIN at the server.)

R2.2:1f the segnent contains a CC. ECHO opti on whose SEG CC i s
different from TCB. CCsend, then the segnent is
unaccept abl e and i s dropped.

R2.3:1f cache.CCsent[fh] is zero, then it is set to TCB. CCsend.

R2.4:1f the segnent contains a CC option, its SEG CC is stored
into TCB. CCrecv of the TCB.

RECEI VI NG <ACK> SEGVENT | N SYN- RECEI VED STATE

R3.1:1f a segnment contains a CC option whose SEG CC differs
from TCB. CCrecv, then the segnment is unacceptable and is

dr opped.

R3. 2: @ herwi se, a 3-way handshake has conpl eted successfully at
the server side. |If the segnent contains a CC option and
if cache.C(fh] is zero, then cache.CCfh] is replaced by
TCB. CCr ecv.

RECEI VI NG OTHER SEGVENT

R4: Any other segnent received with a CC option is
unacceptable if SEG CC differs from TCB. CCrecv. However,
a RST segment is exenpted fromthis test.

OPEN REQUEST
To allow truncation of TIME-WAIT state, the followi ng changes
are made in the state diagramfor OPEN requests (see Figure
10):
Ol. 1: A new passive open request is allowed in any of the

states: LAST-ACK, LAST-ACK*, CLOSING CLOSING*, or TI M-
WAIT. This causes a transition to the corresponding |-
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state (see Figure 10), which retains the previous state,
i ncluding the retransm ssion queue and timer.

Ol.2 A new active open request is allowed in TIME-WAIT or
LI STEN-TWstate, if the elapsed tine since the current
connection opened is less than MSL. The result is to
delete the old TCB and create a new one, send a new SYN
segnment, and enter SYN SENT or SYN SENT* state (depending
upon whet her or not the SYN segnent contains a FIN bit).

Finally, T/ TCP has a provision to inprove performance for the case
of a client that "sprays" transactions rapidly using many

di fferent server hosts and/or ports. |If TCB.CCrecv in the TCB is
non-zero (and still assum ng that the connection duration is |ess
than MSL), then the TIME-WAIT del ay may be set to min(K*RTO
2*MBL). Here RTO is the neasured retransm ssion tineout tinme and
the constant Kis currently specified to be 8.

3.5 User Interface

STD- 007 defines a prototype user interface ("transport service")
that inplements the virtual circuit service nodel [STD 007
Section 3.8]. One addition to this interface in required for
transaction processing: a new Boolean flag "end-of-file" (EOF),
added to the SEND call. A generic SEND call becones:

Send

Format: SEND (| ocal connection nane, buffer address,
byte count, PUSH flag, URGENT flag, ECF flag [,timeout])

The follow ng text woul d be added to the description of SEND in
[ STD- 007] :

If the ECF (End-O-File) flag is set, any remaini ng queued
data is pushed and the connection is closed. Just as with the
CLCSE call, all data being sent is delivered reliably before
the close takes effect, and data may continue to be received
on the connection after conpletion of the SEND cal l

Fi gure 8A shows a skel eton sequence of user calls by which a

client could initiate a transaction. The SEND call initiates a
transaction request to the foreign socket (host and port)
specified in the passive OPEN call. The predicate "recv_EO-"

tests whether or not a FIN has been received on the connection;
this mght be inplenented using the STATUS conmand of [ STD- 007],
or it mght be inplenented by sone operating-system dependent
mechani sm Wien recv_EOF returns TRUE, the connection has been
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completely closed and the client end of the connection is in
TI ME-WAI T state.

OPEN(| ocal _port, foreign_socket, PASSIVE) -> conn_nane;

SEND( conn_nane, request_buffer, |ength,
PUSH=YES, URG=NO, EOF=YES);

while (not recv_ECF(conn_nane)) {
RECEI VE(conn_nane, reply_buffer, length) -> count;

<Process reply_buffer.>

Figure 8A: Cient Side User Interface

If aclient is going to send a rapid series of such requests to
the sane foreign_socket, it should use the same |ocal port for

all. This will allow truncation of TIME-WAIT state. O herw se,
it could |l eave I ocal _port wild, allowing TCP to choose successive
| ocal ports for each call, realizing that each transaction nay

| eave behind a significant control block overhead in the kernel

Fi gure 8B shows a basic sequence of server calls. The server
application waits for a request to arrive and then reads and
processes it until a FIN arrives (recv_EOF returns TRUE). At this
time, the connection is half-closed. The SEND call used to return
the reply conpletes the close in the other direction. It should
be noted that the use of SEND(... EOF=YES) in Figure 4B instead of
a SEND, CLOSE sequence is only an optimization; it allows

pi ggybacking the FIN in order to mnimze the nunber of segments.
It should have little effect on transaction |atency.
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OPEN( | ocal _port, ANY_SOCKET, PASSIVE) -> conn_nane;
<Wait for connection to open.>
STATUS(conn_nane) -> foreign_socket
while (not recv_ECF(conn_nane)) {
RECEI VE(conn_nane, request_buffer, length) -> count;

<Process request_buffer.>

}
<Comput e

SEND( conn_nane, reply_buffer, |ength,

reply and store into reply_buffer.>

PUSH=YES, URG=NO, EOF=YES);

Figure 8B: Server Side User Interface

4. | MPLEVENTATI ON | SSUES

4.1

Br aden

RFC- 1323 Ext ensi ons

A recentl

y- proposed set of TCP enhancenents [ RFC-1323] defines a

Ti mest anps option, which carries two 32-bit tinmestanp val ues.

This opti
The sane
(Protect
delivery
sequence
transacti

on is used to accurately neasure round-trip time (RTT).
option is also used in a procedure known as "PAWS'

Agai nst W apped Sequence) to prevent erroneous data

due to a conbination of old duplicate segnents and

nunber reuse at very high bandw dths. The approach to
ons specified in this neno is independent of the RFC 1323

enhancenents, but inplenentation of RFC-1323 is desirable for al

TCP s.

The RFC-1323 extensions share several comon inplenentation issues

with the
opti ons.

T/ TCP extensions. Both require that TCP headers carry
Acconmodati ng options in TCP headers requires changes in

the way that the nmaxi mum segnent size is determined, to prevent
i nadvertent |IP fragnmentation. Both require sone additional state

vari abl e

in the TCB, which may or nay not cause inplenentation

difficulties.
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M ni mal Packet Sequence
Most TCP inplenmentations will require sonme small nodifications to

all ow the nininmal packet sequence for a transaction shown in
Fi gure 2.

Many TCP inpl enmentati ons contain a mechanismto del ay

acknow edgnents of some subset of the data segnents, to cut down
on the number of acknow edgnment segnments and to al |l ow pi ggybacki ng
on the reverse data flow (typically character echoes). To obtain
nm ni mal packet exchanges for transactions, it is necessary to
del ay the acknow edgnent of sonme control bits, in an anal ogous
manner. In particular, the <SYN, ACK> segnent that is to be sent

i n ESTABLI SHED* or CLOSE-WAI T* state should be del ayed. Note that
the anmount of delay is deternined by the nmininum RTO at the
transnmitter; it is a paranmeter of the comrunication protocol

i ndependent of the application. W propose to use the sane del ay
paranmeter (and if possible, the sane nechanism that is used for
del ayi ng data acknow edgnents.

To get the FIN piggy-backed on the reply data (segnent #3 in
Figure 2), thos inplenentations that have an inplied PUSH=YES on
all SEND calls will need to augnent the user interface so that
PUSH=NO can be set for transactions.

RTT Measur enent

Transactions introduce new i ssues into the problem of neasuring
round trip tinmes [Jacobson88].

(a) Wth the mniml 3-segnent exchange, there can be exactly one
RTT nmeasurenent in each direction for each transaction.
Si nce dynamic estimation of RTT cannot take place within a
single transaction, it nust take place across successive
transactions. Therefore, cacheing the neasured RTT and RTT
vari ance values is essential for transaction processing; in
normal virtual circuit conmmunication, such cacheing is only
desirabl e.

(b) At the conpletion of a transaction, the values for RTT and
RTT variance that are retained in the cache nust be sone
average of previous values with the val ues neasured during
the transaction that is conpleting. This raises the question
of the tinme constant for this average; quite different
dynami ¢ considerations hold for transactions than for file
transfers, for exanple.

(c) An RTT neasurenent by the client will yield the val ue:
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T = RTT + nin(SPT, ATO),

where SPT (server processing tine) was defined in the

i ntroduction, and ATOis the tinmeout period for sending a
del ayed ACK. Thus, the nmeasured RTT includes SPT, which may
be arbitrarily variable; however, the resulting variability
of the neasured T cannot exceed ATO (ln a popular TCP

i npl enentation, for exanple, ATO = 200ms, so that the
variance of SPT makes a relatively small contribution to the
variance of RITT.)

(d) Transactions sanple the RTT at randomtinmes, which are
determ ned by the client and the server applications rather
than by the network dynanics. Wen there are |ong pauses
bet ween transactions, cached path properties will be poor
predi ctors of current values in the network.

Thus, the dynami cs of RTT neasurenent for transactions differ from
those for virtual circuits. RTT neasurenents shoul d work
correctly for very short connections but reduce to the current TCP
algorithns for long-lasting connections. Further study is this

i ssue i s needed.

4.4 Cache Inplenentation

Thi s extension requires a per-host cache of connection counts.
This cache may al so contain values of the snpbothed RTT, RTT

vari ance, congestion avoi dance threshol d, and MSS val ues.
Dependi ng upon the inplenentation details, it may be sinplest to
build a new cache for these val ues; another possibility is to use
the routing cache that should already be included in the host

[ RFC-1122] .

I mpl enent ati on of the cache nmay be sinplified because it is
consulted only when a connection is established; thereafter, the
CC val ues relevant to the connection are kept in the TCB. This
neans that a cache entry may be safely reused during the lifetine
of a connection, avoiding the need for |ocking.

4.5 CPU Performance

TCP inplenentations are customarily optinized for stream ng of
data at hi gh speeds, not for opening or closing connections.
Jacobson’ s Header Prediction algorithm][Jacobson90] handl es the
si npl e common cases of in-sequence data and ACK segnents when
streaning data. To provide good perfornance for transactions, an
i mpl ement ati on night be able to do an anal ogous "header
prediction"” specifically for the mniml request and the response
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segnent s.

The overhead of UDP provides a | ower bound on the overhead of
TCP-based transaction processing. It will probably not be
possible to reach this bound for TCP transactions, since opening a
TCP connection involves creating a significant amount of state
that is not required by UDP

McKenney and Dove [ McKenney92] have pointed out that transaction
processi ng applications of TCP can stress the performance of the
demul tiplexing algorithm i.e., the algorithmused to | ook up the
TCB when a segnment arrives. They advocate the use of hash-table
techni ques rather than a linear search. The effect of
demul ti pl exi ng on performance may becone especially acute for a
transaction client using the extended TCP descri bed here, due to
TCB' s left in TIME-WAIT state. A high rate of transactions froma
given client will leave a |large nunber of TCB's in TIME-VWAI T
state, until their tinmeout expires. |f the TCP inplenentation
uses a linear search for denmultiplexing, all of these contro

bl ocks nmust be traversed in order to discover that the new

associ ation does not exist. In this circunstance, performance of
a hash table | ookup should not degrade severely due to
transactions.

4.6 Pre-SYN Queue

Suppose that segnent #1 in Figure 4 is lost in the network; when
segnent #2 arrives in LISTEN state, it will be ignored by the TCP
rules (see [STD-007] p.66, "fourth other text and control"), and
nmust be retransnmitted. It would be possible for the server side
to queue any ACK-|ess data segnents received in LISTEN state and
to "replay" the segnents in this gueue when a SYN segnent does
arrive. A data segnent received with an ACK bit, which is the
normal case for existing TCP s, would still a generate RST
segnent .

Not e that queueing segnents in LISTEN state is different from
gueuei ng out-of -order segnents after the connection is
synchroni zed. In LISTEN state, the sequence nunber corresponding
to the left window edge is not yet known, so that the segnent
cannot be trimmed to fit within the wi ndow before it is queued.

In fact, no processing should be done on a queued segnent while
the connection is still in LISTEN state. Therefore, a new "pre-
SYN queue” woul d be needed. A tinmeout would be required, to flush
the Pre-SYN Queue in case a SYN segnent was not received.

Al t hough i npl enmentation of a pre-SYN queue is not difficult in BSD
TCP, its limted contribution to throughput probably does not
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justify the effort.
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APPENDI X A, ALGORI THM SUMVARY

Thi s appendi x sunmari zes the additional processing rules introduced
by T/ TCP. We define the follow ng synbol s:

Opti ons
CC( SEG. CO) : TCP Connection Count (CC) Option
CC. NEW SEG. CO) : TCP CC. NEW opti on
CC. ECHQ( SEG. CO) : TCP CC. ECHO opti on

Here SEG CC is option value in segnent.

Per - Connection State Variables in TCB

CCsend: CC value to be sent in segnents
CCrecv: CC value to be received in segnents
El apsed: Duration of connection

d obal Vari abl es:

CCgen: CC generator variable
cache. CC fh]: Cache entry: Last CC val ue received.
cache. CCsent[fh]: Cache entry: Last CC val ue sent.

PSEUDO- CODE  SUMVARY:

Passi ve OPEN => {
Create new TCB;
}

Active OPEN => {
<Create new TCB>
CCrecv = 0;
CCsend = CCgen;
If (CCgen == Oxffffffff) then Set CCgen
el se Set CCgen
<Send initial {SYN} segnent (see bel ow)>

1;
CCgen + 1.

Send initial {SYN} segnent => {
If (cache.CCsent[fh] == 0 OR CCsend < cache.CCsent[fh] ) then {

I ncl ude CC. NEW CCsend) option in segnent;
Set cache. CCsent[fh] = O;
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}

el se {
I ncl ude CC(CCsend) option in segnent;
Set cache. CCsent[fh] = CCsend;

}

Send {SYN, ACK} segnent => {

If (CCrecv !'= 0) then
I ncl ude CC(CCsend), CC. ECHQ(CCrecv) options in segnent.

Recei ve {SYN} segnent in LISTEN, SYN- SENT, or SYN SENT* state => {

If state == LI STEN then {
CCrecv = 0;
CCsend = CCgen;
If (CCgen == Oxffffffff) then Set CCgen
el se Set CCgen

CCgen + 1.
}

I f (Segnent contains CC option OR
Segnment contains CC. NEWoption) then
Set CCrecv = SEG CC.

if (Segment contains CC option AND
cache.CC[fh] =0 AND
SEG CC > cache.C(fh] ) then { [/* TAO Test K */

Set cache. C( fh] = CCrecv;

<Mar k connection hal f-synchroni zed>
<Process data and/or FIN and return>

I f (Segnent does not contain CC option) then
Set cache.C( fh] = 0;

<Do normal TCP processing and return>,

}

Recei ve {SYN} segnent in LISTEN-TW LISTEN LA, LISTEN LA*, LISTEN CL,
or LISTEN-CL* state => {
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If ( (Segnent contains CC option AND CCrecv !=0 ) then {

If (state = LI STEN-TW AND El apsed > MSL ) then
<Send RST, drop segnent, and return>.

if (SEG CC > CCrecv ) then {
<Inplicitly ACK FIN and data in retransmn ssion queue>;
<Cl ose and del ete TCB>;
<Reprocess segnent >.
/* Expect to match new TCB
* in LI STEN state.
*/

}

el se
<Dr op segnent >.

Recei ve {SYN, ACK} segnent => {

if (Segment contains CC ECHO option AND
SEG CC ! = CCsend) then
<Send a reset and di scard segnent >.

if (Segnment contains CC option) then {
Set CCrecv = SEG CC.

if (cache.CCfh] is undefined) then
Set cache.CC[fh] = CCrecv.

Send non- SYN segnent => {

if (CCrecv =0 OR
(cache.CCsent[fh] '= 0 AND
state is SYN-SENT or SYN SENT*)) then
I ncl ude CC(CCsend) option in segnent.

Recei ve non- SYN segnent in SYN RECEI VED state => {
if (Segment contains CC option AND RST bit is off) {

if (SEGCC!= CCrecv) then
<Segnent is unacceptable; drop it and send an
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ACK segnent, as in normal TCP processi ng>.

if (cache.CCfh] is undefined) then
Set cache.CC[fh] = CCrecv.

Recei ve non- SYN segnent in (state >= ESTABLI SHED) => {

if (Segnment contains CC option AND RST bit is off) {
if (SEG CC!= CCrecv) then
<Segnent is unacceptable; drop it and send an
ACK segnent, as in normal TCP processi ng>.

Security Considerations

Security issues are not discussed in this neno.
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