Net wor k Wor ki ng Group D. Kristol
Request for Comments: 2109 Bel | Laboratories, Lucent Technol ogi es
Cat egory: Standards Track L. Montulli
Net scape Conmuni cati ons

February 1997

HTTP St ate Managenent Mechani sm
Status of this Meno

Thi s docunment specifies an Internet standards track protocol for the
Internet conmunity, and requests di scussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this meno is unlimnited.

1. ABSTRACT

Thi s docunent specifies a way to create a stateful session with HITP
requests and responses. It describes two new headers, Cookie and
Set - Cooki e, which carry state information between participating
origin servers and user agents. The method described here differs
from Net scape’ s Cooki e proposal, but it can interoperate with
HTTP/ 1. 0 user agents that use Netscape's nmethod. (See the H STORI CAL
section.)

2. TERM NOLOGY

The terns user agent, client, server, proxy, and origin server have
the same nmeaning as in the HITP/ 1.0 specification.

Ful ly-qualified host nane (FQHN) means either the fully-qualified
domai n nane (FQDN) of a host (i.e., a conpletely specified domain
nane ending in a top-level domain such as .comor .uk), or the
nuneric Internet Protocol (IP) address of a host. The fully
qualified donmain nanme is preferred; use of nuneric |IP addresses is
strongly di scouraged.

The terns request-host and request-URl refer to the values the client
woul d send to the server as, respectively, the host (but not port)
and abs_path portions of the absoluteURl (http_URL) of the HTTP
request line. Note that request-host nust be a FQHN.

Kristol & Montulli St andar ds Track [Page 1]

RFC 2109 HTTP St ate Managenent Mechani sm February 1997

Hosts nanes can be specified either as an I P address or a FQHN
string. Sonetinmes we conpare one host nane with another. Host A's
nane domai n- mat ches host B's if

* both host nanmes are | P addresses and their host nanme strings match
exactly; or

* both host names are FQDN strings and their host name strings match
exactly; or

* Ais a FQDN string and has the form NB, where N is a non-enpty name
string, B has the form.B, and B is a FQDN string. (So, x.y.com
domai n- mat ches .y.com but not y.com)

Note that domain-match is not a comutative operation: a.b.c.com
domai n-mat ches . c.com but not the reverse.

Because it was used in Netscape's original inplenmentation of state
managenment, we will use the termcookie to refer to the state

i nformati on that passes between an origin server and user agent, and
that gets stored by the user agent.

3. STATE AND SESSI ONS

Thi s docunent describes a way to create stateful sessions with HTTP
requests and responses. Currently, HITP servers respond to each
client request without relating that request to previous or
subsequent requests; the technique allows clients and servers that

wi sh to exchange state information to place HTTP requests and
responses within a larger context, which we terma "session". This
context might be used to create, for exanple, a "shopping cart”, in
whi ch user selections can be aggregated before purchase, or a
magazi ne browsing system in which a user’s previous reading affects
whi ch offerings are presented.

There are, of course, nany different potential contexts and thus many

different potential types of session. The designers’ paradigmfor

sessions created by the exchange of cookies has these key attributes:
1. Each session has a begi nning and an end.

2. Each session is relatively short-1lived.

3. Either the user agent or the origin server nmay termnate a
sessi on.

4. The session is inplicit in the exchange of state information

Kristol & Montulli St andar ds Track [Page 2]

RFC 2109 HTTP St ate Managenent Mechani sm February 1997

4. OUTLI NE

We outline here a way for an origin server to send state information
to the user agent, and for the user agent to return the state
information to the origin server. The goal is to have a m nim

i npact on HITP and user agents. Only origin servers that need to
mai ntai n sessions would suffer any significant inpact, and that

i npact can largely be confined to Conmon Gateway Interface (CQ)
programs, unless the server provides nore sophisticated state
managenent support. (See |nplenentation Considerations, bel ow.)

4.1 Syntax: GCeneral

The two state managenent headers, Set-Cookie and Cooki e, have comon
syntactic properties involving attribute-value pairs. The follow ng
grammar uses the notation, and tokens DIG@ T (decimal digits) and
token (informally, a sequence of non-special, non-white space
characters) fromthe HTTP/ 1.1 specification [RFC 2068] to describe
their syntax.

av-pairs = av-pair *(";" av-pair)

av-pair = attr ["=" val ue] ; optional val ue
attr = t oken

val ue = wor d

wor d = token | quoted-string

Attributes (nanmes) (attr) are case-insensitive. Wite space is
permtted between tokens. Note that while the above syntax
description shows value as optional, nost attrs require them

NOTE: The syntax above all ows whitespace between the attribute and
the = sign.

4.2 Oigin Server Role
4.2.1 Cenera

The origin server initiates a session, if it so desires. (Note that
"session" here does not refer to a persistent network connection but
to a logical session created from HTTP requests and responses. The
presence or absence of a persistent connection should have no effect
on the use of cookie-derived sessions). To initiate a session, the
origin server returns an extra response header to the client, Set-
Cookie. (The details follow later.)

A user agent returns a Cooki e request header (see below) to the

origin server if it chooses to continue a session. The origin server
may ignore it or use it to determne the current state of the

Kristol & Montulli St andar ds Track [Page 3]

RFC 2109 HTTP St ate Managenent Mechani sm February 1997

session. It may send back to the client a Set-Cookie response header
with the sane or different infornmation, or it may send no Set- Cookie
header at all. The origin server effectively ends a session by

sending the client a Set-Cookie header wi th Max- Age=0.
Servers may return a Set-Cookie response headers with any response.
User agents should send Cooki e request headers, subject to other
rules detailed below, with every request.
An origin server may include nmultiple Set-Cookie headers in a
response. Note that an intervening gateway could fold nultiple such
headers into a single header.

4.2.2 Set-Cookie Syntax
The syntax for the Set-Cookie response header is

set - cooki e "Set - Cooki e: " cooki es

cooki es = 1#cooki e
cooki e = NAMVE "=" VALUE *(";" cookie-av)
NANVE = attr
VALUE = val ue
cooki e- av = "Comment" "=" val ue
| "Domai n" "=" val ue
| "Max- Age" "=" val ue
| "Pat h" "=" val ue
| "Secure"
| "Version" "=" 1*DIAT

Informally, the Set-Cookie response header conprises the token Set-
Cookie:, followed by a comma-separated |ist of one or nore cookies.
Each cooki e begins with a NAME=VALUE pair, followed by zero or nore
sem - col on-separated attribute-value pairs. The syntax for

attri bute-value pairs was shown earlier. The specific attributes and
the semantics of their values follows. The NAME=VALUE attri bute-

val ue pair mnmust cone first in each cookie. The others, if present,
can occur in any order. If an attribute appears nore than once in a
cooki e, the behavior is undefined.

NAME=VALUE
Requi red. The nanme of the state information ("cookie") is NAVE
and its value is VALUE. NAMEs that begin with $ are reserved for
ot her uses and nust not be used by applications.

Kristol & Montulli St andar ds Track [Page 4]

RFC 2109 HTTP St ate Managenent Mechani sm February 1997

The VALUE is opaque to the user agent and may be anything the
origin server chooses to send, possibly in a server-selected
printable ASCI|I encoding. "Qpaque" inplies that the content is of
interest and relevance only to the origin server. The content
may, in fact, be readable by anyone that exam nes the Set-Cookie
header .

Commrent =commrent
Optional. Because cookies can contain private information about a
user, the Cookie attribute allows an origin server to docunment its
i ntended use of a cookie. The user can inspect the infornmation to
deci de whether to initiate or continue a session with this cookie.

Donai n=donai n
Optional. The Domain attribute specifies the donain for which the
cookie is valid. An explicitly specified donmain nmust always start
with a dot.

Max- Age=del t a- seconds
Optional. The Max-Age attribute defines the lifetinme of the
cooki e, in seconds. The delta-seconds value is a decimal non-
negative integer. After delta-seconds seconds el apse, the client
shoul d discard the cookie. A value of zero nmeans the cookie
shoul d be di scarded i medi ately.

Pat h=pat h
Optional. The Path attribute specifies the subset of URLs to
whi ch this cookie applies.

Secure
Optional. The Secure attribute (with no value) directs the user
agent to use only (unspecified) secure neans to contact the origin
server whenever it sends back this cookie.

The user agent (possibly under the user’s control) may determ ne
what | evel of security it considers appropriate for "secure"
cookies. The Secure attribute should be considered security
advice fromthe server to the user agent, indicating that it is in
the session’s interest to protect the cookie contents.

Ver si on=ver si on
Required. The Version attribute, a decimal integer, identifies to
whi ch version of the state managenent specification the cookie
confornms. For this specification, Version=1 appli es.

Kristol & Montulli St andar ds Track [Page 5]

RFC 2109 HTTP St ate Managenent Mechani sm February 1997

4.2.3 Controlling Caching

An origin server nust be cognizant of the effect of possible caching
of both the returned resource and the Set-Cooki e header. Caching
"public" docunents is desirable. For exanple, if the origin server
wants to use a public docunment such as a "front door" page as a
sentinel to indicate the beginning of a session for which a Set-
Cooki e response header nust be generated, the page should be stored
in caches "pre-expired" so that the origin server will see further
requests. "Private docunments", for exanple those that contain
information strictly private to a session, should not be cached in
shared caches.

If the cookie is intended for use by a single user, the Set-cookie
header should not be cached. A Set-cookie header that is intended to
be shared by multiple users may be cached.

The origin server should send the follow ng additional HTTP/1.1
response headers, dependi ng on circunstances:

* To suppress caching of the Set-Cookie header: Cache-control: no-
cache="set - cooki e".

and one of the follow ng:

* To suppress caching of a private docunent in shared caches: Cache-
control: private.

* To all ow caching of a docunent and require that it be validated
before returning it to the client: Cache-control: nust-revalidate.

* To all ow caching of a docunment, but to require that proxy caches
(not user agent caches) validate it before returning it to the
client: Cache-control: proxy-revalidate.

* To all ow caching of a docunent and request that it be validated
before returning it to the client (by "pre-expiring” it):
Cache-control : max-age=0. Not all caches will revalidate the
docunent in every case.

HTTP/ 1.1 servers nust send Expires: old-date (where old-date is a
date long in the past) on responses containing Set-Cookie response
headers unl ess they know for certain (by out of band neans) that
there are no downsteam HTTP/ 1.0 proxies. HITP/ 1.1 servers may send
ot her Cache-Control directives that permt caching by HITP/ 1.1
proxies in addition to the Expires: old-date directive; the Cache-
Control directive will override the Expires: old-date for HITP/ 1.1
pr oxi es.

Kristol & Montulli St andar ds Track [Page 6]

RFC 2109 HTTP St ate Managenent Mechani sm February 1997

4.3 User Agent Role
4.3.1 Interpreting Set-Cookie

The user agent keeps separate track of state information that arrives
vi a Set-Cooki e response headers from each origin server (as

di sti ngui shed by nanme or | P address and port). The user agent
applies these defaults for optional attributes that are m ssing:

VersionDefaults to "ol d cookie" behavior as originally specified by
Net scape. See the H STORI CAL secti on.

Donain Defaults to the request-host. (Note that there is no dot at
t he begi nning of request-host.)

Max- AgeThe default behavior is to discard the cookie when the user
agent exits.

Pat h Defaults to the path of the request URL that generated the
Set - Cooki e response, up to, but not including, the
right-nost /.

Secure | f absent, the user agent may send the cookie over an
i nsecure channel

4.3.2 Rejecting Cookies
To prevent possible security or privacy violations, a user agent
rejects a cookie (shall not store its information) if any of the

followng is true:

* The value for the Path attribute is not a prefix of the request-
URI .

* The value for the Domain attribute contains no enbedded dots or
does not start with a dot.

* The value for the request-host does not domai h-match the Domain
attri bute.

* The request-host is a FQDN (not | P address) and has the form HD,
where Dis the value of the Domain attribute, and His a string
t hat contains one or nore dots.

Exanpl es:

* A Set-Cookie fromrequest-host y.x.foo.comfor Domai n=.fo0.com
woul d be rejected, because His y.x and contains a dot.

Kristol & Montulli St andar ds Track [Page 7]

RFC 2109 HTTP St ate Managenent Mechani sm February 1997

* A Set-Cookie fromrequest-host x.foo.comfor Donai n=.foo.com woul d
be accept ed.

* A Set-Cookie with Donai n=.com or Donain=.com, wll always be
rej ected, because there is no enbedded dot.

* A Set-Cookie with Domai n=aj ax.comw || be rejected because the
val ue for Domai n does not begin with a dot.

4.3.3 Cooki e Managenent

If a user agent receives a Set-Cookie response header whose NAME is
the sanme as a pre-existing cookie, and whose Domai n and Path
attribute values exactly (string) match those of a pre-existing
cooki e, the new cooki e supersedes the old. However, if the Set-
Cooki e has a value for Max-Age of zero, the (old and new) cookie is
di scarded. O herw se cookies accurulate until they expire (resources
permitting), at which tinme they are discarded.

Because user agents have finite space in which to store cookies, they
may al so discard ol der cookies to nmake space for newer ones, using,
for exanple, a least-recently-used algorithm along with constraints
on the maxi mum nunber of cookies that each origin server may set.

If a Set-Cookie response header includes a Comment attribute, the
user agent should store that information in a human-readable form
with the cookie and shoul d display the cornment text as part of a
cooki e inspection user interface.

User agents should allow the user to control cookie destruction. An
i nfrequently-used cookie nmay function as a "preferences file" for
network applications, and a user may wish to keep it even if it is
the |l east-recently-used cookie. One possible inplenentation would be
an interface that allows the permanent storage of a cookie through a
checkbox (or, conversely, its inmediate destruction).

Privacy considerations dictate that the user have considerable
control over cookie managenment. The PRI VACY section contains nore
i nformati on.

4.3.4 Sending Cookies to the Origin Server
When it sends a request to an origin server, the user agent sends a
Cooki e request header to the origin server if it has cookies that are
applicable to the request, based on

* the request-host;

Kristol & Montulli St andar ds Track [Page 8]

RFC 2109 HTTP St ate Managenent Mechani sm February 1997

* the request-URI;
* the cookie’s age.

The syntax for the header is:

cooki e = "Cooki e: " cooki e-version
1*((";" | ",") cookie-val ue)
cooki e-val ue = NAME "=" VALUE [";" path] [";" domain]
cooki e-version = "$Version" "=" val ue
NAME = attr
VALUE = val ue
pat h = "$Pat h" "=" val ue
domai n = "$Domai n" "=" val ue

The val ue of the cookie-version attribute nmust be the value fromthe
Version attribute, if any, of the correspondi ng Set-Cookie response
header. O herwi se the value for cookie-versionis 0. The value for
the path attribute nust be the value fromthe Path attribute, if any,
of the correspondi ng Set-Cooki e response header. Oherw se the
attribute should be onmitted fromthe Cookie request header. The

val ue for the domain attribute nmust be the value fromthe Donain
attribute, if any, of the correspondi ng Set-Cookie response header.
O herwi se the attribute should be onitted fromthe Cookie request
header .

Note that there is no Comment attribute in the Cookie request header
corresponding to the one in the Set-Cookie response header. The user
agent does not return the conment information to the origin server

The followi ng rules apply to choosing applicabl e cooki e-val ues from
anong all the cookies the user agent has.

Donmi n Sel ection
The origin server’s fully-qualified host name nmust domai n-match
the Domain attribute of the cookie.

Path Sel ection
The Path attribute of the cookie nust match a prefix of the
request - URI .

Max- Age Sel ection

Cooki es that have expired should have been di scarded and thus
are not forwarded to an origin server

Kristol & Montulli St andar ds Track [Page 9]

RFC 2109 HTTP St ate Managenent Mechani sm February 1997

If multiple cookies satisfy the criteria above, they are ordered in
t he Cooki e header such that those with nore specific Path attributes
precede those with less specific. Odering with respect to other
attributes (e.g., Domain) is unspecified.

Not e: For backward conpatibility, the separator in the Cooki e header
is sem-colon (;) everywhere. A server should also accept comma (,)
as the separator between cookie-values for future conpatibility.

4.3.5 Sending Cookies in Unverifiable Transactions

Users nust have control over sessions in order to ensure privacy.
(See PRI VACY section below.) To sinplify inplenmentation and to
prevent an additional |ayer of conplexity where adequate safeguards
exi st, however, this docunent distinguishes between transactions that
are verifiable and those that are unverifiable. A transaction is
verifiable if the user has the option to review the request-URl prior
toits use in the transaction. A transaction is unverifiable if the
user does not have that option. Unverifiable transactions typically
ari se when a user agent automatically requests inlined or enbedded
entities or when it resolves redirection (3xx) responses from an
origin server. Typically the origin transaction, the transaction
that the user initiates, is verifiable, and that transacti on may
directly or indirectly induce the user agent to nmake unverifiable
transactions.

When it makes an unverifiable transaction, a user agent nust enable a
session only if a cookie with a domain attribute D was sent or
received in its origin transaction, such that the host nane in the
Request - URI of the unverifiable transaction domai n-nmatches D

This restriction prevents a nalicious service author from using
unverifiable transactions to induce a user agent to start or continue
a session with a server in a different domain. The starting or
continuation of such sessions could be contrary to the privacy
expectations of the user, and could also be a security problem

User agents may offer configurable options that allow the user agent,
or any autononpus prograns that the user agent executes, to ignore
the above rule, so long as these override options default to "off".

Many current user agents already provide a review option that would
render many |inks verifiable. For instance, sonme user agents display
the URL that woul d be referenced for a particular |ink when the nobuse
pointer is placed over that link. The user can therefore determ ne
whether to visit that site before causing the browser to do so.
(Though not inplenented on current user agents, a simlar technique
could be used for a button used to subnmit a form-- the user agent

Kristol & Montulli St andar ds Track [Page 10]

RFC 2109 HTTP St ate Managenent Mechani sm February 1997

could display the action to be taken if the user were to sel ect that
button.) However, even this would not nake all links verifiable; for
exanple, links to automatically | oaded i mages would not nornally be
subj ect to "nouse pointer" verification

Many user agents also provide the option for a user to view the HTM.
source of a docunent, or to save the source to an external file where
it can be viewed by another application. Wile such an option does
provide a crude revi ew nechani sm sonme users m ght not consider it
acceptable for this purpose.

4.4 How an Origin Server Interprets the Cookie Header

A user agent returns nuch of the information in the Set-Cookie header
to the origin server when the Path attribute matches that of a new
request. When it receives a Cookie header, the origin server should
treat cookies with NAMEs whose prefix is $ specially, as an attribute
for the adjacent cookie. The value for such a NAME is to be
interpreted as applying to the lexically (left-to-right) nost recent
cooki e whose nanme does not have the $ prefix. |If there is no

previ ous cookie, the value applies to the cookie nechanismas a
whol e. For exanple, consider the cookie

Cooki e: $Version="1"; Custoner="WLE E COYOTE";
$Pat h="/ acne"

$Version applies to the cookie nmechanismas a whole (and gives the
version nunber for the cookie nechanisn). $Path is an attribute
whose val ue (/acne) defines the Path attribute that was used when the
Custormer cooki e was defined in a Set-Cookie response header.

4.5 Caching Proxy Role
One reason for separating state information fromboth a URL and
docunent content is to facilitate the scaling that caching permts.
To support cookies, a caching proxy nmust obey these rules already in
the HTTP specification:

* Honor requests fromthe cache, if possible, based on cache validity
rul es.

* Pass along a Cooki e request header in any request that the proxy
must make of another server.

* Return the response to the client. |Include any Set-Cookie response
header .

Kristol & Montulli St andar ds Track [Page 11]

RFC 2109 HTTP St ate Managenent Mechani sm February 1997

* Cache the received response subject to the control of the usua
headers, such as Expires, Cache-control: no-cache, and Cache-
control: private,

* Cache the Set-Cookie subject to the control of the usual header,
Cache-control : no-cache="set-cookie". (The Set-Cooki e header
shoul d usual |y not be cached.)

Proxi es must not introduce Set-Cookie (Cookie) headers of their own
in proxy responses (requests).

5. EXAMPLES
5.1 Exanple 1

Most detail of request and response headers has been omitted. Assune
the user agent has no stored cooki es.

1. User Agent -> Server

POST /acne/login HITP/ 1.1
[form dat a]

User identifies self via a form
2. Server -> User Agent

HTTP/ 1.1 200 K
Set - Cooki e: Customer="W LE_E COYOTE"; Version="1"; Path="/acme"

Cookie reflects user’s identity.
3. User Agent -> Server
POST /acne/pickitem HTTP/ 1. 1
Cooki e: $Version="1"; Custoner="WLE E COYOTE"; $Path="/acne"
[form dat a]
User selects an itemfor "shopping basket."
4. Server -> User Agent
HTTP/ 1.1 200 K
Set - Cooki e: Part_Nunmber =" Rocket _Launcher _0001"; Version="1";

Pat h="/ acne"

Shoppi ng basket contains an item

Kristol & Montulli St andar ds Track [Page 12]

RFC 2109 HTTP St ate Managenent Mechani sm February 1997

5. User Agent -> Server

POST /acne/ shi pping HITP/ 1.1
Cooki e: $Version="1";

Cust oner="W LE_E_COYOTE"; $Pat h="/acne";

Part _Nunber =" Rocket _Launcher _0001"; $Path="/acne"
[form dat a]

User sel ects shipping method fromform
6. Server -> User Agent

HTTP/ 1.1 200 K
Set - Cooki e: Shi ppi ng="FedEx"; Version="1"; Path="/acme"

New cooki e refl ects shi ppi ng net hod.
7. User Agent -> Server
POST /acne/ process HITP/ 1.1
Cooki e: $Version="1";
Cust oner="W LE_E_COYOTE"; $Pat h="/acne";
Part _Nunber =" Rocket _Launcher _0001"; $Path="/acne";
Shi ppi ng="FedEx"; $Pat h="/acne"
[form dat a]
User chooses to process order.
8. Server -> User Agent
HTTP/ 1.1 200 K
Transaction is conplete.
The user agent nakes a series of requests on the origin server, after
each of which it receives a new cookie. Al the cookies have the
same Path attribute and (default) domain. Because the request URLs

all have /acne as a prefix, and that matches the Path attribute, each
request contains all the cookies received so far.

5.2 Exanple 2
This exanple illustrates the effect of the Path attribute. Al
detail of request and response headers has been onmitted. Assune the
user agent has no stored cookies.

| magi ne the user agent has received, in response to earlier requests,
t he response headers

Kristol & Montulli St andar ds Track [Page 13]

RFC 2109 HTTP St ate Managenent Mechani sm February 1997

Set - Cooki e: Part_Nunber =" Rocket _Launcher _0001"; Version="1";
Pat h="/acne"

and

Set - Cooki e: Part_Nunber ="Ri di ng_Rocket _0023"; Version="1";
Pat h="/acne/ anmp"

A subsequent request by the user agent to the (sane) server for URLs
of the form/acnme/ammo/... would include the follow ng request
header :

Cooki e: $Version="1";
Part _Nunber ="Ri di ng_Rocket 0023"; $Pat h="/acne/ amp";
Part _Nunber =" Rocket _Launcher _0001"; $Path="/acne"

Note that the NAME=VALUE pair for the cookie with the nore specific
Path attribute, /acne/ammp, cones before the one with the | ess
specific Path attribute, /acnme. Further note that the sanme cookie
name appears nore than once.

A subsequent request by the user agent to the (sane) server for a URL
of the form/acne/parts/ would include the foll owing request header:

Cooki e: $Version="1"; Part_Nunber ="Rocket Launcher_0001"; $Path="/acne"

Here, the second cookie's Path attribute /acnme/amop is not a prefix
of the request URL, /acne/parts/, so the cookie does not get
forwarded to the server.

6. | MPLEMENTATI ON CONSI DERATI ONS

Here we speculate on likely or desirable details for an origin server
that inplenments state nanagenent.

6.1 Set-Cooki e Content

An origin server’s content shoul d probably be divided into disjoint
application areas, sonme of which require the use of state

i nformati on. The application areas can be distinguished by their
request URLs. The Set-Cooki e header can incorporate information
about the application areas by setting the Path attribute for each
one.

The session information can obvi ously be clear or encoded text that
descri bes state. However, if it grows too large, it can becone
unwi el dy. Therefore, an inplenmentor m ght choose for the session
information to be a key to a server-side resource. O course, using

Kristol & Montulli St andar ds Track [Page 14]

RFC 2109 HTTP St ate Managenent Mechani sm February 1997

a dat abase creates some problens that this state managenent
speci fication was neant to avoid, nanely:

1. keeping real state on the server side;

2. how and when to garbage-coll ect the database entry, in case the
user agent term nates the session by, for exanple, exiting.

6.2 Statel ess Pages

Caching benefits the scalability of WWNV Therefore it is inportant
to reduce the nunber of documents that have state enmbedded in them

i nherently. For exanple, if a shopping-basket-style application

al ways di splays a user’s current basket contents on each page, those
pages cannot be cached, because each user’s basket’s contents woul d
be different. On the other hand, if each page contains just a link
that allows the user to "Look at My Shopping Basket", the page can be
cached.

6.3 Inmplenmentation Limts

Practi cal user agent inplenentations have limts on the nunber and
size of cookies that they can store. |n general, user agents’ cookie
support should have no fixed linits. They should strive to store as
many frequently-used cookies as possible. Furthernore, general-use
user agents should provide each of the followi ng minimum capabilities
i ndi vidually, although not necessarily simultaneously:

* at | east 300 cookies
* at | east 4096 bytes per cookie (as neasured by the size of the
characters that conprise the cookie non-terminal in the syntax
description of the Set-Cookie header)
* at | east 20 cookies per unique host or donain name
User agents created for specific purposes or for |imted-capacity
devi ces should provide at |east 20 cookies of 4096 bytes, to ensure
that the user can interact with a session-based origin server.
The information in a Set-Cookie response header mnmust be retained in
its entirety. |If for some reason there is inadequate space to store
the cookie, it nust be discarded, not truncated.

Applications should use as few and as small cookies as possible, and
they shoul d cope gracefully with the | oss of a cookie.

Kristol & Montulli St andar ds Track [Page 15]

RFC 2109 HTTP St ate Managenent Mechani sm February 1997

6.

7.

7.

3.1 Denial of Service Attacks

User agents may choose to set an upper bound on the nunmber of cookies
to be stored froma given host or domain nane or on the size of the
cookie information. Oherwise a nalicious server could attenpt to

fl ood a user agent with nany cookies, or |arge cookies, on successive
responses, which would force out cookies the user agent had received
from ot her servers. However, the mninma specified above should still
be supported.

PRI VACY
1 User Agent Control

An origin server could create a Set-Cookie header to track the path
of a user through the server. Users nay object to this behavior as
an intrusive accurul ation of information, even if their identity is
not evident. (ldentity might beconme evident if a user subsequently
fills out a formthat contains identifying information.) This state
managenent specification therefore requires that a user agent give

t he user control over such a possible intrusion, although the
interface through which the user is given this control is left
unspeci fied. However, the control mechani sns provided shall at |east
al | ow t he user

* to conpletely disable the sending and savi ng of cookies.
* to determ ne whether a stateful session is in progress.

* to control the saving of a cookie on the basis of the cookie's
Domai n attri bute.

Such control could be provided by, for exanple, nechani sns

* to notify the user when the user agent is about to send a cookie
to the origin server, offering the option not to begin a session

* to display a visual indication that a stateful session is in
pr ogr ess.

* to let the user decide which cookies, if any, should be saved
when the user concludes a wi ndow or user agent session.

* to let the user exami ne the contents of a cookie at any tinmne.
A user agent usually begins execution with no renenbered state

information. It should be possible to configure a user agent never
to send Cooki e headers, in which case it can never sustain state with

Kristol & Montulli St andar ds Track [Page 16]

RFC 2109 HTTP St ate Managenent Mechani sm February 1997

an origin server. (The user agent would then behave |ike one that is
unawar e of how to handl e Set- Cooki e response headers.)

When t he user agent term nates execution, it should let the user
discard all state information. Alternatively, the user agent may ask
the user whether state infornation should be retained; the default
should be "no". |If the user chooses to retain state information, it
woul d be restored the next tinme the user agent runs.

NOTE: User agents shoul d probably be cautious about using files to
store cookies long-term If a user runs nore than one instance of
the user agent, the cookies could be conmingled or otherw se nmessed

up.

7.2 Protocol Design

8.

The restrictions on the value of the Donain attribute, and the rules
concerning unverifiable transactions, are neant to reduce the ways
that cookies can "leak" to the "wong" site. The intent is to
restrict cookies to one, or a closely related set of hosts.
Therefore a request-host is limted as to what values it can set for
Donain. W consider it acceptable for hosts hostl.foo.com and

host 2. f oo. comto share cookies, but not a.comand b.com

Simlarly, a server can only set a Path for cookies that are rel ated
to the request-URI.

SECURI TY CONSI DERATI ONS

8.1 Cear Text

The information in the Set-Cooki e and Cooki e headers is unprotected.
Two consequences are:

1. Any sensitive information that is conveyed in themis exposed
to intruders.

2. Anmalicious internediary could alter the headers as they travel
in either direction, with unpredictable results.

These facts inply that information of a personal and/or financial
nature should only be sent over a secure channel. For |ess sensitive
i nformati on, or when the content of the header is a database key, an
origin server should be vigilant to prevent a bad Cookie value from
causi ng failures.

Kristol & Montulli St andar ds Track [Page 17]

RFC 2109 HTTP St ate Managenent Mechani sm February 1997

8.2 Cookie Spoofing

Proper application design can avoid spoofing attacks fromrel ated
domai ns. Consi der:

1. User agent nmkes request to victimcracker.edu, gets back
cooki e session_id="1234" and sets the default domain
vi ctimcracker. edu.

2. User agent mekes request to spoof.cracker.edu, gets back
cooki e session-id="1111", with Donai n=".cracker.edu".

3. User agent makes request to victimcracker.edu again, and
passes

Cooki e: $Version="1";
session_i d="1234";
session_id="1111"; $Donmai n=". cracker. edu"

The server at victimcracker.edu should detect that the second
cooki e was not one it originated by noticing that the Domain
attribute is not for itself and ignore it.

8.3 Unexpected Cookie Sharing

A user agent should nake every attenpt to prevent the sharing of
session information between hosts that are in different domains.
Enbedded or inlined objects may cause particularly severe privacy
problenms if they can be used to share cooki es between disparate
hosts. For exanple, a nalicious server could enbed cookie
information for host a.comin a URI for a Cd on host b.com User
agent inplenmentors are strongly encouraged to prevent this sort of
exchange whenever possi bl e.

9. OIHER, SIM LAR, PROPCSALS

Three ot her proposal s have been nade to acconplish simlar goals.
This specification is an amal gam of Kristol's State-Info proposal and
Net scape’ s Cooki e proposal

Bri an Behl endorf proposed a Session-1D header that would be user-
agent-initiated and coul d be used by an origin server to track
"clicktrails". It would not carry any origin-server-defined state,
however. Phillip Hallam Baker has proposed another client-defined
session I D nmechanismfor simlar purposes.

Kristol & Montulli St andar ds Track [Page 18]

RFC 2109 HTTP St ate Managenent Mechani sm February 1997

10.

10.

10.

10.

Whil e both session | Ds and cooki es can provide a way to sustain
stateful sessions, their intended purpose is different, and,
consequently, the privacy requirenents for themare different. A
user initiates session IDs to allow servers to track progress through
them or to distinguish nultiple users on a shared machi ne. Cooki es
are server-initiated, so the cookie nechani smdescribed here gives
users control over sonething that woul d otherw se take place w thout
t he users’ awareness. Furthernore, cookies convey rich, server-

sel ected infornmation, whereas session |IDs conprise user-sel ected,
sinmple information.

HI STORI CAL
1 Conpatibility Wth Netscape’'s | nplenentation

HTTP/ 1.0 clients and servers may use Set-Cooki e and Cooki e headers
that reflect Netscape' s original cookie proposal. These notes cover
i nter-operation between "ol d" and "new' cooki es.

1.1 Extended Cooki e Header

Thi s proposal adds attribute-value pairs to the Cookie request header
in a conpatible way. An "old" client that receives a "new' cookie
will ignore attributes it does not understand; it returns what it
does understand to the origin server. A "new' client always sends
cookies in the new form

An "ol d" server that receives a "new' cookie will see what it thinks
are many cookies with nanmes that begin with a $, and it will ignore
them (The "ol d" server expects these cookies to be separated by
sem -colon, not conma.) A "new' server can detect cookies that have
passed through an "ol d" client, because they |lack a $Version
attribute.

1.2 Expires and Max- Age

Net scape’ s origi nal proposal defined an Expires header that took a
date value in a fixed-length variant format in place of Max-Age:

Wiy, DD-Mon-YY HH MM SS GVT

Note that the Expires date fornmat contai ns enbedded spaces, and that
"ol d" cookies did not have quotes around values. Clients that

i npl enent to this specification should be aware of "old" cookies and
Expires.

Kristol & Montulli St andar ds Track [Page 19]

RFC 2109 HTTP St ate Managenent Mechani sm February 1997

10.

10.

11.

1.3 Punctuation

In Netscape's original proposal, the values in attribute-value pairs
did not accept "-quoted strings. Oigin servers should be cautious
about sending val ues that require quotes unless they know the
receiving user agent understands them (i.e., "new' cookies). A
("new') user agent should only use quotes around val ues in Cookie
headers when the cookie's version(s) is (are) all conpliant with this
specification or later.

In Netscape's original proposal, no whitespace was pernitted around
the = that separates attribute-value pairs. Therefore such
whi t espace shoul d be used with caution in new inplenentations.

2 Caching and HTTP/ 1.0

Sonme caches, such as those conforming to HITTP/1.0, will inevitably
cache the Set-Cooki e header, because there was no nechanismto
suppress caching of headers prior to HITP/1.1. This caching can | ead
to security problens. Docunents transmitted by an origin server
along with Set-Cookie headers will usually either be uncachable, or
will be "pre-expired'. As long as caches obey instructions not to
cache docunents (followi ng Expires: <a date in the past> or Pragma
no-cache (HTTP/1.0), or Cache-control: no-cache (HTTP/1.1))
uncachabl e documents present no problem However, pre-expired
docunments nmay be stored in caches. They require validation (a
condi ti onal GET) on each new request, but sone cache operators | oosen
the rules for their caches, and sonetinmes serve expired docunents

wi thout first validating them This conbination of factors can | ead
to cookies neant for one user |ater being sent to another user. The
Set - Cooki e header is stored in the cache, and, although the docunent
is stale (expired), the cache returns the docunent in response to

| ater requests, including cached headers.

ACKNOW.EDGEMENTS
Thi s docunment really represents the collective efforts of the

follow ng people, in addition to the authors: Roy Fielding, Mrc
Hedl und, Ted Hardi e, Koen Hol t man, Shel Kaphan, Rohit Khare.

Kristol & Montulli St andar ds Track [Page 20]

RFC 2109

HTTP St ate Managenent Mechani sm

12. AUTHORS ADDRESSES

David M Kri st ol

Bel |

600 Mount ai n Ave.
Murray Hill,

Phone
Fax:
EMi |

Laboratories, Lucent Technol ogies

Room 2A- 227

NJ 07974

: (908) 582-2250
(908) 582-5809
: dnk@el | -1 abs. com

Lou Montul I'i
Net scape Communi cati ons Corp.
501 E. Mddlefield Rd.
Mountain View, CA 94043

Phone
EMi |

Kri st ol

. (415) 528-2600
: nontul i @etscape.com

& Montul I'i

St andards Track

February 1997

[Page 21]

