Net wor k Wor ki ng G oup David D. dark (MT)
Request for Comments: 993 Mark L. Lanmbert (MT)
bsol etes: RFC-984 Decenber 1986

PCVAI L: A Distributed Mail System for Personal Conputers

1. Status of this Docunent

This docunment is a discussion of the Pcmail workstation-based distri-
buted mail system It is a revision of the design published in NIC
RFC-984. The revision is based on discussion and coment from a
variety of sources, as well as further research into the design of
interactive Pcrmail clients and the use of client code on nmachi nes
other than IBM PCs. As this design may change, inplenentation of
this docunment is not advised. Distribution of this neno is unlimt-
ed.

2. Introduction

Pcnail is a distributed nmail system providing mail service to an ar-
bitrary nunmber of users, each of whom owns one or nore workstations.
Pcrmail s notivation is to provide very flexible nmail service to a

wi de variety of different workstations, ranging in power fromsmall,
resource-limted machines Iike IBMPCs to resource-rich (where
"resources" are primarily processor speed and di sk space) machi nes
like Suns or Mcrovaxes. It attenpts to provide linmted service to
resource-limted workstations while still providing full service to
resource-rich machines. It is intended to work well w th machines
only infrequently connected to a network as well as machi nes per-
manently connected to a network. It is also designed to offer disk-
| ess workstations full mail service.

The systemis divided into two halves. The first consists of a sin-
gle entity called the "repository". The repository is a storage
center for incoming mail. Ml for a Pcnmail user can arrive exter-
nally fromthe Internet or internally fromother repository users.
The repository also maintains a stable copy of each user’s mail state
(this will hereafter be referred to as the user’s "gl obal mai

state"). The repository is therefore typically a conputer with a

| arge anmount of disk storage.

The second half of Pcmail consists of one or nore "clients". Each
Pcrmai | user may have an arbitrary nunber of clients, typically

singl e-user workstations. The clients provide a user with a friendly
nmeans of accessing the user’s global mail state over a network. In
order to make the interaction between the repository and a user’s
clients nore efficient, each client maintains a |ocal copy of its

Cark & Lanbert [Page 1]

RFC 993 Decenber 1986

user’'s global nmail state, called the "local nail state". It is as-
sumed that clients, possibly being small personal conputers, may not
al ways have access to a network (and therefore to the gl obal nai
state in the repository). This nmeans that the | ocal and gl obal rmail
states may not be identical all the time, making synchronization
between | ocal and gl obal nmil states necessary.

Clients conmunicate with the repository via the Distributed Mail Sys-
tem Protocol (DMSP); the specification for this protocol appears in
appendi x A. The repository is therefore a DVBP server in addition to
a mail end-site and storage facility. DMSP provides a conplete set
of mail manipul ati on operations ("send a nessage", "delete a nes-
sage", "print a nessage", etc.). DMSP al so provides special opera-
tions to allow easy synchroni zati on between a user’s gl obal nmai
state and his clients’ local mail states. Particular attention has
been paid to the way in which DMSP operations act on a user’'s nai
state. Al DVBP operations are failure-atomc (that is, they are
guar anteed either to succeed conpletely, or |eave the user’s nai
state unchanged). A client can be abruptly disconnected fromthe
repository w thout |eaving inconsistent or damaged mail states.

Pcnail ' s design has been directed by the characteristics of currently
avai | abl e workstations. Sonme workstations are fairly portable, and
can be packed up and noved in the back seat of an autonobile. A few
are truly portabl e--about the size of a briefcase--and battery-
powered. Some workstations have constant access to a high-speed

| ocal -area network; pcrmail should allow for "on-line" mail delivery
for these machines while at the same tine providing "batch" mai
delivery for other workstations that are not always connected to a
network. Portable and seni -portable workstations tend to be
resource-poor. A typical IBMPC has a small anount (typically |ess
than one negabyte) of nain nmenory and little in the way of mass
storage (floppy-disk drives that can access perhaps 360 kil obytes of
data). Pcnail nust be able to provide machines |ike this with ade-
guate mail service wi thout hanpering its performance on nore
resource-rich workstations. Finally, all workstations have sone com
non characteristics that Pcrmail should take advantage of. For in-
stance, workstations are fairly inexpensive conpared to the various
ti me-shared systens that nost people use for mail service. This
nmeans that people may own nore than one workstation, perhaps putting
a Mcrovax in an office and an I BM PC at hone.

Pcnail’s design reflects the differing characteristics of the various
wor kstations. Since one person can own several workstations, Pcnai
all ows users nmultiple access points to their mail state. Each Pcnai
user can have several client workstations, each of which can access
the user’s mail by communicating with the repository over a network.
The clients all maintain | ocal copies of the user’s global nai

state, and synchroni ze the I ocal and gl obal states using DVSP.

It is also possible that some workstations will only infrequently be

Cark & Lanbert [Page 2]

RFC 993 Decenber 1986

connected to a network (and thus be able to conmunicate with the re-
pository). The Pcrmail design therefore allows two nodes of communi -
cation between repository and client. "lInteractive node" is used
when the client is always connected to the network. Any changes to
the client’s local mail state are imediately also nade to the
repository’s global mail state, and any incomng mail is inmediately
transnitted fromrepository to client. "Batch node" is used by
clients that have infrequent access to the repository. Users mani pu-
late the client’s local mail state, queueing the changes |ocally.
When the client is next connected to the repository, the changes are
executed, and the client’s local mail state is synchronized with the
repository’s global mil state.

Finally, the Pcmail design mnimzes the effect of using a resource-
poor workstation as a client. Mil nessages are split into two
parts: a "descriptor" and a "body". The descriptor is a capsule nes-
sage summary whose length (typically about 100 bytes) is independent
of the actual nessage |length. The body is the actual nessage text,

i ncludi ng an RFC-822 standard nmessage header. Wile the client may
not have enough storage to hold a conplete set of nessages, it can
usually hold a conplete set of descriptors, thus providing the user
with at least a sutmary of his mail state. For clients with extrene-
ly limted resources, Pcrmail allows the storage of partial sets of
descriptors. Although this neans the user does not have a conplete
|l ocal nail state, he can at |east | ook at sunmaries of sone nessages.
In the cases where the client cannot i medi ately store nmessage bo-
dies, it can always pull themover fromthe repository as storage be-
cones avail abl e.

The remai nder of this docunment is broken up into sections discussing
the foll ow ng:

- The repository architecture
- DVMSP, its operations, and notivation for its design
- The client architecture

- A typical DMSP session between the repository and a
client

- The current Pcnail inplenmentation
3. Repository architecture

A typical machi ne running repository code has a relatively powerful
processor and a |large anount of disk storage. It nust also be a per-
manent network site, for two reasons. First clients conmunicate with
the repository over a network, and rely on the repository’s being
avail able at any tine. Second, people sending mail to repository
users rely on the repository’'s being available to receive mail at any

Cark & Lanbert [Page 3]

RFC 993 Decenber 1986

tinme.

The repository nust perform several tasks. First, and nost inpor-
tantly, the repository nust efficiently nmanage a potentially |arge
nunber of users and their mail states. Miil nust be reliably stored
in a manner that makes it easy for nultiple clients to access the

gl obal mail state and synchronize their local mail states with the

gl obal state. Since a large category of electronic nail is
represented by bulletin boards (bboards), the repository should effi-
ciently manage bboard mail, using a mninmum of storage to store
bboard nmessages in a nanner that still allows any user subscribing to
the bboard to read the mail. Second, the repository nust be able to
conmuni cate efficiently with its clients. The protocol used to com
muni cat e between repository and client nust be reliable and nmust pro-
vi de operations that (1) allow typical nail manipulation, and (2)
support Pcrmil’s distributed nature by allowi ng efficient synchroni-
zation between | ocal and global nmail states. Third, the repository
must be able to process mail from sources outside the repository’s
own user comunity (a primary outside source is the Internet). In-
ternet mail will arrive with a NIC RFC-822 standard nessage header
the recipient nanmes in the nmessage nust be properly translated from
the RFC-822 namespace into the repository’s namespace.

3.1. Managenent of user mail state

Pcnail divides the world into a conmunity of users. Each user is re-
ferred to by a user object. A user object consists of a unique nane,
a password (which the user’s clients use to authenticate thensel ves
to the repository before manipulating a global mail state), a list of
"client objects" describing those clients belonging to the user, and
a list of "mail box objects".

A client object consists of a unique nanme and a status. A user has
one client object for every client he owns; a client cannot conmmuni -
cate with the repository unless it has a corresponding client object
inauser’'s client list. dient objects therefore serve as a neans
of identifying valid clients to the repository. dient objects also
all ow the repository to manage | ocal and gl obal nmil state synchroni -
zation; the repository associates with every gl obal state change a
list of client objects corresponding to those clients which have not
recorded the global change |ocally.

Aclient’s status is either "active" or "inactive". The repository
defines inactive clients as those clients which have not connected to
the repository within a set tine period (one week in the current re-
pository inplenentation). Wen an inactive client does connect to
the repository, the repository notifies the client that it has been
"reset". The repository resets a client by marking all nessages in
the user’s nmail state as having changed since the client |ast |ogged
in. Wen the client next synchronizes with the repository, it wll
receive a conplete copy of the repository’s global mail state. A

G ark & Lanbert [Page 4]

RFC 993 Decenber 1986

forced reset is perforned on the assunption that enough gl obal state
changes occur in a week that the client would spend too nuch tine
perfornming an ordinary |ocal state-global state synchronization

Messages are stored in nmail boxes. Users can have an arbitrary nunber
of mail boxes, which serve both to store and to categorize nessages.

A mai | box object both nanes a nail box and describes its contents.
Mai | boxes are identified by a unique name; their contents are
described by three numeric values. The first is the total nunber of
nmessages in the mail box, the second is the total nunber of unseen
nmessages (nessages that have never been seen by the user via any
client) in the nmailbox, and the third is the mail box’s next avail able
nmessage unique identifier (UD). The above information is stored in
the mail box object to allow clients to get a sunmary of a nmil box’'s
contents without having to read all the nessages wthin the mail box.

Sone mai | boxes are special, in that other users may read t he nessages
stored in them These nmil boxes are called "bulletin board mail -
boxes" or "bboard mail boxes". The repository uses bboard mail boxes
to store bboard mail. Bboard nmail boxes differ fromordinary mail -
boxes in the foll ow ng ways:

- Their nanmes are unique across the entire repository;
for instance, only one bboard mail box naned "sf-I|overs”
may exist in the entire repository community. This
does not preclude other users from having an ordinary
mai | box nanmed "sf-I|overs”

- Subscribers to the bboard are granted read-only access
to the nessages in the bboard nail box. The bboard
mai | box’ s owner (typically the system nanager) has
read/ updat e/ del et e access to the mail box.

A bboard subscriber keeps track of the nessages he has | ooked at via
a bboard object. The bboard object contains the nanme of the bboard,
its owner (the user who owns the bboard nmil box where all the nes-
sages are stored), and the U D of the first nessage not yet seen by
t he subscri ber

Users gain read-only access to a bboard by "subscribing"” to it; they
| ose that access when they "unsubscribe" to it.

Associ ated with each mail box are an arbitrary nunber of nessage ob-
jects. Each nmessage is broken into two parts--a "descriptor"”, which
contains a sunmary of useful information about the nessage, and a
"body", which is the nmessage text itself, including its NIC RFC 822
nmessage header. Each nmessage i s assigned a nonotonically increasing
U D based on the owning nail box’s next available UD. Each nail box
has its own set of U Ds which, together with the mail box nane and
user name, uniquely identify the message within the repository.

Cark & Lanbert [Page 5]

RFC 993 Decenber 1986

A descriptor holds the follow ng information: the nessage U D, the
nmessage size in bytes and lines, four "useful" message header fields
(the "date:", "to:", "from", and "subject:" fields), and sixteen
flags. These flags are given identifying nunbers O through: 15.

Ei ght of these flags are reserved for the repository’'s use. Sone of
these are actually used by the repository, while others are sinply
hel d for informational purposes. 1In the current repository inplenen-
tation these flags mark:

- (#0) whether it has been del eted

- (#1) whether the nessage has been seen

- (#2) whether it has been forwarded to the user
- (#3) whether it has been forwarded by the user

- (#4) whether it has been filed (witten to a text file
out side the repository)

- (#5) whether it has been printed (locally or renotely)

- (#6) whether it has been replied to

- (#7) whether it has been copied to another mail box
The remai ning eight flags are reserved for future use.

Descriptors serve as an efficient neans for clients to get nessage
i nformati on wi thout having to waste tine retrieving the message from
the repository.

3.2. Repository-to-RFC 822 name transl ation

"Addr ess objects" provide the repository with a neans for translating
the RFC-822-style nmail addresses in Internet nessages into repository
nanes. The repository provides its own nanespace for nessage iden-
tification. Any nessage is uniquely identified by the triple (user-
nane, nail box-nanme, nmessage-U D). Any mailbox is uniquely identified
by the pair (user-name, mail box-nane). Thus to send a nessage
between two repository users, a user would address the nessage to
(user-nane, nail box-nanme). The repository would deliver the nessage
to the naned user and nmil box, and assign it a U D based on the re-
quested mail box’ s next avail able U D

In order to transl ate between RFC-822-style nmail addresses and repo-
sitory nanmes, the repository naintains a list of address objects.
Each address object is an association between an RFC-822-styl e ad-
dress and a (user-name, nmail box-nanme) pair. Wen mail arrives from
the Internet, the repository can use the address object list to
translate the recipients into (user-nane, mail box-nanme) pairs and

G ark & Lanbert [Page 6]

RFC 993 Decenber 1986

route the nessage correctly.
4. Conmuni cation between repository and client: DVBP

The Distributed Mail System Protocol (DVSP) is a bl ock-stream proto-
col that defines and mani pul ates the objects nmentioned in the previ-
ous section. It has been designed to work with Pcrmail’s single-
repository/multiple-client nodel of the world. In addition to pro-
viding typical mail manipul ation functions, DVSP provides functions
that all ow easy synchronization of global and |local nail states.

DVSP is inplenmented on top of the Unified Stream Protocol (USP)
specified in MT-LCS RFC-272. USP provides a reliable virtual cir-
cuit bl ock-stream connection between two nmachines. |t defines a
basic set of data types ("strings", "integers", "bool eans", etc.);

i nstances of these data types are grouped in an application-defined
order to form USP bl ocks. Each USP block is defined by a nuneric

"bl ock type"; a USP application can thus interpret a block’s contents
based on knowl edge of the block’s type. DMSP consists of a set of
operations, each of which is conprised of one or nore different USP
bl ocks that are sent between repository and client.

A DVSP session proceeds as follows: a client begins the session with
the repository by opening a USP connection to the repository’s
machine. The client then authenticates both itself and its user to
the repository with a "login" operation. |If the authentication is
successful, the user perfornms an arbitrary nunber of DVSP operations
before ending the session with a "logout" operation (at which tine
the connection is closed by the repository).

Because DMSP can nani pulate a pair of mail states (local and gl obal)
at once, it is extrenely inportant that all DVMSP operations are
failure-atomc. Failure of any DVMSP operation nust | eave both states
in a consistent, known state. For this reason, a DVMSP operation is
defined to have failed unless an explicit acknow edgenent is received
by the operation initiator. This acknow edgenent can take one of two
basic forms, based on two broad categories that all DMSP operations
fall into. First, an operation can be a request to perform sone nai
state nodification, in which case the repository will acknow edge the
request with either an "ok™ or a "failure” (in which case the reason
for the failure is also returned). Second, an operation can be a re-
quest for information, in which case the request is acknow edged by
the repository’s providing the information to the client. Operations
such as "delete a nessage" fall into the first category; operations
like "send a list of mail boxes" fall into the second category.

Following is a general discussion of all the DVSP operations. The
operations are broken down by type: general operations, user opera-
tions, client operations, nailbox operations, address operations,
bboard operations, and nessage operations.

Cark & Lanbert [Page 7]

RFC 993 Decenber 1986

4.1. General operations

The first group of DVMSP operations perform general functions that
operate on no one particular class of object. DWMSP has two genera
operations, which provide the followi ng services:

In order to prevent protocol version skew between clients and the re-
pository, DMSP provides a "send-version" operation. The client sup-
plies its DMSP version nunber as an argunent; the operation succeeds
if the supplied version nunber matches the repository’ s DVSP version
nunber. It fails if the two version nunbers do not match. The ver-
sion nunber is an unsigned quantity, like "100", "101", "200". The
"send- versi on" operation should be the first that a client sends to
the repository, since no other operation ny work if the client and
repository are using different versions of DVSP

Users can send mail to other users via the "send-nessage" operation
The nmessage nmust have an Internet-style header as defined by NIC
RFC-822. The repository takes the nmessage and distributes it to the
mai | boxes specified on the "to:", "cc:", and "bcc:" fields of the
nmessage header. |If one or nore of the mail boxes exists outside the
repository’s user comrunity, the repository is responsible for hand-
ing the nessage to a |l ocal SMIP server

An OK is sent fromthe repository only if the entire nmessage was suc-
cessfully transmtted. |f the nessage was destined for the Internet,
t he send-nessage operation is successful if the nmessage was success-
fully transmitted to the | ocal SMIP server

4.2. User operations

The next series of DVSP operations nmani pul ates user objects. The
nost comon of these operations are "login" and "logout". A client
must performa | ogin operation before being able to access a user’s
mail state. A DMSP login block contains five itens: (1) the user’s
nane, (2) the user’s password, (3) the nanme of the client performnng
the login, (4) a flag telling the repository to create a client ob-
ject for the client if one does not exist, and (5) a flag set to TRUE
if the client wishes to operate in "batch node" and FALSE if the
client wishes to operate in "interactive" node. The flag value al-
lows the repository to tune internal parameters for either node of
operati on.

The repository can return either an OK bl ock (indicating successful
aut henti cation), a FAILURE block (indicating failed authentication),
or a FORCE-RESET block. This last is sent if the client logging in
has been marked as "inactive" by the repository (clients are narked
inactive if they have not connected to the repository in over a
week). The FORCE- RESET bl ock indicates that the client should erase
its local nail state and pull over a conplete version of the
repository’s mail state. This is done on the assunption that so many

G ark & Lanbert [Page 8]

RFC 993 Decenber 1986

mai | state changes have been nade in a week that it would be ineffi-
cient to performa normal synchronization

Wien a client has conpleted a session with the repository, it per-
forms a | ogout operation. This allows the repository to perform any
necessary cl eanup before closing the USP connecti on.

A user can change his password via the "set-password" operation. The
operati on works nuch the same as the UN X change- password operation
taking as argunments the user’s current password and a desired new

password. |If the current password given matches the user’s current
password, the user’s current password is changed to the new password
gi ven.

4.3. Client operations

DMSP provi des four operations to manipulate client objects. The
first, "list-clients", tells the repository to send the user’s client
list to the requesting client. The list takes the formof a series
of (client-nanme, status) pairs. The status is either 0 (inactive) or
1 (active).

The "create-client" operation allows a user to add a client object to
his Iist of client objects. Al though the |ogin operation duplicates
this functionality via the "create-this-client?" flag, the add-client
operation is a useful neans of creating a nunber of new client ob-
jects while logged into the repository via an existing client. The
create-client operation requires the nane of the client to add.

The "delete-client” operation renoves an existing client object from
a user’s client list. The client being renoved cannot be in use by
anyone at the tine.

The last client operation, "reset-client", causes the repository to
mark all messages in the user’s nmail state as havi ng changed since
the client last logged in. Wen a client next synchronizes with the
repository, it will end up receiving a conplete copy of the
repository’'s global mail state. This is useful for two reasons.
First, aclient’s local nmail state could easily becone | ost or dam
aged, especially if it is stored on a floppy disk. Second, if a
client has been narked as inactive by the repository, the reset-
client operation provides a fast way of resynchronizing with the re-
pository, assum ng that so nany differences exist between the |ocal
and global mail states that a normal synchronization would take far
too nuch tinme.

4.4. Muail box operations
DMSP supports five operations that mani pul ate mail box objects.

First, "list-nailboxes" has the repository send to the requesting
client informati on on each nmailbox. This information consists of the

Cark & Lanbert [Page 9]

RFC 993 Decenber 1986

mai | box nane, total message count, unseen nessage count, and "next
available UD'. This operation is useful in synchronizing | ocal and
gl obal mail states, since it allows a client to conpare the user’s
gl obal mailbox list with a client’s local mailbox list. The list of
mai | boxes al so provides a qui ck summary of each mail box's contents
wi t hout having the contents present.

The "create-nuil box" has the repository create a new mail box and at -
tach it to the user’s list of mailboxes. An address object binding
the (user-nanme, nmil box-nane) pair to an RFC-822-style address is au-
tomatically created and placed in the repository’s |list of address
objects. This allows nmail conming fromthe Internet to be correctly
routed to the new mail box.

"Del ete-mai | box" renoves a mail box fromthe user’s list of mail boxes.
Al'l nessages within the mail box are also del eted and permanently re-
moved fromthe system Any address objects binding the mail box name
to RFC-822-style numil box addresses are also renoved fromthe system

"Reset - mai | box" causes the repository to mark all the nessages in a
naned nail box as havi ng changed since the current client [ast saw
them \WWen the client next synchronizes with the repository, it wll
receive a conplete copy of the naned mail box’s mail state. This
operation is nmerely a nore specific version of the reset-client
operation (which allows the client to pull over a conplete copy of
the user’s global nmail state). |Its prinmary use is for mail boxes
whose contents have accidentally been destroyed |ocally.

Finally, DMSP has an "expunge-mail box" operation. Any nessage can be
del eted and "undel eted" at will. Deletions are nade pernmanent by
perforni ng an expunge-nmail box operation. The expunge operation
causes the repository to | ook through a named nail box, renoving from
the system any nessages narked "del et ed"

4.5. Address operations

DMSP provi des three operations that allow users to nani pul ate address

objects. First, the "list-address" operation returns a list of ad-
dress objects associated with a particular (user-nane, mail box-nane)
pair.

The "create-address" operation adds a new address object that associ-
ates a (user-nane, nailbox-nanme) pair with a given RFC 822-style
mai | box addr ess.

Finally, the "del ete-address" operation destroys the address object

bi nding the given RFC- 822-style mail address and the given (user-
nane, nail box-nane) pair.

G ark & Lanbert [Page 10]

RFC 993 Decenber 1986

4.6. Bboard operations

DVMSP provi des seven bulletin board operations. The first, "list-
bboards", gives the user a |list of the bboards he is currently sub-
scribing to. The list contains an entry for each bboard that the
user subscribes to. Each entry contains the follow ng informtion:

- The bulletin board’ s nane

- The U D of the first nmessage the subscriber has not yet
seen

- The highest nessage U D in the bulletin board
- The nunber of nessages the subscriber has not yet seen

"List-all-bboards" gives the user a list of all bboards he can sub-
scri be to.

"Create-bboard" allows a user to create a bboard mail box. The nane
gi ven must be unique across the entire repository user comunity.
Once the bboard nail box has been created, other users may subscribe
to the bboard, using bboard objects to keep track of which nessages
t hey have read on whi ch bboards.

"Del et e- bboard" allows a bboard’s owner to delete a bboard nail box.
Subscribers who attenpt to read froma bboard mail box after it has
been deleted are told that the bboard no | onger exists.

DMSP al so provi des operations to subscribe to, and unsubscribe from
any bboard. "Subscribe-bboard" adds a bboard object to the users
bboard object |ist; "unsubscribe-bboard" renoves a bboard object from
the list. Note that this does not delete the bboard mail box (obvi -
ously only the bboard’ s owner can do that). It nerely renoves the
user fromthe list of the bboard s subscribers.

DVSP allows for the user to tell the repository which nessages in a
bboard he has seen. Every bboard object contains the U D of the
first nmessage the user has not yet seen; the "set-first-unread-
nmessage- U D' operation updates that nunmber, insuring that the user
sees a given bboard nessage only once.

4.7. Message operations

The nmost commonl y- mani pul ated Pcmail objects are nessages; DVSP
therefore provides special nmessage operations to allow efficient syn-
chroni zation, as well as a set of operations to perform standard
nmessage- mani pul ati on functions. |In the follow ng paragraphs, the
terms "nessage"” and "descriptor” will be used interchangeably.

A user nay request a series of descriptors with the "get-descriptors

Cark & Lanbert [Page 11]

RFC 993 Decenber 1986

operation. The series is identified by a pair of nessage Ul Ds,
representing the | ower and upper bounds of the list. Since UDs are
defined to be nonotonically increasing nunbers, a pair of UDs is
sufficient to conpletely identify the series of descriptors. |If the
| ower bound Ul D does not exist, the repository starts the series with
the first message with U D greater than the lower bound. Sinilarly,
if the upper bound does not exist, the repository ends the series
with the last nmessage with U D less than the upper bound. |[|f certain
UDs within the series no | onger exist, the repository (obviously)
does not send them The repository returns the descriptors in a se-
quence of "choices". Elenments of the sequence can either be descrip-
tors, in which case the choice is tagged as a descriptor, or they can
be notification that the requested nessage has been expunged subse-
guent to the client’s last connection to the repository. A descrip-
tor choice is a record containing the nessage’s UD, flags, to, from
date, and subject fields, length in bytes, and length in lines. An
expunged choi ce contains only the expunged nmessage’'s U D

The "get-changed-descriptors" operation is intended for use during
state synchroni zation. \Whenever a descriptor changes state (is

del eted, for exanple), the repository notes those clients which have
not yet recorded the change locally. Get-changed-descriptors has the
repository send to the client a given nunber of descriptors which
have changed since the client’s | ast synchronization. The list sent
begins with the earliest-changed descriptor. Note that the list of
descriptors is only guaranteed to be nonotonically increasing for a
given call to "get-changed-descriptors”; nmessages with [ower U Ds may
be changed by other clients in between calls to "get-changed-
descriptors"”.

Once the changed descriptors have been | ooked at, a user will want to
informthe repository that the current client has recorded the change
locally. The "reset-changed-descriptors" causes the repository to
mark as "seen by current client" a given series of descriptors. The
series is identified by a low U D and a high UD. UDs within the
series that no longer exist are not reset.

Message bodies are transnmitted fromrepository to user with the
"get-nessage-text" operation. The separation of "get-descriptors"
and "get-nmessage-text" operations allows clients with small anpunts
of disk storage to obtain a snall nessage sunmmary (via "get-
descriptors" or "get-changed-descriptors") without having to pul
over the entire nessage.

Frequently, a nmessage nmay be too large for sone clients to store |o-
cally. Users can still look at the nmessage contents via the "print-
nmessage" operation. This operation has the repository send a copy of
the nessage to a named printer. The printer nane need only have
nmeani ng to the particular repository inplenentation; DVBP transmts
the name only as a neans of identification

Cark & Lanbert [Page 12]

RFC 993 Decenber 1986

Copyi ng of one nmessage into another mail box is acconplished via the
"copy- nessage" operation. A descriptor list of |ength one, contain-
ing a descriptor for the copied nessage is returned if the copy
operation is successful. This descriptor is required because the
copi ed nessage acquires a U D different fromthe original nessage.
The client cannot be expected to know which U D has been assigned the
copy, hence the repository’ s sending a descriptor containing the U D

5. Cient Architecture

Clients can be any of a nunber of different workstations; Pcnail’s
architecture nust therefore take into account the range of charac-
teristics of these workstations. First, nbpst workstations are much
nore affordable than the | arge conputers currently used for nmail ser-
vice. It is therefore possible that a user may well have nore than
one. Second, sone workstations are portable and they are not expect-
ed to be constantly tied into a network. Finally, many of the small -
er workstations resource-poor, so they are not expected to be able to
store a significant amount of state information locally. The follow
i ng subsections describe the particular parts of Pcnmail’s client ar-
chitecture that address these different characteristics.

5.1. Miultiple clients

The fact that Pcmail users may own nore than one workstation forns
the rationalization for the multiple client nodel that Pcrail uses.
A Pcmai|l user may have one client at hone, another at an office, and
maybe even a third portable client. Each client nmmintains a separate
copy of the user’s mail state, hence Pcmail’s distributed nature.
The notion of separate clients allows Pcrmail users to access nai
state fromseveral different |ocations. Pcnmail places no restric-
tions on a user’s ability to communicate with the repository from
several clients at the sane tinme. Instead, the decision to allow
several clients concurrent access to a user’s nmail state is nmade by
the repository inplenentation

5.2. Synchronization

Sonme workstations tend to be small and fairly portable; the likeli-
hood of their always being connected to a network is relatively
small. This is another reason for each client’s maintaining a |ocal
copy of a user’s mail state. The user can then nmanipulate the | oca
mai |l state while not connected to the network (and the repository).
This i mediately brings up the problem of synchronization between | o-
cal and global mail states. The repository is continually in a posi-
tion to receive global mail state updates, either in the formof in-

coming mail, or in the formof changes fromother clients. A client
that is not always connected to the net cannot inmmedi ately receive
the gl obal changes. |In addition, the client’s user can nake his own

changes on the local mail state.

G ark & Lanbert [Page 13]

RFC 993 Decenber 1986

Pcnail’s architecture all ows fast synchroni zati on between client |o-
cal mail states and the repository’ s global mail state. Each client
is identified in the repository by a client object attached to the
user. This object forms the basis for synchroni zati on between | ocal
and global mail states. Sonme of the | ess common state changes in-
clude the adding and del eting of user nmil boxes and t he addi ng and
del eting of address objects. Synchronization of these changes is
performed via DVSP |ist operations, which allow clients to conpare
their local versions of nailbox and address object lists with the
repository’s global version and nmake any appropriate changes. The
maj ority of possible changes to a user’s mail state are in the form
of changed descriptors. Since nbpst users will have a | arge nunber of
nmessages, and nessage states will change relatively often, special
attention needs to be paid to nmessage synchroni zation

An existing descriptor can be changed in one of two ways: first, one
of its sixteen flags values can be changed (this enconpasses reading
an unseen nessage, deleting a nmessage, and expungi ng a nmessage). The
second way to change a descriptor is via the arrival of incom ng nai
or the copying of a nessage fromone nail box to another. Both result
in a new nessage being added to a nmil box.

In both the above cases, synchronization is required between the re-
pository and every client that has not previously noted a change. To
keep track of which clients have noticed a global nmail state change
and changed their |ocal states accordingly, each mail box has associ -
ated with it a list of active clients. Each client has a (potential -
ly enpty) "update list" of nessages whi ch have changed since that
client last read them

When a client connects to the repository, it executes a DMSP "get -
changed- descri ptors" operation. This causes the repository to return
a list of all descriptor objects on that client’s update list As the
client receives the changed descriptors, it can store them/|locally,
thus updating the local nail state. After a changed descriptor has
been recorded, the client uses the DMSP "reset-descriptors” operation
to renove the nessage fromits update list. That descriptor will now
not be sent to the client unless (1) it is explicitly requested, or
(2) it changes again.

In this manner, a client can run through its user’s nmil boxes, get-
ting all changed descriptors, incorporating theminto the |ocal nail
state, and marking the change as recorded.

5.3. Batch operation versus interactive operation

Because of the portable nature of some workstations, they may not al -
ways be connected to a network (and able to comrunicate with the re-
pository). Since each client nmaintains a |local nmail state, Pcrmai
users can mani pul ate the local state while not connected to the repo-
sitory. This is known as "batch" operation, since all changes are

Cark & Lanbert [Page 14]

RFC 993 Decenber 1986

recorded by the client and nade to the repository’'s global state in a
batch, when the client next connects to the repository. Interactive

operation occurs when a client is always connected to the repository.
In interactive node, changes nmade to the local mail state are al so

i medi ately nade to the global state via DVSP operations.

In batch nbde, interaction between client and repository takes the
following form the client connects to the repository and sends over
all the changes nade by the user to the local nail state. The repo-
sitory changes its global mail state accordingly. Wen all changes
have been processed, the client begins synchronization, to incor-
porate newy-arrived mail, as well as mail state changes by ot her
clients, into the |local state.

In interactive node, since |local changes are i medi ately propagated

to the repository, the first part of batch-type operationis elim

i nated. The synchroni zation process al so changes; although one syn-
chroni zation is required when the client first opens a connection to
the repository, subsequent synchroni zati ons can be perfornmed either

at the user’s request or automatically every so often by the client.

5.4. Message summari es

Smal | er workstations nay have little in the way of di sk storage.
Clients running on these workstati ons nay never have enough room for
a conplete local copy of a user’'s global mail state. This neans that
Pcnail’s client architecture nmust allow user’s to obtain a clear pic-
ture of their mail state without having all their nessages present.

Descriptors provide nessage information without taking up |arge
anounts of storage. Each descriptor contains a sunmary of infornma-
tion on a nessage. This information includes the nessage U D, its
length in bytes and lines, its status (encoded in the eight system
defined and ei ght user-defined flags), and portions of its RFC 822
header (the "to:", "from", "subject:" and "date:" fields). Al of
this information can be encoded in a small (around 100 bytes) data
structure whose length is independent of the size of the nmessage it
descri bes.

Most clients should be able to store a conplete list of nmessage
descriptors with little problem This allows a user to get a com
plete picture of his nmail state wi thout having all his nmessages
present locally. [If a client has extrenely limted anmounts of disk
storage, it is also possible to get a subset of the descriptors from
the repository. Short messages can reside on the client, along with
the descriptors, and | ong nessages can either be printed via the DVBP
print-nessage operation, or specially pulled over via the fetch-
nessage-text operation.

Cark & Lanbert [Page 15]

RFC 993 Decenber 1986

6. Typical interactive-style client-repository interaction

The foll owi ng exanpl e describes a typical comrunication session
between the repository and a client. The client is one of three be-

longing to user "Fred". |Its nane is "office-client”, and since Fred
uses the client regularly to access his nail, the client is marked as
"active". Fred has two nail boxes: "main" is where all of his current
mail is stored; "archive" is where nessages of lasting inportance are
kept. The exanple will run through a sinple synchronization opera-
tion followed by a series of typical mail state manipul ations. Typi-
cally, the synchronization will be performed by an application pro-
gram that connects to the repository, logs in, synchronizes, and | ogs
out .

For the exanple, all DMSP operations will be shown in a user-readable
format. In reality, the operations would be sent as a stream of USP

bl ocks consisting of a block-type nunber followed by a stream of
byt es representing the bl ock’s conponents.

In order to access his global nail state, the client software nust
authenticate Fred to the repository; this is done via the DVSP | ogin
operati on:

login ["fred", "fred-password", "office-client", F, F]

This tells the repository that Fred is logging in via "office-
client", and that "office-client" is identified by an existing client
obj ect attached to Fred' s user object. The first conponent of the
login block is Fred' s repository user nane. The second conmponent is
Fred' s password. The third conponent is the nane of the client com
muni cating with the repository. The fourth conponent tells the repo-
sitory not to create "office-client” even if it cannot find its
client object. The final conponent tells the repository that Fred' s
client is not operating in batch node but rather in interactive node.

Fred' s authentication checks out, so the repository logs himin, ack-
now edgi ng the login request with an OK bl ock

Now that Fred is logged in, the client perfornms an initial synchroni-
zation. This process starts with the client’s asking for an up-to-
date list of mail boxes:

list-mail boxes []

The repository replies wth:

mai | box-list [["main", 10, 1, 253],
["archive", 100, 0, 101]]

This tells the client that there are two nmail boxes, "main" and "ar-
chive". "Min" has 10 nmessages, one of which is unseen. The next

G ark & Lanbert [Page 16]

RFC 993 Decenber 1986

i ncom ng message will be assigned a U D of 253. "Archive", on the
ot her hand, has 100 nessage, none of which are unseen. The next nes-
sage sent to "archive" will be assigned the UD 101. There are no

new nai |l boxes in the list (if there were, the client program woul d
create them On the other hand, if some mail boxes in the client’s
local list were not in the repository’s list, the programwould as-
sune them del eted by another client and delete themlocally as well).

To synchroni ze the client need only | ook at each mail box’s contents
to see if (1) any new mail has arrived, or (2) if Fred changed any
nmessages on one of his other two clients subsequent to "office-
client"' s last connection to the repository.

The client asks for any changed descriptors via the "get-changed-
descriptors" operation. It requests at nost ten changed descriptors
since storage is very limted on "office-client".

get - changed- descriptors ["main", 10]
The repository responds with:
descriptor-list [[descriptor]

[TTFFFFFFFFFF
FFFF,

"Fred@or ax",

"Joe@ ab",

"Wed, 23 Jan 86 11:11 EST",

"tonorrow s neeting",

621,

10]]

[descriptor]|

10,
[FTFFFFFFFFFF
FFFF,

"Fred",

"Freds-secretary"”,

"Fri, 25 Jan 86 11:11 EST",
"Monthly progress report”,
13211,

350]]

]

The first descriptor in the list is one which Fred del eted on anot her

client yesterday. "Ofice-client" narks the |ocal version of the
nmessage as del eted. The second descriptor in the list is a new one.
"OFfice-client" adds the descriptor to its local list. Since both

changes have now been recorded | ocally, the descriptors can be reset:

reset-descriptors ["main", 6, 10]

G ark & Lanbert [Page 17]

RFC 993 Decenber 1986

The repository renoves from"office-client" s update list all nes-
sages with U Ds between 6 and 10 (in this case just two nessages)
"Mai n" has now been synchronized. The client nowturns to Fred's
"archive" mail box and asks for the first ten changed descriptors.

get - changed- descriptors ["archive", 10]
The repository responds with
descriptor-list []

The zero-length list tells "office-client” that no descriptors have
been changed in "archive" since its |last synchronization. No new
synchroni zati on needs to be perforned.

Fred’s client is nowready to pull over the new nmessage. The nessage
is 320 lines long; there night not be sufficient storage on "office-
client" to hold the new nessage. The client tries anyway:

fetch-nmessage-text ["main", 10]
The repository begins transmitting the nessage:

nmessage ["From Fred s-secretary",
"To: Fred",
"Subj ect: Monthly progress report",
"Date: Fri, 25 Jan 86 11:11 EST",
"Dear Fred,",
"Here is this nonth’s progress report",

2

Hal f way through the nessage transm ssion, "office-client” runs out of
di sk space. Because all DWVBP operations are defined to be failure-
atom c, the portion of the nmessage already transnitted is destroyed
locally and the operation fails. "Ofice-client” infornms Fred that
the nmessage cannot be pulled over because of a | ack of disk space.
The synchroni zation process is now finished and Fred can start read-

ing his nmail. The new nessage that was too big to fit on "office-
client™ will be nmarked "off line"; Fred can either renote-print it or
del ete other nmessages until he has enough space to store the new nes-
sage.

Since he is running in interactive node, changes he makes to any nes-
sages will inmediately be transnitted i nto DVSP operations and sent
to the repository. Depending on the client inplenentation, Fred wll
ei ther have to execute a "synchroni ze" comrand periodically or the
client will synchronize for himautomatically every so often.

G ark & Lanbert [Page 18]

RFC 993 Decenber 1986

7. A current Pcrail inplenentation

The followi ng section briefly describes a current Pcnail systemthat
services a snmall community of users. The Pcnmil repository runs
under UNI X on a DEC VAX-750 connected to the Internet. The clients
run on | BM PCs, XTs, and ATs, as well as Sun workstations, Mcro-
vaxes, and VAX-750s.

7.1. IBMPC client code

Client code for the I BM nmachi nes operates only in batch node. Users
make | ocal state changes, which are queued until the client connects
to the repository. At that tine, the changes are perforned and the
| ocal and gl obal states synchronized. The client then di sconnects
fromthe repository.

Users access and nodify their local nail state via a user interface
program The program uses wi ndows and a full-screen node of opera-
tion. Users are given a variety of commands to operate on individual
nmessages as well as mail boxes. The interface allows use of any text
editor to conpose nessages, and adds features of its own to nake
RFC- 822-styl e header conposition easier.

Synchroni zati on and the processing of queued changes is performed by

a separate program which the user runs whenever he wi shes. The pro-
gram takes any actions queued while operating the user interface, and
converts theminto DVSP operations. Al queued changes are made be-

fore any synchronization is perforned.

The limtation of IBMPC client operation to batch node was nade be-
cause of devel opnent environnent linitations. The user interface
could not work with the network code inside it due to programsize
l[imtations. Since M5-DOS has no nulti-processing facilities, the
two programs could not run in tandemeither. The only solution was
to provide a two-part client, one part of which read the mail and one
part of which interacted with the repository.

7.2. UNI X client code

Client code for the Suns, Mcrovaxes, and VAX-750s runs on 4.2/4.3BSD
UNLX. It is fully interactive, with a powerful user interface inside
Richard Stallman’s GNU- EMACS editor. Since UN X- based workstations
have a good deal of main nenory and di sk storage, no effort was made
to lower local mail state size by keepi ng nessage descriptors rather

t han nessage text.

The |l ocal mail state consists of a number of BABYL-format numil boxes.
The interface is very simlar to the RVAIL nail reader already
present in GNU EMACS

The user interface comunicates with the repository through a DVSP

G ark & Lanbert [Page 19]

RFC 993 Decenber 1986

i npl enentation built into the GNU-EMACS kernel. Changes to the | ocal
mail state are imediately nade on the repository; the repository is
fast enough that there is little noticeable delay in perform ng the
operati on over the network.

There is no provision for automati c synchroni zati on whenever new mnai
arrives or old mail is changed by another client. Instead, users
must get any new nmmil explicitly. A sinple "notification" program
runs in the background and wakes up every ninute to check for new
mai |l ; when mail arrives, the user executes a command to get the new
mai |, synchroni zing the mail box at the sanme tine.

7.3. Repository code

The repository is inplemented in Con 4.2/4.3BSD UNIX. Currently it

runs on DEC VAX-750s and M crovaxes, although other repositories wll
soon be running on I BM RT machi nes and Sun workstations. The reposi-
tory code is designed to allow several clients belonging to a partic-
ular user to "concurrently" nodify the user’'s state. A mail box | ock-
ing schene prevents one client fromnodifying a mail box while another
client is nodifying the same nail box.

8. Concl usi ons

Pcnail is now used by a small conmunity of people at the MT Labora-
tory for Conputer Science. The repository design works well, provid-
ing an efficient nmeans of storing and nmaintaining mail state for
several users. |Its performance is quite good when up to ten users
are connected; it remains to be seen whether or not the repository
will be efficient at managing the state of ten or a hundred tines
that many users. G ven sufficient disk storage, it should be able
to, since comunication between different users’ clients and the re-
pository is likely to be very asynchronous and likely to occur in
short bursts with long "quiet intervals" in between as users are busy
doi ng ot her things.

Menmbers of another research group at LCS are currently working on a
replicated, scal able version of the repository designed to support a
very large conmunity of users with high availability. This reposito-
ry al so uses DVMSP and has successfully comunicated with clients that
use the current repository inplenmentation. DMSP therefore seens to
be usabl e over several flavors of repository design.

The IBMPC clients are unfortunately very limted in the way of
resources, meking local mail state manipulation difficult at tines.
Synchroni zation is also relatively time consuning due to the | ow per-
formance of the PCs. The "batch-node" that the PCs use tends to be
good for those PCs that spend a | arge percentage of their tine un-

pl ugged and away froma network. It is sonewhat inconvenient for
those PCs that are always connected to a network and coul d nake good
use of an "interactive-nbde" state manipul ation.

Cark & Lanbert [Page 20]

RFC 993 Decenber 1986

The UNI X-based clients are far easier to use than their PC counter-
parts. Synchronization is nuch faster, and there is far nore func-
tionality in the user interface (having an interface that runs within
GNU- EMACS helps a lot in this respect). Mst of those people using
the Pcrmail system use the UN X-based client code.

APPENDI X

A. DVBP Protocol Specification

Following are a list of DVSBP operations by object type, their block
types and argunents, and their expected acknow edgenent bl ock types.
Each DVMSP bl ock has a different nunber; the first digit of each bl ock
type defines the object being nmani pul ated: Operations nunbered 5xx
are general, operations nunmbered 6xx are user operations, operations
nunbered 7xx are client operations, operations nunbered 8xx are mail -
box operations, operations nunbered 9xx are address operations,
operati ons nunbered 10xx are bboard operations, and operations num
bered 11xx are message operati ons.

Fai lure bl ocks contain two fields, a "code" and a "why". The "code"
i s an unsigned nunber placing the error in one of several broad
categories (listed below). The "why" is a text string, possibly ex-
plaining the error in greater detail.

Error codes:

- 1. network error while reading or witing data

- 2. internal repository error. This can be due to |ack
of nmenory, a fatal bug, |ack of disk space, etc.

- 3: requested object already exists. For exanple, you
tried to create a mail box that already exists

- 4: requested object not found. For exanple, you tried
to delete a nessage or a mail box that doesn’'t exist.

- 5: protocol error. Typically DVSP protocol version
skew.

- 6: block argunment error. For exanple, a "set-nessage-flag"
operation was attenpted on a bboard by soneone
ot her than the bboard s owner.

- 7: data read error. The repository was unable to read
the mail state information requested.

Cark & Lanbert [Page 21]

RFC 993 Decenber 1986

- 8: data write error. The repository was unable to
write out changed nmail state infornation, perhaps
because the di sk was full

- 9: operating systemerror: Should be reserved for
things like fork or pipe call errors.

- 10: unexpected or unknown bl ock type received. For
exanpl e, you sent a "del ete-mail box" bl ock and received
a "mailbox-list" block in response.

Bl ocks marked "=>" flow fromclient to repository; blocks marked "<="
flow fromrepository to client. |If nore than one bl ock can be sent,
the choices are delimted by "or" ("|") characters.

For clarity, each block type is put in a human-understandabl e form
The bl ock nunber is followed by an operation nane; this nane is never
transnitted as part of a USP bl ock. Block argunents are identified

by nanme and type, and enclosed in square brackets. "Record" data
types are described by a list of "field-nane:field-type" pairs con-
tained in square brackets. "Choice" data types are described by a

list of "tag-name:tag-type" pairs contained in square brackets. USP
data types are defined as follows (the definitions are brief; refer
to the USP specification for nore detail ed descriptions):

Al Primtive data types
string (S): a series of bytes, null-byte padded to even | ength and
preceded by a 16-bit length specifier. Strings are sent in "net-
ascii" format (newine sequence is carriage return followed by
linefeed, single carriage returns to be followed by a null byte).
- cardinal (C: a 16-bit unsigned nunber.

- long-cardinal (LC): a 32-bit unsigned nunber.

integer (1): a 16-bit signed nunber.
- long-integer (LI): a 32-bit signed nunber.

- boolean (B): a 16-bit nunber with either a 1 or a 0 in the
16th bit.

A. 2. Conpound data types

- sequence (SEQ: A list of data itens, all the sane type and
preceded by a 16-bit sequence | ength specifier.

Cark & Lanbert [Page 22]

RFC 993

Decenber 1986

- array (AR): Afixed-length Iist of data itens, all the sane
type. A particular array’'s length is fixed by the application.

- record (REC): A list of data itens of any type. A

particular record s format is fixed by the application.

- choice (CH): One of a list of possible data types.

The data

type contained in the choice is identified by a 16-bit nuneric
tag. The application interprets the data item based on the tag

val ue.

A. 3. DVBP Abstract Data Types

Fo

A4 Ce

=>
<=

=>
<=

Il owing are data types defined and used only by DVMSP:

client: a record with the follow ng format:
REC[nane: S, status:C] Status is either 1 (active) or O
(i nactive)

mai | box: a record with the follow ng format:
REC] nane: S, next-uid:LC, #nsgs:C, #new nsgs: (]

bboard: a record with the follow ng fornat:
REC] nane: S, first-unread-nmessage-UD:. LC
nunber - of - unseen- nessages: C hi ghest- Ul D: LC]

descriptor: a record with the follow ng format:

RECIU D: LC, flags: SEQQB], from to, date, subject:sS,
#bytes: LC, #lines:LC

desc-choice: a choice with the follow ng format:
CH[expunged- nessage- Ul D: LC, desc: descriptor] Descriptor
tag nunmber is 1. Expunged-nessage tag nunber is O.

neral operations

502 (send-version) [version:(
500 (ok) [] |
501 (failure) [code: C, why: S|

503 (send- nessage) [nessage: SEQ S]]
500 (ok) [] |
501 (failure) [code: C, why: S|

Cark & Lanbert

[Page 23]

RFC 993

A.5. User operations

=>

A 6. di

Clark &

600

500
501
705

601
500

602
500
501

ent

701
700

702
500
501

703
500
501

704
500
501

(login) [nane:S, password:S, client:S,
create-client-object?: B
bat ch- node?: B]
(ok) [] |
(failure) [code: C, why:S] |
(force-client-reset) []

(1 ogout) []
(ok) []

(set-password) [old:S, new S

(ok) [1 |
(failure) [code: C, why: S|

operati ons

(list-clients) []
(client-list) [client-list:SEQclient]]

(create-client) [client:S]

(ok) [1 |
(failure) [code: C, why: S

(delete-client) [client:S]

(ok) [1 |
(failure) [code: C, why: S|

(reset-client) [client: S

(ok) [1 |
(failure) [code: C, why: S|

| box operations

801
800

802
500
501

803
500
501

(l'ist-nmail boxes) []
(mai | box-1ist) [rmailbox-1ist:SEQ mail box]]

(create-nmail box) [mail box: S]

(ok) [1 |
(failure) [code: C, why: S

(del ete-mail box) [rmail box: S]

(ok) [1 |
(failure) [code: C, why: S

Lanbert

Decenber

1986

[Page 24]

RFC 993

<=

=>

804
500
501

805
500
501

(reset-mail box) [mail box:

(ok) [1 |
(failure) [code: C, why: S

(expunge- nmai | box) [nail box:]

(ok) [1 |
(failure) [code:C, why:S

A. 8. Address operations

=>

=>
<=

<=

901
501
900

902
500
501

903
500
501

A. 9. Bboard

=>
<=

=>

=>
<=

<=

=>

Clark &

(list-addresses) [nmail box: S]
(failure) [code: C, why:S] |
(address-list) [address-list: SEQ 9]]

(create-address) [mail box:S, address: S|

(ok) [1 |
(failure) [code: C, why: S|

(del ete-address) [mail box:S, address: S|

(ok) [1 |
(failure) [code: C, why: S

operati ons

1001 (list-bboards) []
1000 (bboard-1ist) [bboard-1list:SEQ bboard]]

501

(failure) [code: C, why: S

1002 (create-bboard) [name: S|

500
501

(ok) [1 |
(failure) [code: C, why: S|

1003 (del et e-bboard) [name:]

500
501

(ok) [1 |
(failure) [code: C, why: S

1004 (subscri be-bboard) [nane: S|

500
501

(ok) [1 |
(failure) [code: C, why: S

1005 (unsubscri be-bboard) [nane: S|

500
501

(ok) [1 |
(failure) [code: C, why: S

Lanbert

Decenber 1986

[Page 25]

RFC 993

<=

=>
<=

1006 (set-bboard-first-unread) [nanme:S, U D:LC]
500 (ok) T[] |
501 (failure) [code:C, why: S|

1007 (list-all-bboards) []
1008 (bboard-name-1list) [bboard-name-1list:SEQ S]]
501 (failure) [code: C, why: S

A. 10. Message operations

=>

Clark &

1102 (get-descriptors) [nmailbox:S,
| ow ui d: LC,
hi gh-ui d: LC]
501 (failure) [code:C, why:S] |
1100 (desc-list) [desc-list:SEQ desc-choice]]

1103 (get-changed-descriptors) [nailbox:S,
max-t o- send: C]

501 (failure) [code:C, why:S] |

1100 (desc-list) [desc-list:SEQ desc-choice]]

1104 (reset-changed-descriptors) |
mai | box: S,
start-uid: LC,
end- ui d: LC]

500 (ok) [] |

501 (failure) [code: C, why: S

1105 (get-nessage-text) [mail box:S,
uid: LC

501 (failure) [code:C, why:S] |

1101 (nessage) [nessage: SEQ 9]]

1106 (print-message) [mail box:S,
ui d: LC,
printer-name: S]
500 (ok) [] |
501 (failure) [code:C, why:S]

1107 copy- nessage[source-nai | box: S,
target - mai | box: S,
sour ce-ui d: LC]
501 (failure) [code:C, why: S
501 (failure) [code:C, why:S] |
1100 (desc-list) [desc-list:SEQ desc-choice]]

Lanbert

Decenber 1986

[Page 26]

RFC 993 Decenber 1986

=> 1108 (set-flag) [mail box: S,
ui d: LC,
fl ag- nunber: C,
fl ag-setting: B
<= 500 (ok) [] |
501 (failure) [code:C, why: S| 30

DVSP bl ock types by nunber

General bl ock types

ok 500
failure 501
send- ver si on 502
send- nessage 503

User operation bl ock types

| ogi n 600
| ogout 601
set - passwor d 602

Client operation block types

client-1ist 700
list-clients 701
create-client 702
del ete-client 703
reset-client 704
force-client-reset 705

Mai | box operation bl ock types

mai | box-1i st 800
i st-nmil boxes 801
creat e- mai | box 802
del et e- mai | box 803
reset - mai | box 804
expunge- mai | box 805

Addr ess operation bl ock types

address-1i st 900
| i st-addresses 901
cr eat e- addr ess 902
del et e- addr ess 903

Cark & Lanbert [Page 27]

RFC 993 Decenber 1986

Bboard operation bl ock types

bboard-1i st 1000
| i st-bboards 1001
cr eat e-bboard 1002
del et e- bboard 1003
subscri be- bboard 1004
unsubscri be- bboard 1005

set - bboard-first-unread 1006
get - n- new bboar d-descri ptors 1007
|ist-all-bboards 1008
bboar d- nane-1|i st 1009

Message operation block types

descriptor-1list 1100
nmessage 1101
get-descriptors 1102

get - changed- descri ptors 1103
reset - changed- descri ptors 1104

get - nessage-t ext 1105
print-mnmessage 1106
copy- nmessage 1107
set-fl ag 1108

G ark & Lanbert [Page 28]

