Net wor k Wor ki ng Group R Glligan
Request for Coments: 3493 Intransa, Inc.
bsol etes: 2553 S. Thonson
Cat egory: I nfornmational Ci sco
J. Bound

J. McCann

Hewl ett - Packar d

W Stevens

February 2003

Basi ¢ Socket |Interface Extensions for |Pv6
Status of this Meno

This meno provides information for the Internet conmmunity. |t does
not specify an Internet standard of any kind. Distribution of this
meno is unlimted.

Copyright Notice
Copyright (C) The Internet Society (2003). Al Rights Reserved.
Abstract

The de facto standard Application ProgramlInterface (API) for TCP/IP
applications is the "sockets" interface. Although this APl was

devel oped for Unix in the early 1980s it has al so been inplenmented on
a wide variety of non-Unix systems. TCP/IP applications witten
usi ng the sockets APl have in the past enjoyed a high degree of
portability and we would |ike the sane portability with | Pv6
applications. But changes are required to the sockets APl to support
| Pv6 and this nmeno describes these changes. These include a new
socket address structure to carry |Pv6 addresses, new address
conversion functions, and some new socket options. These extensions
are designed to provide access to the basic |Pv6 features required by
TCP and UDP applications, including rmulticasting, while introducing a
m ni nrum of change into the system and providing conpl ete
conmpatibility for existing IPv4 applications. Additional extensions
for advanced | Pv6 features (raw sockets and access to the |IPv6

ext ensi on headers) are defined in another docunent.

Glligan, et al. | nf or mat i onal [Page 1]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

Tabl e of Contents

L. Introduction. e 3
2. Design Considerati ONS.t 4
2.1 What Needs to be Changed............ 4
2.2 Data TYPeS. . ot 6
2.3 Headers. 6
2.4 ST UCTUI S, .t e e e e 6
3. Socket Interface........ ... 6
3.1 I1Pv6 Address Fam |y and Protocol Family................ 6
3.2 IPv6 Address StruCture.uiiiinnn. 7
3.3 Socket Address Structure for 4.3BSD Based Systens...... 7
3.4 Socket Address Structure for 4.4BSD- Based Systens...... 9
3.5 The Socket Functions............ 9
3.6 Conpatibility with IPv4 Applications.................. 10
3.7 Conpatibility with IPv4 Nodes......................... 11
3.8 IPv6 Wldcard Address. 11
3.9 [IPv6 Loopback Address........... 13
3.10 Portability Additions. 14
4. Interface ldentification.......... 16
4.1 Name-to-Index......... . e 17
4.2 Index-to-Name. e 17
4.3 Return Al Interface Nanes and Indexes................ 18
4.4 Free MemOry. 18
5. SocKet OptiONS. 18
5.1 Unicast Hop Limt.... 19
5.2 Sending and Receiving Milticast Packets............... 19
5.3 [PV6_VEONLY option for AF_INET6 Sockets............... 22
6. Library Functions. 22
6.1 Protocol -1 ndependent Nodename and
Service Nane Translation................. 23
6.2 Socket Address Structure to Node Nane
and Service Nanme. 28
6.3 Address Conversion Functions.......................... 31
6.4 Address Testing MaCroS..... 33
7. Summary of New Definitions........... 33
8. Security Considerations............. ... 35
9. Changes from RFC 2553, 35
10. Acknow edgment S. 36
11, References. 37
12, Authors’ AddresSSeS.t e e e 38
13. Full Copyright Statement........... 39

Glligan, et al. | nf or mat i onal [Page 2]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

1. Introduction

While | Pv4 addresses are 32 bits long, |IPv6 addresses are 128 bits
long. The socket interface nakes the size of an IP address quite
visible to an application; virtually all TCP/IP applications for

BSD- based systens have know edge of the size of an |IP address. Those
parts of the APl that expose the addresses nmust be changed to
accommodate the larger |1 Pv6 address size. |[|Pv6 also introduces new
features, sone of which nust be made visible to applications via the
APlI. This nmeno defines a set of extensions to the socket interface
to support the larger address size and new features of |Pv6. It
defines "basic" extensions that are of use to a broad range of
applications. A conpani on docunent, the "advanced" APl [4], covers
extensions that are of use to nore specialized applications, exanples
of which include routing daenons, and the "ping" and "traceroute"
utilities.

The devel opment of this APl was started in 1994 in the | ETF | Png
wor ki ng group. The APl has evol ved over the years, published first
in RFC 2133, then again in RFC 2553, and reaching its final formin
t hi s docunent.

As the APl matured and stabilized, it was incorporated into the Open
Group’s Networking Services (XNS) specification, issue 5.2, which was
subsequently incorporated into a joint Open G oup/lEEE/ | SO standard

[3].

Ef fort has been made to ensure that this docunent and [3] contain the
same information with regard to the APl definitions. However, the
reader should note that this docunent is for informational purposes
only, and that the official standard specification of the sockets API
is [3].

It is expected that any future standardization work on this APl woul d
be done by the Open G oup Base Wirking Goup [6].

It should also be noted that this docunent describes only those
portions of the APl needed for IPv4 and | Pv6 communications. O her
potential uses of the API, for exanple the use of getaddrinfo() and
getnaneinfo() with the AF_UNI X address famly, are beyond the scope
of this docunent.

Glligan, et al. I nf or mat i onal [Page 3]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

2. Design Considerations

There are a nunber of inportant considerations in designing changes
to this well-worn API:

- The APl changes shoul d provide both source and binary
conmpatibility for programs witten to the original API. That is,
exi sting program bi naries should continue to operate when run on a
system supporting the new API. |In addition, existing applications
that are re-conpiled and run on a system supporting the new AP
shoul d continue to operate. Sinply put, the APl changes for |Pv6
shoul d not break existing programs. An additional mechani smfor
i mpl ementations to verify this is to verify the new synbols are
protected by Feature Test Macros as described in [3]. (Such
Feature Test Macros are not defined by this RFC.)

- The changes to the APl should be as small as possible in order to
sinmplify the task of converting existing | Pv4d applications to
| Pv6.

- \Where possible, applications should be able to use this APl to
interoperate with both IPv6 and | Pv4 hosts. Applications should
not need to know which type of host they are conmunicating with.

- | Pv6 addresses carried in data structures should be 64-bit
aligned. This is necessary in order to obtain optinum performance
on 64-bit nmachine architectures.

Because of the inportance of providing |Pv4 conpatibility in the API,

these extensions are explicitly designed to operate on machi nes that

provi de conpl ete support for both IPv4 and | Pv6. A subset of this

APl coul d probably be designed for operation on systens that support

only I Pv6. However, this is not addressed in this neno.

2.1 What Needs to be Changed

The socket interface APl consists of a few distinct conponents:

- Core socket functions.

- Address data structures.

- Nane-to-address translation functions.

- Address conversion functions.

Glligan, et al. | nf or mat i onal [Page 4]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

The core socket functions -- those functions that deal with such
things as setting up and tearing dowmn TCP connections, and sendi ng
and receiving UDP packets -- were designhed to be transport

i ndependent. \Wiere protocol addresses are passed as function
argunents, they are carried via opaque pointers. A protocol-specific
address data structure is defined for each protocol that the socket
functions support. Applications nmust cast pointers to these

protocol -specific address structures into pointers to the generic
"sockaddr" address structure when using the socket functions. These
functi ons need not change for |IPv6, but a new | Pv6-specific address
data structure is needed.

The "sockaddr _in" structure is the protocol-specific data structure
for IPv4. This data structure actually includes 8-octets of unused
space, and it is tenpting to try to use this space to adapt the
sockaddr _in structure to IPv6. Unfortunately, the sockaddr_in
structure is not large enough to hold the 16-octet |Pv6 address as
wel|l as the other information (address famly and port nunber) that
is needed. So a new address data structure mnmust be defined for |Pv6.

| Pv6 addresses are scoped [2] so they could be link-Iocal, site,
organi zation, global, or other scopes at this tine undefined. To
support applications that want to be able to identify a set of
interfaces for a specific scope, the I Pv6 sockaddr_in structure mnust
support a field that can be used by an inplenentation to identify a
set of interfaces identifying the scope for an | Pv6 address.

The | Pv4 nane-to-address translation functions in the socket
interface are gethostbynane() and gethostbyaddr(). These are left as
is, and new functions are defined which support both IPv4 and | Pvé6.

The | Pv4 address conversion functions -- inet_ntoa() and inet_addr()
-- convert |Pv4 addresses between binary and printable form These
functions are quite specific to 32-bit I Pv4 addresses. W have

desi gned two anal ogous functions that convert both |IPv4 and | Pv6
addresses, and carry an address type paraneter so that they can be
extended to other protocol fanmlies as well.

Finally, a few niscell aneous features are needed to support |IPv6. A
new i nterface is needed to support the IPv6 hop limt header field.
New socket options are needed to control the sending and receiving of
| Pv6 mul ticast packets.

The socket interface will be enhanced in the future to provi de access
to other |Pv6 features. Sone of these extensions are described in

[4].

Glligan, et al. I nf or mat i onal [Page 5]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

2.2 Data Types

The data types of the structure elenents given in this nmeno are
intended to track the relevant standards. uintN_t means an unsi gned
i nteger of exactly N bits (e.g., uintl6_t). The sa famly_ t and
in_port_t types are defined in [3].

2.3 Headers

When function prototypes and structures are shown we show t he headers
that nust be #i ncluded to cause that itemto be defined.

2.4 Structures

When structures are described the nmenbers shown are the ones that
nmust appear in an inplenentation. Additional, nonstandard nenbers
may al so be defined by an inplenentation. As an additional
precauti on nonstandard nmenbers could be verified by Feature Test
Macros as described in [3]. (Such Feature Test Macros are not
defined by this RFC.)

The ordering shown for the nenbers of a structure is the recomended
ordering, given alignment considerations of nultibyte nenbers, but an
i npl erentation may order the nenbers differently.

3. Socket Interface
This section specifies the socket interface changes for |Pv6.

3.1 IPv6 Address Fanmily and Protocol Famly
A new address fami |y nane, AF_INET6, is defined in <sys/socket.h>.
The AF_I NET6 definition distinguishes between the original
sockaddr _in address data structure, and the new sockaddr_i n6 data
structure.

A new protocol family nane, PF_INET6, is defined in <sys/socket.h>.

Li ke nost of the other protocol fanmily names, this will usually be
defined to have the sane value as the corresponding address famly
name:

#define PF_I NET6 AF_| NET6

The AF _INET6 is used in the first argunment to the socket() function
to indicate that an I Pv6 socket is being created.

Glligan, et al. I nf or mat i onal [Page 6]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

3.2 | Pv6 Address Structure

A new i n6_addr structure holds a single |IPv6 address and is defined
as a result of including <netinet/in.h>:

struct in6_addr {
uint8 t s6_addr[16]; /* 1 Pv6 address */
1

This data structure contains an array of sixteen 8-bit el enents,
whi ch make up one 128-bit | Pv6 address. The |IPv6 address is stored
in network byte order.

The structure in6_addr above is usually inplenented with an enbedded
union with extra fields that force the desired alignnent level in a
manner simlar to BSD i nplenentations of "struct in_addr". Those
addi tional inplenentation details are omtted here for sinmplicity.

An exanple is as follows:

struct in6_addr {
uni on {
uint8 t S6 u8[16];
uint32_t _S6 u32[4];
uinté64_t _S6 _u6b4[2];
} _S6_un;
1
#define s6_addr _S6_un._S6_u8

3.3 Socket Address Structure for 4.3BSD Based Systens

In the socket interface, a different protocol-specific data structure
is defined to carry the addresses for each protocol suite. Each
protocol -specific data structure is designed so it can be cast into a
prot ocol -i ndependent data structure -- the "sockaddr" structure.

Each has a "family" field that overlays the "sa famly" of the
sockaddr data structure. This field identifies the type of the data
structure.

The sockaddr _in structure is the protocol-specific address data
structure for IPv4. It is used to pass addresses between
applications and the systemin the socket functions. The foll ow ng
sockaddr _in6 structure holds I Pv6 addresses and is defined as a
result of including the <netinet/in.h> header:

Glligan, et al. | nf or mat i onal [Page 7]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

struct sockaddr_in6 {

sa family_t sin6_famly; [* AF_I NET6 */

in_port _t si n6_port; /* transport |ayer port # */

ui nt 32_t sin6_flowinfo; /* IPv6 flow information */

struct in6_addr sin6_addr; /* 1 Pv6 address */

uint 32_t sin6_scope_id; [/* set of interfaces for a scope */

This structure is designed to be conpatible with the sockaddr data
structure used in the 4.3BSD rel ease.

The sin6_famly field identifies this as a sockaddr_in6 structure.
This field overlays the sa fanmily field when the buffer is cast to a
sockaddr data structure. The value of this field nust be AF_| NET6.

The sin6_port field contains the 16-bit UDP or TCP port nunber. This
field is used in the same way as the sin_port field of the
sockaddr _in structure. The port nunber is stored in network byte

or der.

The sin6_flowinfo field is a 32-bit field intended to contain flow
related information. The exact way this field is mapped to or froma
packet is not currently specified. Until such tine as its use is
specified, applications should set this field to zero when
constructing a sockaddr_in6, and ignore this field in a sockaddr_in6
structure constructed by the system

The sin6_addr field is a single in6_addr structure (defined in the
previous section). This field holds one 128-bit | Pv6 address. The
address is stored in network byte order.

The ordering of elenments in this structure is specifically designed
so that when sin6_addr field is aligned on a 64-bit boundary, the
start of the structure will also be aligned on a 64-bit boundary.
This is done for optinmum performance on 64-bit architectures.

The sin6_scope_id field is a 32-bit integer that identifies a set of
interfaces as appropriate for the scope [2] of the address carried in
the sin6_addr field. The napping of sin6_scope_id to an interface or
set of interfaces is left to inplementation and future specifications
on the subject of scoped addresses.

Notice that the sockaddr_in6 structure will normally be I arger than

t he generic sockaddr structure. On many existing inplenmentations the
si zeof (struct sockaddr_in) equals sizeof (struct sockaddr), with both
being 16 bytes. Any existing code that nakes this assunption needs
to be exami ned carefully when converting to | Pv6.

Glligan, et al. I nf or mat i onal [Page 8]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

3.4 Socket Address Structure for 4.4BSD Based Systens

The 4.4BSD rel ease includes a small, but inconpatible change to the
socket interface. The "sa fanmily" field of the sockaddr data
structure was changed froma 16-bit value to an 8-bit value, and the
space saved used to hold a length field, naned "sa_len". The
sockaddr _in6 data structure given in the previous section cannot be
correctly cast into the newer sockaddr data structure. For this
reason, the following alternative | Pv6 address data structure is
provided to be used on systens based on 4.4BSD. It is defined as a
result of including the <netinet/in.h> header.

struct sockaddr_in6 {

uint8_t si n6_|l en; /* length of this struct */

sa family_t sin6_famly; [* AF_I NET6 */

in_port _t si n6_port; * transport |ayer port # */

ui nt 32_t sin6_flowinfo; /* IPv6 flow information */

struct in6_addr sin6_addr; /* 1 Pv6 address */

ui nt 32_t sin6_scope_id; [/* set of interfaces for a scope */

The only differences between this data structure and the 4.3BSD
variant are the inclusion of the length field, and the change of the
famly field to a 8-bit data type. The definitions of all the other
fields are identical to the structure defined in the previous

secti on.

Systens that provide this version of the sockaddr_in6 data structure
nmust al so declare SIN6_LEN as a result of including the
<netinet/in.h> header. This nacro allows applications to deternine
whet her they are being built on a systemthat supports the 4.3BSD or
4.4BSD variants of the data structure.

3.5 The Socket Functi ons

Applications call the socket() function to create a socket descriptor
that represents a conmunication endpoint. The argunents to the
socket () function tell the system which protocol to use, and what
format address structure will be used in subsequent functions. For
exanple, to create an | Pv4/ TCP socket, applications nake the call:

s = socket (AF_I NET, SCCK _STREAM O0);
To create an | Pv4/UDP socket, applications nake the call

s = socket (AF_I NET, SOCK_DGRAM 0);

Glligan, et al. I nf or mat i onal [Page 9]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

Applications may create | Pv6/ TCP and | Pv6/ UDP sockets (which may al so
handl e | Pv4 comruni cation as described in section 3.7) by sinply
using the constant AF_INET6 instead of AF_INET in the first argunent.
For example, to create an | Pv6/ TCP socket, applications nmake the
call:

s = socket (AF_I NET6, SOCK_STREAM 0);
To create an | Pv6/ UDP socket, applications nake the call
s = socket (AF_I NET6, SOCK _DGRAM O0);

Once the application has created a AF_I NET6 socket, it must use the
sockaddr i n6 address structure when passing addresses in to the
system The functions that the application uses to pass addresses
into the systemare

bi nd()
connect ()
sendnsg()
sendt o()

The systemwi ||l use the sockaddr_in6 address structure to return
addresses to applications that are using AF_I NET6 sockets. The
functions that return an address fromthe systemto an application
are:

accept ()
recvfrom))
recvnsg()

get peer nanme()
get socknane()

No changes to the syntax of the socket functions are needed to
support 1Pv6, since all of the "address carrying" functions use an
opaque address pointer, and carry an address length as a function
ar gunent .

3.6 Compatibility with I Pv4d Applications

In order to support the |arge base of applications using the original
APl , system i npl ementations nust provide conpl ete source and binary
conpatibility with the original API. This neans that systens nust
continue to support AF_I NET sockets and the sockaddr_in address
structure. Applications must be able to create |Pv4/TCP and | Pv4/ UDP
sockets using the AF_INET constant in the socket() function, as

Glligan, et al. I nf or mat i onal [Page 10]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

described in the previous section. Applications should be able to
hol d a combi nati on of |Pv4/TCP, |Pv4/UDP, |Pv6/ TCP and | Pv6/ UDP
sockets sinultaneously within the sane process.

Applications using the original APl should continue to operate as
they did on systens supporting only IPv4. That is, they should
continue to interoperate with | Pv4 nodes.

3.7 Compatibility with | Pv4d Nodes

The APl also provides a different type of conpatibility: the ability
for IPv6 applications to interoperate with IPv4 applications. This
feature uses the | Pv4-napped | Pv6 address format defined in the | Pv6
addressing architecture specification [2]. This address format
allows the I Pv4 address of an I Pv4 node to be represented as an | Pv6
address. The I Pv4 address is encoded into the |ow order 32 bits of
the I Pv6 address, and the high-order 96 bits hold the fixed prefix
0:0:0:0: 0: FFFF. | Pv4-mapped addresses are witten as foll ows:

. FFFF: <l Pv4- addr ess>

These addresses can be generated autonmatically by the getaddrinfo()
function, as described in Section 6.1.

Applications may use AF_INET6 sockets to open TCP connections to | Pv4
nodes, or send UDP packets to | Pv4 nodes, by sinply encoding the
destination's | Pv4 address as an | Pv4-mapped | Pv6 address, and
passi ng that address, within a sockaddr _in6 structure, in the
connect () or sendto() call. Wen applications use AF_I NET6 sockets
to accept TCP connections from | Pv4 nodes, or receive UDP packets
fromlPv4d nodes, the systemreturns the peer’s address to the
application in the accept(), recvfrom(), or getpeernanme() call using
a sockaddr_in6 structure encoded this way.

Few applications will likely need to know which type of node they are
interoperating with. However, for those applications that do need to
know, the IN6_I S ADDR VAMAPPED() macro, defined in Section 6.4, is
provi ded.

3.8 IPv6 Wl dcard Address

Wil e the bind() function allows applications to select the source IP
address of UDP packets and TCP connections, applications often want
the systemto select the source address for them Wth |IPv4, one
specifies the address as the synbolic constant | NADDR_ANY (called the
"wi | dcard" address) in the bind() call, or sinply omits the bind()
entirely.

Glligan, et al. | nf or mat i onal [Page 11]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

Since the | Pv6 address type is a structure (struct in6_addr), a
synmbol i ¢ constant can be used to initialize an | Pv6 address vari abl e,
but cannot be used in an assignnent. Therefore systens provide the

| Pv6 wildcard address in two forns.

The first version is a global variable naned "i n6addr_any" that is an
in6_addr structure. The extern declaration for this variable is
defined in <netinet/in.h>:

extern const struct in6_addr in6addr_any;

Applications use in6addr_any sinmilarly to the way they use | NADDR _ANY
in IPv4d. For exanple, to bind a socket to port nunmber 23, but |et
the system sel ect the source address, an application could use the
fol |l owi ng code:

struct sockaddr _i n6 sin6;

sin6.sin6_famly = AF_I NET6;

sin6.sin6_flow nfo = 0;

si n6. si n6_port ht ons(23);

si n6. si n6_addr i n6addr _any; [/* structure assignment */

if ibind(s, (struct sockaddr *) &sin6, sizeof(sin6)) == -1)

The other version is a synmbolic constant named | NGADDR_ANY_INIT and
is defined in <netinet/in.h> This constant can be used to
initialize an in6_addr structure:

struct in6_addr anyaddr = | N6GADDR_ANY_I NI T;

Note that this constant can be used ONLY at declaration tinme. It can
not be used to assign a previously declared in6_addr structure. For
exanmpl e, the follow ng code will not work:

[* This is the WRONG way to assign an unspecified address */
struct sockaddr _in6 sin6;

si n6.sin6_addr = | NGADDR ANY INIT; /* will NOT conpile */
Be aware that the I Pv4 | NADDR xxx constants are all defined in host

byte order but the IPv6 | NGBADDR xxx constants and the | Pv6
i n6addr _xxx externals are defined in network byte order.

Glligan, et al. | nf or mat i onal [Page 12]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

3.9 I Pv6 Loopback Address

Applications may need to send UDP packets to, or originate TCP
connections to, services residing on the local node. 1In IPv4, they
can do this by using the constant |Pv4 address | NADDR LOOPBACK i n
their connect(), sendto(), or sendmsg() call.

| Pv6 al so provides a | oopback address to contact |ocal TCP and UDP
services. Like the unspecified address, the | Pv6 | oopback address is
provided in two forns -- a global variable and a synbolic constant.

The gl obal variable is an in6_addr structure naned
"in6addr _| oopback." The extern declaration for this variable is
defined in <netinet/in.h>:

extern const struct in6_addr in6addr_| oopback;

Applications use in6addr_| oopback as they woul d use | NADDR_LOOPBACK
in |Pv4 applications (but beware of the byte ordering difference
mentioned at the end of the previous section). For exanple, to open
a TCP connection to the local telnet server, an application could use
the foll owi ng code:

struct sockaddr _i n6 si n6;

sin6.sin6 fanily = AF_I NET6;

sin6.sin6_flowi nfo = 0;

sin6.sin6_port = htons(23);

si n6. si n6_addr = in6addr_I| oopback; /* structure assignnment */

if tcbnnect(s, (struct sockaddr *) &sin6, sizeof(sin6)) == -1)

The synbolic constant is named | N6GADDR LOOPBACK INIT and is defined
in <netinet/in.h> 1t can be used at declaration tinme ONLY; for
exanpl e:

struct in6_addr | oopbackaddr = | N6GADDR_LOOPBACK | NI T;

Li ke | NGADDR_ANY_INI'T, this constant cannot be used in an assignnent
to a previously declared | Pv6 address vari abl e.

Glligan, et al. I nf or mat i onal [Page 13]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

3.10 Portability Additions

One sinple addition to the sockets APl that can help application
witers is the "struct sockaddr_storage". This data structure can
sinplify witing code that is portable across nultiple address
famlies and platforns. This data structure is designed with the
foll ow ng goal s.

- Large enough to accommpdate all supported protocol-specific address
structures.

- Aligned at an appropriate boundary so that pointers to it can be
cast as pointers to protocol specific address structures and used
to access the fields of those structures w thout alignment
probl ens.

The sockaddr_storage structure contains field ss_famly which is of
type sa _family t. Wien a sockaddr_storage structure is cast to a
sockaddr structure, the ss_famly field of the sockaddr_storage
structure maps onto the sa fanmily field of the sockaddr structure.
When a sockaddr_storage structure is cast as a protocol specific
address structure, the ss famly field maps onto a field of that
structure that is of type sa fanily t and that identifies the
protocol’s address famly.

Glligan, et al. | nf or mat i onal [Page 14]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

An exanpl e i npl ementati on design of such a data structure would be as

foll ows.
/*
* Desired design of maxi mum size and alignnent
*/

#defi ne _SS MAXSI ZE 128 /* Inplenmentation specific max size */
#define _SS ALI GNSI ZE (sizeof (int64_t))
/* Inplenmentation specific desired alignnment */

/ *

* Definitions used for sockaddr_storage structure paddi ngs design.

*/
#define _SS PADISIZE (_SS ALIGNSIZE - sizeof (sa_famly_t))
#define _SS PAD2SIZE (_SS MAXSIZE - (sizeof (sa_family_ t) +

_SS _PADISI ZE + _SS_ALI GNSI ZE))

struct sockaddr_storage {

sa fanmily t ss fanmly; /* address famly */
/* Following fields are inplenmentation specific */
char __Sss_padl[_SS PAD1SI ZE] ;

/* 6 byte pad, this is to nake inplenentation
/* specific pad up to alignnment field that */
/* follows explicit in the data structure */

i nt64_t __ss_align; /* field to force desired structure */
/* storage alignnment */
char __Ss_pad2[_SS_PAD2SI ZE] ;

/* 112 byte pad to achi eve desired size, */
/[* _SS MAXSI ZE val ue m nus size of ss famly */
[* _ss padl, __ss align fields is 112 */

The above exanple inplenmentation illustrates a data structure which
will align on a 64-bit boundary. An inplenmentation-specific field

" ss align" along with "__ss padl" is used to force a 64-bit

al i gnment whi ch covers proper alignnment good enough for the needs of
sockaddr _in6 (1Pv6), sockaddr_in (lIPv4) address data structures. The
size of padding field __ss_padl depends on the chosen alignment
boundary. The size of padding field __ss _pad2 depends on the val ue
of overall size chosen for the total size of the structure. This
size and alignment are represented in the above exanpl e by

i npl ement ation specific (not required) constants _SS MAXSI ZE (chosen
val ue 128) and _SS ALIGNSI ZE (with chosen value 8). Constants
_SS_PAD1SI ZE (derived value 6) and _SS PAD2SI ZE (derived val ue 112)
are also for illustration and not required. The derived val ues
assunme sa fanmly t is 2 bytes. The inplenentation specific
definitions and structure field names above start with an underscore
to denote inplenentation private nanespace. Portable code is not
expected to access or reference those fields or constants.

Glligan, et al. I nf or mat i onal [Page 15]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

On i npl enent ati ons where the sockaddr data structure includes a
"sa len" field this data structure would |l ook Iike this:

/ *
* Definitions used for sockaddr_storage structure paddi ngs design.
*/
#define _SS PADISI ZE (_SS_ALI GNSI ZE -
(sizeof (uint8_t) + sizeof (sa_family t))
#define _SS PAD2SI ZE (_SS_MAXSI ZE -
(sizeof (uint8_t) + sizeof (sa_famly_ t) +
_SS _PAD1SI ZE + _SS ALl GNSI ZE))
struct sockaddr_storage {

uint8_t ss_|l en; /* address |length */
sa fanmily t ss fanmly; /* address famly */
/* Following fields are inplenmentation specific */
char __Ss_padl[_SS PAD1SI ZE] ;

/* 6 byte pad, this is to nake inplenentation
/* specific pad up to alignnment field that */
/* follows explicit in the data structure */

i nt64_t _ss_align; [/* field to force desired structure */
/* storage alignment */
char __Ss_pad2[_SS_PAD2SI ZE] ;

/* 112 byte pad to achieve desired size, */
/[* _SS MAXSI ZE val ue mnus size of ss_len, */
[* _ss family, __ss padl, __ss align fields is 112 */

}s
4. Interface ldentification

This APl uses an interface index (a snmall positive integer) to
identify the local interface on which a nulticast group is joined
(Section 5.2). Additionally, the advanced APl [4] uses these sane
interface indexes to identify the interface on which a datagramis
received, or to specify the interface on which a datagramis to be
sent .

Interfaces are normally known by nanes such as "le0", "sl1", "ppp2",
and the Iike. On Berkeley-derived inplenentations, when an interface
is made known to the system the kernel assigns a unique positive
integer value (called the interface index) to that interface. These
are small positive integers that start at 1. (Note that 0 is never
used for an interface index.) There may be gaps so that there is no
current interface for a particular positive interface index.

This APl defines two functions that map between an interface name and
index, a third function that returns all the interface nanes and
i ndexes, and a fourth function to return the dynanic nmenory all ocated
by the previous function. How these functions are inplenmented is

Glligan, et al. I nf or mat i onal [Page 16]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

left up to the inplenentation. 4.4BSD inplenmentations can inplenment
these functions using the existing sysctl() function with the
NET_RT_I FLI ST command. O her inplenmentations may wish to use ioctl ()
for this purpose.

4.1 Nane-to-I|ndex

The first function maps an interface nane into its correspondi ng
i ndex.

#i ncl ude <net/if.h>
unsi gned int if_nametoindex(const char *ifnane);

If ifnane is the nane of an interface, the if_nametoi ndex() function
shall return the interface index corresponding to nane ifnaneg;
otherwise, it shall return zero. No errors are defined.

4.2 | ndex-to-Nane

The second function maps an interface index into its correspondi ng
namne.

#i ncl ude <net/if.h>
char *if_i ndext onane(unsigned int ifindex, char *ifnane);

When this function is called, the ifname argunent shall point to a
buffer of at |east |IF_NAMESI ZE bytes. The function shall place in
this buffer the nane of the interface with index ifindex.

(I F_NAMESI ZE is also defined in <net/if.h> and its value includes a
terminating null byte at the end of the interface nane.) |If ifindex
is an interface index, then the function shall return the val ue
supplied in ifnane, which points to a buffer now containing the
interface name. QO herwi se, the function shall return a NULL pointer
and set errno to indicate the error. |If there is no interface
corresponding to the specified index, errno is set to ENXIO. |f
there was a systemerror (such as running out of nenory), errno would
be set to the proper value (e.g., ENOVEM.

Glligan, et al. | nf or mat i onal [Page 17]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

4.3 Return Al Interface Nanmes and | ndexes

The if_nanmei ndex structure holds the information about a single
interface and is defined as a result of including the <net/if.h>
header .

struct if_namei ndex {
unsi gned int if_index; [/* 1, 2, ... */
char *i f _name; /* null term nated nane: "leO", ... */

b

The final function returns an array of if_namei ndex structures, one
structure per interface.

#i ncl ude <net/if.h>

struct if_namei ndex *if_namnei ndex(void);
The end of the array of structures is indicated by a structure with
an if_index of 0 and an if_name of NULL. The function returns a NULL
poi nter upon an error, and would set errno to the appropriate val ue.
The menory used for this array of structures along with the interface
nanes pointed to by the if_nane nmenbers is obtained dynamically.
This nenory is freed by the next function.

4.4 Free Menory

The followi ng function frees the dynanic nenory that was all ocated by
i f_nanei ndex().

#i ncl ude <net/if.h>
void if_freenanei ndex(struct if_nanei ndex *ptr);

The ptr argunent shall be a pointer that was returned by
i f_naneindex(). After if_freenaneindex() has been called, the
application shall not use the array of which ptr is the address.

5. Socket Options

A nunber of new socket options are defined for IPv6. Al of these
new options are at the IPPROTO IPV6 |evel. That is, the "level"
paraneter in the getsockopt() and setsockopt() calls is | PPROTO_|I PV6
when using these options. The constant name prefix IPV6_ is used in
all of the new socket options. This serves to clearly identify these
options as applying to I Pv6.

Glligan, et al. I nf or mat i onal [Page 18]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

The declaration for |IPPROTO I PV6, the new | Pv6 socket options, and
rel ated constants defined in this section are obtained by including
t he header <netinet/in.h>.

5.1 Unicast Hop Limt

A new setsockopt () option controls the hop Iinit used in outgoing
uni cast | Pv6 packets. The nane of this option is |PV6_UN CAST_HOPS,
and it is used at the IPPROTO_ I PV6 | ayer. The follow ng exanple
illustrates howit is used:

int hoplimt = 10;

if (setsockopt(s, |PPROTO_|IPV6, |PV6_UN CAST_HOPS
(char *) &hoplinmt, sizeof(hoplinmt)) == -1)
perror ("setsockopt |PV6_UN CAST_HOPS");

When the | PV6_UNI CAST_HOPS option is set with setsockopt(), the
option value given is used as the hop linmt for all subsequent

uni cast packets sent via that socket. |If the option is not set, the
system sel ects a default value. The integer hop Iimt value (called
X) is interpreted as foll ows:

X < -1: return an error of ElI NVAL
X == -1: use kernel default

0 <= x <= 255: use X

X >= 256: return an error of ElI NVAL

The | PV6_UNI CAST_HOPS option nmay be used with getsockopt() to
determne the hop limt value that the systemw |l use for subsequent
uni cast packets sent via that socket. For exanple:

int hoplimt;
socklen_t len = sizeof (hoplimt);

i f (getsockopt(s, |PPROTO_|IPV6, |PV6_UN CAST_ HOPS
(char *) &hoplinmt, & en) == -1)
perror ("getsockopt |PV6_UN CAST HOPS');
el se
printf("Using %d for hop limt.\n", hoplimt);

5.2 Sending and Receiving Milticast Packets
| Pv6 applications may send nulticast packets by sinply specifying an

| Pv6 nmulticast address as the destination address, for exanple in the
destinati on address argunment of the sendto() function.

Glligan, et al. I nf or mat i onal [Page 19]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

Three socket options at the | PPROTO_| PV6 | ayer control some of the
paraneters for sending nulticast packets. Setting these options is
not required: applications nay send nulticast packets without using
these options. The setsockopt() options for controlling the sending
of multicast packets are summari zed bel ow. These three options can
al so be used with getsockopt().

| PV6_MULTI CAST | F

Set the interface to use for outgoing nulticast packets. The
argunment is the index of the interface to use. If the
interface index is specified as zero, the system selects the
interface (for exanple, by |ooking up the address in a routing
table and using the resulting interface).

Argunent type: unsigned int

| PV6_MULTI CAST_HOPS
Set the hop limt to use for outgoing nulticast packets. (Note
a separate option - IPV6_UN CAST HOPS - is provided to set the

hop Iinmit to use for outgoing uni cast packets.)

The interpretation of the argunent is the sane as for the
| PV6_UNI CAST_HOPS opti on:

X < -1: return an error of ElI NVAL
X == -1: use kernel default

0 <= x <= 255: use X

X >= 256: return an error of ElI NVAL

[f I PV6_MJILTI CAST_HOPS is not set, the default is 1
(sarme as | Pv4 today)

Argurent type: int
| PV6_MULTI CAST_LOOP
If a nmulticast datagramis sent to a group to which the sending

host itself belongs (on the outgoing interface), a copy of the
datagramis | ooped back by the IP layer for local delivery if

this option is set to 1. |If this optionis set to 0 a copy is
not | ooped back. O her option values return an error of
El NVAL.

Glligan, et al. I nf or mat i onal [Page 20]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

If 1PV6_MJILTI CAST _LOOP is not set, the default is 1 (Iloopback
sane as | Pv4 today).

Argunent type: unsigned int

The reception of nulticast packets is controlled by the two
set sockopt () options summari zed bel ow. An error of EOPNOTSUPP is
returned if these two options are used with getsockopt().

| PV6_JO N_GROUP

Join a nulticast group on a specified local interface.
If the interface index is specified as O,

the kernel chooses the local interface.

For exampl e, sone kernels | ook up the nulticast group
in the nornmal IPv6 routing table and use the resulting
i nterface.

Argunment type: struct ipv6_nreq
| PV6_LEAVE GROUP

Leave a nulticast group on a specified interface.

If the interface index is specified as 0, the system
may choose a multicast group nenbership to drop by
mat ching the nulticast address only.

Argunment type: struct ipv6_nreq

The argunent type of both of these options is the ipv6_nreq
structure, defined as a result of including the <netinet/in.h>
header;

struct ipv6_nreq {
struct in6_addr ipvenr_multiaddr; /* I1Pv6 nulticast addr */
unsi gned i nt i pvénr _interface; /* interface index */

b

Note that to receive nulticast datagrans a process nust join the
mul ti cast group to which datagrans will be sent. UDP applications
must al so bind the UDP port to which datagrans will be sent. Some
processes also bind the nmulticast group address to the socket, in
addition to the port, to prevent other datagrans destined to that
same port from being delivered to the socket.

Glligan, et al. | nf or mat i onal [Page 21]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

5.3 I PV6_VEONLY option for AF_I NET6 Sockets

Thi s socket option restricts AF_INET6 sockets to | Pv6 conmuni cations
only. As stated in section <3.7 Conpatibility with | Pv4d Nodes>,

AF_| NET6 sockets nmay be used for both IPv4 and | Pv6 communi cati ons.
Sone applications may want to restrict their use of an AF_I NET6
socket to IPv6 communi cations only. For these applications the

| PV6_VEONLY socket option is defined. Wen this option is turned on
t he socket can be used to send and receive | Pv6 packets only. This
is an | PPROTO | PV6 | evel option. This option takes an int val ue.
This is a boolean option. By default this option is turned off.

Here is an exanple of setting this option:
int on = 1;

if (setsockopt(s, |PPROTO_IPV6, |PV6_VEONLY,
(char *)&on, sizeof(on)) == -1)
perror("setsockopt |PV6_VEONLY")
el se
printf("IPV6_VEONLY set\n");

Note - This option has no effect on the use of |Pv4 Mapped addresses
which enter a node as a valid | Pv6 addresses for | Pv6 conmunications
as defined by Stateless IP/ICM Translation Algorithm (SIIT) [5].

An exanpl e use of this option is to allow two versions of the sane
server process to run on the same port, one providing service over
| Pv6, the other providing the sane service over |Pv4.

6. Library Functions

New | i brary functions are needed to performa variety of operations
with I Pv6 addresses. Functions are needed to | ookup | Pv6 addresses
in the Domain Nane System (DNS). Both forward | ookup (nodenane-t o-
address translation) and reverse | ookup (address-to-nodenane

transl ation) need to be supported. Functions are also needed to
convert | Pv6 addresses between their binary and textual form

W note that the two existing functions, gethostbynanme() and
get hostbyaddr (), are left as-is. New functions are defined to handl e
both I Pv4 and | Pv6 addresses.

The comonly used function gethostbynanme() is inadequate for many
applications, first because it provides no way for the caller to
speci fy anything about the types of addresses desired (IPv4 only,

| Pv6 only, |Pv4-mapped |IPv6 are OK, etc.), and second because nany
i npl ementations of this function are not thread safe. RFC 2133

Glligan, et al. | nf or mat i onal [Page 22]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

defined a function named get host bynanme2() but this function was al so
i nadequate, first because its use required setting a global option
(RES_USE_I NET6) when | Pv6 addresses were required, and second because
a flag argunent is needed to provide the caller with additional
control over the types of addresses required. The gethostbynane2()
function was deprecated in RFC 2553 and is no | onger part of the
basi c API.

6.1 Protocol -1 ndependent Nodenane and Service Nane Transl ation

Nodenane-t o- address translation is done in a protocol -i ndependent
fashion using the getaddrinfo() function

#i ncl ude <sys/socket. h>
#i ncl ude <netdb. h>
int getaddrinfo(const char *nodenane, const char *servnane,
const struct addrinfo *hints, struct addrinfo **res);

voi d freeaddrinfo(struct addrinfo *ai);

struct addrinfo {

i nt ai _flags; /* Al _PASSI VE, Al _CANONNAME
Al _NUMERI CHOST, .. */
i nt ai _famly; /* AF_xxx */
i nt ai _socktype; [* SOCK xxx */
i nt ai_protocol; /* 0 or |IPPROTO xxx for IPv4 and | Pv6 */

socklen_t ai _addrl en; /* length of ai_addr */

char *ai _canonnane; /* canoni cal nane for nodenanme */

struct sockaddr *ai_addr; /* binary address */

struct addrinfo *ai_next; /* next structure in linked list */

The getaddrinfo() function translates the nane of a service |ocation
(for exanple, a host nane) and/or a service nane and returns a set of
socket addresses and associated information to be used in creating a
socket with which to address the specified service.

The nodenane and servnanme argunents are either null pointers or
pointers to null-termnated strings. One or both of these two
argunents nust be a non-null pointer

The format of a valid nane depends on the address family or fanmlies.
If a specific famly is not given and the nane could be interpreted
as valid within nultiple supported famlies, the inplenentation wll
attenpt to resolve the nanme in all supported famlies and, in absence
of errors, one or nore results shall be returned.

Glligan, et al. I nf or mat i onal [Page 23]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

| f the nodename argunent is not null, it can be a descriptive nane or
can be an address string. |If the specified address famly is

AF_| NET, AF_I NET6, or AF_UNSPEC, valid descriptive nanes include host
nanes. |If the specified address fanmly is AF_INET or AF_UNSPEC,
address strings using Internet standard dot notation as specified in
inet_addr() are valid. |If the specified address famly is AF_I NET6
or AF_UNSPEC, standard IPv6 text fornms described in inet_pton() are

val i d.

I f nodenane is not null, the requested service |ocation is nanmed by
nodenane; otherw se, the requested service location is local to the
caller.

If servnane is null, the call shall return network-I|evel addresses

for the specified nodenane. |f servname is not null, it is a null-

ternmi nated character string identifying the requested service. This
can be either a descriptive name or a nuneric representation suitable
for use with the address famly or famlies. |If the specified
address fanmily is AF_INET, AF_INET6 or AF_UNSPEC, the service can be
specified as a string specifying a deci mal port nunber.

If the argunment hints is not null, it refers to a structure
containing input values that may direct the operation by providing
options and by linmiting the returned infornmation to a specific socket
type, address family and/or protocol. In this hints structure every
menber other than ai _flags, ai_famly, ai_socktype and ai _protocol
shall be set to zero or a null pointer. A value of AF_UNSPEC for
ai_famly neans that the caller shall accept any address fanmly. A
val ue of zero for ai_socktype neans that the caller shall accept any
socket type. A value of zero for ai_protocol neans that the caller
shal | accept any protocol. |If hints is a null pointer, the behavior
shall be as if it referred to a structure containing the value zero
for the ai _flags, ai_socktype and ai _protocol fields, and AF_UNSPEC
for the ai _famly field.

Not e:

1. If the caller handles only TCP and not UDP, for exanple, then the
ai _protocol menber of the hints structure should be set to
| PPROTO_TCP when getaddrinfo() is called.

2. If the caller handles only IPv4 and not |Pv6, then the ai _famly

menber of the hints structure should be set to AF_I NET when
getaddrinfo() is called.

Glligan, et al. | nf or mat i onal [Page 24]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

The ai _flags field to which hints paraneter points shall be set to
zero or be the bitwi se-inclusive OR of one or nore of the val ues
Al _PASSI VE, Al _CANONNAME, Al _NUMERI CHOST, Al _NUVMERI CSERV,

Al _VANMAPPED, Al _ALL, and Al _ADDRCONFI G

If the Al_PASSIVE flag is specified, the returned address information
shall be suitable for use in binding a socket for accepting incom ng
connections for the specified service (i.e., acall to bind()). 1In
this case, if the nodenane argument is null, then the |IP address
portion of the socket address structure shall be set to | NADDR_ANY
for an I Pv4 address or | NGADDR_ ANY_INIT for an I Pv6 address. |If the
Al _PASSI VE flag is not specified, the returned address information
shall be suitable for a call to connect() (for a connection-node
protocol) or for a call to connect(), sendto() or sendmsg() (for a
connectionless protocol). 1In this case, if the nodenane argunent is
null, then the I P address portion of the socket address structure
shall be set to the | oopback address. This flag is ignored if the
nodenane argunment is not null.

If the Al _CANONNAME flag is specified and the nodenane argunent is
not null, the function shall attenpt to deternmnine the canonical name
correspondi ng to nodename (for exanple, if nodename is an alias or
shorthand notation for a conplete nane).

If the Al _NUMERI CHOST flag is specified, then a non-null nodenane
string supplied shall be a numeric host address string. O herw se,
an [EAl _NONAME] error is returned. This flag shall prevent any type
of nanme resolution service (for exanple, the DNS) from being invoked.

If the Al_NUMERI CSERV flag is specified, then a non-null servname
string supplied shall be a nuneric port string. O herw se, an

[EAl _NONAME] error shall be returned. This flag shall prevent any
type of nane resolution service (for exanple, N St+) from being

i nvoked.

If the Al _VAMAPPED flag is specified along with an ai_famly of
AF_| NET6, then getaddrinfo() shall return |IPv4-mapped | Pv6 addresses
on finding no nmatching I Pv6 addresses (ai_addrlen shall be 16).

For exanple, when using the DNS, if no AAAA records are found then
a query is made for A records and any found are returned as | Pv4-
mapped | Pv6 addresses.

The Al _VAMAPPED fl ag shall be ignored unless ai_famly equals
AF_| NET6.

If the Al_ALL flag is used with the Al _VAMAPPED fl ag, then
getaddrinfo() shall return all matching I Pv6 and | Pv4 addresses.

Glligan, et al. I nf or mat i onal [Page 25]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

For exanpl e, when using the DNS, queries are nade for both AAAA
records and A records, and getaddrinfo() returns the conbined
results of both queries. Any |Pv4 addresses found are returned as
| Pv4- mapped | Pv6 addresses.

The Al _ALL flag wi thout the Al _VAMAPPED flag is ignored.
Not e:

VWhen ai _family is not specified (AF_UNSPEC), Al _VAMAPPED and
Al _ALL flags will only be used if AF_INET6 is supported.

If the Al _ADDRCONFIG flag is specified, |IPv4 addresses shall be
returned only if an I Pv4 address is configured on the |ocal system
and | Pv6 addresses shall be returned only if an I Pv6 address is
configured on the |ocal system The |oopback address is not
considered for this case as valid as a configured address.

For exanple, when using the DNS, a query for AAAA records shoul d
occur only if the node has at |east one |IPv6 address configured
(other than I Pv6 | oopback) and a query for A records should occur
only if the node has at |east one |Pv4 address configured (other
than the | Pv4 | oopback).

The ai _socktype field to which argunent hints points specifies the
socket type for the service, as defined for socket(). |If a specific
socket type is not given (for exanple, a value of zero) and the
service nane could be interpreted as valid with nultiple supported
socket types, the inplenmentation shall attenpt to resolve the service
nanme for all supported socket types and, in the absence of errors,

all possible results shall be returned. A non-zero socket type val ue
shall limt the returned information to values with the specified
socket type.

If the ai _famly field to which hints points has the val ue AF_UNSPEC,
addresses shall be returned for use with any address fanmily that can
be used with the specified nodename and/or servnane. O herwi se,
addresses shall be returned for use only with the specified address
famly. If ai_famly is not AF_UNSPEC and ai _protocol is not zero,
then addresses are returned for use only with the specified address
fam ly and protocol; the value of ai_protocol shall be interpreted as
inacall to the socket() function with the correspondi ng val ues of
ai_famly and ai _protocol.

The freeaddrinfo() function frees one or nore addrinfo structures
returned by getaddrinfo(), along with any additional storage

associ ated with those structures (for exanple, storage pointed to by
the ai _canonnanme and ai _addr fields; an application nust not

Glligan, et al. I nf or mat i onal [Page 26]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

reference this storage after the associated addrinfo structure has
been freed). |If the ai_next field of the structure is not null, the
entire list of structures is freed. The freeaddrinfo() function nust
support the freeing of arbitrary sublists of an addrinfo Ii st
originally returned by getaddrinfo().

Functions getaddrinfo() and freeaddrinfo() nust be thread-safe.

A zero return value for getaddrinfo() indicates successfu
conpl etion; a non-zero return value indicates failure. The possible
values for the failures are |listed bel ow under Error Return Val ues.

Upon successful return of getaddrinfo(), the | ocation to which res
points shall refer to a linked list of addrinfo structures, each of
whi ch shall specify a socket address and information for use in
creating a socket with which to use that socket address. The |i st
shall include at |east one addrinfo structure. The ai_next field of
each structure contains a pointer to the next structure on the Ilist,
or a null pointer if it is the last structure on the list. Each
structure on the list shall include values for use with a call to the
socket () function, and a socket address for use with the connect ()
function or, if the Al_PASSIVE flag was specified, for use with the
bi nd() function. The fields ai_famly, ai_socktype, and ai _protocol
shall be usable as the argunents to the socket() function to create a
socket suitable for use with the returned address. The fields

ai _addr and ai _addrlen are usable as the argunents to the connect()
or bind() functions with such a socket, according to the Al _PASSI VE
flag.

I f nodenane is not null, and if requested by the Al _CANONNAME fl ag,
the ai _canonnanme field of the first returned addrinfo structure shall
point to a null-termnated string containing the canoni cal nane
corresponding to the input nodenane; if the canonical nane is not
avai |l abl e, then ai _canonnanme shall refer to the nodenane argunent or
a string with the same contents. The contents of the ai_flags field
of the returned structures are undefined.

Al'l fields in socket address structures returned by getaddrinfo()
that are not filled in through an explicit argunent (for exanple,
sin6_flow nfo) shall be set to zero.

Note: This nmakes it easier to conpare socket address structures.

Glligan, et al. | nf or mat i onal [Page 27]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

Error Return Val ues:

The getaddrinfo() function shall fail and return the correspondi ng
val ue if:

[EAl _AGAI N| The nanme could not be resolved at this tinme. Future
attenpts may succeed.

[EAl _BADFLAGS] The flags paranmeter had an invalid val ue.

[EAl _FAI L] A non-recoverabl e error occurred when attenpting to
resol ve the nane.

[EAl _FAM LY] The address fam |y was not recognized.

[EAl _MEMORY] There was a nmenory allocation failure when trying to
all ocate storage for the return val ue.

[EAl _NONAME] The nanme does not resolve for the supplied
paraneters. Neither nodenane nor servnane were
supplied. At |east one of these nust be suppli ed.

[EAl _SERVI CE] The service passed was not recognized for the
speci fi ed socket type.

[EAl _SOCKTYPE] The intended socket type was not recognized.

[EAl _SYSTEM A systemerror occurred; the error code can be found
in errno.

The gai _strerror() function provides a descriptive text string
correspondi ng to an EAI _xxx error val ue.

#i ncl ude <netdb. h>

const char *gai _strerror(int ecode);
The argunent is one of the EAl _xxx val ues defined for the
getaddrinfo() and getnamei nfo() functions. The return value points
to a string describing the error. |If the argunent is not one of the
EAl _xxx val ues, the function still returns a pointer to a string
whose contents indicate an unknown error

6.2 Socket Address Structure to Node Nane and Service Nane

The getnaneinfo() function is used to translate the contents of a
socket address structure to a node nane and/or service nane.

Glligan, et al. I nf or mat i onal [Page 28]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

#i ncl ude <sys/socket. h>
#i ncl ude <netdb. h>

i nt getnamei nfo(const struct sockaddr *sa, socklen_t salen,
char *node, socklen_t nodel en
char *service, socklen_t servicelen
int flags);

The getnaneinfo() function shall translate a socket address to a node
nane and service location, all of which are defined as in
getaddrinfo().

The sa argunment points to a socket address structure to be
transl at ed.

The sal en argunment hol ds the size of the socket address structure
pointed to by sa.

If the socket address structure contains an | Pv4-nmapped | Pv6 address
or an | Pv4-conpatible | Pv6 address, the inplenentation shall extract
t he enbedded | Pv4 address and | ookup the node nanme for that |Pv4
addr ess.

Note: The | Pv6 unspecified address ("::") and the | Pv6 | oopback
address ("::1") are not |Pv4-conpatible addresses. |[|f the address
is the I Pv6 unspecified address ("::"), a lookup is not perforned,
and the [EAl _NONAME] error is returned.

I f the node argunment is non-NULL and the nodel en argunent is nonzero,
then the node argunent points to a buffer able to contain up to
nodel en characters that receives the node nane as a null-term nated
string. |f the node argunent is NULL or the nodel en argunent is
zero, the node nane shall not be returned. |If the node’'s nane cannot
be located, the nuneric formof the node’'s address is returned
instead of its nane.

If the service argunment is non-NULL and the servicelen argunent is
non-zero, then the service argunent points to a buffer able to
contain up to servicelen bytes that receives the service nane as a
null-termnated string. |If the service argunment is NULL or the
servicel en argunent is zero, the service name shall not be returned.
If the service' s name cannot be |ocated, the nuneric formof the
servi ce address (for exanple, its port nunber) shall be returned
instead of its nane.

The argunents node and service cannot both be NULL.

Glligan, et al. I nf or mat i onal [Page 29]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

The flags argunment is a flag that changes the default actions of the
function. By default the fully-qualified domain name (FQDN) for the
host shall be returned, but:

- If the flag bit NI_NOFQDN is set, only the node nane portion of
the FQDN shall be returned for |ocal hosts.

- If the flag bit NI _NUMERI CHOST is set, the nuneric formof the
host’'s address shall be returned instead of its nanme, under al
ci rcunst ances.

- If the flag bit NI_NAMEREQD is set, an error shall be returned if
the host’s name cannot be | ocat ed.

- If the flag bit NI_NUMERI CSERV is set, the nuneric formof the
servi ce address shall be returned (for exanple, its port numnber)
instead of its nane, under all circunstances.

- If the flag bit NI_DGRAM is set, this indicates that the service
is a datagram service (SOCK DGRAM . The default behavi or shall
assunme that the service is a stream service (SOCK_STREAM .

Not e:

1. The NI _NUMERI Cxxx flags are required to support the
that many conmands provi de.

-n" flags

2. The NI _DGRAM flag is required for the few AF_I NET and AF_I NET6
port nunbers (for exanple, [512,514]) that represent different
services for UDP and TCP.

The getnanei nfo() function shall be thread safe.

A zero return value for getnaneinfo() indicates successfu
conpl etion; a non-zero return value indicates failure.

Upon successful conpl etion, getnaneinfo() shall return the node and

service nanes, if requested, in the buffers provided. The returned
nanes are always null-term nated strings.

Glligan, et al. I nf or mat i onal [Page 30]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

Error Return Val ues:

The getnaneinfo() function shall fail and return the correspondi ng
val ue if:

[EAl _AGAI N| The nane could not be resolved at this tine.
Future attenpts may succeed.

[EAl _BADFLAGS] The flags had an invalid val ue.
[EAl _FAI L] A non-recoverabl e error occurred.

[EAl _FAM LY] The address fam |y was not recognized or the address
length was invalid for the specified famly.

[EAl _MEMORY] There was a nenory allocation failure.

[EAl _NONANME] The nanme does not resolve for the supplied paraneters.
NI _NAMEREQD i s set and the host’s name cannot be
| ocated, or both nodenane and servnane were nul |

[EAl _OVERFLOWN An argument buffer overfl owed.

[EAl _SYSTEM A systemerror occurred. The error code can be found
in errno.

6. 3 Address Conversi on Functions

The two | Pv4 functions inet_addr() and inet_ntoa() convert an |Pv4

address between binary and text form [|Pv6 applications need simlar
functions. The following two functions convert both IPv6é and | Pv4d
addr esses:

#i ncl ude <arpalinet.h>
int inet_pton(int af, const char *src, void *dst);

const char *inet_ntop(int af, const void *src,
char *dst, socklen_t size);

The inet_pton() function shall convert an address in its standard
text presentation forminto its nunmeric binary form The af argunent
shall specify the fanmily of the address. The AF_INET and AF_I NET6
address fam lies shall be supported. The src argunent points to the
string being passed in. The dst argunent points to a buffer into
whi ch the function stores the nuneric address; this shall be large
enough to hold the numeric address (32 bits for AF_INET, 128 bits for
AF_I NET6). The inet_pton() function shall return 1 if the conversion

Glligan, et al. I nf or mat i onal [Page 31]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

succeeds, with the address pointed to by dst in network byte order.
It shall return O if the input is not a valid |IPv4 dotted-deci nal
string or a valid | Pv6 address string, or -1 with errno set to
EAFNOSUPPORT i f the af argunent is unknown.

If the af argument of inet_pton() is AF_INET, the src string shall be
in the standard | Pv4 dotted-decimal form

ddd. ddd. ddd. ddd

where "ddd" is a one to three digit deci mal nunmber between 0 and 255.
The inet_pton() function does not accept other formats (such as the

octal nunbers, hexadeci mal nunbers, and fewer than four nunbers that
i net _addr () accepts).

If the af argunment of inet_pton() is AF_INET6, the src string shal
be in one of the standard I Pv6 text forms defined in Section 2.2 of
the addressing architecture specification [2].

The inet_ntop() function shall convert a nuneric address into a text
string suitable for presentation. The af argunent shall specify the
famly of the address. This can be AF_INET or AF_INET6. The src
argunment points to a buffer holding an | Pv4 address if the af
argunment is AF_INET, or an IPv6 address if the af argunent is

AF_| NET6; the address nust be in network byte order. The dst
argunment points to a buffer where the function stores the resulting
text string; it shall not be NULL. The size argunent specifies the
size of this buffer, which shall be |large enough to hold the text
string (1 NET_ADDRSTRLEN characters for |Pv4, | NET6_ADDRSTRLEN
characters for |Pv6).

In order to allow applications to easily declare buffers of the
proper size to store |IPv4 and | Pv6 addresses in string form the
follow ng two constants are defined in <netinet/in.h>:

#define | NET_ADDRSTRLEN 16
#define | NET6_ADDRSTRLEN 46

The inet_ntop() function shall return a pointer to the buffer
containing the text string if the conversion succeeds, and NULL
otherwise. Upon failure, errno is set to EAFNOSUPPORT if the af
argunent is invalid or ENOSPC if the size of the result buffer is
i nadequat e.

Glligan, et al. I nf or mat i onal [Page 32]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

6.4 Address Testing Macros
The followi ng macros can be used to test for special |Pv6 addresses.

#i ncl ude <netinet/in. h>

int [IN6_IS ADDR UNSPECI FI ED (const struct in6_addr *);
i nt IN6 IS ADDR LOOPBACK (const struct in6_addr *);
i nt IN6 IS ADDR MULTI CAST (const struct in6_addr *);
i nt IN6 IS ADDR L1 NKLOCAL (const struct in6_addr *);
i nt IN6 IS ADDR S| TELOCAL (const struct in6_addr *);
i nt IN6 IS ADDR VANMAPPED (const struct in6_addr *);
i nt IN6 IS ADDR V4COVPAT (const struct in6_addr *);
int IN6_IS ADDR MC NODELOCAL(const struct in6_addr *);
i nt IN6 IS ADDR MC LI NKLOCAL(const struct in6_addr *);
i nt IN6 IS ADDR MC_SI TELOCAL(const struct in6_addr *);
i nt IN6 IS ADDR MC_ORGLOCAL (const struct in6_addr *);
i nt IN6 IS ADDR NC GLOBAL (const struct in6_addr *);

The first seven macros return true if the address is of the specified
type, or false otherwise. The last five test the scope of a
mul ti cast address and return true if the address is a multicast
address of the specified scope or false if the address is either not
a nulticast address or not of the specified scope.

Note that IN6_IS ADDR LI NKLOCAL and I N6_I'S ADDR SI TELOCAL return true
only for the two types of l|ocal-use |IPv6 unicast addresses (Link-
Local and Site-Local) defined in [2], and that by this definition,
the IN6_I'S ADDR LI NKLOCAL rmacro returns false for the |1 Pv6 | oopback
address (::1). These two macros do not return true for |Pv6
mul ti cast addresses of either link-local scope or site-local scope.

7. Summary of New Definitions

The following |list summarizes the constants, structure, and extern
definitions discussed in this nmeno, sorted by header.

<net/if.h> | F_NAMESI ZE
<net/if.h> struct if_nanmei ndex{};
<net db. h> Al _ADDRCONFI G

<net db. h> Al _ALL

<net db. h> Al _ CANONNAME

<net db. h> Al _NUVERI CHOST

<net db. h> Al _NUVERI CSERV

<net db. h> Al _PASSI VE

<net db. h> Al _VANAPPED

Glligan, et al. I nf or mat i onal [Page 33]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

<net db. h> EAl _AGAI N

<net db. h> EAl _BADFLAGS

<net db. h> EAl _FAI L

<net db. h> EAl _FAM LY

<net db. h> EAl _ MEMORY

<net db. h> EAI _NONAMVE

<net db. h> EAl _OVERFLOW

<net db. h> EAl _SERVI CE

<net db. h> EAl _SOCKTYPE

<net db. h> EAl _SYSTEM

<net db. h> NI _DGRAM

<net db. h> NI _ NAMEREQD

<net db. h> NI _NOFQDN

<net db. h> NI _NUVERI CHOST

<net db. h> NI _NUVERI CSERV

<net db. h> struct addrinfo{};
<netinet/in.h> | NGADDR ANY INIT
<netinet/in.h> | NSADDR LOOPBACK INIT
<netinet/in.h> |NET6_ADDRSTRLEN
<netinet/in.h> | NET_ADDRSTRLEN
<netinet/in.h> |PPROTO | PV6
<netinet/in.h> [PV6_JO N _GROUP
<netinet/in.h> |PV6_LEAVE GROUP
<netinet/in.h> |PV6_MILTI CAST_HOPS
<netinet/in.h> |PV6_MILTICAST I|F
<netinet/in.h> [|PV6_MILTI CAST _LOOP
<netinet/in.h> |PV6_UN CAST_HOPS
<netinet/in.h> |PV6_V6ONLY
<netinet/in.h> SIN6_LEN
<netinet/in.h> extern const struct in6_addr in6addr_any;
<netinet/in.h> extern const struct in6_addr in6addr_| oopback;
<netinet/in.h> struct in6_addr{};
<netinet/in.h> struct ipv6e_nreq{};
<netinet/in.h> struct sockaddr_in6{};

<sys/socket.h> AF_|I NET6
<sys/socket.h> PF_I NET6
<sys/socket.h> struct sockaddr_storage;

The following list sumarizes the function and macro prototypes
di scussed in this nmeno, sorted by header

<arpalinet. h> int inet_pton(int, const char *, void *);

<arpalinet. h> const char *inet_ntop(int, const void *,
char *, socklen_t);

Glligan, et al. I nf or mat i onal [Page 34]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

<net/if.h> char *if_i ndextonanme(unsigned int, char *);
<net/if.h> unsi gned int if_nametoi ndex(const char *);
<net/if.h> voi d if_freenanei ndex(struct if_nanei ndex *);
<net/if.h> struct if_nanei ndex *if_nanei ndex(void);

<net db. h> i nt getaddrinfo(const char *, const char *,

const struct addrinfo *,
struct addrinfo **);

<net db. h> i nt getnanei nfo(const struct sockaddr *, socklen_t,
char *, socklen_t, char *, socklen_t, int);
<net db. h> voi d freeaddrinfo(struct addrinfo *);
<net db. h> const char *gai _strerror(int);
<netinet/in.h> int IN6_IS ADDR LI NKLOCAL(const struct in6_addr *);
<netinet/in.h> int IN6_IS ADDR LOOPBACK(const struct in6_addr *);
<netinet/in.h> int IN6_IS ADDR MC GLOBAL(const struct in6_addr *);
<netinet/in.h> int IN6_IS_ ADDR MC LI NKLOCAL(const struct in6_addr *);
<netinet/in.h> int IN6_IS_ ADDR MC_NODELOCAL(const struct in6_addr *);
<netinet/in.h> int IN6_IS_ ADDR MC_ORGLOCAL(const struct in6_addr *);
<netinet/in.h> int IhB_IS ADDR MC_SI TELOCAL(const struct in6_addr *);
<netinet/in.h> int IN6_IS_ ADDR _ MULTI CAST(const struct in6_addr *);
<netinet/in.h> int IN6_IS ADDR SI TELOCAL(const struct in6_addr *);
<netinet/in.h> int IN6_IS ADDR UNSPECI FI ED(const struct in6_addr *);
<netinet/in.h> int IhB_IS ADDR_VACOWPAT(const struct in6_addr *);
<netinet/in.h> int IN6_IS ADDR VAMAPPED(const struct in6_addr *);

8. Security Considerations
| Pv6 provides a nunber of new security nechani sns, many of which need
to be accessible to applications. Conpanion nenos detailing the
extensions to the socket interfaces to support |Pv6 security are
being witten.

9. Changes from RFC 2553

1. Add brief description of the history of this APl and its relation
to the OQpen G oup/l EEE/ | SO st andar ds.

2. Alignnents with [3].

3. Renoved all references to getipnodebynane() and geti pnodebyaddr (),
whi ch are deprecated in favor of getaddrinfo() and getnameinfo().

4. Added I PV6_VEONLY | P | evel socket option to pernmit nodes to not
process | Pv4 packets as | Pv4 Mapped addresses in inplenmentations.

5. Added SIIT to references and added new contri butors.

Glligan, et al. I nf or mat i onal [Page 35]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

6. In previous versions of this specification, the sin6_flow nfo
field was associated with the IPv6 traffic class and fl ow | abel,
but its usage was not conpletely specified. The conplete
definition of the sin6_flownfo field, including its association
with the traffic class or flow label, is now deferred to a future
speci ficati on.

10. Acknow edgnent s

This specification’s evolution and conpl eteness were significantly

i nfluenced by the efforts of Richard Stevens, who has passed on

Ri chard’' s wi sdom and tal ent nade the specification what it is today.
The co-authors will long think of Richard with great respect.

Thanks to the many peopl e who nade suggestions and provi ded feedback
to this docunent, including:

Wer ner Al nesberger, Ran Atkinson, Fred Baker, Dave Bornan, Andrew
Cherenson, Alex Conta, Alan Cox, Steve Deering, Richard Draves,
Franci s Dupont, Robert Elz, Brian Haberman, Jun-ichiro itojun Hagi no,
Marc Hasson, Tom Herbert, Bob Hi nden, Wan-Yen Hsu, Christian Huitema
Koji | rmada, Markus Jork, Ron Lee, Alan Lloyd, Charles Lynn, Dan
McDonal d, Dave M tton, Finnbarr Mirphy, Thonmas Narten, Josh Gsborne,
Craig Partridge, Jean-Luc Richier, Bill Sommerfield, Erik Scoredos,
Keith Skl ower, JINMEI Tatuya, Dave Thal er, Matt Thonas, Harvey
Thonpson, Dean D. Throop, Karen Tracey, Genn Trewitt, Paul Vixie,
David Waitzman, Carl WIIliams, Kazu Yamanoto, VIad Yasevich, Stig
Venaas, and Brian Zill.

The getaddrinfo() and getnanei nfo() functions are taken from an
earlier document by Keith Sklower. As noted in that docunent,
WIlliam Durst, Steven Wse, Mchael Karels, and Eric Al lnan provided
many useful discussions on the subject of protocol-independent nane-
to-address translation, and reviewed early versions of Keith

Skl ower’ s original proposal. Eric Allman inplenmented the first
prototype of getaddrinfo(). The observation that specifying the pair
of nanme and service would suffice for connecting to a service

i ndependent of protocol details was nmade by Marshall Rose in a
proposal to X/ Open for a "Uniform Network Interface"

Craig Metz, Jack McCann, Erik Nordmark, TimHartrick, and Mikesh
Kacker made many contributions to this docunent. Ramesh Govi ndan
made a nunber of contributions and co-authored an earlier version of
this nmeno.

Glligan, et al. I nf or mat i onal [Page 36]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

11. References

[1] Deering, S. and R Hinden, "Internet Protocol, Version 6 (IPv6)
Speci fication", RFC 2460, Decenber 1998.

[2] Hinden, R and S. Deering, "IP Version 6 Addressing
Architecture", RFC 2373, July 1998.

[3] IEEE Std. 1003.1-2001 Standard for Information Technol ogy --
Portabl e Operating SystemInterface (POSI X). Open G oup
Techni cal Standard: Base Specifications, Issue 6, Decenber 2001.
| SO | EC 9945: 2002. http://ww. opengroup. org/ austin

[4] Stevens, W and M Thonmas, "Advanced Sockets APl for |Pv6", RFC
2292, February 1998.

[5] Nordmark, E., "Stateless IP/ICVW Translation Algorithm (SIIT)",
RFC 2765, February 2000.

[6] The Open G oup Base Wirking G oup
htt p: / / www. opengr oup. or g/ pl at f or nf base. ht m

Glligan, et al. I nf or mat i onal [Page 37]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

12. Aut hors’ Addresses

Bob G I1igan

I ntransa, |nc.
2870 Zanker Rd.
San Jose, CA 95134

Phone: 408-678-8647
EMail: gilligan@ntransa.com

Susan Thonson

Cisco Systens

499 Thornall Street, 8th fl oor
Edi son, NJ 08837

Phone: 732-635-3086
EMai |l : sethomso@i sco.com

Ji m Bound

Hewl et t - Packard Conpany

110 Spitbrook Road ZKGB3-3/ W20
Nashua, NH 03062

Phone: 603-884-0062
EMai | : Ji m Bound@p. com

Jack McCann

Hewl et t - Packard Conpany

110 Spitbrook Road ZKG3-3/ W20
Nashua, NH 03062

Phone: 603-884-2608
EMai | : Jack. McCann@p. com

Glligan, et al. I nf or mat i onal [Page 38]

RFC 3493 Basi ¢ Socket Interface Extensions for |IPv6 February 2003

13. Full Copyright Statenent
Copyright (C) The Internet Society (2003). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
ot hers, and derivative works that comment on or otherw se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng I nternet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into |Ianguages other than
Engli sh.

The limted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknow edgenent

Fundi ng for the RFC Editor function is currently provided by the
I nternet Society.

Glligan, et al. I nf or mat i onal [Page 39]

