Net wor k Wor ki ng Group S. Crocker

Request for Comments: 33 UCLA
S. Carr

Uni versity of Utah

V. Cerf

UCLA

12 February 1973

New HOST- HOST Pr ot ocol

Attached is a copy of the paper to be presented at the SJCC on the
HOST- HOST Protocol. It indicates nany changes fromthe ol d protocol
in NW& RFC 11; these changes resulted fromthe network nmeeting on
Decenber 8, 1969. The attached docunment does not contain enough
information to wite a NCP, and I will send out another nmeno or so
shortly. Responses to this nenp are solicited, either as NWJ RFC s
or personal notes to ne.

HOST- HOST Conmuni cati on Prot ocol
in the ARPA Net wor k*

by C. Stephen Carr
Uni versity of Utah
Salt Lake City, Utah

and

by Stephen D. Crocker
University of California
Los Angeles, California
and

by Vinton G Cerf

University of California
Los Angeles, California

*This research was sponsored by the Advanced Research Projects
Agency, Departnment of Defense, under contracts AF30(602)-4277 and
DAHC15- 69- C- 0825.

I NTRODUCTI ON
The Advanced Research Projects Agency (ARPA) Conputer Network

(hereafter referred to as the "ARPA network") is one of the nost
anbi ti ous conputer networks attenpted to date. [1] The types of

Crocker, et. al. [Page 1]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

machi nes and operating systens involved in the network vary wi dely.
For exanmple, the conputers at the first four sites are an XDS 940
(Stanford Research Institute), an IBM 360/75 (University of
California, Santa Barbara), an XDS S| GVA-7 (University of California,
Los Angeles), and a DEC PDP-10 (University of Utah). The only
comonal ity anong the network nmenbership is the use of highly
interactive tine-sharing systens; but, of course, these are al
different in external appearance and inplenentation. Furthernore, no
one node is in control of the network. This has insured reliability
but conplicates the software.

O the networks which have reached the operational phase and been
reported in the literature, none have involved the variety of
computers and operating systens found in the ARPA network. For
exanpl e, the Carnegie-Mllon, Princeton, |BM network consists of
360/67's with identical software. [2] Load sharing anong identi cal
bat ch machi nes was commonpl ace at North American Rockwel | Corporation
in the early 1960's. Therefore, the inplenenters of the present
networ k have been only slightly influenced by earlier network
attenpts.

However, early tine-sharing studies at the University of California
at Berkeley, MT, Lincoln Laboratory, and System Devel opnent
Corporation (all ARPAA sponsored) have had consi derabl e influence on

the design of the network. In some sense, the ARPA network of timne-
shared conputers is a natural extension of earlier time-sharing
concept s.

The network is seen as a set of data entry and exit points into which
i ndi vi dual computers insert nmessages destined for another (or the
sane) conputer, and from which such nessages enmerge. The format of
such nessages and the operation of the network was specified by the
network contractor (BB&N) and it becane the responsibility of
representatives of the various conputer sites to inpose such
addi ti onal constraints and provide such protocol as necessary for
users at one site to use resources at foreign sites. This paper
details the decisions that have been nade and t he consi derations

behi nd these deci sions.

Several peopl e deserve acknow edgenent in this effort. J. Rulifson
and W Duvall of SRl participated in the early design effort of the
protocol and in the discussions of NIL. G Deloche of Thonmpson- CSF
participated in the design effort while he was at UCLA and provided
consi derabl e documentation. J. Curry of Utah and P. Rovner of

Li ncol n Laboratory reviewed the early design and NIL. W Crowt her of
Bol t, Beranek and Newman, contributed the idea of a virtual net. The
BB&N st aff provided substantial assistance and gui dance while
delivering the network.

Crocker, et. al. [Page 2]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

W have found that, in the process of connecting nachines and
operating systens together, a great deal of rapport has been
establ i shed between personnel at the various network node sites. The
resulting mxture of ideas, discussions, disagreenments, and

resol utions has been highly refreshing and beneficial to al

i nvol ved, and we regard the human interaction as a val uabl e by-
product of the main effect.

THE NETWORK AS SEEN BY THE HOSTS

Bef ore going on to di scuss operating system comruni cati on protocol
some definitions are needed.

A HOST is a conmputer systemwhich is a part of the network,

An I MP (Interface Message Processor) is a Honeywel | DDP-516
computer which interfaces with up to four HOSTs at a particul ar
site, and allows HOSTs access into the network. The configuration
of the initial four-HOST network is given in figure 1. The |IMPs
froma store-and-forward conmuni cati ons network. A comnpani on
paper in these proceedings covers the IMPs in sonme detail. [3]

A message is a bit streamless than 8096 bits long which is given to
an | MP by a HOST for transm ssion to another HOST. The first 32 bits
of the nessage are the |eader. The |eader contains the follow ng

i nformati on:

(a) HOST

(b) Message Type
(c) Flags

(d) Link Nunber

When a nessage is transmitted froma HOST to its IMP, the HOST field
of the | eader nanes the receiving HOST. Wen the nessage arrives at
the receiving HOST, the HOST field names the sendi ng HOST.

Only two nessage types are of concern in this paper. Regular
nmessages are generated by a HOST and sent to its IMP for transm ssion
to a foreign HOST. The other nessage type of interest is a RFNM
(Request-for-Next-Mssage). RFNM s are explained in conjunction with
I'inks.

The flag field of the | eader controls special cases not of concern
here.

Crocker, et. al. [Page 3]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

The link nunber identifies over which of 256 |ogical paths (Iinks)
bet ween t he sendi ng HOST and the receiving HOST the nessage will be
sent. Each link is unidirectional and is controlled by the network
so that no nore than one nmessage at a tinme may be sent over it. This
control is inplenented using RFNM nessages. After a sendi ng HOST has
sent a nessage to a receiving HOST over a particular link, the
sendi ng HOST is prohibited from sendi ng anot her nessage over that
sane link until the sending HOST receives a RFMN\. The RFNM i s
generated by the | MP connected to the receiving HOST, and the RFNM i s
sent back to the sending HOST after the nmessage has entered the
receiving HOST. It is inmportant to renmenber that there are 356 |inks
in each direction and that no rel ationship anbng these is inposed by
t he network.

The purpose of the link and RFMN nechanismis to prohibit individua
users fromoverloading an IMP or a HOST. Inplicit in this purpose is
the assunption that a user does not use multiple links to achieve a
wi de band, and to a |l arge extent the HOST- HOST protocol cooperates
with this assunption. An even nore basic assunption, of course, is
that the network’s | oad cones from sone users transmtting sequences
of nessages rather than many users transnitting single nmessages

coi nci dently.

In order to delinmt the length of the nmessage, and to nake it easier
for HOSTs of differing word | engths to conmunicate, the follow ng
formatting procedure is used. Wen a HOST prepares a nessage for
output, it creates a 32-bit leader. Following the Ieader is a binary
string, called marking, consisting of an arbitrary nunber of zeros,
foll owed by one. Marking nakes is possible for the sending HOST to
synchroni ze the begi nning of the text nmessage with its word
boundaries. Wen the last bit of a nmessage has entered an I MP, the
har dware interface between the | MP and HOST appends a one foll owed by
enough zeros to nake the nmessage length a nmultiple of 16 bits. These
appended bits are called padding. Except for the narking and
padding, no limtations are placed on the text of a nessage. Figure
2 shows a typical nmessage sent by a 24-bit machi ne.

DESI GN CONCEPTS

The conputers participating in the network are alike in two inportant
respects: each supports research i ndependent of the network, and each
is under the discipline of a tine-sharing system These facts
contributed to the follow ng design phil osophy.

First, because the conputers in the network have independent purposes
it is necessary to preserve decentralized adninistrative control of
the various conmputers. Since all of the tinme-sharing supervisors
possess el aborate and definite accounting and resource allocation

Crocker, et. al. [Page 4]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

nmechani sns, we arranged matters so that these nechani sns woul d
control the |load due to the network in the sane way that they contro
| ocal |y generated | oad.

Second, because the conmputers are all operated under tine-sharing
disciplines, it seemed desirable to facilitate basic interactive
nmechani sns.

Third, because this network is used by experienced programers it was
i nperative to provide the w dest latitude in using the network.
Restrictions concerning character sets, programing |anguages, etc.
woul d not be tolerated and we avoi ded such restrictions.

Fourth, again because the network is used by experienced programmers,
it was felt necessary to | eave the design open-ended. W expect that
conventions will arise fromtinme to tinme as experience is gained, but
we felt constrained not to inpose themarbitrarily.

Fifth, in order to nake network participation confortable, or in sone
cases, feasible, the software interface to the network should require
m ni mal surgery on the HOST operating system

Finally, we except the assunption stated above that network use
consi sts of prolonged conversations instead of one-shot requests.

These considerations led to the notions of connections, a Network
Control Program a control link, control conmands, sockets, and
virtual nets.

A connection is an extension of a link. A connection connects two
processes so that output fromone process is input to the other.
Connections are sinplex, so two connections are needed if two
processes are to converse in both directions.

Processes within a HOST conmuni cate with the network through a

Net work Control Program (NCP). In nost HOSTs, the NCP will be a part
of the executive, so that processes will use systemcalls to

comuni cate with it. The prinmary function of the NCP is to establish
connections, break connections, switch connections, and control fl ow

In order to acconplish its tasks, a NCP in one HOST nust conmunicate
with a NCP in another HOST. To this end, a particular |ink between
each pair of HOSTs has been designated as the control |ink. Messages
received over the control link are always interpreted by the NCP as a
sequence of one or nore control conmmands. As an exanple, one of the
ki nds of control commands is used to assign a link and initiate a

Crocker, et. al. [Page 5]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

connection, while another kind carries notification that a connection
has been term nated. A partial sketch of the syntax and semantics of
control commands is given in the next section

A major issue is howto refer to processes in a foreign HOST. Each
HOST has sone internal nam ng schene, but these various schenes often
are inconpatible. Since it is not practical to inmpose a conmon

i nternal process nanmi ng schenme, an internedi ate nane space was
created with a separate portion of the nane space given to each HOST.
It is left to each HOST to map internal process identifiers into its
name space.

The el enents of the nane space are called sockets. A socket forns
one end of a connection, and a connection is fully specified by a
pair of sockets. A socket is specified by the concatenation of three
nunbers:

(a) a user nunber (24 bits)
(b) a HOST nunber (8 bits)
(c) AEN (8 bits)

A typical socket is illustrated in Figure 3.

Each HOST is assigned all sockets in the nane space which have field
(b) equal to the HOST's own identification

A socket is either a receive socket or a send socket, and is so

mar ked by the | ower-order bit of the AEN (0O = receive, 1 = send).
The ot her seven bits of the AEN sinply provide a sizable popul ation
of sockets for each used nunber at each HOST. (AEN stands for
"anot her eight-bit nunber")

Each user is assigned a 24-bit user nunber which uniquely identifies
hi m t hr oughout the network. Generally this will be the 8-bit HOST
nunber of his home HOST, followed by 16 bits which uniquely identify
himat that HOST. Provision can also be nmade for a user to have a
user nunber not keyed to a particul ar HOST, an arrangenent desirable
for nobile users who m ght have no honme HOST or nore than one hone
HOST. This 24-bit user nunber is then used in the follow ng manner.
When a user signs onto a HOST, his user nunber is | ooked up.
Thereafter, each process the user creates is tagged with his user
nunber. Wen the user signs onto a foreign HOST via the network, his
same user nunber is used to tag processes he creates in that HOST.
The foreign HOST obtains the user nunber either by consulting a table
at login tinme, as the home HOST does, or by noticing the
identification of the caller. The effect of propagating the user’s
nunber is that each user creates his own virtual net consisting of
processes he has created. This virtual net may span an arbitrary

Crocker, et. al. [Page 6]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

nunber of HOSTs. It will thus be easy for a user to connect his
processes in arbitrary ways, while still permtting himto connect
his processes with those in other virtual nets.

The rel ati onshi p between sockets and processes i s now descri babl e
(see Figure 4). For each user nunber at each HOST, there are 128
send sockets and 128 receive sockets. A process may request fromthe
| ocal NCP the use of any one of the sockets with the sanme user

nunber; the request is granted if the socket is not otherw se in use.
The key observation here is that a socket requested by a process
cannot already be in use unless it is by sone other process within
the sanme virtual net, and such a process is controlled by the sane
user.

An unusual aspect of the HOST-HOST protocol is that a process nay
switch its end of a connection fromone socket to another. The new
socket may be in any virtual net and at any HOST, and the process may
initiate a switch either at the tine the connection is being
established, or later. The nost general fornms of sw tching entail
quite conplex inplenmentation, and are not germane to the rest of this
paper, so only alinmted formw Il be explained. This Iinited form
of switching provides only that a process nmay substitute one socket
for another while establishing a connection. The new socket mnust
have the sanme user nunber and HOST nunber, and the connection is

still established to the sane process. This formof switching is
thus only a way of relabelling a socket, for no charge in the routing
of nessages takes place. In the next section we docunment the system

calls and control commands; in the section after next, we consider
how | ogi n mi ght be inpl ement ed.

SYSTEM CALLS AND CONTROL COMVANDS

Here we sketch the nmechani sms of establishing, swtching and breaking
a connection. As noted above, the NCP interacts with user processes
via systemcalls and with other NCPs via control conmands. W
therefore begin with a partial description of systemcalls and
control commands.

Systemcalls will vary from one operating systemto another, so the
following description is only suggestive. W assune here that a
process has several input-output paths which we will call ports.
Each port may be connected to a sequential 1/0O device, and while
connected, transmts information in only one direction. W further
assune that the process is blocked (dismssed, slept) while

transni ssion proceeds. The following is the |ist of systemcalls:

Crocker, et. al. [Page 7]

RFC 33

wher e

and

wher e

Cr ocker,

et.

New HOST- HOST Pr ot ocol 12 February 1970
I nit <port>, <AEN 1>, <AEN 2>, <foreign socket>
<port> is part of the process issuing the Init
<AEN 1> |
+- are 8-bit AEN s (see Figure 2)
<AEN 2> |

The first AENis used to initiate the connection; the second
is used while the connection exists.

<foreign socket> is the 40-bit socket name of the distant
end of the connection

The | ower-order bits of <AEN 1> and <AEN 2> nust agree, and
these nmust be the conplenent of the | ower-order bit of
<f orei gn socket >.

The NCP concat enates <AEN 1> and <AEN 2> each with the user
nunber of the process and the HOST nunber to form 40-bit
sockets. It then sends a Request for Connection (RFC)
control command to the distant NCP. Wen the distant NCP
responds positively, the connection is established and the
process is unblocked. |If the distant NCP responds
negatively, the local NCP unbl ocks the requesting process,
but informs it that the systemcall has fail ed.

Li sten <port>, <AEN 1>

<port> and <AEN 1> are as above. The NCP retains the ports
and <AEN 1> and bl ocks the process. When an RFC contr ol
conmmand arrives namng the |ocal socket, the process is
unbl ocked and notified that a foreign process is calling.
Accept <AEN 2>

After a Listen has been satisfied, the process nay either
refuse the call or accept it and switch it to another

socket. To accept the call, the process issues the Accept
systemcall. The NCP then sends back an RFC contro
conmand.

C ose <port >
After establishing a connection, a process issues a Close to

break the connection. The Close is also issued after a
Listen to refuse a call.

al . [Page 8]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

Transnit <port>, <addr>

If <port> is attached to a send socket, <addr> points to a
nmessage to be sent. This nmessage is preceded by its length
in bits.

If <port> is attached to a receive socket, a nmessage is
stored at <addr>. The length of the nessage is stored
first.

Control Conmands
A vocabul ary of control conmands has been defined for conmunication
bet ween Network Control Programs. Each control command consists of
an 8-bit operation code to indicate its function, followed by sone
paraneters. The nunber and format of paraneters is fixed for each
operation code. A sequence of control comrands destined for a
particul ar HOST can be packed into a single control nessage.
RFC <ny socket 1>, <ny socket 2>
<your socket>, (<link>)

This conmand i s sent because a process has executed either an Init

systemcall or an Accept systemcall. A link is assigned by the
prospective receiver, so it is omtted if <ny socket 1> is a send
socket .

There is distinct advantage in using the sane commands both to
initiate a connection (Init) and to accept a call (Accept). |If the
respondi ng comuand were different fromthe initiating command, then
two processes could call each other and becone bl ocked waiting for
each other to respond. Wth this scheme, no deadl ock occurs and it
provi des a nore conpact way to connect a set of processes.

CLS <ny socket>, <your socket>
The specified connection is term nated
CEASE <l i nk>

When t he receiving process does not consune its input as fast as it
arrives, the buffer space in the receiving HOST is used to queue the
waiting nmessages. Since only linited space is generally avail abl e,
the receiving HOST may need to inhibit the sending HOST from sendi ng
any nore nessages over the of fending connection. Wen the sending
HOST receives this command, it may bl ock the process generating the
nessages.

Crocker, et. al. [Page 9]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

RESUME <link>

This conmand is al so sent fromthe receiving HOST to the sendi ng HOST
and negates a previous CEASE.

LOGE NG I N

We assune that within each HOST there is always a process in
execution which listens to login requests. W call this process the
logger, and it is part of a special virtual net whose user number is
zero. The logger is programmed to listen to calls on socket nunber

0. Upon receiving a call, the logger switches it to a higher (even)
nunber ed sockets, and returns a call to the socket nunbered one | ess
than the send socket originally calling. 1In this fashion, the |ogger

can initiate 127 conversati ons.
To illustrate, assunme a user whose identification is X 010005 (user
nunber 5 at UCLA) signs into UCLA, starts up one of his progranms, and
this programwants to start a process at SRI. No process except the
logger is currently willing to listen to our user, so he executes
Init, <port> =1, <AEN 1> = 7, <AEN 2> = 7,
<foreign socket> =0

H s process is blocked, and the NCP at UCLA sends

X 0100050107’ ,

RFC <ny socket 1>

X 0100050107’ ,

<nmy socket 2>

X 000000200

<your socket>

The | ogger at SRl is notified when this nessage is received, because
it has previously executed

Li sten <port> =9, <AEN 1> = 0.
The | ogger then executes

Accept <AEN 2> = 88.

Crocker, et. al. [Page 10]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

In response to the Accept, the SRI NCP sends

X' 0000000200

RFC <ny socket 1>

<ny socket 2> X' 0000000258

X 0100050107’

<your socket>
<link> = 37

where the |ink has been chosen fromthe set of available links. The
SRl | ogger than executes

I nit <port> = 10
<AEN 1> = 89, <AEN 2> = 89,
<f orei gn socket> = X 0100050106’
whi ch causes the NCP to send

X 0000000259’

RFC <ny socket 1>

<my socket 2> = x’' 0000000259

X 0100050106’

<your socket>
The process at UCLA is unbl ocked and notified of the successful Init.
Because SRI | ogger always initiates a connection to the AEN one | ess
than it has just been connected to, the UCLA process then executes
Li sten <port> = 11
<AEN 1> = 6
and when unbl ocked

Accept <AEN 2> = 6

When t hese transactions are conplete, the UCLA process is doubly

connected to the logger at SRI. The logger will then interrogate the
UCLA process, and if satisfied, create a new process at SRI. This
new process will be tagged with user nunmber X 010005, and both
connections wil be switched to the new process. |n this case,

switching the connections to the new process corresponds to "passing
t he consol e down" in many time-sharing systens.

Crocker, et. al. [Page 11]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

USER LEVEL SOFTWARE

At the user level, subroutines which nmanage data buffer and format

i nput designed for other HOSTs are provided. It is not mandatory
that the user use such subroutines, since the user has access to the
network systemcalls in his nonitor.

In addition to user progranming access, it is desirable to have a
subsyst em program at each HOST whi ch nakes the network inmmedi ately
accessible froma tel etype-1like device w thout special progranm ng.
Subsystens are commonly used system conponents such as text editors,
conpilers and interpreters. An exanple of a network-rel ated
subsystemis TELNET, which will allow users at the University of Utah
to connect to Stanford Research Institute and appear as regul ar
terminal users. It is expected that nore sophisticated subsystens
will be developed in tinme, but this basic one will render the early
network i medi ately usef ul

A user at the University of Uah (UTAH) is sitting at a tel etype
dialed into the University’'s PDP-10/50 tine-sharing system He

wi shes to operate the Conversational Al gebraic Language (CAL)
subsystem on the XDS-940 at Stanford Research Institute (SRI) in
Menl o Park, California. A typical TELNET dialog is illustrated in
Figure 5. The neaning of each line of dialogue is discussed here.

(i) The user signs in at UTAH

(ii) The PDP-10 run conmmand starts up the TELNET subsystem at
t he user’s HOST.

(111) The user identifies a break character which causes any
nmessage followi ng the break to be interpreted locally
rat her than being sent on the foreign HOST.

(iv) The TELNET subsystemwi ||l nake the appropriate system
calls to establish a pair of connections to the SR
| ogger. The connections will be established only if SR

accepts anot her foreign user

The UTAH user is nowin the pre-logged-in state at SRI. This is
anal ogous to the standard teletype user’s state after dialing into a
conput er and nmaki ng a connection but before typing anything.

(v) The user signs in to SRl with a standard | ogi n conmand.
Characters typed on the user’'s teletype are transnitted
unal tered through the PDP-10 (user HOST) and on to the
940 (serving HOST). The PDP-10 TELNET will have
automatically switched to full-duplex, character-by-

Crocker, et. al. [Page 12]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

character transm ssion, since this is required by SRI’'s
940. Full duplex operation is allowed for by the PDP-10,
t hough not used by nost Digital Equi pnment Corporations
subsyst ens.

(vi) and (vii) The 940 subsystem CAL, is started.

At this point, the user wishes to load a local CAL file into the 940
CAL subsystem fromthe file systemon his |ocal PDP-10.

(viii) CAL is instructed to establish a connection to UTAH in
order to receive this file. "NETWRK" is a predefined 940
name simlar in nature to "PAPER TYPE" or "TELETYPE".

(ix) Finally, the user types the break character (#) followed
by a command to his PDP-10 TELNET program which sends
the desired file to SRI from Uah on the connection just
established for this purpose. The user’s next statenent
is in CAL again.

The TELNET subsystem codi ng should be minimal for it is essentially a
shell program built over the network systemcalls. It effectively
established a shunt in the user HOST between the renote user and a

di stant serving HOST.

G ven the basic systemprimtives, the TELNET subsystem at the user
HOST and a manual for the serving HOST, the network can be profitably
enpl oyed by renote users today.

H GHER LEVEL PROTOCOL

The network poses special problens where a high degree of interaction
is required between the user and a particular subsystemin a foreign
HOST. These problens arise due to heterogeneous consol es, |oca
operating systens overhead, and network transm ssion delays. Unless
we use special strategies it may be difficult or even inpossible for
a distant user to nake use of the nore sophisticated subsystens
offered. Wiile these difficulties are especially severe in the area
of graphics, problens may arise even for teletype interaction. For
exanpl e, suppose that a foreign subsystemis designed for teletype
consol es connected by tel ephone, and then this subsystem becones
avail able to network users. This subsystem m ght have the foll ow ng
characteristics.

1. Except for echoing and correction of nmistyping, no action is
taken until a carriage return is typed.

Crocker, et. al. [Page 13]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

2. Al characters except "~", and "<-" and carriage returns are
echoed as the character is typed.

3. <- causes deletion of the i mediately precedi ng character, and
is echoed as that character.

4. " causes all previously typed characters to be ignored. A
carriage return and line feed are echoed.

5. A carriage return is echoed as a carriage return foll owed by a
line feed.

| f each character typed is sent in its own nessage, then the
characters

HELLOKXZ < Pec.r

cause nine nessages in each direction. Furthernore, each character
is handl ed by a user level programin the |ocal HOST before being
sent to the foreign HOST.

Now it is clear that if this particular exanple were inportant, we
woul d quickly inplenent rules 1 to 5 in a local HOST program and send
only conplete lines to the foreign HOST. |If the foreign HOST program
could not be nodified so as to not generate echoes, then the | oca
program could not only echo properly, it could also throw away the

| ater echoes fromthe foreign HOST. However, the problemis not any
particular interaction scheme; the problemis that we expect many of

t hese kinds of schemes to occur. W have not found any genera
solutions to these probl ens, but sone observations and conjectures
may | ead the way.

Wth respect to heterogeneous consoles, we note that although
consoles are rarely conpatible, many are equivalent. It is probably
reasonable to treat a nodel 37 teletype as the equivalent of an |BM
2741. Simlarly, nost storage scopes will form an equival ence cl ass,
and nost refresh display scopes will formanother. Furthernore, a

hi erarchy m ght energe with nenbers of one class usable in place of
those in another, but not vice versa. W can inmagine that any scope
m ght be an adequate substitute for a teletype, but hardly the
reverse. This observation |leads us to wonder if a network-w de

| anguage for consol es might be possible. Such a | anguage woul d
provide for distinct treatnment of different classes of consoles, with
semantics appropriate to each class. Each site could then wite
interface progranms for its consoles to make them | ook |ike network
standard devi ces.

Crocker, et. al. [Page 14]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

Anot her observation is that a user evaluates an interactive system by
conmpari ng the speed of the system s responses with his own
expectations. Sometinmes a user feels that he has made only a m nor
request, so the response should be inmediate; at other tines he feels
he has nmade a substantial request, and is therefore willing to wait
for the response. Sone interactive subsystens are especially

pl easant to use because a great deal of work has gone into tailoring
the responses to the user’s expectations. In the network, however, a
| ocal user |evel process intervenes between a |ocal console and a
foreign subsystem and we nay expect the response tine for minor
requests to degrade. Now it nay happen that all of this tailoring of
the interaction is fairly independent of the portion of the subsystem
whi ch does the heavy conputing or I/O In such a case, it may be
possible to separate a subsysteminto two sections. One section
woul d be a "front end" which formats output to the user, accepts his
i nput, and controls conputationally sinple responses such as echoes.
In the exanpl e above, the programto accunulate a |Iine and generate
echoes would be the front end of sone subsystem W now take notice
of the fact that the | ocal HOSTs have substantial conputationa

power, but our current designs nake use of the |Iocal HOST only as a
data concentrator. This is sonmewhat ironic, for the local HOST is
not only poorly utilized as a data concentrator, it also degrades
performance because of the delays it introduces.

These argunents have led us to consider the possibility of a Network
I nterface Language (NI L) which would be a network-w de | anguage for
writing the front end of interactive subsystens. This |anguage woul d
have the feature that subprograns conmuni cate through network-1ike
connections. The strategy is then to transport the source code for
the front end of a subsystemto the |local HOST, where it would be
conpi | ed and execut ed.

During prelimnary discussions we have agreed that NIL should have at
|l east the foll owing semantic properties not generally found in other
| anguages.

1. Concurrency. Because nessages arrive asynchronously on
di fferent connections, and because user input is not
synchroni zed with subsystem output, N L rust include semantics
to accurately nodel the possible concurrencies.

2. Program Concatenation. It is very useful to be able to insert
a programin between two other programs. To achieve this, the
i nt erconnection of prograns woul d be specified at run tinme and
woul d not be inplicit in the source code.

Crocker, et. al. [Page 15]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

3. Device substitutability. It is usual to define |anguages so
that one device may be substituted for another. The
requi rement here is that any device can be nodeled by a NI L
program For exanmple, if a network standard display controller
mani pul ates tree-structures according to nessages sent to it
then these structures nust be easily inplenmentable in NL.

NI L has not been fully specified, and reservati ons have been
expressed about its useful ness. These reservations hinge upon our
conjecture that it is possible to divide an interactive systeminto a
transportable front end which satisfies a user’s expectations at |ow
cost and a nore substantial stay-at-honme section. |If our conjecture
is false, then NIL will not be useful; otherwise it seenms worth
pursuing. Testing of this conjecture and further devel opnent of N L
will take priority after |ow | evel HOST-HOST protocol has stabilized.

HOST/ | MP | NTERFACI NG

The hardware and software interfaces between HOST and IMP is an area
of particular concern for the HOST organi zations. Considering the

di versity of HOST conputers to which a standard | MP nust connect, the
hardware interface was nade bit serial and full-duplex. Each HOST
organi zation inplenents its half of this very sinple interface.

The software interface is equally sinple and consists of nessages
passed back and forth between the | MP and HOST prograns. Speci al
error and signal messages are defined as well as messages contai ni ng
normal data. Messages waiting in queues in either machine are sent
at the pleasure of the machine in which they reside with no concern
for the needs of the other conputer.

The effect of the present software interface is the needl ess
rebuffering of all nessages in the HOST in addition to the buffering
in the IMP. The nessages have no particul ar order other than arriva
times at the I|MP. The Network Control Program at one HOST (e.g.

UTAH) needs waiting RFNM s before all other nessages. At another
site (e.g., SRI), the NCP could benefit by receiving nmessages for the
user who is next to be run.

What is needed is coding representing the specific needs of the HOST
on both sides of the interface to nmake intelligent decisions about
what to transnit next over the channel. Wth the present software
interface, the channel in one direction once conmmitted to a
particul ar message is then | ocked up for up to 80 mlliseconds! This
approaches one teletype character tinme and needlessly linmits full-
dupl ex, character by character, interactions over the net. At the
very |l east, the | MP/HOST protocol should be expended to pernit each
side to assist the other in scheduling nessages over the channels.

Crocker, et. al. [Page 16]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

CONCLUSI ONS

At this tinme (February 1970) the initial network of four sites is
just beginning to be utilized. The conmunications system of four

| MPs and wi de band tel ephone |ines have been operational for two
nmont hs. Programmers at UCLA have signed in as users of the SRl 940.
More significantly, one of the authors (S. Carr) living in Palo Alto
uses the Salt Lake PDP-10 on a daily basis by first connecting to
SRI. W thus have first hand experience that renote interaction is
possible and is highly effective.

Wrk on the ARPA network has generated new areas of interest. NL is
one exanple, and interprocess comunication is another. Interprocess

conmuni cation over the network is a subcase of general interprocess
comuni cation in a multiprogramed environnment. The mechani sm of

connections seens to be new, and we wonder whether this nechanismis
useful even when the processes are within the sane conputer.

REFERENCES
1 L. ROBERTS
"The ARPA net wor k"
I nvitational Wrkshop on Networks of Conputers Proceedi ngs
National Security Agency 1968 p 115 ff
2. R M RUTLEDGE et al
"An interactive network of timne-sharing conputers”
Proceedi ngs of the 24th National Conference
Associ ation for Conputing Machinery 1969 p 431 ff
3. FEHEART RE KAHN S M ORNSTEIN WR CROMHER
D C WALDEN
"The interface nmessage processors for the ARPA network"
These Proceedi ngs
LI ST OF FI GURES
Figure 1 Initial network configuration
Figure 2 A typical nessage froma 24-bit machi ne
Figure 3 A typical socket
Figure 4 The relationship between sockets and processes
Figure 5 A typical TELNET dial og.

Underlined characters are those types by the user.

Crocker, et. al. [Page 17]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

SR
/ \
| XDS |
| 940 |
_ /
I
Fom e - +
| I
Fom e - +
I \
/ | \
/ | \' o+
/ | (N \
______ to---t] I \[M |--] DEC |
/ \ L | | P | | PDP-10|
| IBM |---] M | | +----+ _ /
| 360/75 | | P |\ |
_ / +----+ 1\ | UTAH
\ I
UCSB \ |
L +
I M|
L +
I
S P
/ \
| XDS |
| (sigma)-7]
|
UCLA

Figure 1 Initial network configuration

Crocker, et. al. [Page 18]

RFC 33 New HOST- HOST Pr ot ocol 12 February 1970

| 16 bits of paddi ng added
by the interface

Figure 2 A typical nessage froma 24-bit machi ne

24 8 8
S Fomm e m o e Fomm oo oo - +
| User Number |
S Fomm e m o e Fomm oo oo - +

| | __ AEN
I
| HOST nunber
Figure 3 A typical socket
| <--- connection --->
S + Fomm o e +
| | i nk | |
| process |--(|-------------- |)--| process
| " ~ I
TS + | | U +
I I
send socket recei ve socket

Figure 4 The relationship between sockets and processes

[This RFC was put into machine readable formfor entry]
[into the online RFC archives by Lorrie Shiota 08/00]

Crocker, et. al. [Page 19]

