Net wor k Wor ki ng Group M Rose
Request for Comments: 3117 Dover Beach Consulting, Inc.
Cat egory: I nfornmational Novenber 2001

On the Design of Application Protocols
Status of this Meno
This meno provides information for the Internet conmunity. |t does
not specify an Internet standard of any kind. Distribution of this
meno is unlimted.
Copyright Notice
Copyright (C) The Internet Society (2001). Al Rights Reserved.
Abstract
This nenp describes the design principles for the Bl ocks eXtensible
eXchange Protocol (BXXP). BXXP is a generic application protocol
framework for connection-oriented, asynchronous interactions. The
framework permts sinultaneous and i ndependent exchanges within the

context of a single application user-identity, supporting both
textual and binary messages.

Rose | nf or mat i onal [Page 1]

RFC 3117 On the Design of Application Protocols

Tabl e of Contents

A Problem 19 Years in the Making .
You can Sol ve Any Problem ..
Prot ocol Mechani sns

Fram ng

Encodi ng .

Reporting

Asynchrony .

Aut henti cati on .

Privacy

Let’'s Recap

Pr ot ocol Propertl es

Scal ability

Efficiency .

Sinplicity .

Extensibility

Robust ness . . :

The BXXP Fr arrevvork .

Fram ng and Encodi ng .
Reporting

Asynchrony .

Aut henti cati on .

Privacy .

Thi ngs W Left th .
From Framework to Protocol
BXXP i s now BEEP .

Security Considerations
Ref erences . . :

Aut hor’s Address . . .

Ful I Copyright St aterrent

OrhWwWNBE ~NOoO IR~ WN P

NoouooaaaohhbRARARAOOWWOWWWONE
~NoOUhWN R

Rose | nf or mat i onal

Novenmber 2001

[Page 2]

RFC 3117 On the Design of Application Protocols Novenber 2001

1. A Problem 19 Years in the Mking

SMIP [1] is close to being the perfect application protocol: it
solves a large, inportant problemin a mnimalist way. It’'s sinple
enough for an entry-level inplenentation to fit on one or two screens
of code, and flexible enough to formthe basis of very powerful
product offerings in a robust and conpetitive nmarket. Mdulo a few
oddities (e.g., SAM.), the design is well conceived and the resulting
specification is well-witten and largely self-contained. There is
very little about good application protocol design that you can’t

| earn by reading the SMIP specification

Unfortunately, there’s one little problem SMIP was originally
published in 1981 and since that time, a lot of application protocols
have been designed for the Internet, but there hasn’t been a | ot of
reuse going on. You night expect this if the application protocols
were all radically different, but this isn't the case: nost are
surprisingly simlar in their functional behavior, even though the
actual details vary considerably.

In late 1998, as Carl Malanud and | were sitting down to review the
Bl ocks architecture, we realized that we needed to have a protoco

for exchangi ng Bl ocks. The conventional w sdomis that when you need
an application protocol, there are four ways to proceed:

1. find an existing exchange protocol that (nmore or |ess) does what
you want ;

2. define an exchange nodel on top of the world-w de web
infrastructure that (nore or |ess) does what you want;

3. define an exchange nodel on top of the electronic mnai
infrastructure that (nore or |ess) does what you want; or,

4. define a new protocol fromscratch that does exactly what you
want .

An engi neer can make reasoned arguments about the nerits of each of
the these approaches. Here's the process we followed...

The nost appealing option is to find an existing protocol and use
that. (In other words, we’'d rather "buy" than "make".) So, we did a
survey of many existing application protocols and found that none of
them were a good nmatch for the semantics of the protocol we needed.

For exampl e, nost application protocols are oriented toward

client/server behavior, and enphasize the client pulling data from
the server; in contrast with Blocks, a client usually pulls data from

Rose I nf or mat i onal [Page 3]

RFC 3117 On the Design of Application Protocols Novenber 2001

the server, but it also nay request the server to asynchronously push
(new) data to it. Cearly, we could nutate a protocol such as FTP
[2] or SMIP into what we wanted, but by the tine we did all that, the
base protocol and our protocol would have nore di fferences than
simlarities. |In other words, the cost of nodifying an off-the-shelf
i npl emrent ati on becones conparable with starting from scratch

Anot her approach is to use HITP [3] as the exchange protocol and
define the rules for data exchange over that. For exanple, |PP [4]
(the Internet Printing Protocol) uses this approach. The basic idea
is that HITP defines the rules for exchangi ng data and then you
define the data’ s syntax and semantics. Because you inherit the
entire HITP infrastructure (e.g., HITTP s authenticati on nechani sms,
caching proxies, and so on), there’'s less for you to have to invent
(and code!). O, conversely, you mght view the HITP infrastructure
as too helpful. As an added bonus, if you decide that your protocol
runs over port 80, you nay be able to sneak your traffic past ol der
firewalls, at the cost of port 80 saturation.

HTTP has many strengths: it’s ubiquitous, it’'s famliar, and there
are a lot of tools available for devel opi ng HITP-based systens.

Anot her good thing about HTTP is that it uses MM [5] for encoding
dat a.

Unfortunately for us, even with HITP 1.1 [6], there still wasn't a
good fit. As a consequence of the highly-desirable goal of

mai ntai ning conpatibility with the original HITP, HTTP s fram ng
mechanismisn't flexible enough to support server-side asynchronous
behavior and its authentication nodel isn't sinmilar to other Internet
appl i cati ons.

Mapping PP onto HTITP 1.1 illustrates the fornmer issue. For exanple,
the | PP server is supposed to signal its client when a job conpl et es.
Since the HITP client rmust originate all requests and since the
decision to close a persistent connection in HTTP is unilateral, the
best that the I PP specification can do is specify this functionality
in a non-determnistic fashion

Further, the | PP napping onto HITP shows that even subtle shifts in
behavi or have uni ntended consequences. For exanple, requests in |PP
are typically nuch larger than those seen by many HITP server

i npl enentations -- resulting in oddities in many HITP servers (e.g.
requests are sonetines silently truncated). The lesson is that
HTTP s fram ng nmechanismis very rigid with respect to its view of
the request/response nodel

Rose I nf or mat i onal [Page 4]

RFC 3117 On the Design of Application Protocols Novenber 2001

Lastly, given our belief that the port field of the TCP header isn't
a constant 80, we were imrune to the seductive allure of wanting to
sheak our traffic past unwary site adm nistrators.

The third choice, layering the protocol on top of email, was
attractive. Unfortunately, the nature of our application includes a
lot of interactivity with relatively snall response tinmes. So, this
left us the final alternative: defining a protocol from scratch

To begin, we figured that our requirenents, while a little nore
stringent than nost, could fit inside a framework suitable for a

| arge nunber of future application protocols. The trick is to avoid
the kitchen-sink approach. (Dave Cark has a saying: "One of the
roles of architecture is to tell you what you can't do.")

Rose I nf or mat i onal [Page 5]

RFC 3117 On the Design of Application Protocols Novenber 2001

2. You can Solve Any Problem..
...if youre willing to make the problem small enough

Qur nost inportant step is to linmt the problemto application
protocols that exhibit certain features:

o they are connection-oriented;

0 they use requests and responses to exchange nessages; and,
o they allow for asynchronous nessage exchange.

Let’s |l ook at each, in turn.

First, we’'re only going to consider connection-oriented application
protocols (e.g., those that work on top of TCP [7]). Another branch
in the taxonony, connectionless, consists of those that don’t want
the delay or overhead of establishing and nmaintaining a reliable
stream For exanple, nost DNS [8] traffic is characterized by a
singl e request and response, both of which fit within a single IP
datagram In this case, it makes sense to inplenent a basic
reliability service above the transport |ayer in the application
protocol itself.

Second, we’'re only going to consider nessage-oriented application
protocols. A "message" -- in our lexicon -- is sinply structured
dat a exchanged between | oosel y-coupl ed systens. Another branch in

t he taxonomy, tightly-coupled systens, uses renote procedure calls as
t he exchange paradigm Unlike the connection-oriented/ connectionless

di chotony, the issue of |oosely- or tightly-coupled systens is
simlar to a continuous spectrum Fortunately, the edges are fairly
shar p.

For example, NFS [9] is a tightly-coupled systemusing RPCs. Wen
running in a properly-configured LAN, a renote di sk accessible via
NFS is virtually indistinguishable froma |ocal disk. To achieve
this, tightly-coupled systens are highly concerned with issues of

| atency. Hence, npbst (but not all) tightly-coupled systens use
connection-1ess RPC nechani snms; further, nost tend to be inplenented
as operating systemfunctions rather than user-level prograns. (In
some environnents, the tightly-coupled systens are inplenented as
si ngl e- pur pose servers, on hardware specifically optimzed for that
one function.)

Finally, we’'re going to consider the needs of application protocols

t hat exchange nmessages asynchronously. The classic client/server
nodel is that the client sends a request and the server sends a

Rose I nf or mat i onal [Page 6]

RFC 3117 On the Design of Application Protocols Novenber 2001

response. |f you think of requests as "questions" and responses as
"answers", then the server answers only those questions that it’'s
asked and it never asks any questions of its own. W'l need to
support a nore general nodel, peer-to-peer. |In this nodel, for a

gi ven transaction one peer might be the "client" and the other the
"server", but for the next transaction, the two peers m ght switch
rol es.

It turns out that the client/server nodel is a proper subset of the
peer-to-peer nodel: it’'s acceptable for a particular application
protocol to dictate that the peer that establishes the connection
al ways acts as the client (initiates requests), and that the peer
that listens for incom ng connections always acts as the server
(issuing responses to requests).

There are quite a few existing application donains that don't fit our
requirenments, e.g., naneservice (via the DNS), fileservice (via NFS),
mul ti cast-enabl ed applications such as distributed video
conferencing, and so on. However, there are a |ot of application

domai ns that do fit these requirenents, e.g., electronic mail, file
transfer, renote shell, and the world-wi de web. So, the bet we are
placing in going forward is that there will continue to be reasons

for defining protocols that fit within our framework.

Rose I nf or mat i onal [Page 7]

RFC 3117 On the Design of Application Protocols Novenber 2001

3. Protocol Mechani sns

The next step is to ook at the tasks that an application protocol
must performand how it goes about perform ng them Al though an
exhaustive exposition mght identify a dozen (or so) areas, the ones
we're interested in are:

o framing, which tells how the begi nning and endi ng of each nessage
is delimted;

o encoding, which tells how a nessage is represented when exchanged;
0 reporting, which tells how errors are descri bed;
o asynchrony, which tells how i ndependent exchanges are handl ed;

0 authentication, which tells how the peers at each end of the
connection are identified and verified; and,

o privacy, which tells how the exchanges are protected agai nst
third-party interception or nodification

A notabl e absence in this list is naming -- we'll explain why |ater
on.

3.1 Fram ng

There are three commonly used approaches to deliniting nessages:
octet-stuffing, octet-counting, and connection-bl asting.

An exanple of a protocol that uses octet-stuffing is SMIP. Conmands
in SMIP are |line-oriented (each command ends in a CRLF pair). Wen
an SMIP peer sends a nessage, it first transmits the "DATA" conmand,
then it transmts the nessage, then it transmits a "." (dot) foll owed
by a CRLF. |If the nessage contains any lines that begin with a dot,
the sending SMIP peer sends two dots; simlarly, when the other SMIP
peer receives a line that begins with a dot, it discards the dot,
and, if the line is enpty, then it knows it’s received the entire
nmessage. Cctet-stuffing has the property that you don’t need the
entire nessage in front of you before you start sending it.
Unfortunately, it’s slow because both the sender and receiver nust
scan each line of the nessage to see if they need to transformit.

An exanple of a protocol that uses octet-counting is HTTP. Conmands
in HTTP consist of a request line followed by headers and a body. The
headers contain an octet count indicating how |arge the body is. The
properties of octet-counting are the inverse of octet-stuffing:

Rose I nf or mat i onal [Page 8]

RFC 3117 On the Design of Application Protocols Novenber 2001

before you can start sending a nessage you need to know the | ength of
t he whol e nmessage, but you don’t need to | ook at the content of the
nmessage once you start sending or receiving.

An exanpl e of a protocol that uses connection-blasting is FTP.
Commands in FTP are line-oriented, and when it’s tinme to exchange a
nmessage, a new TCP connection is established to transmt the nessage.
Both octet-counting and connection-bl asting have the property that
the nmessages can be arbitrary binary data; however, the drawback of
t he connection-bl asting approach is that the peers need to

conmuni cate | P addresses and TCP port nunbers, which may be
"transparently" altered by NATS [10] and network bugs. In addition
if the messages bei ng exchanged are small (say |ess than 32k), then
t he overhead of establishing a connection for each nessage
contributes significant |atency during data exchange.

3.2 Encoding

There are many schenes used for encoding data (and many nore encodi ng
schenmes have been proposed than are actually in use). Fortunately,
only a few are burning brightly on the radar.

The nmessages exchanged using SMIP are encoded using the 822-style
[11]. The 822-style divides a nessage into textual headers and an
unstructured body. Each header consists of a nane and a value and is
termnated with a CR-LF pair. An additional CR-LF separates the
headers from the body.

It is this structure that HTTP uses to indicate the length of the
body for fram ng purposes. Mrre fornmally, HTTP uses M ME, an
application of the 822-style to encode both the data itself (the
body) and informati on about the data (the headers). That is,

al though HTTP is commonly viewed as a retrieval nechanismfor HTM
[12], it is really a retrieval mechani smfor objects encoded using
M ME, nost of which are either HTM. pages or referenced objects such
as G Fs.

3.3 Reporting

An application protocol needs a nechanismfor conveying error

i nformati on between peers. The first formal nmethod for doing this
was defined by SMIP's "theory of reply codes". The basic idea is
that an error is identified by a three-digit string, with each
position having a different significance:

the first digit: indicating success or failure, either permanent or
transient;

Rose I nf or mat i onal [Page 9]

RFC 3117 On the Design of Application Protocols Novenber 2001

the second digit: indicating the part of the systemreporting the
situation (e.g., the syntax anal yzer); and,

the third digit: identifying the actual situation

Oper ati onal experience with SMIP suggests that the range of error
conditions is larger than can be confortably encoded using a three-
digit string (i.e., you can report on only 10 different things going
wrong for any given part of the system). So, [13] provides a
conveni ent mechani sm for extending the nunber of values that can
occur in the second and third positions.

Virtually all of the application protocols we’ve discussed thus far
use the three-digit reply codes, although there is | ess coordination
bet ween t he designers of different application protocols than nost
would care to admt. (A variation on the theory of reply codes is
enpl oyed by I MAP [14] which provides the sane information using a

di fferent syntax.)

In addition to conveying a reply code, nost application protocols
al so send a textual diagnostic suitable for human, not machi ne,
consunption. (Mre accurately, the textual diagnostic is suitable
for people who can read a wi dely used variant of the English

| anguage.) Since reply codes reflect both positive and negative

out cones, there have been sone innovative uses nmade for the text
acconpanyi ng positive responses, e.g., prayer wheels [39].
Regar dl ess, sonme of the nore nodern application protocols include a
| anguage | ocal i zati on paraneter for the diagnostic text.

Finally, since the introduction of reply codes in 1981, two
unresol ved criticisns have been rai sed:

0 areply code is used both to signal the outcone of an operation
and a change in the application protocol’s state; and,

0 a reply code doesn't specify whether the associated textua
di agnostic is destined for the end-user, admnistrator, or
pr ogr amrer .

3.4 Asynchrony

Few application protocols today all ow i ndependent exchanges over the
same connection. In fact, the nore wi dely inplenented approach is to
al l ow pi pelining, e.g., command pipelining [15] in SMIP or persistent
connections in HTTP 1.1. Pipelining allows a client to make nultiple
requests of a server, but requires the requests to be processed
serially. (Note that a protocol needs to explicitly provide support
for pipelining, since, without explicit guidance, many inplenentors

Rose I nf or mat i onal [Page 10]

RFC 3117 On the Design of Application Protocols Novenber 2001

produce systens that don’t handl e pipelining properly; typically, an
error in a request causes subsequent requests in the pipeline to be
di scar ded).

Pipelining is a powerful nethod for reducing network | atency. For
exanpl e, without persistent connections, HITP s fram ng nechanismis
really closer to connection-blasting than octet-counting, and it

enj oys the sanme | atency and efficiency problens.

In addition to reducing network |latency (the pipelining effect),
asynchrony al so reduces server latency by allowing multiple requests
to be processed by multi-threaded i nplenentations. Note that if you
al l ow any form of asynchronous exchange, then support for parallelism
is also required, because exchanges aren’t necessarily occurring
under the synchronous direction of a single peer.

Unfortunately, when you allow parallelism you also need a flow
control mechanismto avoid starvation and deadl ock. Oherw se, a
singl e set of exchanges can nonopolize the bandw dth provi ded by the
transport layer. Further, if a peer is resource-starved, then it may
not have enough buffers to receive a nessage and deadl ock results.

Flow control is typically inplenmented at the transport |ayer. For
exanpl e, TCP uses sequence nunbers and a sliding wi ndow. each

recei ver manages a sliding wi ndow that indicates the nunber of data
octets that may be transmitted before receiving further perm ssion.
However, it’s nowtinme for the second shoe to drop: segnentation. |If
you do flow control then you al so need a segnentati on nechanismto
fragment nessages into snaller pieces before sending and then re-
assenbl e them as they're received.

Both flow control and segnentation have an inpact on how the protocol
does framing. Before we defined framng as "howto tell the

begi nning and end of each nmessage" -- in addition, we need to be able
to identify i ndependent nessages, send nessages only when fl ow
control allows us to, and segnment themif they' re larger than the
avai |l abl e wi ndow (or too large for confort).

Segnment ation inpacts framng in another way -- it relaxes the octet-
counting requirenent that you need to know the | ength of the whole
nmessage before sending it. Wth segnentation, you can start sending
segnents before the whole nessage is available. In HITP 1.1 you can
"chunk" (segnent) data to get this advantage.

Rose | nf or mat i onal [Page 11]

RFC 3117 On the Design of Application Protocols Novenber 2001

3.5 Authentication

Perhaps for historical (or hysterical) reasons, nost application
protocols don't do authentication. That is, they don't authenticate
the identity of the peers on the connection or the authenticity of

t he nmessages being exchanged. O, if authentication is done, it is
domai n-specific for each protocol. For exanple, FTP and HTTP use
entirely different nodels and nmechani snms for authenticating the
initiator of a connection. (Independent of nainstream HITP, there is
alittle-used variant [16] that authenticates the nessages it
exchanges.)

A large part of the problemis that different security nmechani sns
optimize for strength, scalability, or ease of deploynment. So, a few
years ago, SASL [17] (the Sinple Authentication and Security Layer)
was devel oped to provide a framework for authenticating protoco

peers. SASL let’s you describe how an authentication mechani sm

wor ks, e.g., an OTP [18] (One-Tine Password) exchange. |It’'s then up
to each protocol designer to specify how SASL exchanges are
generically conveyed by the protocol. For exanple, [19] explains how
SASL works with SMIP.

A not abl e exception to the SASL bandwagon is HITP, which defines its
own aut hentication nmechanisns [20]. There is little reason why SASL
couldn’t be introduced to HTTP, although to avoid certain race-
conditions, the persistent connection mechanismof HITP 1.1 nust be
used.

SASL has an interesting feature in that in addition to explicit

prot ocol exchanges to authenticate identity, it can also use inplicit
i nformation provided fromthe | ayer below. For exanmple, if the
connection is running over |Psec [21], then the credentials of each
peer are known and verified when the TCP connection is established.

Finally, as its nanme inplies, SASL can do nore than authentication --
dependi ng on which SASL nmechanismis in use, nessage integrity or
privacy services may al so be provided.

3.6 Privacy

HTTP is the first widely used protocol to make use of a transport
security protocol to encrypt the data sent on the connection. The
current version of this mechanism TLS [22], is available to al
application protocols, e.g., SMIP and ACAP [23] (the Application
Configuration Access Protocol).

Rose | nf or mat i onal [Page 12]

RFC 3117 On the Design of Application Protocols Novenber 2001

The key difference between the original nmechanismand TLS, is one of
provi sioning not technology. |In the original approach to

provi sioning, a world-wi de web server listens on two ports (one for
plaintext traffic and the other for secured traffic); in contrast, by
today’ s conventions, a server inplenenting an application protocol
that is specified as TLS-enabled (e.g., [24] and [25]) listens on a
single port for plaintext traffic, and, once a connection is
establ i shed, the use of TLS on that connection is negotiable.

Finally, note that both SASL and TLS are about "transport security"
not "object security". Wat this neans is that they focus on
providing security properties for the actual communication, they
don’t provide any security properties for the data exchanged

i ndependent of the conmunicati on.

3.7 Let’s Recap

Let's briefly conpare the properties of the three main connection-
oriented application protocols in use today:

Mechani sm ESMIP FTP HTTP1. 1
"~ Framing stuffing blasting counting
Encodi ng 822-style bi nary M NMVE
Reporting 3-digit 3-digit 3-digit
Asynchrony pi pelining none pi pelining
and chunki ng
Aut henti cation SASL user/ pass user/pass
Privacy SASL or TLS none TLS (nee SSL)

Not e that the username/ password nechani sns used by FTP and HTTP are
entirely different with one exception: both can be terned a
"user nane/ password" nechani sm

These three choices are broadly representative: as nore protocols are

consi dered, the patterns are reinforced. For exanple, POP [26] uses
octet-stuffing, but | MAP uses octet-counting, and so on

Rose I nf or mat i onal [Page 13]

RFC 3117 On the Design of Application Protocols Novenber 2001

4. Protocol Properties

Wien we design an application protocol, there are a few properties
that we should keep an eye on

4.1 Scal ability
A wel | -desi gned protocol is scalable.

Because few application protocols support asynchrony, a conmmon trick
is for a programto open nultiple sinmultaneous connections to a
single destination. The theory is that this reduces |atency and

i ncreases throughput. The reality is that both the transport |ayer
and the server view each connection as an independent instance of the
application protocol, and this causes probl ens.

In terms of the transport |ayer, TCP uses adaptive algorithms to
efficiently transmt data as networks conditions change. But what
TCP learns is limted to each connection. So, if you have nultiple
TCP connections, you have to go through the same | earning process
multiple times -- even if you're going to the sane host. Not only
does this introduce unnecessary traffic spikes into the network,
because TCP uses a slowstart al gorithm when establishing a
connection, the programstill sees additional latency. To deal with
the fact that a | ack of asynchrony in application protocols causes
i npl emrentors to make sl oppy use of the transport |ayer, network
protocols are now provi sioned with increasing sophistication, e.g.,
RED [27]. Further, suggestions are also being considered for

nodi fication of TCP inplenentations to reduce concurrent | earning,
e.g., [28].

In terms of the server, each incoming connection nust be dispatched
and (probably) authenticated agai nst the sane resources.

Consequently, server overhead increases based on the nunber of
connections established, rather than the nunber of renpte users. The
same issues of fairness arise: it's much harder for servers to

all ocate resources on a per-user basis, when a user can cause an
arbitrary nunber of connections to pound on the server

Anot her inmportant aspect of scalability to consider is the relative
nunbers of clients and servers. (This is true even in the peer-to-
peer nodel, where a peer can act both in the client and server role.)
Typically, there are many nore client peers than server peers. In
this case, functional requirements should be shifted fromthe servers
onto the clients. The reason is that a server is likely to be
interacting with nultiple clients and this functional shift nakes it
easier to scale.

Rose | nf or mat i onal [Page 14]

RFC 3117 On the Design of Application Protocols Novenber 2001

4.2 Efficiency
A wel | -desi gned protocol is efficient.

For exampl e, although a conpelling argunment can be nade than octet-
stuffing leads to nore el egant inplenentations than octet-counting,
experience shows that octet-counting consunes far fewer cycles.

Regrettably, we sonetinmes have to conprom se efficiency in order to
satisfy other properties. For exanple, 822 (and M ME) use textual
headers. W could certainly define a nore efficient representation
for the headers if we were willing to limt the header nanmes and

val ues that could be used. 1In this case, extensibility is viewed as
nore inportant than efficiency. O course, if we were designing a
network protocol instead of an application protocol, then we' d nake
the trade-offs using a razor with a different edge.

4.3 Sinplicity
A wel | -desi gned protocol is sinple.

Here’'s a good rule of thunb: a poorly-designed application protoco
is one inwhichit is equally as "challenging" to do sonething basic
as it is to do sonmething conplex. Easy things should be easy to do
and hard things should be harder to do. The reason is sinple: the
pai n shoul d be proportional to the gain.

Anot her rule of thunb is that if an application protocol has two ways
of doing the exact same thing, then there’s a problem sonewhere in
the architecture underlying the design of the application protocol

Hopeful Iy, sinple doesn’t mnean sinple-m nded: something that's well -
desi gned accomopdat es everything in the probl em donain, even the
troubl esome things at the edges. Wat makes the design sinple is
that it does this in a consistent fashion. Typically, this leads to
an el egant desi gn.

4.4 Extensibility
A wel | -desi gned protocol is extensible.

As clever as application protocol designers are, there are likely to
be unforeseen problenms that the application protocol will be asked to
solve. So, it’s inportant to provide the hooks that can be used to
add functionality or custom ze behavior. This nmeans that the
protocol is evolutionary, and there nust be a way for inplenentations
reflecting different steps in the evolutionary path to negotiate

whi ch extensions will be used.

Rose I nf or mat i onal [Page 15]

RFC 3117 On the Design of Application Protocols Novenber 2001

But, it’s inportant to avoid falling into the extensibility trap: the
hooks provided should not be targeted at hal f-baked future
requirements. Above all, the hooks shoul d be sinple.

O course good design goes a long way towards mininizing the need for
extensibility. For exanple, although SMIP initially didn't have an
extension framework, it was only after ten years of experience that
its excellent design was altered. |In contrast, a poorly-designed
protocol such as Telnet [29] can't function w thout being built
around the notion of extensions.

4.5 Robust ness
A wel | -desi gned protocol is robust.

Robust ness and efficiency are often at odds. For exanple, although
defaults are useful to reduce packet sizes and processing tine, they
tend to encourage inplenmentation errors.

Counter-intuitively, Postel’s robustness principle ("be conservative
in what you send, liberal in what you accept") often leads to

depl oynment problenms. Wy? Wien a new inplenentation is initially
fielded, it is likely that it will encounter only a subset of
existing inplenentations. |If those inplenentations followthe
robustness principle, then errors in the new inplenentation wll
likely go undetected. The new inplenentation then sees sone, but not
wi despread depl oynent. This process repeats for several new

i npl erentations. Eventually, the not-quite-correct inplenentations
run into other inplenmentations that are less liberal than the initial
set of inplenmentations. The reader should be able to figure out what
happens next.

Accordingly, explicit consistency checks in a protocol are very
useful, even if they inpose inplenentation overhead.

Rose I nf or mat i onal [Page 16]

RFC 3117 On the Design of Application Protocols Novenber 2001

5. The BXXP Framewor k
Finally, we get to the noney shot: here’s what we did.

We defined an application protocol framework called BXXP (the Bl ocks
eXtensi bl e eXchange Protocol). The reason it’'s a "framework" instead
of an application protocol is that we provide all the nechanisns

di scussed earlier without actually specifying the kind of nessages

t hat get exchanged. So, when soneone el se needs an application
protocol that requires connection-oriented, asynchronous
interactions, they can start with BXXP. It's then their
responsibility to define the last 10% of the application protocol,
the part that does, as we say, "the useful work".

So, what does BXXP | ook |ike?
Mechani sm BXXP
" Framing counting, withatrailer
Encoding M ME, defaulting to text/xm
Reporting 3-digit and |ocalized textual diagnostic
Asynchrony channel s

Aut henti cati on SASL

Privacy SASL or TLS

5.1 Frami ng and Encodi ng

Framing in BXXP looks a lot Iike SMIP or HTTP: there’s a command |ine
that identifies the beginning of the frame, then there’s a MM

obj ect (headers and body). Unlike SMIP, BXXP uses octet-counting,

but unlike HTTP, the conmand line is where you find the size of the
payload. Finally, there's a trailer after the MM object to aid in
detecting fram ng errors.

Actually, the command line for BXXP has a lot of information, it
tells you:

o what kind of nessage is in this franeg;

0 whether there’'s nore to the nessage than just what's in this frane
(a continuation flag);

Rose I nf or mat i onal [Page 17]

RFC 3117 On the Design of Application Protocols Novenber 2001

0 how to distinguish the nmessage contained in this frame from ot her
nessages (a nessage nunber);

0 where the payload occurs in the sliding wi ndow (a sequence numnber)
along with how many octets are in the payload of this frane; and,

o which part of the application should get the nessage (a channe
nunber) .

(The command line is textual and ends in a CR-LF pair, and the
argunents are separated by a space.)

Since you need to know all this stuff to process a frame, we put it
all in one easy to parse location. You could probably devise a nore
ef ficient encoding, but the cormand line is a very small part of the
frame, so you wouldn’'t get nuch bounce fromoptimzing it. Further,
because framing is at the heart of BXXP, the frane format has severa
consi stency checks that catch the majority of programm ng errors.
(The conbi nati on of a sequence nunber, an octet count, and a trailer
all ows for very robust error detection.)

Anot her trick is in the headers: because the command |ine contains
all the framng information, the headers may contain mniml MM

i nformati on (such as Content-Type). Usually, however, the headers
are enpty. That's because the BXXP default payload is XM. [30].
(Actually, a "Content-Type: text/xm"™ with binary transfer encoding).

W chose XML as the default because it provides a sinple nmechani sm
for nested, textual representations. (Alas, the 822-style encoding
doesn’t easily support nesting.) By design, XM.'s nature isn't
optim zed for conpact representations. That's okay because we're
focusing on | ocosel y-coupl ed systens and besides there are efficient
XML parsers available. Further, there’'s a fair amunt of anecdota
experience -- and we'll stress the word "anecdotal" -- that if you
have any kind of conpression (either at the |ink-Ilayer or during
encryption), then XML encodi ngs squeeze down nicely.

Even so, use of XM. is probably the nost controversial part of BXXP.
After all, there are nore efficient representations around. W
agree, but the real issue isn't efficiency, it’'s ease of use: there
are a |l ot of people who grok the XML thing and there are a | ot of XM
tools out there. The pain of recreating this social infrastructure
far outwei ghs any benefits of devising a new representation. So, if
the "nake" option is too expensive, is there sonething el se we can
"buy" besides XML? Well, there’s ASN. 1/BER (just kidding).

Rose I nf or mat i onal [Page 18]

RFC 3117 On the Design of Application Protocols Novenber 2001

In the early days of the SNWP [31], which does use ASN. 1, the sane

i ssues arose. In the end, the working group agreed that the use of
ASN. 1 for SNMP was axi omatic, but not because anyone thought that
ASN. 1 was the nost efficient, or the easiest to explain, or even well
liked. ASN 1 was given axiomatic status because the working group
decided it was not going to spend the next three years explaining an
al ternative encoding schenme to the devel oper comunity.

So -- and we apol ogi ze for appealing to dogma -- use of XM. as the
favored encodi ng schenme in BXXP is axionatic.

5.2 Reporting

We use 3-digit error codes, with a localized textual diagnostic.
(Each peer specifies a preferred ordering of |anguages.)

In addition, the reply to a nessage is flagged as either positive or
negative. This nmakes it easy to signal success or failure and all ow
the receiving peer sone freedomin the anmount of parsing it wants to
do on failure.

5.3 Asynchrony

Despite the | essons of SMIP and HTTP, there isn't a lot of field
experience to rely on when designing the asynchrony features of BXXP.
(Actually, there were several efforts in 1998 related to application
| ayer framing, e.g., [32], but none appear to have achieved orbit.)

So, here’s what we did: franes are exchanged in the context of a
"channel ". Each channel has an associated "profile" that defines the
syntax and semantics of the nmessages exchanged over a channel

Channel s provide both an extensibility mechani smfor BXXP and the
basis for parallelism Renenber the |ast paraneter in the command
line of a BXXP frame? The "part of the application"” that gets the
nmessage is identified by a channel nunber.

A profile is defined according to a "Profile Registration"” tenpl ate.
The tenpl ate defines how the profile is identified (using a UR

[33]), what kind of nmessages get exchanged, along with the syntax and
semantics of those nessages. Wen you create a channel, you identify
a profile and naybe piggyback your first nessage. |f the channel is
successfully created, you get back a positive response; otherw se,
you get back a negative response explai ni ng why.

Per haps the easiest way to see how channels provide an extensibility

mechanismis to consider what happens when a session is established.
Each BXXP peer imedi ately sends a greeting on channel zero

Rose I nf or mat i onal [Page 19]

RFC 3117 On the Design of Application Protocols Novenber 2001

identifying the profiles that each support. (Channel 0 is used for
channel managenent -- it’s automatically created when a session is
opened.) If you want transport security, the very first thing you do
is to create a channel that negotiates transport security, and, once

the channel is created, you tell it to do its thing. Next, if you
want to authenticate, you create a channel that perfornms user
aut henti cation, and, once the channel is created, you tell it to get

busy. At this point, you create one or nore channels for data
exchange. This process is called "tuning"; once you' ve tuned the
session, you start using the data exchange channels to do "the useful
wor k" .

The first channel that’'s successfully started has a trick associ ated
with it: when you ask to start the channel, you're allowed to specify
a "service nane" that goes with it. This allows a server with

mul tiple configurations to select one based on the client’s
suggestion. (A useful analogy is HITP 1.1's "Host:" header.) If the
server accepts the "service nane", then this configuration is used
for the rest of the session

To allow parallelism BXXP allows you to use nultiple channels

si mul taneously. Each channel processes nessages serially, but there
are no constraints on the processing order for different channels.
So, in a multi-threaded inplenmentation, each channel maps to its own
t hr ead.

This is the nost general case, of course. For one reason or another
an i npl enmentor may not be able to support this. So, BXXP allows for
both positive and negative replies when a nessage is sent. So, if
you want the classic client/server nodel, the client program should
sinply reject any new nessage sent by the server. This effectively
throttles any asynchronous nessages fromthe server.

O course, we now need to provide nechani sns for segnmentation and
flow control. For the forner, we just put a "continuation" or "nore
to cone" flag in the cormand line for the frane. For the latter, we
i ntroduced the notion of a "transport mapping".

What this nmeans is that BXXP doesn’'t directly define how it sits of
top of TCP. Instead, it lists a bunch of requirenents for how a
transport service needs to support a BXXP session. Then, in a
separate docunent, we defined how you can use TCP to neet these
requirenments.

Thi s second docunment pretty nuch says "use TCP directly", except that

it introduces a flow control nechanismfor nultiplexing channels over
a single TCP connection. The nechanismwe use is the sane one used

Rose I nf or mat i onal [Page 20]

RFC 3117 On the Design of Application Protocols Novenber 2001

by TCP (sequence nunbers and a sliding window). It’'s proven, and can
be trivially inplemented by a mininmal inplenentation of BXXP.

The introduction of flow control is a burden froman inplenentation
perspective -- although TCP's nmechanismis conceptually sinple, an

i npl emrentor nust take great care. For exanple, issues such as
priorities, queue managenent, and the |ike should be addressed.
Regardl ess, we feel that the benefits of allow ng parallelismfor
intra-application streans is worth it. (Besides, our belief is that
few application inplenentors will actually code the BXXP framework
directly -- rather, we expect themto use third-party packages that
i mpl enent BXXP.)

5.4 Authentication

We use SASL. If you successfully authenticate using a channel, then
there is a single user identity for each peer on that session (i.e.
aut hentication is per-session, not per-channel). This design

deci sion nmandates that each session correspond to a single user
regardl ess of how many channel s are open on that session. One reason
why this is inmportant is that it allows service provisioning, such as
quality of service (e.g., as in [34]) to be done on a per-user
granularity.

5.5 Privacy

We use SASL and TLS. If you successfully conplete a transport
security negotiation using a channel, then all traffic on that
session is secured (i.e., confidentiality is per-session, not per-
channel, just |ike authentication).

We defined a BXXP profile that's used to start the TLS engi ne.
5.6 Things W Left CQut

We purposefully excluded two things that are common to nost
application protocols: naming and authori zati on.

Nanmi ng was excluded fromthe franework because, outside of URISs,
there isn’t a conmmonly accepted framework for naming things. To our
view, this remains a domain-specific problemfor each application
protocol. Maybe URIs are appropriate in the context of a

particul arly probl em donain, maybe not. So, when an application

prot ocol designer defines their own profile to do "the useful work",
they' Il have to deal with naning issues thenselves. BXXP provides a
mechani smfor identifying profiles and binding themto channels. It’s
up to you to define the profile and use the channel

Rose | nf or mat i onal [Page 21]

RFC 3117 On the Design of Application Protocols Novenber 2001

Simlarly, authorization was explicitly excluded fromthe framework.
Every approach to authorizati on we’'ve seen uses names to identify
principals (i.e., targets and subjects), so if a framework doesn’t
include naning, it can't very well include authorization

O course, application protocols do have to deal with nam ng and
aut hori zation -- those are two of the issues addressed by the
applications protocol designer when defining a profile for use with
BXXP.

5.7 From Franework to Protocol

So, how do you go about using BXXP? To begin, call it "BEEP", not
"BXXP" (we’ll explain why nmonentarily).

First, get the BEEP core specification [35] and read it. Next,
define your own profile. Finally, get one of the open source SDKs
(in C Java, or Tcl) and start coding.

The BEEP specification defines several profiles itself: a channel

managenent profile, a family of profiles for SASL, and a transport
security profile. In addition, there’s a second specification [36]
that explains how a BEEP session maps onto a single TCP connection

For a conpl ete exanple of an application protocol defined usi ng BEEP
| ook at reliable syslog [37]. This docunent exenplifies the formla:

application protocol = BEEP + 1 or nore profiles

+ aut hori zation policies
+ provisioning rules (e.g., use of SRV RRs [38])

Rose | nf or mat i onal [Page 22]

RFC 3117 On the Design of Application Protocols Novenber 2001

6. BXXP is now BEEP
We started work on BXXP in the fall of 1998. The IETF forned a
wor ki ng group on BXXP in the sumer of 2000. Although the working
group nmade sonme enhancenments to BXXP, three are the nost notable:
0 The payload default is "application/octet-streant. This is
primarily for wire-efficiency -- if you care about wire-
ef ficiency, then you probably wouldn’'t be using "text/xm"...

0 One-to-nmany exchanges are supported (the client sends one nessage
and the server sends back many replies).

0o BXXP is now called BEEP (nore comic possibilities).
7. Security Considerations

Consult Section [35]'s Section 8 for a discussion of BEEP-rel ated
security issues.

Rose I nf or mat i onal [Page 23]

RFC 3117 On the Design of Application Protocols Novenber 2001

Ref er ences

[1] Postel, J., "Sinple Mail Transfer Protocol", STD 10, RFC 821
August 1982.

[2] Postel, J. and J. Reynolds, "File Transfer Protocol", STD 9,
RFC 959, October 1985.

[3] Berners-Lee, T., Fielding, R and H N elsen, "Hypertext
Transfer Protocol -- HTTP/1.0", RFC 1945, May 1996.

[4] Herriot, R, "Internet Printing Protocol/1.0: Encoding and
Transport", RFC 2565, April 1999.

[5] Freed, N. and N. Borenstein, "Miltipurpose Internet Mai
Extensions (M ME) Part One: Format of Internet Message Bodies"”,
RFC 2045, Novenber 1996.

[6] Fielding, R, Cettys, J., Mgul, J., N elsen, H, Msinter, L.
Leach, P. and T. Berners-Lee, "Hypertext Transfer Protocol --
HTTP/ 1. 1", RFC 2616, June 1999.

[7] Postel, J., "Transmi ssion Control Protocol", STD 7, RFC 793,
Sept enber 1981.

[8] Mockapetris, P., "Domain names - concepts and facilities", STD
13, RFC 1034, Novenber 1987.

[9] M crosystens, Sun., "NFS: Network File System Protoco
speci fication", RFC 1094, March 1989.

[10] Srisuresh, P. and M Hol drege, "I P Network Address Transl ator
(NAT) Term nol ogy and Considerations", RFC 2663, August 1999.

[11] Crocker, D., "Standard for the format of ARPA Internet text
messages", STD 11, RFC 822, August 1982.

[12] Berners-Lee, T. and D. Connolly, "Hypertext Markup Language -
2.0", RFC 1866, Novemrber 1995.

[13] Freed, N, "SMIP Service Extension for Returning Enhanced Error
Codes", RFC 2034, COctober 1996.

[14] Mers, J., "I MAP4 Authentication Mechanisns", RFC 1731,
Decenber 1994.

[15] Freed, N, "SMIP Service Extension for Commrand Pi pelining", RFC
2197, Septenber 1997.

Rose I nf or mat i onal [Page 24]

RFC 3117

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Rose

On the Design of Application Protocols Novenber 2001

Rescorla, E. and A. Schiffman, "The Secure HyperText Transfer
Protocol ", RFC 2660, August 1999.

Myers, J., "Sinple Authentication and Security Layer (SASL)",
RFC 2222, Cctober 1997.

Newman, C., "The One-Ti ne-Password SASL Mechani sni', RFC 2444,
Oct ober 1998.

Myers, J., "SMIP Service Extension for Authentication", RFC
2554, March 1999.

Franks, J., Hallam Baker, P., Hostetler, J., Lawence, S
Leach, P., Luotonen, A and L. Stewart, "HITP Authentication
Basi ¢ and Di gest Access Authentication", RFC 2617, June 1999.

Kent, S. and R Atkinson, "Security Architecture for the
Internet Protocol”, RFC 2401, Novenber 1998.

Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC
2246, January 1999.

Newman, C. and J. Myers, "ACAP -- Application Configuration
Access Protocol", RFC 2244, Novenber 1997

Hof f man, P., "SMIP Service Extension for Secure SMIP over TLS"
RFC 2487, January 1999.

Newman, C., "Using TLS with I MAP, POP3 and ACAP"', RFC 2595
June 1999.

Myers, J. and M Rose, "Post Ofice Protocol - Version 3", STD
53, RFC 1939, May 1996.

Braden, B., Cark, D., Crowroft, J., Davie, B., Deering, S.
Estrin, D., Floyd, S., Jacobson, V., Mnshall, G, Partridge,
C., Peterson, L., Ranvkrishnan, K., Shenker, S., Wocl awski, J.
and L. Zhang, "Reconmendati ons on Queue Managenent and
Congestion Avoidance in the Internet”, RFC 2309, April 1998.

Touch, J., "TCP Control Block Interdependence", RFC 2140, Apri
1997.

Postel, J. and J. Reynolds, "Telnet Protocol Specification",
STD 8, RFC 854, May 1983.

I nf or mat i onal [Page 25]

RFC 3117

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Aut hor's

On the Design of Application Protocols Novenber 2001

Wrld Wde Wb Consortium "Extensible Markup Language (XM.)
1.0", WBC XM., February 1998, <http://ww.w3. org/ TR/ 1998/ REC-
xm -19980210>.

Case, J., Fedor, M, Schoffstall, M and C. Davin, "Sinple
Net wor k Managenent Protocol (SNWP)", STD 15, RFC 1157, My
1990.

Wrld Wde Web Consortium "SMJX Protocol Specification”,
Working Draft, July 1998, <http://ww. w3. org/ TR/ 1998/ WD- nux-
19980710>.

Berners-Lee, T., Fielding, R and L. Masinter, "Uniform
Resource ldentifiers (URI): Ceneric Syntax", RFC 2396, August
1998.

Waitznman, D., "IP over Avian Carriers with Quality of Service",
RFC 2549, April 1999.

Rose, M, "The Bl ocks Extensible Exchange Protocol Core", RFC
3080, March 2001.

Rose, M, "Mapping the BEEP Core onto TCP", RFC 3081, March
2001.

New, D. and M Rose, "Reliable Delivery for syslog", RFC 3195,
Novenber 2001.

@ul brandsen, A., Vixie, P. and L. Esibov, "A DNS RR for
speci fying the location of services (DNS SRV)", RFC 2782,
February 2000.

<htt p:// mappa. nundi . net/ cart ogr aphy/ Weel / >

Addr ess

Marshall T. Rose

Dover Beach Consulting, Inc.
POB 255268
Sacranento, CA 95865-5268
uUs
Phone: +1 916 483 8878
EMai | : nrose@lbc. ntvi ew. ca. us
Rose I nf or mat i onal [Page 26]

RFC 3117 On the Design of Application Protocols Novenber 2001

Ful I Copyright Statenent
Copyright (C) The Internet Society (2001). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
ot hers, and derivative works that comment on or otherw se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng I nternet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into |Ianguages other than
Engli sh.

The limted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknow edgenent

Fundi ng for the RFC Editor function is currently provided by the
I nternet Society.

Rose I nf or mat i onal [Page 27]

