| NDRA Note 1185

Feb. 1982
RFC 809
ABSTRACT:

UCL FACSI M LE SYSTEM

Tawei Chang

This note describes the features of
the conputerised facsimle system
developed in the Depar t nent of
Computer Science at UCL. First its
functions are considered and the

rel ated experi nment al wor k are
reported. Then the disciplines for
system desi gn are di scussed.

Finally, the inplenentation of the
system are described, while detail ed
description are given as appendi ces.

Departnent of Conputer Science

Uni versity Coll ege, London

| NDRA

Wor ki ng
Paper

NOTE: Figures 5 and 6 nmay be obtai ned by sending a request to

Ann Westine at USC-Information Sciences Institute, 4676 Adnmiralty
Way, Marina del Rey, California, 90291 (or VESTINE@ SIF) including
your nane and postal mailing address. Please nmention that you are
requesting figures 5 and 6 from RFC 809.

OR You can obtain these two figures online fromthe files
<NETI NFO>RFCB09a. FAX and <NETI NFO>RFC809b. FAX

fromthe SRI-NIC online library. These files are in the format
described in RFC 769.

UCL FACSIM LE SYSTEM | NDRA Note 1185

Contents
L. INTRODUCTI ON. ..ot e e e e e e e e e e 1
2. SYSTEM FUNCTI ONS. e e e e 2
2.1 Conmruni cation. e 4
2.2 Interworking with Gther Equiprment.................. 8
2.2.1 Facsimile machines............................ 8
2.2.2 Qutput DevicCesS.iii e 9
2.3 Image Enhancenment. 11
2.4 Image Editing. 15
2.5 Integration with O her Data Types.................. 16
3. SYSTEM ARCHI TECTURE. e e e 17
3.1 System ReqUIi rementS. 17
3.2 Hierarchical Mdel........ 19
3.3 Cdean and Sinple Interface......................... 20
3.3.1 Principles. 21
3.3.2 Synchronisation and Desynchronisation......... 21
3.3.3 Data Transfer.......... 22
3.4 Control and Organisation of the Tasks.............. 22
3.4.1 Conmand Language. 23
3.4.2 Task Controller........ 23
3.5 Interface Routines........... 26
3.5.1 Sharable Control Structure.................... 26
3.5.2 Buffer Management............... ... 27
4. UCL FACSIMLE SYSTEM e e 28
4.1 Multi-Task Structure.......... 29
4.2 The DeVvicCes. e e e 29
4.3 The NetworKks. e 30
4.4 File System e 31
4.5 Data StruCture. ... e e 32
4.6 Data Conversi ON.t e e 34
4.7 Image Manipulation.......... i, 35
4.8 Data Transmi SSi ON.ot e e 39
B CONCLUSI ON. .ot e e e e 41
5.1 SUMTBIY. .o oo 41
5.2 Probl enms. e 42

5.3 Future Study. 46

UCL FACSIM LE SYSTEM | NDRA Note 1185

Appendi x |: Devi ces
Appendi x I'l: Task Controller and Task Processes
Appendix I'll: Wility and Data Formats

Ref er ence

1. | NTRODUCTI ON

The object of a facsinile system is to reproduce
faithfully a docunent or image from one piece of paper
onto anot her piece of paper sited renmptely from the
first one. Up to now, the main nethod of facsimle
comuni cati on has been via the tel ephone network. Most
facsinile nmachines pernmit neither the storage of image
page nor their nodification before transmssion. Wth

such machines, it is alnpbst inpossible to conmunicate
between different makes of facsinile machines. In this
respect, facsinile nmachi nes fall behi nd ot her

el ectroni ¢ comuni cati on services.

Integration of a facsimle service wth conputer
comuni cati on techniques can bring great inprovenents
in service. Not only is the reliability and efficiency
i mproved but, nore inportant, the system can be
integrated with other fornms of data conmunication
Mor eover, the conmputer enables the facsimle nachine to
fit into a conplete nessage and infornmati on processing
envi ronnent . The storage facilities provided by the
conputer systemnake it possible to store | arge anmobunts
of facsimle data and retrieve them rapidly. Data
conversion allows facsinile machi nes of different types
to communi cate with each other. Furthernore, the
facsinile inage is edited and/or conbined wth other
formse of data, such as text, voice and graphics, to
construct a nulti-nedia nessage, which can be wdely
di stributed over conputer networKks.

In the Departnment of Computer Science at UCL, a
computerised facsinmle system has been developed in
order to fully apply conputer technology, especially
comuni cation, to the facsinile field. Sonme work has
been done to inprove the facsinmile service in severa
ar eas.

(1) Adaptation of the facsimle machine for use wth
computer networks. This pernits nore reliable and
accurate docunent transm ssion, as wel | as
i mproving the normal point-to-point transfers.

(2) Storage of facsimle pages. This permits the
gueuei ng of pages, so saving operator tinme. Also,
standard docunents can be kept permanently and
transmtted at any tine.

(3) Interworking with other facsimle machines. This
permits different nmakes of facsinile machines to

UCL FACSI M LE SYSTEM | NDRA Note 1185
exchange i mages.

(4) Conpression of the facsimile inmages. This allows
nor e ef ficient transm ssion to be achieved.
Di fferent conpression schenes are investigated.

(5) Display of images on other devices. A col our
display is wused so that the result of inage
processi ng can be shown very vividly.

(6) Inprovenment of the inmages. The ability to ’'clean
the facsimle imges not only allows for even
hi gher conpression ratio, but also provide a
better result at the destination

(7) Editing of facsimle pages. This includes the
ability to change pictures, alter the size of
imges and nerge two or nor e i mages, al
el ectronically.

(8) Integration of the facsinmle service wth other
data types. For the time being, coded character
text can be converted into facsimle format and
m xed pages containing pictures and text can be
mani pul at ed.

This note first considers the functions of the
facsimle system the related experinental work being
reported. Then the discipline for the systemdesign is
di scussed. Finally, the inplementation of the UCL
facsinile systemis described. As appendices, detailed
description of the systemare given, nanely

l. Devi ces
I1. Task controller and task processes
[11. Uility routines and Data format

2. SYSTEM FUNCTI ONS

The computerised facsinile systemwe have devel oped
is conposed of an LSI-11 m cro-conmputer running the MOS
operating system[14] with two AED62 fl oppy di sk drives
[17], a Ginnell colour display [18], a DACOM facsimle
machine [16], and a VDU as the system console. This
LSI-11 is also attached to several networks, including
t he ARPANET/ SATNET [21], [22] and the UCL Canbridge
Ring. A schematic of the systemis shown in Fig. 1.

UCL FACSIM LE SYSTEM | NDRA Note 1185

facsinm |l e machine bit-map display

S N, + S N, +
! [! !
S N, + S N, +
oo + \ / VDU
I disk ! Fommm oo + +----- +
toom - + ---- 1 LSI-11 ! -- 1 !
I disk ! Fommm e e + oo - +
S N, + |
S N, +
ION !
S N, +

Network Interface
Fig. 1 Schematic of UCL facsimle system

In this system a page is read on the facsimle
machine and the imge data produced is stored on the
floppy disk. This data can be processed locally in the
m cro-conputer and then sent to a file store of a
renote conputer across the conputer network. At the
renote site, the inmage data my be processed and
printed on a facsimle machine.

On the other hand, we can receive inmage data which is
sent by a renote host on the network. This data can be
mani pul ated in the sane way, including being printed on
t he | ocal nachine.

Section 2.1 dicusses the problens concerned wth
transnission of facsimle inage data over a network,
while the follow ng sections deal with those of |[ocal
mani pul ati on of inage data.

In order to interwork with other facsinile nachine,
we have to convert t he image data from one
representation format to another. Interworking wth
other output devices requires that the i nage be scal ed
to fit the dinension of the destination device. These
are described in section 2.2.

Bei ng able to process the i mage by conputer opens the
door to many possibilities. First, as considered in
section 2.3, an inmage can be enhanced, so that the
quality of the inage nmay be inproved and nore efficient
storage and transmi ssion can be achieved. Secondly, a
facsinile editing system can be supported whereby a
picture can be changed and/or conbined wth other

UCL FACSI M LE SYSTEM | NDRA Note 1185
pictures. This is described in section 2.4.

In our system coded character text can be converted
into its bit-map representation format so that it can
be handled as a facsimle inmage and nerged wth
pictures. This provides an environnent where multi-type
information can be dealt with. This is discussed in
section 2.5.

2.1 Conmuni cation

The first goal of our conputerised facsinile system
is to use a conputer network to transmit data between
facsini |l e machi nes which are geographically separ at ed.

Normal |y, facsim|e machines are used in association
with telephone equipnment, the data being sent al ong
tel ephone lines. Placing the facsimle machines on a
computer network presents a problemas the facsinile
machi ne does not have the ability to use a conputer
network directly. To perform the network tasks a
computer is required, and so the first phase was to
attach the facsinile machine to a conputer

The facsinmile machine is not like a standard piece of
computer equiprment. W required a special hardware
interface to enabl e comunicati on between the facsimle
machine and a small conputer. This interface was nmade
to appear exactly like the telephone system to the
facsinile machi ne. Furthernore, the conputer was
programmed to act exactly as if it were another
facsimle machine on the end of a tel ephone Iine. Thus
the local facsimle machine could transmt data to the
computer quite happily, believing that it was actually
talking to a renote facsiml|e nmachine on the other end
of a telephone wre. Because of the property of the
DACOM 6450 used in the experinment [16], the interface
could be identical to one devel oped for connecting to
an X25 network. The binary synchronous node of the chip
used (SMC COWb025) was appropriate to drive the DACOMV
machi ne.

At the other side of the conmputer network there was a
simlar conputer wth an identical facsinile machine.
The problemof transnmitting a facsinile picture now
appeared sinple: data was taken fromthe facsinile
machi ne into the conputer, transnitted over the network
as if it was nornmal conputer data, and then sent from
the conputer to the facsimle machine at the renote
end. The data being sent over the network appears

UCL FACSIM LE SYSTEM | NDRA Note 1185

exactly as any other conputer data; there is nothing
special about it to signify that it came froma
facsinile machine. The schematic of such facsimle
transfer systemis shown in Fig. 2.

facsimle
machi ne
+---+ interface
| | +- -+ +----- +
| I == 1 I == 1 | Con‘put er
+---+ +- - + +----- +
I
- - - - - - comput er
/ \' network
\ / facsimle
- - - - - - machi ne
| interface +---+
+- - - + +- -+ | |
conputer ! ' =1 1 =1 !
+- oo - - + +- -+ +---+

Fig. 2 Facsimle transfer system

The experinmental systemwas used to perform a joint
experinment between UCL and two groups in the United
States. Pictures were exchanged via the ARPANET/ SATNET
[21], [22] between UCL in London, ISl in Los Angeles,
and COVBAT in Washington D. C. (Fig. 3). Thi s
envi ronnment was chosen because no equi val ent group was
avail able in the UK

One problem concerned Wi th such i mage dat a
transnission is the quantity of data. Even with data
conpression, a single page of facsinile data can
produce as much conputer data as would normally be
sufficient for sendi ng over 20, 000 al phabeti c
characters - or over a dozen typed pages. Thus for a
gi ven nunber of pages put into the system an imense
anount of conputer data is produced. This neans that

the transnmission will be slower than for sending text,
and that far nore storage will be required to hold the
dat a.

Anot her probl em was encountered whi ch becane only too
apparent when we inplenmented this system The network
we were using was often unable to keep up wth the
speed of the facsimle machine. Wen this happened the

UCL FACSIM LE SYSTEM

Us UK
satellite
COVBAT _
+---+ +- -+ [\
! - [\
+---+ +- -+ / \
| \ / \
+-- -+ \ / \ UCL
I fax! \ +--+/ \ +--+ +---+
+---+ ARPANET ! ! SATNET ! rFo-- !
[+--+ +- -+ +- - -+
/ I
| SI / oo+
e+ -+ I f ax!
! r-- 1 1 +-- -+
+-- -+ +- -+
I
+-- -+
I f ax!
+-- -+

| NDRA Note 1185

Fig. 3. The three participants of the facsimle experinments

computer tried to sl ow down the facsimle nachine. The
facsinile nachine would detect this 'slowness’ as a
comuni cati on problem (as a tel ephone line would never
act in this manner), and would abandon the transfer
m d-way through the page.

This is because the the facsimle nachine we were
using was never intended for use on a conputer; it was
designed and built for use on tel ephone lines. I|ndeed,
being unaware that it was connected to a computer, the
facsimle machine transmtted data at a constant rate,
whi ch exceeded the limt that the network could accept.
In other words, the conputer network we were using was
not designed for the transfer rate that we were trying
to use over it.

Both these problens are surnmountable. Facsinile
machi nes are coming on the nmarket that are designed for
di rect comrunication with a conmputer. These nachi nes do
not mnd the delays on the conputer interface and are
tolerant of the stops and re-starts. On the ot her hand,
if there were a serious use of facsimle machines on a
conputer network, the network could be designed for the
high data rate required. Qur probl em was aggravated by

UCL FACSIM LE SYSTEM

using a network that was never designed for the data
rates required in our node of usage.

Despite the problens we encountered being a result of
the experinental equipnent we were working with, we
still had to inprove the situation to pernit nore
extensi ve conmuni cations to take place. The easi est way
to do this was to introduce a |ocal storage area in our
conput er where the data could be held prior to
transm ssion. The transfer of a page is now done in
three stages. First, the facsinmile data is read from
the facsimle machine and stored on a local disk. This
takes place at high speed as this is just a |ocal
operation. Wen this is conplete, the data is sent
over the network to a disk on the renote conputer
Finally, the data from that disk is output to the
renote facsimle machine. This inproved systemis
shown in Fig. 4.

comput er networ Kk

f ax conput er - - - - conput er f ax
+-- -+ +- - - - - + / \ +- - - - - + +-- -+
| - | | = ==> =1 I =1 1
+-- -+ +- - - - - + \ / +- - - - - + +-- -+

- - -+ - - - - | +- - >
I
||| |||
VI VI
+---+ +-- -+
! ! ! !

! ! ! !
+---+ +-- -+
di sk di sk

The idea behind this nethod is to decouple the
facsinile nmachine fromthe network comuni cati ons. The
data is read fromthe facsimle machine at full speed,
without the delays caused by the conputer network.
This also has the effect of being nore acceptable to
the human operators: each page is nowread in | ess than
a mnute. The transm ssion over the network then takes
pl ace at whatever speed the network can sustain. This
does not affect the facsimle machines at all; they are
not involved in the sending or receiving. Only when al
the data has been received at the renote disk is the
renote facsimle machine told that the data is ready.

| NDRA Note 1185

UCL FACSIM LE SYSTEM | NDRA Note 1185

The facsinmile machine is then given the data as fast as
it will accept it.

The di sadvantage of such a systemis that the person

sending the pages does not know howlong it will be
before they are actually printed at the other side. |If
several pages are input in quick succession by the
operator, they will be stored on disk; it nmay then be

some tine before the |ast page is actually delivered to
the destination. This is not always a disadvantage;
where many operators are sending data to the sane
destination, it is a definite advantage to be able to
input the pages and have the system deliver them when
the destination becones free. Such a system s
preferable to use of the current tel ephone system where
the operator has to keep re-dialing t he renot e
facsinile machine until the call is answered.

2.2 Interworking with O her Equi pnent
2.2.1 Facsinmile machi nes

As was nentioned earlier, facsiml|e nmachines produce
a |large amount of data per page due to the way in which
t he pages are encoded. To reduce the data that has to
be transmtted, various conpression techniques are
enpl oyed. The manufacturers of facsimle nachines have
devel oped proprietary ways in which the data is
conpressed and encoded. Unfortunately this has neant
that interworking of different facsimle machines has
been inpossible. In the systemdescribed in the | ast
section, exchange of pictures was only possible between
sites that had identical facsimle machines. The new
set of CCITT recommendations will reduce the extent to
whi ch differences in equi pnment persist.

Having the data on a conputer gi ves us t he
opportunity to nmanipulate data in any way we wish. In
particular we could convert the data fromthe form used
in one facsimle nmachine to that required by another
This neans that interworking between different types of
facsim | e machi nes can be achieved.

The devel opnent of this system took place in two
stages: the deconpression of the facsimle data from
the coded formused in our nachine into an interna
data form and the reconpression of the data in the
internal forminto the encoded form required for the
destination machine. Two prograns were developed to
performthese two operations.

UCL FACSIM LE SYSTEM | NDRA Note 1185

At the sane tinme we were devel oping conpression and
deconpression progranms for rmachines that use other
techniques. In particular, we developed programs to
handle the recently approved CCITT recommendati on for
facsinile conpression [15]. The CCITT canme up with two
varieties of conpression, depending upon the resol ution
bei ng used.

Unfortunately there were no facsinmile nmachines on the
network that wuse the CCTT conpression technique.
However, the progranming of the new nethods achieved
two goals: it proved that the data could be converted
inside a snall computer, so that machines of different
types coul d be supported on the network, and it enabl ed
us to conpare the conpression results. These are
described in nore detail in [13]. Essentially, these
show that the DACOM technique used by our facsinile
machine is conparatively poor, and that considerably
| ess data need be transmtted if some other nethod is
used. This brings wup another possibility: we could
change the conpression of the data to reduce the vol une
for transm ssion and then change the data back again at

t he desti nati on. Thi s may save consi der abl e
transnission time, especially if fast conputers or
speci al hardware was easily avail abl e. This has not

been tried yet in our system as none of the other
users on the network have the capability of changing
the data format back into that required by their
machi nes.

There are many other nore efficient conpression
schenes, e.g. bl ock conpression [7] and predictive
conpression [8], but we have not yet incorporated them
into our system

2.2.2 Qutput Devices

One area that we have explored is the use of devices
other than facsinmile machines for outputting the data.
Facsimle machines are both expensive to buy and
relatively slow to operate. W have investigated the
use of a TV-like screen to display the data, just as
character VDUs are commonly used to display text. This
activity requires bit-map displays, with an address in
menory for each postion on the screen. Full col our and
mul ti pl e shades can be used wth appropriately Ilarge
bit-map storage. Al though sinple in principle, the
i mpl enentation of t he rel evant t echni ques t ook
consi derabl e effort.

UCL FACSIM LE SYSTEM | NDRA Note 1185

The problens arise in the way that the facsinmle
image is encoded. Raw facsim|le inmages consist of rows
of small dots, each dot recorded as a black or white
space. \Wen these dots are arranged together they build
up a picture in a simlar manner to the way in which a
newspaper picture is made up. Unfortunately the nunber
of dots used in a facsinile page is not the sane as the
nunber wused on nost screens. For instance, the DACOM
facsinile machi ne uses 1726 dots across each page, but
across a screen there are usually just 512 dots. Thus
to show the picture on the screen the 1726 dots nust be
"squeezed’ into just 512 dots; stated another way, 1214
dots nust be thrown away w thout |osing the picture!

It is in reducing the nunber of picture elenents that
the problem arises. W could just every third dot or
so fromthe facsinmle page and just display those.
Alternatively, we could take three or nore at a tine
and try to convert the group of them into a single

black or white dot. Unfortunately, in both these
cases, data can get lost that is necessary to the
pi cture. For instance, a facsimle encoding of an

architect drawing could easily end up with a conplete
line renoved, radically changing the presentation of
t he i mage.

After nmuch experinentation, we devel oped a nethod of
reducing the nunber of dots wthout destroying the
picture. This is a thinning technique, whereby key
el enents of the picture are thinned, but not renpved.
Occasionally, when the detail gets too fine, sone
el enents are nerged, but under these circunstances the
eye woul d not have been able to see the detail anyway.
The details of this technique are described in [3] and

[4].

It may al so be required that a picture be enlarged.
This enl argenent can be done by sinply duplicating each
pi xel in the picture. For a non-integral ratio, the
picture can be expanded up to the nearest integer and
then shrunk to the correct size. However, this nmethod
may degrade the inmage quality, e.g. the oblique contour
may becone stepped, especially when the picture is
enl arged too nmuch. This problemcan be solved by using
an iterative enlargenment algorithm Each time a pixel
is replaced with a 2x2 array of pixels, whose pattern
depends on the original pi xel and the pi xel s
surrounding it. This procedure is repeated until the
requested ratio is reached. If the ration is not a
power of 2's, the same nmethod as that for non-integra
ratios i s used.

UCL FACSIM LE SYSTEM | NDRA Note 1185

As a side effect of developing this technique, we
could freely change the size and shape of an inmage.
The picture can be expanded or shrunk, or it can be
di storted. Distortion, whereby the horizontal and
vertical dinensions of the image nay be changed by
different amounts, is often useful in inmage editing.

The i nmedi at e consequence of this ability to change
the inage size neant that we could display the i nage on
a screen as well as output the inage on a facsinile
machine. To a user of a conputerised facsinile system
this could be a very wuseful feature: inages can be
di splayed on screen much faster than on a facsinile
machi ne, and di splays are significantly cheaper than
the facsinmle machines as well. It is possible that an
installation could have many screen di spl ays where the
i mmge could be viewed, but perhaps only one facsinile
machi ne woul d be available for hard copy. This would be
simlar to many conputer configurations today where the
nunber of printers is limted due to their cost, and
di spl ay screens are far nore nunerous.

2.3 | mage Enhancenent

One aspect of conputer processing that we wanted to
i nvestigate was that of image enhancenent. Enhanci ng
the image is a very tricky operation; as the nane
inplies it means that the inage is inproved in sone
sense. Under program control this is difficult to
achi eve: what the programthinks is an inprovenment, the
human ni ght judge to be distinctly worse.

Qur enhancenent attenpts were ainmed particularly at
printed docunments and other fornms of typed text. The
experiment was doubl e pronged: we hoped to nake the
imge easier to read by hunmans while al so making the
i mage easier for the conputer to handle.

In our earlier experinents we had noticed that the
encoding of printed matter was often very poor. This
was especially noticeable when we enlarged an image.
Rat her than each character having snooth edges as on
the original docunent, the edges were very rough
unexpect ed notches and excrescences bei ng caused by the
facsinile scanner. They not only degrade the imge
quality but also decrease the conpression efficiency. A
typi cal enlargenent of several characters is shown in
Fig. 5.

UCL FACSIM LE SYSTEM | NDRA Note 1185

Fig 5. An enlargenent of an typed text

The enhancenent nethod we adopted was first enpl oyed
at Loughborough University [5]. This nmethod has the
ef fect of snpothing the edges of the dark areas on the
i mage. The technique consists of considering each dot
inthe image in turn. The dot is either left as it 1is

UCL FACSIM LE SYSTEM | NDRA Note 1185

or changed to the opposite colour (white to black or
black to white) depending upon the eight dots that
surround it. The particular pattern of surroundi ng dots
that are required to change the inner dot’'s colour is
used to control the harshness of the algorithm [6],

[8].

In our first set of experinents the result was
definitely worse than the original. Al though square-
li ke characters such as H, L, and T cane out very well,
anything with slope (M V, W or S) becane so bad that
the oblique contours were stepped. The nethod was
subsequently nodified to produce a result that was far
nore acceptable; the imge | ooked a lot cleaner than
the original. Fig. 6 shows the same text as that in
Fig. 5, but after it has been cl eaned.

UCL FACSIM LE SYSTEM | NDRA Note 1185

Fig. 6 A cleaned text

The effect of these can be difficult to see clearly.
We have used the colour on our Ginnell display to show
the original picture and the outcome of various picture
processi ng operations superposed in different col ours.
This brings out the effect of the operations very

UCL FACSI M LE SYSTEM | NDRA Note 1185
vividly.

It was nentioned above that the enhancement was done
not only to inprove the image for reading but also for
easier processing by the conputer. As descri bed
earlier, the imge from the facsimle nmachine is
conpressed in order to reduce the anount of data. The
cleaning allows a higher conpression rate so that nore
ef ficient transm ssion and/or storage can be achieved.

W | earned some i mport ant | essons from the
enhancenent exerci se. Oiginally we thought that the
main attraction in enhancenent would be to inprove the
readability. In the end, we found that inproving the
readability was very difficult, especially because the
facsinile imge was so poor. Instead we found that the
effect of reducing the conpressed output was nore
important. By reducing the data to be transmtted by a
quarter, significant savings could be nmade. But before
such a technique could be used in a live system the
time it takes to produce the enhancenent nust be
wei ghed against the time that would be saved in
transm ssi on.

2.4 I mage Editing

By editing we nean that the facsimle picture can be
changed, or conbined with other pictures, while it is
stored inside the conputer. 1In previous sections it
was mentioned that we could change the size and shape
of a facsimle imge. This technique was |ater comnbined
with an overlaying nethod that enabled one picture to
be conbi ned with another [12].

In order to performany editing it is necessary to
have the picture displayed for the user to see. In our
case we displayed the picture on the bit-map screen
The image took up the left-hand side of the screen, the
right side being reserved for the picture that was

being built. The wuser could select an area of the
| eft-hand screen and nove it to a position on the
ri ght-hand screen. Several images could be displayed

in succession on the |left, and areas sel ected and noved
to the right. Finally, the right-hand screen could be
printed on the facsinile machine.

The selection of an area of the picture was done by
t he use of a col oured rectangular subsection,
controlled by a programin the conputer, that could be
moved around on the screen. The rectangul ar subsection

UCL FACSIM LE SYSTEM | NDRA Note 1185

was noved with instructions typed in by the operator;
it could be mved up or down, and increased or
decreased in size. Wien the appropriate area of the
screen had been selected, the programrenenbered the
coordinates and noved the col our ed rect angul ar
subsection to the right-hand side of the screen. The
user then selected an area again, in a simlar manner.
When the user finished the editing, the programrenoved
the part of the picture selected from the |Ieft-hand
screen and converted it to fit the shape of the
rectangul ar subsection on the right-hand screen. The
result was then displayed for the user to see.

Wien an i mage was being edited, the editor had to
keep another scaled copy for display. This is due to
the fact that the screen had a different dinension to
that of the facsinile machine. The editing operations,
e.g. chopping and nerging, were performed on the
original imge data files wth the full resolution
avail abl e on the facsinile machi ne.

2.5 Integration with Ot her Data Types

The facsimle machine can be viewed in a wder
context than nmerely a facsimile input/output device. It
can work as a printer for other data representation
types, such as coded character text and geonetric
graphics. At present, text can be converted into
facsinile format and printed on the facsimle nachine.
Mor eover, m xed pages containing pictures and text can
be manipulated by our system The integration of
facsinile images with geonetric graphics is a topic of
future research.

In order to convert a character string into its
facsinile format, the systemmintains a translation
tabl e whereby the patterns of the characters available
in the system can be retrieved. The input character
string is translated into a set of scan |ines, each of
which is created by concatenating the correspondi ng
patterns of the characters in the string.

The translation table is in fact a software font,
which can be edited and nodified. Even though only one
font is available in our systemfor the tinme being, it
is quite easy to introduce other character fonts.
Furthernmore, it is also possible for a font to be
renotely |oaded from a database via the conmunication
net wor k.

UCL FACSIM LE SYSTEM | NDRA Note 1185

This allows for nore interesting applications of the
facsinile nachine. For exanple, it could serve as a
Tel etex printer, provided that the Teletex character
font is included in our system In this case, the text
i mges may be distorted to fit the presentation formt
requested by the Teletex service. Simlarly, Prestel
vi ewdata pages could be displayed on the Ginnel
screen.

Moreover, pictures can be nixed wth t ext by
conbining this text conversion wth the editing
described in the previous section. This should be
r egar ded as a not abl e step towards nmulti-type
processi ng.

Not only does this support a |ocal multi-type
envi r onnent but mul ti-type i nformation can be
transnitted over a network. So far as this facsimle
system is concerned, a mxed page containing text and
pi ctures can be sent only when it has been represented
in a bit-map format. However, nmnuch nore efficient
transni ssion woul d be achieved if one could transnit
the text and pictures separately and reproduce the page
at the destination site. This requires that a multi-
type data structure be designed which is understood by
the two comuni cation sites.

3. SYSTEM ARCHI TECTURE

Now | et us discuss the general disciplines for design
and inplenmentation of a conputerised facsinle system
which carries out the functions described in the
previ ous sections. Havi ng di scussed the requirenents
of the system a hierarchical model is introduced in
which the nodules of different layers are inplenented
as separate processes. The Cean and Sinple interface,
which is adopted for inter-process comunication, is

then descri bed. The task controller, whi ch is
responsible for organising the tasks involved in a
requested job, is discussed in detail. Sone efforts

have been nade in our experinental work to provide a
nore conveni ent user progranmm ng environnent and a nore
efficient data transfer method. This is finally
descri bed.

3.1 System Requirenents

In a conputerised facsinmle system the inages are
represented in a digital form To <carry out this

UCL FACSIM LE SYSTEM | NDRA Note 1185

conversion, a page is scanned by the optical scanner of
the facsinmle machine, a digital nunmber being produced
to represent the darkness of each pixel. As high
resolution has to be adopted to keep the detail of the
image, the facsimle data files are wusually rather
large. In order to achieve efficient storage and
transni ssion, the facsinmile data nmust be conpressed as
much as possi bl e.

Currently, the facsimle machines made by different
manuf act urers h different properties, such as
di fferent conpression nethods and different resolution.
Ther e are also sone international standards for
facsim | e data conpression, which are enployed for the
facsinile data to be transferred over the public data
network. These require that the facsimle data be
converted from one representation formto another, so
that users who are separated geographically and use
different machines can conmunicate wth each other
More sophi sticated applications, e.g. imge editing,
request processing facilities of the systemas well.

When being processed, the facsinmle inage should be
represent ed in a comon format or internal data
structure, which is wused to pass the information
between different processing routines. For the sake of
conveni ence and efficiency, the internal data structure
should be fairly well conpressed and its format shoul d
be easy for the conputer to nmanipulate. In our
experimental work, the line vector is chosen as a
standard unit, a sinple run-length conpression being
enployed [3]. Sone processing routines nmay use other
data formats, e. g. bi t - map, but it is t he
responsibility of such routines to perform the
conversi on between those formats and the standard one.

The system should contain sever al processi ng
routi nes, each of which perforns one prinitive task
such as chopping, nmerging, and scale-changing. An
i mrense variety of processing operations can be carried
out as long as those task nodules can be organised
flexibly. The capability for flexible task organisation
shoul d be thought of as one of the nobst inportant
requirements of the system

One possibility is for the processing routines
involved to be executed separately, tenporary files
bei ng used as comuni cati on nedia. Though very sinple,
this method is far too inefficient.

UCL FACSIM LE SYSTEM | NDRA Note 1185

As described above, the information wunit for the
conmuni cation between the processing routines is the
line vector, so that the routines can be organised as
enbedded | oops, where a processing routine takes the
input line fromits source routine |located in the inner
| oop, and passes the output line to the destination
routine located in the outer loop [3]. Obviously this
method is quite efficient. But it is not realistic for
our system because it is very difficult to build up
different processing loops at run-tinme and flexible
task organisation is inpossible.

Ina real-tine operating system environnent, the
primtive t asks can be inplemented as separate

processes. This nethod, which is discussed in detail in
t he foll owi ng sections, provi des t he required
flexibility.

3.2 Hierarchical Mbdel

As shown in Fig. 7, the nodules in a single conputer

fall into three | ayers.
S +
! I task controller
S +
t asks

T =T S S S S
! N [Pl !
T =T S S S S

R +---+
! o ! device drivers ! !
R +---+
+---+ +-|--+ +-|--+
! Fol ! physi cal | !
! o ! devi ces ! !
R +---+

Fig. 7 The hierarchical node

These are:

(1) Device Drivers, which constitute the | owest |[|ayer
in the nodel. The nodules in this layer deal with
I/O activities of the physical devices, such as

UCL FACSIM LE SYSTEM | NDRA Note 1185

facsim |l e machine, display and floppy disk. This
| ayer frees the task nodul es of upper |ayer from
the burden of |/0O progranm ng.

(2) Tasks, which performall processing primtives and
handl e different data structures. Above the driver
of each physical device, there are one or nore
such device-independent nodules, which work as
i nformati on source or sink in the task chain (see
below). A file systemnodul e allows other nodul es
to store and retrieve information on the secondary
storage device such as floppy di sk. Deconpression
and reconpression routines convert data structures

of facsimle image information so that the
facsinm |l e machi nes can communicate with the rest
of t he system Processing printives, e.g.

choppi ng, nerging, scaling, are inplenmented as
task nodules in this layer. They are desi gned such
that they can be concatenated to carry out nore
complex jobs. So far as the systemis concerned,
the protocols for data transm ssion over conputer
networks are al so regarded as task nmodules in this
| ayer.

(3) Task Controller, which or gani ses t he t ask
processes to perform the specified job. It
provides the users of the application layer with a
procedure-oriented |anguage whereby the requested
job can be defined as a chain of task nodules.
Literally, the chain is represented by a character
string:

<sour ce_t ask>| {<processi ng_t ask>| } <si nk_t ask>

According to such a command, the task controller
sel ects the rel evant task nobdul es and concat enat es
themin proper order by nmeans of logical 1inks.
Then the tasks on the chain are executed under its
control, so that the data taken from the source
are processed and the result is put into the sink.

3.3 Oean and Sinple Interface

It is inportant, in this application, to develop the
software in a nodular way. It is desirable to put
together a set of nodules to carry out the different
i mage processing tasks. Another set of transport
nmodul es nust be devel oped for shipping data over the

UCL FACSIM LE SYSTEM | NDRA Note 1185

different networks to which the UCL systemis attached.
In our conputerised facsimle system these task
nmodul es are inplenented as separate processes. The
operation of the system relies on the comunication
bet ween t hese processes. The interface which is used
for such communi cation has been designed to be
universal; it is independent of these nodules, and has
been termed the Cean and Sinple interface [20]. This
interface is discussed in this section.

3.3.1 Principles

The Clean and Sinple interface is concerned with the
synchroni sation and transfer of full-duplex data
streans between two commruni cating processes. Thus the
interface has three nmjor conponents: connection

synchroni sati on, data transfer and connection
desynchroni sati on. These components are discussed
bel ow.

The connection between two processes is initiated by
one of them which, generally speaking, belongs to a
hi gher layer. For exanple, the interface bet ween
protocols of different layers is always initiated by
t he hi gher |ayer, though, sonetinmes, the connection is
initiated passively by the primtive 'listen . It wll
be seen in the next section that task processes can
conmuni cate with each other via the connections to the
hi gher layer (task controller) and this makes it
possi bl e to achieve flexible task organisation.

The process initiating the connection is called the
"master’ process, while the other is called the ’'slave
process. The 'master’ process is also responsible for
resource allocation for the two communicating
processes. Here 'resource’ refers mainly to the nenory
areas for the nessage structure and data buffer. This
asymmetric definition of the interface elimnates any
possi bl e confusion in resource allocation.

The interface is inplenented by using the signal-wait
mechani sm provided by the operating system A data
structure called CSB (Clean and Sinple Block), which
contains function, data buffer, and other information,
is sent as the event nessage, when one process signals
anot her [20].

UCL FACSI M LE SYSTEM | NDRA Note 1185
3.3.2 Synchroni sati on and Desynchroni sation

The procedure for connection synchronisation is
conposed of two steps. First, the tw processes
exchange their identifiers for the specific connection
by neans of a getcid primtive. Usually, the pointer
to the task control structure of the process is used as
the connection identifier.

Then, the 'nmaster’ sends an open CSB with appropriate

par anet er string passi ng t he initialisation
i nformation. This information, which can also be called
open par anet er, is process dependent, or nore

accurately, task dependent. For exanple, the paraneters
for the file system should be the file name and the
access node. Provided the 'slave accepts the request,
the connection is established successfully and data can
be transferred via the interface.

In order to desynchronise the connecti on, t he
"master’ initiates a 'close’ action. On the other hand,
an error state or EOF (end of file) state can be
reported by the ’'slave’ to request a connection
desynchroni sati on

The listen primtive in our system is reserved for
the processes that receive a request fromthe renote
hosts on the networks.

3.3.3 Data Transfer

Wiile the Clean and Sinple interface is asymetric in
relation to connection synchronisation, data transfer
is conpletely symetric so long as the connection has
been established. Data flows in both directions are
permitted, though the operations are quite different.

The interface provides two primtives for dat a
transfer -- read and wite. To transfer sone data to
the ’'slave’, the ’'master’ signals it wth a CSB
containing the wite function and a buffer filled with
the data to be transferred. Having consuned the data,
the "slave' returns the CSB to report the result status
of the transni ssion

On the other hand, in order to receive sone data from
the "slave', the 'nmaster’ uses a read CSB with an enpty
buffer. Having received the CSB, the 'slave’ fills the
buffer with the data requested and, then, returns the
CSB.

UCL FACSI M LE SYSTEM | NDRA Note 1185
3.4 Control and Organi sation of the Tasks

Anot her inportant aspect of t he mul ti - process
architecture of the UCL facsinile system is the need
to systematise the control and organisation of the
tasks. This activity is the function of the task
controller, whose operations are discussed in this
secti on.

3.4.1 Conmmand Language

As nmentioned earlier, the task controller supports a
procedure-oriented |anguage by neans of which the user
or the routines of the upper layers can define the jobs
requested. A conmmand should contain the follow ng
i nformati on:

1. the nanmes of the task processes which are invol ved
in the job.

2. the open paraneters for these task processes.

3. the order in which the tasks are to be |inked.

The last itemis quite inportant, though, wusually,
the same order as that given in the command i s used.

A command in this language is presented as a zero-

ended character string. |In the task nanme strings and
the attribute strings of the open paraneters, '|', """,
and ’',’ mnust be excluded as they will be treated as

separators. The definition is shown bel ow, where '|’,
which is the separator of the command strings in the
| anguage, does not nean 'OR .

<conmmand_string> ::
<conmmand_string> ::
<task_string> :
<task_string> :
<open_par anet er > :
<open_par anet er > :

<task_string>

<task_string>| <conmmand_stri ng>
ask_name>
ask_name>"<open_par anet er >

<attribute>

= <t
= <t
= <attri but e>, <open_paranet er >

3.4.2 Task Controller

In our experimental work, the task controller nodule
is called fitter. This name which is borrowed from
UNI X hints how the nodule works. According to the
command string, it |links the specified tasks into a
chain, along which the data is processed to fulfil the

UCL FACSIM LE SYSTEM | NDRA Note 1185

job requested (Fig. 8).

Fig. 8 The task chain

Since all nodules, including fitter itself, are
i mpl enent ed as processes, the connections between
nodul es should be via the Cean and Sinple interfaces.
Upon receiving the command string, the fitter parses
the string to find each task process involved and opens
a connection to it. Formally, the task processes are
chained directly, but, logically, there is no direct
connection between them Al of themare connected to
the fitter (Fig. 9).

fitter
o e +

+-- | [——

| SRS + |

I I I

Vv V Vv
F--- - - + S + F--m - - +
| a | | b | | c |
F--- - - + S + F--m - - +

Fig. 9 The connection initiated by the fitter

For each of the processes it connects, the fitter
keeps a table called pipe. Wen the conmand string is
parsed, the pipe tables are double-linked to represent
the specified order of data flow. So far as one process
is concerned, its pipe table contains two pointers: a
forward one pointing to its destination and a backward
one pointing to its sources. Besides the pointers, it
also mamintains the information to identify the task
process and the correspondi ng connecti on.

UCL FACSIM LE SYSTEM | NDRA Note 1185

Fig. 10 illustrates the chain of the pipe tables for
the job "a|blc". Note that the forward (output) chain
ends at the sink, while the backward (input) chain ends
at the source. |In this sense, the task processes are
chained in the specified order via the fitter (Fig.
11). The data transfer along the chain is initiated and
controlled by the fitter, each process getting the
input from its source and putting the output to its
desti nati on.

+----- + +----- + +----- +
| L L 0o |
+----- + +----- + +----- +
[0 ! <--+4- * 1 <-4 * 1
+----- + +----- + +----- +
| a | | b | | c |
+----- + +----- + +----- +
| | | | | |
| | | | | |
+----- + +----- + +----- +

Fig. 10 The pipe chain

fitter
Fom e e e oo - +

+-> 1 * > * o> x| __4

| Fom e e e oo - + |

I | A I

I V| Y,
+----- + +----- + +----- +
I a | 1 b I
+----- + +----- + +----- +

Fig. 11 The data flow

This strategy nmakes the task organi sation so flexible
that only the links have to be changed when a new task
chain is to be built up. In such an environnment, each
task process can be inplenmented i ndependently, provided
the Clean and Sinple interface is supported. This also
makes the system extension quite easy.

UCL FACSIM LE SYSTEM | NDRA Note 1185

The fitter mani pulates one job at a tinme. But it nust
mai ntain a command queue to cope with the requests,
whi ch cone sinultaneously fromeither the upper |Ieve
processes or other hosts on the network.

3.5 Interface Routines

In a nodul ar, multi-process systemsuch as the UCL
facsinile system the structure of the interface
routines is very inportant. The CSI of section 3.3 is
fundanental to the nodular interface; a common contro
structure is also essential. This section gives sone
details both about the sharable control structure and
t he buffer nmanagenent.

3.5.1 Sharable Control Structure

Though the CSI specification is straightforward, the
i npl enent ati on of the inter-process conmunication
interface nay be rather tedious, especially in our
system where there are many task processes to be
written. Not only does each process have to inplenent
the sane control structure for signal handling, but
al so the buffer nanagenent routines nmust be included in
all the processes.

For the sake of sinplicity and efficiency, a package
of standard interface routines is provided which are
shared by the task processes in the system These
routines are re-entrant, so that they can be shared by
al |l processes.

The "csinit’ primtive is called for a task process
to check in. An infornmation table is allocated and the
pointer to the table is returned to the caller as the
task identifier, whichis to be used for each call of
t hese interface routines.

Then, each task process waits by invoking the
"csopen’ primitive which does not return until the
calling process is schedul ed. Wien the connection
between the process and the fitter is established, the
call returns the pointer to the open paraneter string
of the task, the corresponding task being started. A
typical structure of the task process (witteninc) is
shown below. After the task programis executed, the
process calls the 'csopen’ and waits again. It can be
seen that the portability of the task routines is
inproved to a great extent. Only the interface routines

UCL FACSIM LE SYSTEM | NDRA Note 1185

shoul d be changed if the system were to run in a
di fferent operating environment.

static int nytid; /* task identifier */
task()
{
char *op; /* open paraneter */
mytid = csinit();
for(;;) {
o]

p = csopen(nytid);
C /* the body of the task */

3.5.2 Buffer Managenent

The package of the interface routines also provides a
uni versal buffer managenent, so that the task processes
are freed fromthis burden. The allocation of the data
buffers is the responsibility of the higher |evel
process, the fitter. If the task processes allocated
their own buffers, sonme redundant copying woul d have to
be done. Thus, the primtives for data transfer,
"csread’” and 'cswite’, are designed as:

char *csread(tid, need);
char *cswite(tid, need);

where 'tid is the identifier of the task and 'need’ is
the nunber of data bytes to be transferred. The
primtives return the pointer to the area satisfying
the caller’'s requirenent. The 'csread’ returns an area
containing the data required by the caller. The
"cswite’ returns an area into which the caller can
copy the data to be transferred. The copied data wll
be witten to its destination at a proper time wthout
the caller’s interference. CQCbviously the wunnecessary
copy operations can be avoided. It is recomended that
the data buffer returned by the prinmitives be used
directly to attain higher performance.

UCL FACSIM LE SYSTEM | NDRA Note 1185

In order to inplenent this strategy, each tinme a
piece of data is required, the size of the buffer
needed is conpared with that of the unused buffer area
in the current CSB. If the latter is not |less than the
former, the current buffer pointer is returned.
QO herwise, a tenporary buffer has to be enployed. The
data is copied into the buffer until the requested size
is reached. In this case, instead of a part of the
current buffer, the tenporary buffer will be returned.

A’'cswite call with the "need field set to zero
tells the interface routine that no nore data will be
sent. It causes a ’'close’ CSB to be sent to the
destination routine.

If there is not enough data available, ’csread
returns zero to indicate the end of data.

4. UCL FACSI M LE SYSTEM

Now we di scuss the inplenentation of the conputerised
facsinile system developed in the Departnent of
Conput er Science at UCL.

This system has several conponents. Since the tota
system is a nodular and nulti-process one, a specific
system nust be built up for a specific application. The
way that this is done is discussed in section 4.1. The
specific devices and their drivers are described in
section 4.2. The system can be attached to a nunber of
networks. In the UCL configuration, t he net wor k
interface can be direct to SATNET [22], SERC NET [23],
PSS [24], and the Canbridge Ring. The form of network
connection is discussed further in section 4.3. The
system nust transfer data between the facsimle devices
and the disks, and between the networks and the disks.
For this a filing systemis required which is discussed
in section 4.4.

A key aspect of the UCL system is flexibility of
devi ces, networks, and data formats. The flexibility of
device is achieved by the nmodul ar nature of the device
drivers (section 4.2). The flexibility of network is
di scussed in section 4.8. The additional flexibility of
data structure is described in section 4.5. The
flexibility can be utilised by incorporating conversion
routines as in section 4.6. An inportant aspect of the
UCL systemis the ability to provide |Iocal manipul ation
facilities for the graphics files. The facilities
i npl emrented for the local manipul ation are discussed in

UCL FACSIM LE SYSTEM | NDRA Note 1185

section 4.7. In order to transfer files over the
different networks of section 4.3. a high level data
transm ssi on protocol nust be defined. The procedures
used in the UCL system are discussed in section 4.8.

4.1 Multi-Task Structure

The task controller and processi ng t asks are
i nplemrented as MOS processes. A nunber of utility
routines are provided for wusers to build new task
processes and nodul es at application |evel.

In the environnment of MOS, a process is included in a
system by specifying a Process Control Table when the
systemis built up. The macro ’'setpcte’ is used for
this purpose, the nmeaning of its paraneters being
defined in [14].

#def i ne set pcte(nane, entry, pridev, prodev, stkl en
rel pid, rel opc)
{0, nane, entry, pri dev, prodev, stkl en, rel pid,rel opc}

A Device Control Table (DCT) has to be specified for
each device when the systemis built up. A DCT can be
defi ned anywhere as devices are referenced by the DCT

address. The macro ’'setdcte’ is designed to declare
devi ces, the neanings of its paraneters being specified
in [14]. Thi s met hod is used in the device

descri pti ons.

#defi ne setdcte(nane,intvec, devcsr, devbuf, devinit,
ioinit,intrpt, mte)
{04037, intrpt, 0,0, nane, mate, i ntvec, devinit,
devcsr, devbuf,ioinit}

4.2 The Devices

As nmentioned in section 2, apart from the genera
purpose system console, there are three devices in the
systemto support the facsinile service. These are:

(1) AED62 Fl oppy Di sk, which is used as the secondary
menory storing the facsimle image data. Above its
driver, a file systemis inplenmented to nanage the
data stored on the disks, so that an image data

UCL FACSIM LE SYSTEM | NDRA Note 1185

file can be accessed through the Cean and Sinple
interface. This file systemis dicussed in detai
in the next section. For sone processing jobs, the
image data has to buffered on a temporary file
| est time-out occurs on the facsimle nachine.

(2) DACOM Facsimnile Machine, which is wused to input
and output inage data. It reads an inage and
creates the corresponding data stream On other
hand, it accepts the inmage data and reproduces the
correspondi ng i mage. Above its driver, thereis a
interface task to fit the facsimle machine into
the system the Cean and Sinple interface being
support ed. The encoding algorithmfor the DACOM
machine is described in [19].

(3) Ginnell Colour Display, which is wused as the
monitor of the system Above its driver, an
interface task is inplenented so that the image
data in standard format can be accepted through
the Cean and Sinple interface.

The detail ed description of these devices can be
found in Appendix 1. The interface task and the
description for each device are listed in the foll ow ng
table. The interface tasks can be directly used as data
source or sink in a task string.

Devi ce Interface Task Description

AED62 Fl oppy Di sk fs() aed62(devi ce)
DACOM fax Machi ne fax() dacom(devi ce)
Ginnell D splay grinnell () grinnel |l (device)

Note that the DCTs for the facsimle machine and
Ginnell di spl ay have been i ncl uded in the
corresponding interface tasks, so that there is no need
to declare themif these tasks are used.

4.3 The Networks

Ther e are three r el evant Wi de- ar ea net wor ks
terminating in the Departnent of Conputer Science at
the end of 1981. These are:

(1) ABritish Tel ecom X25 network (PSS, [24]).

(2) A private X25 network (SERC NET, [23])

UCL FACSI M LE SYSTEM | NDRA Note 1185
(3) A Defence network (ARPANET/ SATNET, [21], [22])

In addition there is a Canbridge Ring as a |ocal
net wor k.

For the time being, the UCL facsimle system is
directly attached to the various networks at the point
NI (Network Interface) of Fig. 1.

As nmentioned earlier, pictures can be exchanged via
the SATNET/ ARPANET, between UCL in London, ISl in Los
Angel es, and COVBAT in Washington D.C.. The Network
| ndependent File Transfer Protocol (NIFTP, [9]) is used

to transfer the i mage data. This protocol has been
i npl emrented on LSI under MOS [10]. |In addition, we at
UCL have put N FTP on an ARPANET TOPS-20 host, which
can act as an Internet File Forwader (IFF). In this
case, TCP/IP ([28], [29]) is enployed as the underlying
transport servi ce. Since TCP provides reliable

conmuni cati on channels, the provision of checkpoints
and error-recovery procedures are not included in our
NI FTP i mpl enent ati ons.

In the X25 network, the transport procedure is
NI TS/ X25 ([25], [26]). Though pictures can be
transferred to the X25 networks, no experinental work
has been done, because:

(1) There is at present no collaborative partner on
t hese networks.

(2) The LSI-11, on which our system is inplenented,
has no direct connection to these networks.

Locally, image data can be transmitted to t he
PDP11- 44s running the UNX tinme-sharing operating
system At present, the SCP ring-driver software uses
per manent virtual <circuits (PVCs) to connect the
various conputers on the ring.

4.4 File System

A file system has been designed, based on the AED62
doubl e density floppy disk, for use under MOS. It is
itself inplenented as a MOS process supporting the
Clean and Sinple interface. The description of this
task, fs(fax), can be found in Appendi x 2.

UCL FACSIM LE SYSTEM | NDRA Note 1185

In a conmand string, the file system task can only
serve as either data source or data sink. In other
words, it can only appear at the first or last position
on a command string. In the forner case, the file
specified is to be read, while the file is to be
written in the latter case.

Three access npdes are all owed which are:

* Read a file
* Create a file
* Append a file

The file nane and access node are specified as the
open paraneters.

Let us consider an exanple. |If a docunent is to be
read on the facsimle machine and the data stream
created is to be stored on the file system the conmand
string required is:

fax"r|fs"c, doc

where: fax - interface task for facsimle nmachine
r - read fromfacsinle machi ne
fs - file systemtask
c - create a new file

doc - the nane of the file to be created.

In order to dunp a file, a task process od() is
provided which works as a data sink in a comrand
string.

4.5 Data Structure

Facsimle inmage data is created using a high-
resolution raster scanner, so that the original picture
can be reproduced faithfully. The facsimle dat a
represents binary images, in nonochrome, wth two
Il evels of intensity, belonging to the data type of
bi t - mapped graphi cs.

The sinplest representation is the bit-map itself.
The bits, each of which corresponds to a single picture
el enent, are arranged in the same order as that in
which the original picture is scanned, 1s standing for

UCL FACSIM LE SYSTEM | NDRA Note 1185

bl ack pixels and Os for white ones. Operations on the
picture are easily carried out. For exanple, two images
represented in the bit-map format can be ner ged
together by wusing a sinple logic OR operation. Any
specific pixel can be retrieved by a sinmple
cal cul ati on. However, its size is usually |arge because
of the high resolution. Thi s makes it al nost
unrealistic for storage or transm ssion.

Facsimle image data should therefore be conpressed
to reduce its redundancy, so that the efficient storage
and transm ssion can be achi eved.

Run-1ength encoding is a useful conpression schene.
Instead of the pattern, the counts of consecutive bl ack
and white runs are used to represent the inage.

Vector representation, in which the run-lengths are
coded as integers or bytes, is a useful internal
representation of images. Not only is it reasonably
conpressed, but it is also quite easy for processing.
Choppi ng, scaling and mask-scanni ng are exanpl es of the
processi ng operati ons whi ch may be per f or ned.
Furthernore, a conversion between different conpression
schenmes nmay have to be carried out in such a way that
the data is first deconpressed into the vector fornat
and then reconpressed. The difficulty in retrieval can
be overcome by means of |line index, which gives the
pointers to each lines of the inage.

A higher conpression rate leads to a nore efficient
transnmission. But this is at the expense of ease of
processing. An exanple of this is the use of Huffman
Code in the CCTT 1-dinensional conpression schene.
Wil e the data can be conpressed nore efficiently, it
is rather difficult to manipulate the data direcltly.

Taking the correlation between adjacent lines into
account, 2-di nensional conpression can achi eve an even
hi gher conpr essi on rate. CaTT 2- di mensi ona
conpression and the DACOM facsinmile machine use this
nmet hod.

It is desirable to integrate facsinmle imges wth
other data types, such as text and geonetric graphics;
the structure of these other types nust then be
incorporated in the system At present, only text
structure is available, while the structure for
geonetric graphics is a topic for the further study.

UCL FACSIM LE SYSTEM | NDRA Note 1185

In the facsimle system the follow ng dat a
structures are support ed. The correspondi ng
descriptions, if any, are listed as well and they can
be found in Appendi x 3 (except of dacom(device)).

type structure conpr essi on description

bit-map bit-map - -
vect or 1D run-length vect or (f ax)

dacom bl ock 2D run-length dacon(devi ce)
CaTT T4 1D run-length t4(fax)

2D run-length t4(fax)

t ext t ext - t ext (fax)

As an internal data structure, vector format s
widely wused for data transfer between task processes.
The set of interface routines has been extended by
i ntroducing two subroutines, nanmely getl () and putl (),
which read and wite |line vectors directly through the
Clean and Sinple interface. These two routines can be
found in Appendix 3 (getl (fax) and putl (fax))

In order to check the validity of a vector file, a
check task process check() is provided which works as a
data sink in a command string. It can also dunp the
vector elements of the specific lines.

4.6 Data Conversion

In order to convert one data structure into another
several conversion nodul es are provided in this system
These nodules fall into two categories, task processes
and subroutines. The task processes are MOS processes
whi ch can only be used in the environnment described in
this note, while the subroutines which are witten in c
and conpati bl e under UNI X are nore general ly usabl e.

Character strings or text can be converted into
vector format, so that an integrated i mage conbining
pi cture and text can be forned.

The following table lists these conversion nodules,
including their functions and descriptions (which can
be found in Appendix 3).

UCL FACSIM LE SYSTEM | NDRA Note 1185

nmodul e type from to description
deconp process dacom vect or deconp(f ax)
reconp process vect or dacom reconp(fax)
ccitt process vect or t4 ccitt(fax)
t4d vect or

bi tmap subroutine vect or bi t map bi t - map(fax)
tovec subrouti ne bi t map vect or tovec(fax)
ts subrouti ne ASCI| string vector ts(fax)
string process ASCI| string vector string(fax)
tf process t ext vect or tf(fax)

Si nce each DACOM bl ock contains a Cyclic Redundancy
Check (CRC) field, the systemsupplies a subroutine
crc() to calculate or check the CRC code. (see
crc(fax))

If a vector file is to be printed on the DACOM
facsinile machine, the imge data should be re-
conpressed into the DACOW bl ock format, the required
command string bei ng shown bel ow.

fs"e, pic|reconp| fax"w

wher e fs - file systemtask
- read an existing file
iC - file nane
reconp - re-conpression task
f ax - interface task for facsimle nachine
w - print an inmage on facsimle nmachine

4.7 | mage Mani pul ation

Four processing task processes are provided in the
system These are:

(1) Chop, which applies a defined windowto the input
i mage.

(2) Scale, which enlarges or shrinks the input inmage
to the defined dinensions.

(3) Merge, which puts the input image on the specified
area of a background inage.

UCL FACSI M LE SYSTEM | NDRA Note 1185
(4) dean, which renoves the noise on the input inmage.

The Clean and Sinple interfaces are supported in
these processing tasks so that the tasks can be used in
command strings. However, these tasks can be neither
source nor sink in a conmand string. The data format
of their input and output is vector.

For exanmple, a facsinile page can be cl eaned and then
printed on the facsimle machine. Note that the image
data nust be reconpressed before being sent to the
facsimle machine. If the original data is the form of
DACOM block, it has to be deconpressed as t he
processi ng t asks only accept |line vectors. The
requi red command string is shown bel ow.

fs"e, page| cl ean| reconp| f ax"w

wher e fs - file systemtask
e - read an existing file
page - file nane
clean - cleaning task
reconp - re-conpression task
f ax - interface task for facsiml|e nmachine
w - print an inmage on facsimle nmachine

The descriptions of these processing tasks can be
found in Appendix 2 (chop(fax), scal e(fax), merge(fax),
and clean(fax)).

In tasks "chop’ and ’'nerge’, a wndow is set by
giving the coordinates of its vertices. However, it is
usual ly rather difficult for a human user to decide the
exact coordinates. The system supplies a subroutine
choi ce() which specifies a rectangul ar subsection of an
image by interactive manipulations of a rectangul ar
subsection on the screen of the Ginnell display
di splaying the image. It provides a set of interactive
commands whereby a user can intuitively choose an area
he is interested in. Note that this subroutine nust be
called by a MOS process and the Ginnell display nust
be included in the system

By neans of these inage processing nodul es, the inage
editing described in section 2.4 can be carried out.
Let us consider an exanple. An inage abstracted from a
picture 'a is to be nmerged onto a specified area of
another picture "b’. First of all, the two pictures 'a&

UCL FACSIM LE SYSTEM | NDRA Note 1185

and 'b’ should be displayed on the left half and right
half of the screen, respectively. Assune that the two
pi ctures are standard DACOM pages whose di nensions are
1726x1200. They have to be shrunk to fit the dinmension
of the half screen (256x512). Note that if the data
format is not vector, conversion should be carried out
first. the required comand strings are:

e, a| scal " 1726, 1200, 256, 512| grinnel | "0, 511, 255,0, z, ¢
fs"e, b| scal e"1726, 1200, 256, 512| gri nnel | " 256, 511, 511,0,z, b

where fs - file systemtask
e - read an existing file
a - file name
b - file name
scal e - scale task
1726, 1200 - ol d dinension
256, 512 - new di nensi on
grinnel | - grinnell display interface task
0,511,255,0 - presentation area (the left half)

256,511,511,0 - presentation area (the right half)

z - zero wite node
g - green
b - blue

In an application process, the subroutine choice() is
called in the followi ng ways for the user to choose the
areas on both pictures.

UCL FACSIM LE SYSTEM | NDRA Note 1185

choice(r, 1726, 1200, 1, 0, 0);
/* choice the area on
I*r - red
1726 - width of the original picture
1200 - height of the original picture

a */

1 - left half of the screen
0 - the subsection can be of any wi dth
0 - the subsection can be of any height

*/
choice(r, 1726, 1200, 2, 0, 0);
/* choice the area on 'b" */
I*r - red
1726 - width of the original picture
1200 - height of the original picture

2 - right half of the screen
0 - the subsection can be of any wi dth
0 - the subsection can be of any height

*/

When the user finishes editing, the coordinates of
the chosen rectangular areas are returned. An exanple
is given in the table below The wdths and heights
listed in the table are actually calculated fromthe
coordinates returned and they indicate that the source
i mge has to be enlarged to fit its destination

(0, 0)

R R > X

I

| (x0, y0) w

| Fo e e e e aia oo +

| | !

| ! !

| ! ' h

| ! !

| ! |

| Fo e e e e aia oo +

I (x1, yl1)

\Y,

y

ori gi nal x0 y0 x1 yl w h

a 30 40 100 120 70 80
b 100 100 1100 1100 1000 1000

UCL FACSIM LE SYSTEM | NDRA Note 1185

At this stage, our final goal can be achieved by
performng a job specified below It is assuned that

the result image is to be stored as a new file 'c¢’
fs"e, al chop" 30, 40, 100, 120| scal " 70, 80, 1000, 1000
| merge"b, 0, 100, 100, 1100, 1100|fs"c, ¢
where fs - file systemtask
e - read an existing file
a - file nane
chop - chop task
30, 40, 100, 120 - the area to be abstracted
scal e - scal e task
70, 80 - old di nension
1000, 1000 - new di nensi on
nmer ge - merge task
b - file name of the background inage
0 - to be overlaid
100, 100, 1100, 1100 - the area to be overlaid
fs - file systemtask
c - create a new file
c - the nanme of the file to be
created

4.8 Data Transm ssi on

In order to transnit facsimle inmage data over
conputer networks, using the configuration of Fig. 1,
the Network | ndependent File Transfer Protocol [9] is
i npl emrented as a MOS task process, the Cean and Sinple
interface of section 3.3 being supported [10]. Thus
this nodule can be used in a conmand string directly.
In this case, the nodule always works in the initiator
node, though the server node is supported as well. Its
description can be found in Appendix 2 (ftp(fax)).

As a network-independent protocol, it enploys a
transport service to comunicate across the networks.
The Clean and Sinple interface is also used for the
comuni cati on between the nodul e and transport service
processes.

Suppose that an inmage file stored in a renote file
systemis to be printed on the local facsinile machine.
Assume that the data is transmitted via the ARPANET
[21], Transport Control Protocol (TCP) [28] being used
as the underlying transport service. As was described

UCL FACSIM LE SYSTEM | NDRA Note 1185

before, since the delay caused by the network my
result in a time-out on the local facsinile machine,
the job should be divided into two subj obs.

(1) The renote file is transmtted by wusing NFTP
nodul e. However, instead of being put on the
facsimle machine directly, the received data is
store in a tenporary file.

ftp"r,b,ucl,fax, pic;tcp: 1234, 10, 3, 3,42, 4521|fs"c,tnp

wher e ftp - NIFTP task
t

- receive
b - binary
ucl - renmpte user nane

fax - renote password
pic - renote file nane
tcp - transport service process

paranmeters for the transport service:

1234 - local channel nunber
10, 3, 3,42 - renote address
4521 - channel reserved for the

renote server

fs - local file systemtask
c - create a new file
tnmp - the nanme of the file to be created

(2) The tenporary file is read and the image is sent
to the facsimle machine for printing. Here it is
assuned the data received is in the formof DACOV
bl ock so that no conversion is needed.

fs"e, tnp| fax"w

wher e fs - file systemtask
e - read an existing file
tnmp - file nane
f ax - interface task for facsimle nachine
w - print an inmage on facsimle machine

W are able to exchange image data wth ISl and
COVBAT. At present DACOM bl ock is the only format that
can be used as all the three participants in this
experiment possess DACOM facsimle machines and no

UCL FACSIM LE SYSTEM | NDRA Note 1185

other data fornmat is available in both I SI and COVBAT
However, it is the intention of the ARPA-Facsinile
comunity to adopt the CCITT standard for future work.
As nmentioned earlier, UCL already has this facility.

Above NI FTP, a sinple protocol was used to contro
the transmission of facsinmile data. In this protocol
the format of a facsimle data file was defined as
follows: Each DACOM block was recorded with a 2-byte
header at the front. This header was conposed of a
| engt h- byt e indicating the length of the block
(including the header) and a code-byte indicating the
type of the block. This is shown in the follow ng

di agram
| <--- header ---->|<------ 74 bytes ------- >
S S o e e e e e e e oooo--- +
I length ! code ! DACOM bl ock !
S S o e e e e e e e oooo--- +

The Length-byte is 76 (decimal) for all DACOM bl ocks.
The code-byte for a setup block is 071 (octal) and 072
for a data bl ock. A special EOP block was wused to
indicate the end of a page. This block had only the
header with the length-byte set to 2 and the code-byte
undefined. A facsimile data file could contain severa
pages, which were separated by EOP bl ocks.

5. CONCLUSI ON

5.1 Summary

Though techniques for facsimle transmssion were
invented in 1843, it was not until the recent years
that integration with conmputer communication systens
gave rise to "great expectation". The system described
in this note i ncar nat es t he conmpatibility and

flexibility of conmputerised facsinile systens.

In this system facsimle no |onger refers sinmply to
the transm ssion device, but rather to the function of
transferring hard copy fromone place to another. Not
only does the system allow for nore reliable and
accurate docunent transm ssion over conputer networks
but inages can also be nmanipulated electronically.
I mage is converted fromone representation format to
another, so that different nakes of facsimle nmachines
can comuni cate with each other. It is possible for a

UCL FACSIM LE SYSTEM | NDRA Note 1185

picture to be presented on different bit-nap devices,
e.g. TV-like screen, as it can be scaled to overcone
the inconpatibilities. Mreover, the system provides
wi ndowi ng and overlaying facilities whereby a
sophi sticated editor can be support ed.

One of the nost inportant aspects of this system is
t hat t ext can be converted into its bit-napped
representation format and integrated with pictures.
Geonetric graphics could also be included in the
system Thus, the facsinile mnachine nmay serve as a
printer for nulti-type docunents. It is clear that
facsinile wll play an inportant role in future
i nformati on processing system

As far as the system per se is concerned, the
follow ng advantages can be recognised. Though our
di scussion is concentrated on the facsinmile system
many features developed here apply equally well to
ot her i nformation-processing systens.

(1) Flexibility: The wuser jobs can be easily
organised. The only thing to be done for this
purpose is to nmke the logical links for the
appropriate task processes.

(2) Sinplicity: The interface routines are responsible
for the operations such as signal handling and
buf fer managenent. By avoiding this burden, the
i mpl ementation of the task processes becones very
"clean and sinple".

(3) Portability: The interface routines al so nmakes the
t ask processes totally i ndependent of the
operating environment. Only these routines should
be nodified if the environnent were changed.

(4) Ease of extension: The power of the systemcan be
simply and infinitely extended by addi ng new task
processes.

(5) Distributed Environment: This approach can be
easily extended to a distributed environment,
where limtless hardware and software resources
can be provided.

5.2 Probl ens

As discussed earlier, the network we were wusing for
the experinental work was not designed for inmge data

UCL FACSIM LE SYSTEM | NDRA Note 1185

transm ssion. The data transfer is so slow that a
ti me-out may be caused on the facsimle machine. Though
this probl emwas solved by neans of |ocal buffering and
pi ctures were successfully exchanged over the network,
the slowness is rather disappointing because of the
quantity of image data. The nmeasurenent showed that the
t hroughput was around 500 bits/sec. In other words, it
took at least 5 mnutes to transfer a page. This was
caused by the network but not our system The situation
has been inproved recently. However, It is neverthel ess
required that nore efficient conpression schenes be
devel oped.

At present, the systemnust be directly attached to
the network to be accessed. However, the network ports
are nuch demanded, so that frequent reconfiguration is
required.

The facsim|le systemcan be connected only to the
local network, the Canbridge Ring, while the foreign
networks are connected via gateways to the ring. This
is shown in Fig. 12. Now the X25 network is attached to
the Ring via an X25 gateway, XG [25], while SATNET is
connected by anot her gateway, SG[25]. Both network are
at the transport |level; XG and SG support the relevant
transport procedures. In the case of XG thisis
NI TS/ X25 ([26], [27]); in the case of SATNET, it is
TCP/IP ([28], [29]).

UCL facsimle

system R
S SIS + / \ +---- - - +
! Fo---- Canbri dge Ring ---- 1 PE !
S SIS + \ +---- - - +
/ \ |
S N, + +---- - - + |
! xXG ! ! SG ! --- SATNET
S R + R R +
/ \

Fig. 12 Schematic of UCL network connection

When the network software runs in the same nachine as
the application sof t war e, the Clean and Sinple
interface of section 3.5 was wused as an interface
between the nopdules. Wen the gateway software was
renoved to a separate machine, an Inter-Processor O ean

UCL FACSIM LE SYSTEM | NDRA Note 1185

and Sinple [30] was requir ed. The appropriate
transport process is transferred to the relevant
gateway, and appropriate facilities are inplenmented for
addressing the rel evant gateway. O herw se, the
software has to be little altered to cater for the
di stributed case.

In our experinmental work, the foll ow ng problens were
al so encount ered.

(1) The primary nmenmory of the LSI-11 is so small that
we cannot build up a systemto include all the
nodul es we have developed. In order to transfer
an edited picture using the NI FTP nodul e, we have
to first load an editor system to input and
process the picture, and then an NIFTP systemis
then | oaded to transmt it.

(2) The execution of an inage processing procedure
becomes very slow. For exanple, it takes severa
mnutes to shrink a picture to fit the screen of
the Ginnell display. This prevents the system
frombeing widely used in its present form

(3) As secondary storage, floppy disks are far from
adequate to keep inmage data files. At present, we
have two doubl e-density floppy disk drives, the
capacity of each disk being about 630K bytes.
However, an inage page contains at |east 50K bytes
and, sonetines, this nunber may be doubled for a
rat her conplex picture. Only a limted nunber of
pages can be stored.

On the other hand, in our departnent, we have two
PDP11- 44s running UNI X together wth Jlarge disks
suppl yi ng abundant file storage. Their processing speed
is much higher than that of the LSIs. The UNIX file
system supports a very conveni ent i nformati on-
managenent environment. This inspired the idea that the
UNI X file systemcould pretend to be a file server
responsi ble for storing and managi ng the i nage data, so
that all the processing tasks may be <carried out on
UNI X. Not only does this imediately solve the problens
listed above, but the followi ng additional advantages
i medi ately accr ue.

(1) UNIX provides a far better software-devel opment
environment than LSI MOS ever can or will.

(2) The facsimle service can be enhanced to be able

UCL FACSI M LE SYSTEM | NDRA Note 1185
to support nmany users at a tine.

(3) The UNIX file systemis so sophisticated that nore
conmpl ex data entities can be handl ed.

In fact the 44s and the LSI-11, to which the
facsinile nmachine and Ginnell display are attached,
are all ~connected to the UCL Canbridge Ring. A
distributed processing environment can be built up
where a job in one conputer can be initiated by another
and then the job will be carried out by cooperation of
bot h comput ers.

In such a distributed system the LSI-11 mcro-
comput er, t oget her Wi th t he facsinle nachine,
constitutes a totally passi ve facsinile server
controlled by a UNIX user. A page is read on the
facsinile machi ne and the i mage data stream produced is
transmtted to the UNIX via the ring. The inmage data is

stored as a UNIX file and nmay be processed i f
necessary. It ~can also be sent via the ring to the
facsinile server where it wll be reprinted on the

facsim | e machi ne.

In order to build up such a distributed environment,
IPCS [30] is far from adequate for this purpose, as it
does not provide any facility for a renote job to be
organised. In our system the task controller can be
nmodi fied so that the conmand strings can be supplied
from a renote host on the network. Having accepted the
request, the task controller organises the relevant
task chain and the requested job is executed under its

control. The execution of +the distributed job nay
require synchronisation between the two conputers.
These problens are discussed in detail in [31].

CGeneral ly speaking, a distributed systembased on a
| ocal network, which supplies cheap, fast, and reliable
comuni cation, could be the ultimate solution of the
operational problens discussed in this section. In such
a system different systemoperations are carried out
in the nost suitable places.

For the time being, only a procedure-oriented task-
control language is available in this system The
conmand string of the fitter can be typed from the
system console directly, the corresponding job being
organi sed and executed. Theoretically, this is quite
enough to cope with any requirenent of a user
However, when the job is conplex, comand typing
becones very tedi ous and prone to error.

UCL FACSIM LE SYSTEM | NDRA Note 1185

Above the task-controller, a job-controller layer is
required which provides a problemoriented |anguage
whereby the user can easily put forward his requirenent
to the system On receipt of such a conmand, the job
controller translates it into a conmand string of the
task controller and passes the string to the task
controller so that operation request can be done.
Sonetines, one job has to be divided into severa
subj obs, which are to be dealt wth separately. The
job controller should be also responsible for high
| evel cal culation and managenent, so that the user need
not be concerned with system details.

In the system supporting facsinmle service under
UNIX, a set of high-level command is provided, while
the coomand strings for the facsinile station are
arranged automatically and they are totally hidden from
a UNI X user.

5.3 Future Study

At the next stage, our attention should be noved to a
hi gher-1level, nore sophisticated system which supports
a nulti-type environment. In such a system not only
does the facsimle machine work as an facsinmle
i nput/out put device, but it should also play the role
of a printer for the multi-type docunent. This is
because other data types, e.g. coded character text and
geonetric graphics can be easily converted into bit-
mapped graphics format which the facsinile nachine is
abl e to accept.

First of all, a data structure should be designed to
represent nulti-type information. In a distributed
envi ronnment, such a structure should be understood al
over the system so that nulti-nedia nessage can be
exchanged.

In a future system different services should be

support ed, including viewdata, Teletex, facsinile,
graphics, slowscan TV and speech. The techniques
devel oped for facsimle will be generalised for use of
ot her bit-nmapped i nage representations, such as slow
scan TV.

To inprove the performance of the facsimle system
we are investigating how we could use an auxiliary
speci al purpose processor to performsone of the inmage
processi ng operati ons. Such a processor wll be
essential for the higher data rate involved in slow

UCL FACSIM LE SYSTEM | NDRA Note 1185

scan TV.

UCL FACSIM LE SYSTEM | NDRA Note 1185

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Ref er ence

P. T. Kirstein, "The Role of Facsinmle in Business
Conmmuni cation", | NDRA Note 1047, Jan. 1981

T. Chang, "A Proposed Configuration of t he
Facsimle station", |NDRA Note 922, My, 1980.

T. Chang, "Data Structure and Procedures for
Facsimi |l e Signal Processing”, |NDRA Note 923, My,
1980.

S. Treadwell, "On Distorting Facsimle |nage",
| NDRA Note No 762, June, 1979.

M G B. Ismail and R J. Carke, "A New Pre-
Pr ocessi ng Techni ques for Digital Facsinile
Transm ssion", Dept. of Electronic Engineering,
Uni versity of Technol ogy, Loughborough.

T. Chang, "Msk Scanning Al gorithm and Its
Application”, | NDRA Note 924, June, 1980.

M Kunt and O Johnsen, "Bl ock Coding of G aphics:
A Tutori al Revi ew', Proceedings of the |EEE
special issue on digital encoding of graphics,
Vol. 68, No 7, July, 1980.

T. Chang, "Facsinle Dat a Conpr essi on by
Predictive Encoding”, |INDRA Note No 978, My.
1980.

H gh Level Protocol Group, "A Network | ndependent
File Transfer Protocol", HLP/CP(78)1, alos | NWG
Protocol Note 86, Dec. 1978.

T. Chang, "The I nplenentation of NIFTP on LSI-11",
| NDRA Note 1056, Mar. 1981.

T. Chang, "The Design and Inplenentation of a
Computerised Facsinmle Systent, |INDRA Note No.
1184, Apr. 1981.

T. Chang, "The Facsimle Editor", |NDRA Note 1085,
Apr. 1981.

K. Jackson, "Facsinile Conpr essi on", Project
Report, Dept. of Conmputer Science, UCL, June,
1981.

UCL FACSIM LE SYSTEM | NDRA Note 1185

[14] R Cole and S. Treadwel |, "MOS User Cuide", |NDRA
Note 1042, Jan. 1981.

[15] CATT, "Recommendation T.4, Standardisation of
G oup 3 Facsinle Appar at us for Docunent
Transni ssion", Ceneva, 1980.

[16] "DACOM 6450 Conputerfax Transceiver Oper at or
I nstructions", DACOM Mar. 1977.

[17] "AED 6200LP Fl oppy Di sk Storage Systent', Techni cal
Manual , 105499-01A, Advanced El ectroni cs Design,
Inc. Feb. 1977.

[18] "The User Manual for Ginnelll Colour Display".

[19] D R Wber, "An Adaptive Run Length Encoding
Al gorithm', |CC 75.

[20] R Braden and P. L. Higginson, "Clean and Sinple
Interface under MOS', |NDRA Note No. 1054, Feb.
1981.

[21] L. G Roberts et al, "The ARPA Conputer Network",
Comput er Contruni cation Networks, Prentice Hall,
Engl ewood, pp485-500, 1973.

[22] I. M Jacobs et al: "GCeneral Purpose Satellite
Net wor k", Proc. | EEE, Vol . 66, No. 11,
ppl448- 1467, 1978.

[23] J. W Burren et al, "Design fo an SRC NERC
Comput er Net wor k", RL 77-0371A, Rut herford

Laboratory, 1977.

[24] P. T. F. Kelly, "Non-Voice Network Services -
Future Pl ans", Proc. Conf . Busi ness
Tel ecommuni cati ons, Online, pp62-82, 1980.

[25] P. T. Kirstein, "UK-US Collaborative Computing",
| NDRA Note No. 972, Aug. 1980.

[26] "A Network Independent Transport Service", PSS
User Forum Study Goup 3, British Telecom
London, 1980.

[27] CCTT, Recommendation X3, X25, X28 and X29 on
Packet Swi tched Data Services", Geneva 1978.

[28] "DoD Standard Transmi ssion Control Protocol",
RFC761, Information Sciences |Inst., Marina del

UCL FACSI M LE SYSTEM | NDRA Note 1185
Rey, 1979.

[29] "DoD Standard | nt er net Prot ocol ", RFC760,
Informati on Sciences Inst., Marina del Rey, 1979.

[30] P. L. Higginson, "The Orgainisation of the Current
| PCS Systeni, |INDRA Note No. 1163, Cct. 1981.

[31] T. Chang, "Distributed Processing for LSIs under
MOS"', | NDRA Note No. 1199, Jan. 1982.

UCL FACSIM LE SYSTEM | NDRA Note 1185

Appendi x |: Devices

AED62(DEV) AED62(DEV)

NANVE

aed62 - double density floppy disk

SYNOPSI S

DCT aed62
setdct ("aed62", 0170, 0170450, 0170450,
aedi ni, aedsio, aedint, 0);

DESCRI PTI ON

The Doubl e Density disks contain 77 tracks nunbered from O
to 76. There are 16 sectors (sonetinmes called bl ocks) per
track, for a total of 1232 sectors on each side of the disk

These are nunbered 0 to 1231. Each sector contains 512
bytes, for a total of 630,784 bytes on each side of the

fl oppy.

Only one side of the floppy can be accessed at a tinme. There
is only one head per drive, and it is |ocated on the under-
side of the disk. To access the other side, the disk nust be
manual |y renoved and inserted the other way up

Each block is actually two bl ocks on the disk: an adddress
ID block and the data block. The address ID block is used
by the hardware and contains the track nunber, the block
nunber and the size of the data block that follows. Wen an
operation is to take place, the seek nechanismfirst |ocates
the block by reading the address ID blocks and literally
"hunting’ for the correct one. It will hunt for up to 2
seconds before reporting a failure.

Both the address ID and the data blocks are followed by a
checksumword that is maintained by the hardware and i s hid-
den fromthe user. On witing, the checksum is calculated
and appended to the block. On reading it is verified (both
on reading the I D and data bl ocks) and any error is reported
as a Data Check. No checking on the data bl ock takes pl ace
on a wite, and the hardware has no idea if it was witten
correctly. The only way to verify it is toread it.

Al though there are two drives in the unit, they cannot be
used sinultaneously. If an operation is in progress on one,
no access can be nade to the other until the first operation
is conplete. The driver will queue requests for both drives
however, and ensure that are perforned in order.

The MOS driver is called aed62.0bj. It operates on the fol-
lowing IORB entries:

AED62(DEV)

irfnc

i rusr

i rusr

i ruva

irbr

AED62(DEV)

The operation to be perforned, as follows:

- Read

- Wite
- Verify
- Seek

WN PO

Read and Wite cause data to be transferred to and from
disk. Verify does a hardware read w thout transferring
the data to nenory and is used for verifying that the
data can be successfully read. The checksum at the end
of the Dblock of each sector is verified by the
hardware. The seek command is used to nove the disk
heads to a specified track

1

The drive nunber. Only Zero or One is accepted. This is
mat ched against the nunber dialed on the drive. If the
nunber is specified on both drives, or neither, a
hardware error will be report ed.

2

The Sector or Block Nunber. Must be in the range 0 to
1231 inclusive. irusr2 specifies the block nunber that
the transfer is to begin at for Read and Wite, the be-
ginning of the wverified area for the Verify comrand,
and the position of the head for the Seek comand. In
the latter case the head wll be positioned to the
track that contains the bl ock

This specifies the data adress, which nust be even
(word boundary). If an odd address is given, the | ow
order bit is set to zero to make it even. Not required
for the Seek or Verify comuands.

Transfer length as a positive nunber of bytes. Not re-
quired for the seek command, bit IS used by Verify com
mand so that the correct nunber of blocks may be veri-
fied. The disk is only capable of transferring an even
nunber of bytes. If an odd length is given the | ow ord-
er bit is nade zero to reduce the length to the | ower
even value. The length is NOT restricted to the sector
size of 512 bytes. If the Iength is greater than 512,
successi ve bl ocks are read/witten until the required
transfer

AED62(DEV) AED62(DEV)

| ength has been satisfied. If the length is not an ex-
act nmultiple of 512 bytes, only the specified | ength
will be read/witten. Note that the hardware always
reads and wites a conplete sector, so specifying a
shorter length on a read will cause the renminder of
the block to be skipped. On a wite, the hardware wil|
repeat the last specified word wuntil the sector is
full.

The driver will attenpt to recover from all soft errors.
There is no automatic wite/read verify as on nag tapes, so
that data that is incorrectly witten will not be detected
as such until a read is attenpted. For this reason, the ver-
ify feature can be used (see above) to force the checking of
witten data. Wien an error is detected while perfornming a
read, the offending block will be re-read up to 16 tinmes and
disk resets wll be attenpted during this tine too. If al
fails a hardware error indication is returned to the user.
O her errors possible are Protection Error (attenpt to wite
to a read-only disk) and User Error, which indicates that
the paraneters in the IORB were incorrect. Errors such as
there being no disk | oaded, or the drive door being open are
NOT detectable by the program The interface sees these as
Seek Errors (i.e. soft errors), and thus the driver will re-
try several tinmes before returning a Hardware Error indica-
tion to the user. It should be noted that error recovery can
take a long tine. As nentioned above, there is a 2 second
del ay before a seek error is reported by the hardware, for
i nst ance.

GRI NNELL(DEV) GRI NNELL(DEV)

NAME
grinnell - colour display
SYNOPSI S
DCT gr ndout
setdct ("grndout", 03000, 0172520, 0172522
grnoi, grnot, grnoti, &grndin);
DCT grndin
setdct ("grndin", 03000, 0172524, 0172526,
grnoi, grnot, grnoti, &grndout);
DESCRI PTI ON
The Ginnell colour display has a screen of 512x512 pels.

Three colours (red, green and blue) can be used, but no grey

scale is supported. Three graphics nodes are avail able.
These are:
(1) Al phanuneric: The input ASCI| characters are displayed
at the selected positions on the screen.
(2) Gaphic: Basic geonetric elenents, such as line and
rectangl e, are drawn by nmeans of graphics conmands.
(3) Image: The input data is interpreted as bit patterns,

the correspondi ng i mages being illustrated.

The val ues used to construct commands are described in the

Ginnell User Manual. They are also |isted bel ow.
#define LDC 0100000 /* Load Display Channels */
#define LSM 0010000 /* Load Subchannel Mask */
#defi ne RED 0000010 Read Subchannel */

#defi ne GREEN 0000020 /* Green subchannel */
#defi ne BLUE 0000040 /* Blue subchannel */
#define WD 0000000 /* Wite Inmage Data */
#defi ne WaD 0020000 /* Wite Graphic Data */
#define WAC 0022000 /* Wite Al phanuntCh */
#define LVWM 0024000 /* Load Wite Mdde */
#defi ne REVERSE 0200 /* Reverse Background */
#defi ne ADDI TI VE 0100 /* Additive (not Replace) */
#defi ne ZEROARI TE 040 [* Dark Wite */

#defi ne VECTOR 020 * Select Vector Gaph */
#defi ne DBLEHI TE 010 /* Double Height wite */
#defi ne DBLEW DTH 004 /* Double Wdth wite */
#defi ne CURSORAB 002 /* Cursor (LatLb, Ea+Eb) */

GRI NNELL(DEV)

#defi ne CURSORON 001
#define LUM 0026000
#defi ne Ec 001
#defi ne Ea_Eb 002
#defi ne Ea_Ec 003
#defi ne Lc 004
#defi ne La Lb 010
#defi ne La_Lc 014
#defi ne SRCL_HQVE 020
#defi ne SRCL_DOMN 040
#defi ne SCRL_UP 060
#define ERS 0030000
#define ERL 0032000
#define SLU 0034000
#defi ne SCRL_ZAP 0100
#defi ne EGW 0036000
#define LER 0040000
#define LEA 0044000
#define LEB 0050000
#define LEC 0054000
#define LLR 0060000
#define LLA 0064000
#define LLB 0070000
#define LLC 0074000
#defi ne LGW 02000
#defi ne NOP 0110000
#define SPD 0120000
#define LPA 0130000
#define LPR 0140000
#define LPD 0150000
#define RPD 0160000
#defi ne MEMRB 00400
#defi ne DATA 01000
#defi ne ALPHA 06000
#defi ne GRAPH 04000
#defi ne | MAGE 02000
#defi ne LTHENH 01000
#defi ne DROPBYTE 0400
#define | NTERR 02000
#define TEST 04000

The MOS driver
lowing IORB entri es.

i ruva

This is a pointer to
st or ed.

/*

~ ~

is called grin.

GRI NNELL(DEV)

Cursor On */

Load Update Mode */

Load Ea with Ec */

Load Ea with Ea + Eb */
load Ea with Ea + Ec */
Load La with Lc */

Load La with La + Lb */
Load La with La + Lc */
Scroll dsiplay to HOVE */
Scroll down one |ine */
Scroll up one line */

Er ase */

Erase Line */

Speci al Location Update */
unlinmted scroll speed */
Execute Graphic Wite */
Load Ea relative */

Load Ea */

Load Eb */

Load Ec */

Load La Relative */

Load La */

Load Lb */

Load Lc */

performwite */
No- Qperati on */

Devi ce */
Addr ess */
Regi ster */
Data */

Data */

Sel ect Speci al
Load Peri phera
Load Peri phera
Load Peri phera
ReadBack Peri phera

* SPD - Menory Read-Back */

* SPD - Byte Unpacking */

* LPR - Al phanuneric data */

* LPR - Graphic data */

* LPR - Inage data */

* take o byte then hi byte */

* drop last byte */

* SPD - Interrupt Enable */

* SPD - Diagnostic Test */
obj. It operates on the

the buffer where the data

f ol -

is

GRI NNELL(DEV) GRI NNELL(DEV)

This data must be ready forntatted for the Ginnell
since no conversion is performed by the driver.

irbr
This transfer length as a positive nunber of bytes.

Addressing the grinnell. Rows consist of elnments nunbered O

to 511 running left to right. The lines are nunmber fromO to

511 running frombottomto top. It is thus addressed as a

conventional X-Y coordinate system Note that this coordi-
e systemis different the one used for the inage.

X A
I
I (511, 511)
1 +
I I
I I
I I
I I
I (X, y) I
I + I
I I
I I
I I
I I
I I
o mm e e e e e e e e e e eaao - +----- >
0 511 Y
SEE ALSO

grinnel | (fax)

DACOM DEV) DACOM DEV)

NAME
dacom - facsim | e machine
SYNOPSI S

DCT f axi nput

setdct ("faxin", 0350, 0174750, 0174740,
faxii, faxin, faxini, &faxoutput);

DCT f axout put

setdct ("faxout", 0354, 0174752, 0174742
faxoi, faxot, faxoti, &faxinput);

DESCRI PTI ON

The DACOM facsim|le machine can read a document, creating
the corresponding image data bl ocks. It can al so accept the
data of relevant format, printing the correpondi ng inmage.

Each data bl ock consists of 585 bits, and is stored in a
block of 74 bytes starting on a byte boundary. The final 7
bits of the last byte are not used and they are undefined.
The 585 bits in each block need to be read as a bit stream
the bits in each byte run fromthe high orger end of the
byte to the |Iow order end. The last 12 bits of the 585 bits
in each bl ock consistute the CRC field whereby the bl ock can
be val i dat ed.

There are two kinds of blocks: SETUP bl ocks and DATA bl ocks.
The first of block of an image data file should be a single
SETUP bl ock. Al following blocks in the file nust be DATA
bl ocks. Note that the second bl ock is a DATA bl ock that con-
tains ZERO sanples, i.e. a dummy data bl ocks. Formthe third
bl ock, the DATA bl ocks store the reall inage data.

A standard dacom page contai ns about 1200 scan |ines, each
of which has 1726 pels. One can choose

UCL FACSIM LE SYSTEM | NDRA Note 1185

Appendi x Il1: Task Controller and Task Processes

CCl TT(FAX) CCl TT(FAX)

NAVE

ccitt - conversion between vector and CCITT T4 for nat
SYNOPSI S

ccitt() - a MXS task

command string (task name is defined as ccitt):
ccitt"<function>

DESCRI PTI ON

This routine operates as a MOS pipe task to convert the vec-
tors to CCITT T4 format or inversely.

The paraneter function specifies what the task is to do.
val ue function

lc one- di nensi onal conpression
1d one- di nensi onal deconpression

2c[<k>] t wo- di mensi onal conpressi on
2d t wo- di mensi onal deconpressi on

Note k is the maxi mun nunber of lines to be coded two-
dinensionally before a one-dinensionally coded line is in-
serted. If kis omtted, the default value 2 is adopted.

SEE ALSO

vector(fax), t4(fax), fitter(fax)

CHECK(FAX) CHECK(FAX)

NAME

check - check the validity of a vector file.
SYNOPSI S

check() - a MOXS task

command string (the task nane is defined as check):
check" <functi on>, <wi dt h>, <hei ght >, [<f r onP, <t 0>]

DESCRI PTI ON

This routine operates as a MOS pipe task checking the wvali-
dity of the input vector file.

The nunber of lines to be checked is specified by the param
eter height. If the height of the image is |less than the
paraneter, the actual height is printed. Thus, one can set
the paranmeter height to a big nunber in order to count the
nunber of |ines of the input inmage.

The run lengths in each of these Iines are accumulated and
the sumis conpared with the paraneter w dth.

These are the basic functions which are perforned whenever
the task is invoked. However, there are several options one
can choose by setting the one-character paranmeter function

val ue function
n’ basi ¢ function only
"¢’ print the count of each line
" print all lines
s’ print the lines in the interva

specified by paranmeter fromand to
DI AGNOSTI CS

A bad line will be reported and it will cause the job abort-
ed.

SEE ALSO

vector(fax), getl(fax), fitter(fax)

CHOP(FAX) CHOP(FAX)

NAME

chop - extract a designated rectangul ar area froman i mage
SYNOPSI S

chop() - a MOS task

command string (task name is defined as chop):
chop" <x0>, <y0>, <x1>, <y1>

DESCRI PTI ON
This routine operates as a MOS pi pe task extracting a desig-
nated rectangular area froman input imge. Input and out-
put are image data files in the form of vectors.

The followi ng diagram shows the coordinate system being
used. Note that the lengths are neasured in nunber of pels.

(0, 0 wdth X
o e e e e e e Fo-m >
I I
I I
I (x0, y0) I
I Ho--e oo + I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I AR + I
I (x1, y1) I
I I
I I
I I
I I
height +----------mmiiia oo +
I
I
Y V

As can be seen in the diagram the rectangular area to be
extracted is specified by the paranmeters x0, x1, y0, yl1,
whi ch are decimal strings.

BUGS

One has to neke sure that

CHOP(FAX) CHOP(FAX)

0 < x0 <wdth
0 < y0 < height
0 < x1 <wdth
0 < yl1 < height

SEE ALSO

vector(fax), getl(fax), putl(fax), fitter(fax)

CLEAN(FAX) CLEAN(FAX)

NAME

clean - clean an inmage.
SYNOPSI S

clean() - a MOXS task

command string (task name is defined as clean):
cl ean" <wi dt h>, <hei ght >

DESCRI PTI ON
This routine operates as a MOS pipe task cleaning an inage
by neans of mask scanning. Input and output are inmage data
files in the formof vectors.
The wi dt h and hei ght shoul d be given as the paraneters.

SEE ALSO

vector(fax), getl(fax), putl(fax), fitter(fax)

DECOVP(FAX) DECOMP(FAX)

NAME

deconp - deconpress DACOM bl ocks
SYNOPSI S

deconmp() - a MOS task

conmand string (task name is defined as deconp):
deconp

DESCRI PTI ON
This task takes DACOM bl ocks fromthe Clean and Sinple in-
terface, and deconpresses theminto vector format. Then it
wites the vectors to the Cean and Sinple interface.

SEE ALSO

dacon(dev), vector(fax), fitter(fax)

FAX(FAX) FAX(FAX)

NANVE

fax - interface process for DACOM facsim | e machine

SYNOPSI S
fax() - a MOS task

command string (task name is defined as fax):
fax"<function>

DESCRI PTI ON

This task uses the Clean and Sinple interface to read or
wite facsinle inage data.

The one character paraneter function specifies whether the
data is to be read or witten. Character wis for witing.
In this case, 74 byte DACOM blocks contaning correct CRC
fields are expected. On the other hand, character r is for
reading. In this case, a docunent is read on the facsimle
machi ne, the DACOM bl ocks bei ng creat ed.

SEE ALSO

dacon(dev), fitter(fax)

FI TTER(FAX) FI TTER(FAX)

NAME

fitter - fit processes together to forma data pipe
SYNOPSI S

fitter() - the MOS task controller
DESCRI PTI ON

According to the command string typed on the console, fitter
links the specified processes together to forma task chain.
The nanme of the processes is the nanme given in the PCB. The
processes nust conmuni cate using the C+S interface. Only one
C+S interface is opened per process - data is pushed in with
a cswite and pulled out with a csread. The fitter does not
i nspect the data in any way but nerely passes it from one
process to anot her.

The format of command string is:
A| B| C

The fitter takes data fromthe process called A, wite it to
the process called B, reads data fromthe process B and
wite that data to the process C. Note that all middle
processes are both read and witten, while the first one in
the list is only read fromand the last in the list is only
witten to.

A double quote is used as the separator between the task
nane and the open paraneter string, e.g.

A'500 | B"'n,xyz | C
where the strings '500° and 'n,xyz’ are the open paraneter
stings for tasks A and B, respectively. The paraneter
stirng is passed to the corresponding task routi ne when the
csopen call returns.
DI AGNOSTI CS

The command string containing undefined task will be reject-
ed.

SEE ALSO

csinit(fax), csopen(fax), csread(fax), cswite(fax)

FS(FAX) FS(FAX)

NAME

fs - file systemfor use under MOS
SYNOPSI S

fs() - a MXS task

command string (task name is defined as fs):
fs"<funciton>, <fil e_nanme>

DESCRI PTI ON

This is a file system based on the Double Density floppy
di sk, for use under MOS. The fs task is used for nanipul ate
the files, nmanaged by the file system This task can only
appear at the first or last position on a conmand string. In
the forner case, the file specified is to be read, while the
file is to be witten in the latter case.

The <function> field contains only one character indicating
the function to be performed. The possible val ues are:

e - open an existing file (for reading).

c - open an existing file, and set the | ength
to zero (for rewiting).

a - append to an existing file.

If the capitals A, C, and E are used, the functions are the
same as descri bed above but the specified file is created if
it does not exist.

BUGS
This task is for reading and witing only. As for the other
facilities, e.g. seek, delete, status and sync, one has to
use C+S interface directly.
Note that only 15 files are permtted per disk, only drive O
is supported at present, and no hierarchical directory is
al | owed.

SEE ALSO

aed62(dev), fitter(fax)

FTP(FAX) FTP(FAX)

NAME

ftp, pftp - NI FTP task processes
SYNOPSI S

ftp(), pftp() - MXS tasks

conmand string (task name is defined as ftp):
ftp"<function>, <code>, <user _nane>, <passwor d>, <fil e_nane>;
<trasport_servi ce_process>: <transport_servi ce_paraneters>

DESCRI PTI ON

These tasks are inplenentation of Network |ndependent File
Transfer Protocol (NIFTP) for LSIs under MOS. They enploy a
transport service for conmunication with a renote host on
the network, where the same protocol nust be supported. They
comuni cate with the user process and transport service
processes thourgh the Cean and Sinple interface, so that
they can be used in a fitter command chain directly.

The code is available in two versions: ftp which is a P+Q
version supporting both server and intitiator and pftp which
is a P version working only as an initiator. Both of them
are capabl e of sending and receiving.

This inplementation of NIFTP is just a subset of the proto-
col as its nmain purpose is to provided the facsinile system
with a data transm ssion nmechanism For the sake of sinpli-
city, only the necessary facilities are included in the
nodul e, while nore conplex facilities, such as data conpres-
sion and error recovery are not inplenented. The follow ng
table shows the transfer control paranmeters being used.

Attribute Val ue Mbd. Remar ks

Mode of access 0001 EQ Creating a newfile
8002 EQ Retrieving file

- - Text file, any parity
1002 EQ Binary file

Format effector 0000 EQ No interpretation

Bi nary mapping 0008 EQ Default byte size

Max record size OOFC EQ Default record size
Transfer size 0400 LE Default transfer size
Facilities 0000 EQ M nimum service

Codes

The meani ngs of the paraneters in the comand string are
listed bel ow

function is the NIFTP function of our site. Any ASCI| string
begi nni ng

FTP(FAX) FTP(FAX)

beginning with "t’ neans the file is to be transmtted to
the renote site. Oherwise, the file will be retrieved from
the renote site.

code specifies the type of the file to be transferred. Any
ASCI| string beginning with 'b’ nmeans it is a binary file,
while others nean text file.

user_nane is the login nane of the server site.

password is the password of the server site.

file_nane is the name of the file to be transmtted.

transport_service_process is the process nane of the tran-
sport service to be used.

transport_service_paraneters are the paraneter string re-
quired by the transport service. They are network dependent
and specified by the correspondi ng transport service.

SEE ALSO

fitter(fax)

GRI NNELL(FAX) GRI NNELL(FAX)

NAME
grinnell - task to convert and display fax vector data
SYNOPSI S
grinnell () - a MOS task
conmand string (task name is defined as string):
grinnel | "<x0>, <y0>, <x1>, <y1>, <npde>, <col our >
DESCRI PTI ON

This task takes the vector data froma Cean and Sinple in-
terface and displays it on the Grinnell screen. The Grinnell
screen is viewed as an X-Y plane with (0,0) being the |ower
left hand corner, (512, O0) being the Ilower right hand
corner, etc.

The paraneters x0, y0, x1, yl are decimal strings defining
t he rectangul ar space on the screen where the image is to be
di splayed. If the inmage is smaller than this area, it is ar-
tificially expanded to the size of this area. If the image
is larger than this area it is truncated to the size of the
ar ea.

The colour field consists of any conbi nation of the charac-
ters r,g or b to define the colours red, green and bl ue
respectively. For instance "gb" would wite the inmage as
yel | ow.

The node defines how the inmage is to be displayed. Any com
bination of the characters r,a and z may be used, to the
follow ng effect:

r
a
V4

reverse i mage
addi tive inmage
zerowite inmage.

There are three bit planes to define the three colours. Nor-
mally the bit planes corresponding to the selected col ours
have either zero bits or one bits witten to them depending
upon whether the imge or the background is being witten.
For zerowite, all non-selected bit planes (i.e. col our s)
are always set to zero, thus erasing any unsel ected col ours
in the area. Additive node neans that in the selected col our
planes the new bits are ORed in, rather than just witten

Thus the inmage is added to. In reverse node, the imge wit-
ten as one bits is witten as zero bits and the bits witten
as zero bits are witten as one bits, i.e. the bits are
flipped before being used.

GRI NNELL(FAX) GRI NNELL(FAX)

SEE ALSO

grinnell (dev), vector(fax), fitter(fax)

MERGE(FAX) MERGE(FAX)

NAME

nmerge - nerge two i nages together
SYNOPSI S

merge() - a MOS task

conmand string (task name is defined as nerge):
nmer ge"<fil e_nanme>, <acti on>, <x0>, <y0>, <x1>, <yl1>

DESCRI PTI ON

This routine operates as a MOS pipe task nerging two inmages
together to formthe result image. Input and output are im
age data files in the formof vectors.

One of the two input images is called background which is to
be copied directly. This is specified by the paraneter
file_nane. The inmage data of the back ground is read via a

"tunnel’, rmaintained by this task. Another input inmage is
taken formthe Cean and Sinple interface managed by the
fitter. As shown in the follow ng diagram the position

where it is to be put on the background inmage is specified
by the paranmeters x0, y0, x1, yl, which are decinmal strings.
This inplies that the dinension of the image is x1 - x0 and

yl -yO0.
(0, 0 width X
o e e e e e e Fo-m >
I I
I (x0, yO0) I
I Hoomom - + I
I I I I
I I I I
I I I I
I I I I
I I I I
I LR + I
I (x1, yl1) I
I I
I I
| (back ground) |
height +----------mmiiia oo +
I
I
Y V

The parameter action indicates how the two inmages are
merged. If it set to O, The second inmage is sinply overlaid
on the back ground inage. On the other hand any non-zero
val ue

MERGE(FAX) MERGE(FAX)

causes the second inmage to replace the specified area of the
back ground i mage.

BUGS
One has to nake sure that

wi dt h_of back_ground
hei ght _of _back_gr ound
wi dt h_of back_ground
hei ght _of _back_gr ound

[eNeoloNe]
NNNAN
<
o
NNNAN

In addition, x0, y0, x1, yl nust be consistent with the di-
nmensi on of the imge

SEE ALSO

vector(fax), getl(fax), putl(fax), chop(fax), fitter(fax)

OD(FAX) OD(FAX)

NAME

od - dunp the input data
SYNOPSI S

od() - a MOS task

command string (task name is defined as od):
od" <f or mat >

DESCRI PTI ON
This routine operates as a MOS pi pe task dunping the input
data in a selected format. The input data is taken fromthe
Clean and Sinple interface.

The neani ngs of the one character paraneter format are:

val ue f or mat
d’ words in decim
"o’ words in octal
"¢’ bytes in ASCI
b’ bytes in octal

SEE ALSO

fitter(fax)

RECOVP(FAX) RECOVP(FAX)

NAME

reconp - conpress the vectors to formthe DACOM bl ocks
SYNOPSI S

reconp() - a MOS task

conmand string (task name is defined as reconp):
reconp

DESCRI PTI ON
This task takes vectors fromthe Cean and Sinple interface,
and reconpresses theminto DACOM bl ocks. Then it wites the
bl ocks to the Cean and Sinple interface.

SEE ALSO

dacon(dev), vector(fax), fitter(fax)

SCALE(FAX) SCALE(FAX)

NAME

scale - scale an inage to a specified di nension
SYNOPSI S

scale() - a MXS task

command string (task name is defined as scal e):
scal e" <ol d_wi dt h>, <ol d_hei ght >, <new_wi dt h>, <new_hei ght >

DESCRI PTI ON

This routine operates as a MOS pipe task scaling the input
imge to the specified dinmension. Input and output are im
age data files in the formof vectors.

The dinmension of the input inmage is given by the paraneters
old_width and old_height, while the dinension of the output
is specified by the parameters new_w dt h and new_hei ght.

SEE ALSO

vector(fax), getl(fax), putl(fax), fitter(fax)

STRI NG(FAX) STRI NG(FAX)

NAME

string - convert an ASCI| string to the vector fornmat
SYNOPSI S

string() - a MOS task

conmand string (task name is defined as string):
string"<s>

DESCRI PTI ON

This routine operates as a MXS pipe task converting the
paranmeter string s to the correspondi ng vectors.

SEE ALSO

vector(fax), ts(fax)

TF(FAX) TF(FAX)

NANVE

tf - convert a text to the vector format.

SYNOPSI S

tf() - a MOS task

command string (task name is defined as tf):
tf"<wi dt h>, <li ne_sp>, <upper>, <l eft>

DESCRI PTI ON

This routine operates as a MOS pi pe task converting the in-
put text to the corresponding vectors. The input text, taken
fromthe Clean and Sinple interface should be in the format
defined in text(fax).

| eft i9,0.9,0,9,0,9,0,9,9,9.4

As shown in the diagram the paraneters give the infornmation
for the formating. The paraneter width is the maxi mum wi dth
of the text Iines.

Every vector will be padded to fit this wdth. Wite pels
may be padded to the left of each vectors, and the nunber of
pel to be padded is specified by the paraneter left.

Empty lines may al so be inserted. They are defined by param

eters upper and line_sp, the nunber of pels being used as
the unit.
SEE ALSO

vector(fax), text(fax), ts(fax), fitter(fax)

UCL FACSIM LE SYSTEM | NDRA Note 1185

Appendix Il1l1: Wility Routines and Data Fornats

Bl TMAP(FAX) Bl TMAP(FAX)

NANVE

bitmap - convert vector format to core bit nmap

SYNOPSI S

int bitmap(ivec, cnt, buff);

int *ivec;

int cnt;

char *buff;
DESCRI PTI ON

Bi tmap converts the fax vector format into a bit map, using
each bit of the area pointed to by buff. The nunber of ele-
ments in ivec is given by cnt, and the first elenent of ivec
is taken as a white pel count, the second as a bl ack pel
count, etc. The resultant bit map is placed in the area
pointed to by buff. The actual nunber of bits stored is re-
turned fromthe function. The bits in buff are stored in
byte order, with the highest value bit of the byte taken as
the first bit of the byte.

BUGS
You have to nmake sure that buff is big enough for all the
bits.

SEE ALSO

vector (fax), tovec(fax)

TOVEC(FAX) TOVEC(FAX)

NAVE
tovec - convert bitmap to vector format
SYNOPSI S

int *tovec(buff, nbits);

char *buff;
int nbits;
DESCRI PTI ON

The bitmap in the buffer pointed to by buff is converted to
vector format. The length of the bitmap in bits is passed in
nbits. As the caller would normally not know how many vec-
tor elenents are going to be needed, the tovec routine allo-
cates this area for the user

Buff is assumed to be organised in byte order wth the
hi ghest value bit of each byte being the first bit of the
byte. The counts of white and bl ack pels are placed into an
integer vector, the first element of which is the |ength of
the rest of the vector. The vector information proper starts
in the second elenment which is the count of the nunber of
| eading white pels. This is followed by the count of the
nunbr of black pels, etc.

The routine goes to great |lengths to nake sure only enough
vector storage is allocated. Tenporary storage is allocated
in small chunks and then, when the length of the whole vec-
tor is known, the chunks are contacenated into a conti guous
vector. The pointer to this vector is returned to the user.

SEE ALSO

vector (fax), bitmap(fax)

CHO CE(FAX) CHO CE(FAX)

NANVE

choice - specify a rectangular area on Ginnel

SYNOPSI S

struct square {
int x0, yO
int x1, yl;

b

struct square *choice(colour, height, width, area, fw, fh)

char col our;
int height, width, area, fw, fh;

DESCRI PTI ON

This subroutine is called by a MOS task. to specify a rec-
tangular area of an inage by mani pulating a square on the
Ginnel display being illustrating the image. The dinmension
of the original inage is defined as height and width. The
area on which the original imge is shown is specified by
t he paraneter area.

val ue ar ea di mensi on coor di nat es
0 t he whol e screen 512x512 0,511,511,0
1 the left half 256x512 0, 511, 255, 0
2 the right half 256x512 256, 511, 511, 0
The square will be drwan in a colour defined by the parane-

ter colour, which can only be:

val ue col our

r’ red
g’ green
"b’ bl ue

There are two nodes bei ng supported:

(1) Fixed: The square will have a fixed dinension specified
by the paranmeters fw and fh. The operator can nove the
square around as a whole within the predeternined area
by wusing follow ng conmands, each of which is invoked
by typing the correspondi ng characer on the keyboard of
the system consol e.

CHO CE(FAX) CHO CE(FAX)

command function

u’ nove the square up one step

d’ nmove the square down one step

" nmove the square one step |eft

r’ nmove the square one step right

f move fast - set the step to 8 pel
0 nove slowy - set the step to 1 pe
<CR> ok - the area has been chosen, and
return its coordi nates

(2) Arbitrary: This node is set up when the subroutine is
called with the paraneters fwand fh set to 0. Any
edge of the square can be selected to be noved on its
own by wusing the sanme commands descri bed above. The
foll owm ng conmands are required to select the relevant
edge as well as switching the operation node.

command function

D

select the right (' east’) edge.

"W select the left ('west’) edge.
n’ sel ect the upper ('north’) edge.
s’ sel ect the lower (’'south’) edge.
'a’ nmove the square as a whol e

As soon as the user types <CR>, the coordinates of the
current square, which are accommopdated in a square struc-
ture, are returned. Note these are concerned with the coor-
dinate system defined for the inmage but not for the grin-
nel | .

BUGS
Currently, only three working areas can be used.
SEE ALSO

vector(fax), grinnell(dev), grinnell(fax)

CRC(FAX) CRC(FAX)

NAME

crc - calculate or check the DACOM CRC code
SYNOPSI S

int crc(buff, insert);

char *buff;
int insert;

DESCRI PTI ON

This routine will check/insert the 12-bit CRC code for a
DACOM bl ock, pointed to by buff. The block contains 585
bits, the last 12 bits being the CRC code. The block is
checked only when the paraneter insert is set to 0, other-
wise the CRC code is created and inserted into the block

When the bl ock is checked, the routine returns the result: 0
means OK and any non-zero val ue neans the block is bad. On
the other hand, when the CRC code is inserted, the routine
returns the CRC code it has created.

This routine uses a tabular approach to deternmine the CRC
code, processing a whole byte at a tine and resulting in a
hi gh t hroughput.

BUGS

Do not forget to supply enough space when the 12-bit CRC
code is to be inserted.

SEE ALSO

dacon{ dev)

CSI NI T(FAX) CSI NI T(FAX)

NAME

csinit - initiate the Cean and Sinple interface
SYNOPSI S

int csinit();
DESCRI PTI ON

This routine is called to initiate the Clean and Sinple in-
terface for the calling process. |Its code is re-entrant, so
that only one copy is needed for all processes in a system

This routine returns the task identifier, which nust be used
on all subsequent interface calls.

SEE ALSO

csopen(fax), csread(fax), cswite(fax), fitter(fax)

CSOPEN(FAX) CSOPEN(FAX)

NAME
csopen - establish the C ean and Sinple connection

SYNOPSI S
char *csopen(tid);
int tid;

DESCRI PTI ON
A process calls this routine, waiting to be schedul ed. Its
code is re-entrant, so that only one copy is needed for al
processes in a system
The task identifier tidis the word returned fromthe csinit
call. Wien the fitter process has established the O ean and
Si npl e connection for the process, this routine returns the
pointer to the paranmeter string of the correspondi ng task
conmand.

SEE ALSO

csinit(fax), csread(fax), cswite(fax), fitter(fax)

CSREAD(FAX) CSREAD(FAX)

NANVE

csread - read data fromthe Cean and Sinple interface
SYNOPSI S

char *csread(tid, need);

int tid, need;
DESCRI PTI ON

This routine is called to read data fromthe Cean and Sim
ple interface. Its code is re-entrant, so that only one copy
is needed for all processes in a system

The task identifier tid is the word returned fromthe csinit
call. The need paraneter indicates the nunber of bytes that
are required. This routine returns a pointer to a buffer
with this much data in it. This is usually nore efficient as
it means that the data does not have to be rebl ocked.

DI AGNCSTI CS

If the returned value is 0, the end of data is reached.

BUGS

Funni es happen at the end of data to be read. The csread()
call has no way of saying that the final buffer is partly
filled. Thus if you ask for nore data, you hang forever.
But if the data structures are working correctly, this
shoul d never happen

SEE ALSO

csinit(fax), cswite(fax), fitter(fax)

CSVRI TE(FAX) CSVRI TE(FAX)

NAME

cswite - wite data to the Cean and Sinple interface
SYNOPSI S

char *cswite(tid, need);

int tid, need;
DESCRI PTI ON

This routine is call to wite data to the Clean and Sinple
interface. |Its code is re-entrant, so that only one copy is
needed for all processes in a system

The task identifier tidis the word returned fromthe csinit
call. The need paraneter indicates the nunber of bytes that
are to be witten. This routine returns a wite buffer of
the required Ilength, to which the user data can be copi ed.
The subsequent cswite() <call automatically releases the
previous wite buffer.

The cswite() call with need set to O indicates the end of
data, closing the current C ean and Sinple connection.

BUGS

As indicated, the wite buffer nmust be filled up before the
next cswite() call.

SEE ALSO

csinit(fax), csread(fax), fitter(fax)

GETL(FAX) GETL(FAX)

NAME

getl - get a line vector fromthe Cean and Sinple interface
SYNOPSI S

int *getl(tid);

int tid, need;
DESCRI PTI ON

This routine is called to read a Iine vector fromthe Cean
and Sinple interface. Its code is re-entrant, so that only
one copy is needed for all processes in a system

The task identifier tidis the word returned fromthe csinit
call. The routine returns the pointer to the buffer where
the line vector is stored.

DI AGNOSTI CS
O will be returned when end of file is reached.

BUGS
Any nenory violation causes the whole task chain to be
aborted.

SEE ALSO

vector(fax), putl(fax), fitter(fax)

PUTL(FAX) PUTL(FAX)

NAME
putl - put a line vector to the Cean and Sinple Interface
SYNOPSI S
putl (tid, buf);
int tid, *buf;
DESCRI PTI ON
This routine is called to wite a line vector to the Cean
and Sinple interface. Its code is re-entrant, so that only

one copy is needed for all processes in a system

The task identifier tidis the word returned fromthe csinit
call. The line vector is stored in a buffer pointed by buf.

SEE ALSO

vector(fax), getl(fax), fitter(fax)

T4(FAX) T4(FAX)

NANVE

t4 - the data format defined in CCTT recommendati on T4

DESCRI PTI ON

Di nensi on and Resolution: In vertical direction the resol u-
tion is defined bel ow

St andard resol ution: 3.85 line/mm
Opti onal higher resol ution: 7.70 line/mm

In horizontal direction, the standard resolution is defined
as 1728 black and white picture elenents along the standard
line length of 215 mm Optionally, there can be 2048 or
2432 picture elenents along a scan line | ength of 255 or 303
mm respectively. The input docunments up to a mini mum of | SO
A4 size shoul d be accepted.

One- Di mrensi onal Codi ng: The one-di nensional run |ength data
conpression is acconplished by the popul ar nodified Huffnman
codi ng schene. In this schene, black and white runs are re-
placed by a base 64 codes representation. Conpression is
achi eved since the code word lengths are invertly related to
the probability of the occurrence of a particular run. A
speci al code (000000000001), known as ECL (End of Line),
follows each |line of data. This code starts the facsimle
nmessage phase, while the control phase is restored by a com
bi nation of six contiguous EOLs (RTC). The data format of a
facsinil e message i s shown bel ow.

start of the facsimle data

end of the facsimle data

\%
R T

I'EQL! DATA !'EQL! EQL! EQL! EQL! ECL! ECL!
| <------ RTC ------- >|

Two- Di nensi onal Codi ng: The two-di mensi onal coding schene is
| abeled as the Modified READ Code. It codes one line with
reference to the Iine above,correlation between adja-

cent lines allowng for nore efficient conpression. In order
tolimt the disturbed area in the event of transm ssion er-
rors,

T4(FAX) T4(FAX)

a one-dinmensionally coded line is transnmtted after one or
nore two-dinmensionally coded Ilines. A bit, follow ng the
ECL, indicates whether one- or two-dinmensional coding is
used for the next line:

ECL1: one-di nensional coding;
EOLO: two-di nensi onal coding.

start of the facsimle data

Fom e e e oo Fom e e e oo +-/

Fom e e e oo Fom e e e oo +-/

end of the facsimle data

\Y

| <--------- RTC --------- >|

TEXT(FAX) TEXT(FAX)

NANVE

text - the text format for use in the facsimle system

DESCRI PTI ON

This is the representation structure for coded character
text. It is used in the facsinile system

The text structure consists of a series of character
strings, each of which represents a text Iine. However no
control characters, e.g. <CR> and <LF> are wused in the
structure. Each text line is proeeded by a count byte, indi-
cating the nunber of characters on the line. The character

sting follows after the the count byte. A zero count indi-
cates the end of file.

EXAMPLES

Here is an exanple text shown bel ow

This is a text.
This is a picture.

It can be represented as:
<017> T h i s <040> i s <040> a <040>t e x t

<022> T h | s <040>i s <040>a <040>p i ¢ t u
re . <0>

TS(FAX) TS(FAX)

NAME

ts - translate an ASCI| string into vector format
SYNOPSI S

ts(ar_in, left, right, tid)

char *ar_in;
int left, right, tid;

DESCRI PTI ON

This routine will convert a zero-ended ASCII string pointed
to by ar_in into the corresponding vecter format. As the
character font being used is a set of 12x20 matrices, there
will be 20 line vectors created. These vectors are witten
to the Ceans and Sinple interface by calling cswite. The
callers task identifier tid has to be provided.

At the two ends of the text |ine, blanks can be padded that
are specified as left and right. Note that they are neas-
ured in pels.

Consequently, the result should be a i mage, whose di nension
is:

wi dt h
hei ght

left + 12*length + right;
20;

where length is the nunber of characters in the input
string.

As an internediate result the bitmap is first created which
is then converted into the vector format, by calling tovec.

BUGS

The input string nust be ended with a zero field.

SEE ALSO

vect or (fax), tovec(fax), csinit(fax), cswite(fax),
fitter(fax)

VECTOR(FAX) VECTOR(FAX)

NANVE

vector - the internal data structure for a facsinile inage

DESCRI PTI ON

This is the representation structure for binary imges, a
sinple run length conpression algorithmbeing used. Mst of
the image files are kept in vector format for ease of pro-
cessi ng.

The vector format consists of a series of integer vectors,
one vector for each row of pels in the i mage. Each vector is
proceeded by a count word which indicates the nunber of in-
teger words in the vector. The next elenment of the vector
after the count field is the nunber of white pels in the
first run of the |line. The second word then gives the
nunber of pels that followthe initial white run, and so on
t the end of the vector. Note the first run length el enent
must refer to a white run. It should be set to 0 if the
first run is black

EXAMPLES

A line consists of 20 pels as foll ows:
000111121211021100000

It can be represented as:
5 3, 8 1, 3, 5

The inverse of the |ine:
11100000000100011111

shoul d be represented as:

6, 0, 3, 8 1, 3, 5

