Net wor k Wor ki ng Group A. Katz
Request for Comments: 798 | S
Sept enmber 1981

DECODI NG FACSI M LE DATA FROM THE RAPI COM 450
l. | nt r oducti on

This note describes the inplenentation of a program to decode
facsimle data fromthe Rapicom 450 facsinmle (fax) machine into an
ordinary bitmap. This bitmap can then be displayed on other devices
or edited and then encoded back into the Rapicom 450 format. In
order to do this, it was necessary to understand the how the
encodi ng/ decoding process works wthin the fax machine and to
duplicate that process in a program This algorithmis descibed in
an article by Weber [1] as well as in a neno by MIls [2], however,
nmore information than is presented in these papers is necessary to
successful ly decode the data.

The program was witten in L10 as a subsystem of NLS running on
TOPS20. The fax machine is interfaced to TOPS20 as a ternmninal
through a microprocessor-based interface called FAXIE

Grateful acknow edgnent is nade to Steve Treadwell of University
Col | ege, London and Jon Postel of Information Sciences Institute for
their assi stance.

1. Interface to TOPS20

The fax machine is connected to a mcroprocessor-based unit called
FAXIE, designed and built by Steve Casner and Bob Parker. Mor e

detailed information can be found in reference [3]. FAXIE is
connected to TOPS20 over a termnal line, and a programwas witten
to read data over this |line and store it in a file. The decoding

programreads the fax data fromthis file.

The data cones fromthe fax machine serially. FAXIE reads this data
into an 8-bit shift register and sends the 8-bit byte (octet) over
the ternminal line. Since the fax machine assigns MARK to logical 0's
and SPACE to logical 1's (which is backward from RS232), FAXE
conpl ements each bit in the octet. The data is sent to TOPS20 in
octets, the nost significant bit first. |If you read each octet from
nmost significant bit to least significant bit in the order FAXIE
sends the data to TOPS20, you would be reading the data in the sane
order in conmes into FAXIE fromthe fax nachine.

The standard for storing Rapicom 450 Facsinile Data is described in

RFC 769 [4]. According to this standard, each octet conming from
FAXI E nust be conplenented and inverted (i.e. invert the order of the
bits in the octet). Thus, the receiving program did this before

Alan R Katz [page 1]

DECODI NG FACSI M LE DATA RFC 798
Il. Interface to TOPS20

storing the data in a file. When the decoding program reads this
file, it must invert and conplenent each octet before reading the
dat a.

Each data block fromthe fax machine is 585 bits |ong. The end of

this data is padded with 7 0's to make 592 bits or 74 octets.
According to RFC 769, this data is stored in a file preceded by a
I ength octet and a command octet. The possible commands are:

56 (70 octal)--This is a Set-Up block (the first block of the
file, contains informati on about the fax image)

57 (71 octal)--This is a data block (the rest of the blocks in the
file except for the |ast one)

58 (72 octal)--End command (the last block of the file)
The length field tells how many octets in this block and is always 76
(114 octal) except for the END command whi ch can be 2 (no data). The
I ength and comuand octets are NOT inverted and conpl ement ed.

Bel ow i s a diagram of each block in the file:

I1l. The Rapi com 450 Encodi ng Al gorithm

An ordinary 8 1/2" by 11" docunent is made up of about 2100 scan
lines, each line has 1726 pels (picture elenments) in it. Each pel
can be either black (1) or white (0).

The Rapicom 450 has three picture quality nodes. In fine detai

node, all of the docunment is encoded. In quality node only every
other scan line is encoded and it is intended that these m ssing
lines are filled in on playback by replicating the previous Iine.

There is al so express node, where only every third line is encoded.

[page 2] Alan R Katz

RFC 798 DECODI NG FACSI M LE DATA
I11. The Rapi com 450 Encodi ng Al gorithm

Data is encoded two lines at a tine, using a special two dinensional
run-1 ength encodi ng scheme. There are 1726 pels on top and 1726 pels
on the bottom Each pair (top-bottom) of pels is called a colunmm.
For each of +the 1726 colums you can have any one of four
configurations (called states):

col um
(top-botton) pel s state
W W 0,0 0
W B 0,1 1
B-W 1,0 2
B-B 1,1 3
The encoding algorithm can be described in terns of a
non-determnistic finite-state automaton shown in Fig. 1 (after MIIs
[2]). You start out in a state (0-3) and transformto another state
by enmitting the appropriate bits narked along the arcs of the
di agram For exanple, suppose you are in state 1 (WB). To go to

state 2 (BW, you would output the bits 101 (binary); to go to state
0 (WN vyou would output the bits 1000. Note that the number of bits
on each transition is variable.

In states 0O (WN and 3 (BB), a special run length encoding schene is

used. There are two state variables associated wth each of these
st at es. One variable is a run-length counter and the other is the
field length (in bits) of this counter. Upon entry to either of

these two states, the counter is initialized to zero and is
increnented for every additional colum of the sanme state. At the
end of the run, this counter is transmtted, extending wth high

order zeros if necessary. If the count fills up the field, it is
transmtted, the field length is incremented by one, and the count
starts again. This count is called the run length word and it is

between 2 and 7 bits | ong.

For example, suppose we are in state O (WN and the run length for
this state (refered to as the white run length) is 3. Suppose there
are three O's in arow. The first 0 was encoded when we canme to this
state, there are two nmore 0's that nust be encoded. Thus we woul d
send a 010 (binary). Simlarly, if there are seven 0's in a row, we
woul d send a 110, but eight 0's would be sent by 111 foll owed by 0000
and the white run | ength becones 4. (Ten 0's would be encoded as 111
foll owed by 0010 and the white run I ength would be 4).

Alan R Katz [page 3]

RFC 798

The Rapi com 450 Encoding Al gorithm

DECODI NG FACSI M LE DATA

0100

1

I
Vv

010
101

T

1011

0

e e e e e e e e e e e 2>

run

run

Fi gure 1.

Non-determ nistic finite-state machine diagram for

RAPI COM 450

Alan R Katz

[page 4]

RFC 798 DECODI NG FACSI M LE DATA
I11. The Rapi com 450 Encodi ng Al gorithm

Run I ength word | engths nust be between 2 and 7. The field length is
decrenmented if the run is encoded in one word and:

1. If the run length is 3 and the highest order bit is O.

2. O, if therun length is 4, 5 6, or 7 and the highest order 2
bits are O.

In addition to all this, there is a special rule to followif the run
occupies at least two run words (and can involve increnenting the run
word size) and the run ends exactly at the end of a scan line. In
this case, the last word of the run is tested for decrenent as if the
previous words in the run did not exist.

An Exanpl e:

To confirm the reader’s understanding of the encodi ng procedure,
suppose we had the following portion of a docunent (1=black,

O=white):
top row 0111110000021000
bottom row. 1111100000000100
state 1333320000022100

Suppose also that the black run field length is 2, the white run
length is 3, and the state is 1. (This exanple cones from
reference [1].)
This portion would be encoded as:

1 1011 11 000 1 0100 100 1 O 010 1000 ..
NOTE: It turns out that the Rapicom 450 sends the bits of a field
in reverse order. This will be discussed in the section V.
However, since each run length field is sent reversed, the above
encoded bit pattern would actually be sent as:

1 1011 11 000 1 0100 001 1 O 010 1000 ..

N

|-this is actually 100 reversed

Alan R Katz [page 5]

DECODI NG FACSI M LE DATA RFC 798
[11. The Rapi com 450 Encodi ng Al gorithm

Anot her Exanpl e:

This exanple illustrates the rule for decrenmenting the run | ength
word | engths:

top row 011001111100
bottom r ow 111110111110
st at e: 133112333310 ..

Here, let us suppose that the black run field length is now 4, the
white is still 3, and the state is 1.

This portion would be encoded as:
1 1011 0001 1 1 101 0111 011 1 1000 ..
N N
| -goes to 3 | -blk cnt goes to 2

When we reverse the order of the run fields, the bit pattern that
is actually sent is:

1 1011 1000 1 1 101 0111 110 1 1000 ...
N
|-this is actually 0001 reversed, etc.
V. The Setup Block and the Data Header

Each data block fromthe fax machine is 585 bits long. The nunber of
blocks in a picture is variable and depends on the size and
characteristics of the picture. It should be enphasized that a bl ock
can end in the mddle of a scan I|ine of the docunent. There can in
fact be many scan lines in a bl ock.

The 585 bit data block is conposed of a 24 bit sync code which is
used to recogni ze the beginning of a block, a 37 bit header, 512 bits
of actual data, and a 12 bit CRC checksum

| 24-bit | 37-bit | 512-bit | 12-bit |
| sync code | header | dat a | checksum |

The nunber of useful data bits is variable and can be between 0 and
512 (al though there are always 512 bits there, some of themare to be
ignored). The nunber of data bits to be used is given in the header

[page 6] Alan R Katz

RFC 798 DECODI NG FACSI M LE DATA
V. The Setup Bl ock and the Data Header

The 37 bits of header is conposed of:

| 2-bit |5-bit| 10-bit | 12-bit | 3-bit | 3-bit |2-bit]
| seq nunj fl ags|data count| x position|black size|white size|state]|

An expl anation of these fields foll ows:
| MPORTANT NOTE: Most (but not all) of these fields are sent by
the fax machine in REVERSE ORDER. The order of each n-bit field
nmust be invert ed.
Sync code

This is used to synchronize on each bl ock. The val ue of this
24 bit field is 30474730 octal (not reversed).

Sequence number

Thi s nunber cycles through 0, 1, 2, 3 for the data blocks. It
is O for the Set-Up block (not reversed).

FI ags
Each of these flags are 1 bit wi de:

Run
Pur pose unknown, it always seens to be 1.

Cof b
Pur pose unknown, it always seens to be O.

Rpt
1 for Set-Up blocks (which are repeated when coming from
the fax machi ne though only one of themis transfered by
EﬁgLES.to TOPS20 and stored in the file) and O for data

Spar e

Pur pose unknown, doesn’'t natter.

Alan R Katz [page 7]

DECODI NG FACSI M LE DATA RFC 798
IV. The Setup Block and the Data Header

Sub
1if this is a Set-Up bl ock.
Dat a Count

Nunber of useful bits to use out of the 512 data bits. NOT ALL
of the 512 data bits are used, only this nunber of them This
nunber can be 0 (usually in one of the first data bl ocks) which
means to throw away this block. (This field is reversed!)

X Position

Current position on the scan line, a value between 0 and 1725.
If this nunber s greater than where the previous block |eft
off, the intervening space should be filled with white (0’s).
If this nunber is |less than where the previous block left off,
set the X position to this value and replace the overlapped
data with the new data fromthis bl ock. If this nunber is
greater than 1726, ignore this field and continue from where
the previous block left off. (This field is reversed!)

Bl ack Size

The size of the black run length field, nust be between 2 and
7. This is the correct value for the black size. It my
differ fromwhat was found at the end of the previous bl ock.
(This field is reversed!)

Wiite Size
The size of the white run length field, nust be between 2 and
7. It my differ from what was found at the end of the
previous block. (This field is reversed!)

State
The current state. This is the correct state. It may differ

fromthe state at the end of the previous block. (This field is
not reversed.)

Dat a
512 bits of the actual encoding of the docunent. NOT ALL of
this data is used in general, only the anount specified by the

[page 8] Alan R Katz

RFC 798 DECODI NG FACSI M LE DATA
V. The Setup Bl ock and the Data Header

data count. If this is a set up block, the data contains
i nformati on about the type of docunent (see bel ow).

Checksum

CRC checksum on the entire bl ock. Uses pol ynom al
X** L2+X** 8+X* * T+X* * 5+x** 3+1

In a setup block, the data portion of the data bl ock consists of:

| 6-bit | 5-bit | 1-bit | 20-bits | 480-bits
| flags | spare |multi page| of zeros | 1's and 0's

Specifically these are:
6 flags (each are 1 bit):
Start bit
Al ways O.
Speed
Is 1 if express node.
Det ai |

Is 1 if detail node. (NOTE: |If the Detail and Speed fl ags
are both 0, then data is in Quality node).

14 i nch paper
is 1if 14 inch paper |ength.
5.5 inch paper

is 1if 5 5 inch paper length. (NOTE: If the 14 inch and 5
inch flags are both 0, then paper length is 11 inch).

paper present

is 1 if paper is present at scanner (should be always 1).

Alan R Katz [page 9]

DECODI NG FACSI M LE DATA RFC 798
IV. The Setup Block and the Data Header

Spar e:

These 5 bits can be any val ue.
Mul ti - page:

1if multi page node
Rest of data of set-up bl ock

The above fields are followed by twenty O bits and the rest of
the 512 bits of the block are alternating 0's and 1's.

There are a nunber of inportant points to be renmenbered in regard to

t he header of a data bl ock. First of all, the data count, the
X-position, and the black and white run sizes nust be read | N REVERSE
ORDER. The reason for this is that the fax nmachi ne sends these bits

in reverse order. However, the sequence nunber and the state fields
ARE NOT REVERSED. |In addition to this, each run field in the data IS
REVERSED. This reversing of the bits in each n-bit field is
conpletely separate fromthe reversing and conplenenting of each
octet nmentioned earlier.

Second, only the first n bits, where n is the value of the data count
field (renmenber its reversed!), of the data is valid, the rest is to
be ignored. If nis zero, the whole block is to be ignored.

Third, if the x position is beyond where the |ast block ended, fill
the space between where the last block ended and the current X

postion with white (0's). |If the x postition is less then where the
| ast bl ock ended, replace the overlapped data with the data in the
new bl ock. If the x postition is greater than 1726, ignhore it and

continue fromwhere the previous block left off.

Fourth, the black size, white size (reversed), and state (not
reversed!) given in the header are the correct values even if they
di sagree with the end of the previous bl ock.

Finally, the sequence nunber (not reversed) should count through
0,1,2,3. If it does not, a block is m ssing.

[page 10] Alan R Katz

RFC 798 DECODI NG FACSI M LE DATA
V. The Decodi ng Al gorithm

V. The Decodi ng Al gorithm

Upon first glance at the finite state diagramin Figure 1, it nay
seemthat it would be difficult to create a decoding procedure. For

exanple, if you are in the WNstate, and the next bit is a 1, how do
you know whether to do a transition to WB or BW The answer to this
is to recognize that every arc out of the BWstate begins with 0 and
every arc out of WB begins with 1. Thus, if you are in the WVstate,

and the next bit is 1, followed by a 0, you know to go to the BW
st ate. If the next bit is 1, followed by a 1, you know to go to the
WB st at e.

In witing the decoding programit was necessary to have two ways of
reading the next bit in the data stream The first way reads the bit
and "consunes" it, i.e. increments the bit pointer to point at the
next bit. The other way does not "consune" it. Bel ow are four
statenents which show how to decode fax data. The nunbers in
parentheses are not to be consunmed, that is to say they will be read
again in making the next transition.

If I amin state BW(2) and the next bits are:

0 (0): go to BW
0111: go to BB
010 (1): go to VB
0100: go to WV
If I amin state WB (1) and the next bits are:
1(1): go to VB
1000: go to WV
101 (0): go to BW
1011: go to BB

If | amin state WWVW(0), then first go through the run |ength
algorithm then if the next bits are:

0: go to BB
1 (0): go to BW
1(1): go to WB

If | amin state BB (3), then first go through the run |ength
algorithm then if the next bits are:

0: go to WV
1 (0): go to BW
1(1): go to VB

For the run length algorithm renenber, |ook at the next n bits,
where n is the length of either the black or white run length

Alan R Katz [page 11]

DECODI NG FACSI M LE DATA RFC 798
V. The Decoding Al gorithm

word, REVERSE the bits, and output that many BB's or WVs
(depending on whether black or white run). |If the field is full
increment the size of the word, and get that many bits nore, i.e.
get the next n+l bits, etc. Aso, the run length word | ength can
be decrenented according to the rules given in section I1l1.

You al ways go through the run length even if there is only one WV

or BB, inthis case, the run field will be O.
Let us ook at the first exanple given in section IIl. Suppose we
want to decode the bits: 110111100010100100100101000... (we have

al ready reversed the run |l engths to make things easier).

W are in state 1 (WB) and the black run length word length is 2
and the white length is 3. W get these initial values either
fromthe block header, or by renenbering themfromthe previous
transitions if this is not the start of the block. According to
our rules, we would parse this string as follows:

1(1) 1011 11 000 1(0) 0100 100 1(0) 0(0) 010(1) 1000. ..

The nunbers in parentheses are nunbers that were read but not
"consuned", thus the next nunber in the sequence is the sane as
the one in parentheses. First, we see a 1 and that the next bit
isal this neans that we go to WB. Then we have a 1011 which
neans to go to BB. Then we do a run, we have a 11 followed by a
000 which neans the black run length gets increnented by 1 (it is
now 3) and we get 3 MORE BB's. Now we have a 1 followed by O
which neans go to BW Next a 0100 which is WV Then we have a
run, 100, which nmeans four nore WNWs. W keep going like this and
we get the original bit pattern given in the first exanple of
section I11.

It is inportant to always start fresh when dealing wth each
bl ock. There are many reasons for this. The first is that
someti mes bl ocks are dropped, and you can recover fromthis if you
resynchronize at the start of each block. Also, if at the end of
the previous block, there is about to be a transition, instead of
making it at the beginning of the next block, the fax machine
gives the new state in the header of the next bl ock and goes from
t here. Thus it is inportant to always start at whatever state is
given in the header, and to align vyourself at the current X
position given there also.

Sonetimes, while decoding a block, a bit pattern will occur which

[page 12] Alan R Katz

RFC 798 DECCDI NG FACSI M LE DATA

VI .

V. The Decodi ng Al gorithm

does not correspond to any transition. |[|f this happens, the rest
of the block may be bad and shoul d be di scarded.

The decodi ng program decodes the fax data bl ock by block until it
comes to an END command in the data, or runs out of data.

Program Per f or mance

The L10 NLS programtakes about two CPU minutes to run on TOPS20 on a
DEC KL10 to decode the average docunent in fine detail node. 1In this
node, the picture is about 1726 by 2100 pels, and takes about 204
di sk pages to store.

We have a program which displays bit maps on an HP graphics ternina
and have been able to display portions of docunments. (not all of an

8.5" by 11" docunent will fit in the display). W can use the
terminal’s zoomcapability to look at very small portions of the
docunent .

Alan R Katz [page 13]

DECODI NG FACSI M LE DATA RFC 798
Ref er ences

Ref er ences

[1] Weber, D. R, "An Adaptive Run Length Encoding Algorithnt,
| nt er nati onal Conf er ence on Communications, |CC 75, |EEE, San
Franci sco, California, June 1975.

[2] MIls, D. L., "Rapi com 450 Facsinmile Data Decoding”,
WP2097/ VMD33E, COVBAT Laboratories, Washington D.C, undated.

[3] Casner, S. L., " Faxi e", ISI Internal Meno, USC I nfornmation
Sci ences Institute, February 1980.

[4] Postel, Jon, "Rapicom 450 Facsinile File Format", RFC 769,
USC/ I nformation Sciences Institute, Septenber 1980.

[page 14] Alan R Katz

RFC 798 DECODI NG FACSI M LE DATA
Appendi x

Appendi x

In this appendix is given the first portion of the data which cones
fromthe fax machine, this sane data in RFC 769 format, and sone of
this data decoded into a bitmap. The data is represented in octa
octets.

The following is data of the formwhich conmes out of the fax machine
with length and conmand octets added:

114 70 142 171 330 13 377 377 377 371 53 200 0 5 125 125
125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125
125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125
125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125
125 125 125 125 125 125 125 125 125 121 21 261 114 71 142 171
330 40 0 102 326 270 152 42 42 44 111 0 42 151 267 122
366 110 237 102 211 365 111 171 336 51 244 247 377 377 111 362
177 377 377 377 377 377 377 377 377 376 104 213 241 41 111 377
111 337 377 377 377 377 377 377 377 377 377 377 377 163 301 361
377 377 377 377 360 177 12 0 114 71 142 171 330 141 137 177

377 344 10 0 160 23 301 160 137 376 204 352 135 27 353 264
0 70 100 7 20 75 0 0 0 0 0 344 0 0 0 0
0 0 0 0 34 275 0 0 0 0 0 0 0 0 0 0
0 0 0 0 7 41 310 34 200 0 0 344 0 0 0 71
13 331 204 0 114 71 142 171 330 241 137 26 302 160 0 16
100 71 0 370 270 271 0 162 0 71 174 134 100 162 0 34
234 200 344 7 156 100 1 310 16 107 43 323 263 220 365 313

327 57 377 325 331 36 56 47 325 324 344 3 227 40 71 35
200 1 310 1 313 220 0 0 7 241 330 0 0 137 342 200
114 71 142 171 330 340 77 40 142 160 0 0 0 0 162 71
73 162 376 276 234 277 376 67 265 301 16 20 171 1 311 313
346 377 321 75 256 113 245 377 262 160 136 247 13 251 350 374
270 236 235 217 136 203 220 75 166 166 364 177 305 366 72 107
63 330 352 345 313 320 71 34 270 46 57 0

The following is the same data after put into RFC 769 format (with
each data octet reversed and conpl enent ed):

114 70 271 141 344 57 0 0 0 140 53 376 377 137 125 125
125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125
125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125
125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125
125 125 125 125 125 125 125 125 125 165 167 162 114 71 271 141
344 373 377 275 224 342 251 273 273 333 155 377 273 151 22 265
220 355 6 275 156 120 155 141 204 153 332 32 0 0 155 260

1 0 0 0 0 0 0 0 0 200 335 56 172 173 155 0

Alan R Katz [page 15]

DECODI NG FACSI M LE DATA

Appendi x

155
0

0
377
377
377
57
375
306
24
376
114
43
230
342
63

The fol | ow

(there

177
377
377
377
377
377
337
377
377
377
377
377
377
377
374
0

0
20
31
4
137
377
377
0
377
377

[page 16]

4
0
330
343
377
377
144
143
376
13
177
71
261
0
206
344

are

377
377
377
377
377
377
377
377
377
377
377
377
377
377
377
0

0
10
310
0
377
276
337
207
374
377

0

0
357
375
377
377
336
377
330

0
354
271
200
164
106
250

0

0
377
37
377
377
377
340
37
124
177
141
202
103
16
130

0
360
361
367
307

37
114
342
211
144

54
344
306
212
205

54

0

1
67
103
102
173
71
142
375
207
366
370
2
55
76
364

0
257
174
377
377
354
271
377
177
213
377

3
200
132
366
143

0
377
361
377
377
307
141
261
354

33
377
373

23

0
103
307

0
114
5
377
377
376
344
377
217
124
37
271
122
262
221
342

ng is the first part of the
about 4

377
377
377
377
377
377
377
377
377
377
377
377
377
377
356

0

0

b
153
240
377
357
376
315
377
377

377
377
377
377
377
377
377
377
377
377
377
377
377
377
377
0

0
250
137
0
377
377
70
3
135
377

scan |lines here,

377
377
377
377
377
377
377
377
377
377
377
377
377
377
177
0

0

2
377
0
377
377
371
33
377
377

377
377
377
377
377
377
377
377
377
377
377
377
377
377

377
377
377
367
377
377
377
377
377
377
377
377
377
377
10
1
204
57
377
70
377
227
352
377
365
203

377
377
377
377
377
377
377
377
377
377
377
377
377
374
0
140
10
100
377
0
372
345
300
167
67
377

or

377
377
377
377
377
377
377
377
377
377
377
377
377
0
201
0

0
100
177
0
20
314
213
337
343
236

0
71
200
377
377
377
172
143
35
324
172
361
174
361
221
233

0
271
336
377
377
377

5
301

73
330
344
377
217
205
320

13

0
141
250
330
377
330
227
305

64
77
377
377
367
32

1

377

0
344
105
377
377
377
274
375

62
26
377
377
141
57
134

expanded bit map
of scan

2 pairs

377
377
377
377
377
377
377
377
377
377
377
377
377
4
200
0

0

2
32
0
140
175
373
377
55
175

377
377
377
377
377
377
377
377
377
377
377
377
377
327
0

0
10
100
176
0
45
63
371
1
377
376

377
377
377
377
377
377
377
377
377
377
377
377
377
377

0

0

0
100
344

376
215
377
323
377
236

377
377
377
377
377
377
377
377
377
377
377
377
377
377

61
171
27
377
377
377
361
261
366
373
5
377
177
152
220

174
5
50
377
377
377
377
377
120
143
270
261
154
350
243

of this
l'ines):

377
377
377
377
377
377
377
377
377
377
377
377
377
377

377
377
377
377
377
377
377
377
377
377
377
377
377
377
100
0
100
20
216
137
377
347
73
377
357
347

RFC 798

160

322
377
377
143
217
307

54
107
376
143

54
300

35

dat a

377
377
377
377
377
377
377
377
377
377
377
377
377
377

21

336
237
143
334
177
377
377

Alan R Katz

RFC 798 DECODI NG FACSI M LE DATA
Appendi x

376 77 377 377 377 377 377 377 377 377 377 377 300 0 0 0
200 102 177 377 277 377 377 377 376 377 366 365 173 302 12 0
40 200 0 0 0 4 100 0 0 0 0 0 0 2 5 354
0 0 0 0 0 0 0 0 4 0 10 0 0 0 200 10
40 20 1 0 100 0 140 0 20 210 101 374 3 200 155 304
0 6 100 103 376 0 120 121 31 332 243 177 377 377 377 377
377 233 377 354 0 241 217 1 30 0 240 0 0 12 150 202
40 0 0 0 62 47 157 376 173 373 377 377 377 377 377 377
20 141 321 376 377 377 377 327 377 376 377 377 377 377 237 216
316 375 167 215 202 6 300 143 377 237 374 70 175 330 377 304
255 373 153 377 377 353 377 104 0 267 315 203 13 311 177 377
377 377 1 223 367 377 373 167 377 376 77 137 377 345 165 67
43 51 277 377 277 377 357 377 377 377 373 177 377 377 223 377
366 175 376 234 377 271 347 377 376 157 377 377 377 377 377 377
377 377 377 377 340 0 0 0 0 0 177 377 37 377 377 377
377 376 367 357 272 300 2 0 4 0 0 0 0 0 0 0
0 0 0 0 20 0 1 144 0 0 0 0 0 0 4 4
0 0 100 2 100 10 201 10 0 20 75 0 0 40 142 0
0 74 341 234 103 4 157 300 0 2 0 141 372 0 0 20
30 376 55 277 177 377 377 367 377 371 376 100 15 61 16 200
30 0 40 0 0 0 311 200 24 0 0 0 62 55 377 316
367 347 377 357 377 377 377 377 170 305 5 276 377 377 377 357
377 377 377 377 377 177 377 377 357 177 377 76 207 246 340 147
376 336 356 10 17 320 105 235 275 377 377 373 377 347 335 317
50 77 377 353 75 333 377 377 377 377 363 337 343 277 356 171
7 357 76 216 377 211 207 176 257 217 377 377 367 357 357 277
377 357 377 377 377 375 367 377 377 377 377 375 377 377 356 377
366 377 377 377 377 377 377 377 377 377 377 377 340 0 0 0
0 44 373 377 77 377 377 177 177 377 377 337 376 170 173 0
0 0 100 0 1 10 0 0 0 0 0 200 160 0 223 160
300 0 0 0 0 0 0 6 100 220 0 0 140 4 3 30
121 20 351 300 206 74 167 0 30 64 41 234 172 30 175 300
4 32 4 345 367 200 103 60 177 372 177 233 377 377 377 377
376 125 207 210 233 21 364 361 277 1 50 16 140 120 41 335
377 306 214 10 67 377 373 377 377 377 377 377 377 367 377 377
377 363 277 377 377 377 377 377 267 177 377 377 377 377 377 237
377 377 377 77 377 377 355 373

Alan R Katz [page 17]

