Net wor k Wor ki ng Group L. Steinberg
Request for Comments: 1224 | BM Cor por ati on
May 1991

Techni ques for Managi ng Asynchronously Generated Alerts
Status of this Meno

Thi s meno defines common mechani sns for managi ng asynchronously
produced alerts in a nmanner consistent with current network
managenment protocol s.

This meno specifies an Experinmental Protocol for the Internet
community. Discussion and suggestions for inprovenent are requested.
Pl ease refer to the current edition of the "I AB Oficial Protocol

St andards" for the standardi zation state and status of this protocol.
Distribution of this nmeno is unlimnmted.

Abstract

This RFC expl ores nmechanisns to prevent a renotely nanaged entity
from burdeni ng a nmanager or network with an unexpected anount of

net wor Kk managenent information, and to ensure delivery of "inportant"
information. The focus is on controlling the flow of asynchronously
generated information, and not how the information is generated.

Tabl e of Contents

L. IntroduCti ON. . .. 2
2. Problem Definition. 3
2.1 Polling Advant ages. 3
(a) Reliable detection of failures............ 3
(b) Reduced protocol conplexity on managed entity................ 3
(c¢) Reduced performance inpact on managed entity................. 3
(d) Reduced configuration requirements to nanage renote entity... 4
2.2 Polling Disadvant ages.ttt 4
(a) Response tinme for problemdetection.......................... 4
(b) Vol une of network managenent traffic generated............... 4
2.3 Alert Advant ageS.t 5
(a) Real-tinme know edge of problems........... 5
(b) Mninmal amount of network managenent traffic................. 5
2.4 Alert Disadvant @geS. v ittt 5
(a) Potential loss of critical information....................... 5
(b) Potential to over-informa manager.............., 5
3. Specific Goals of this Menmo.......... 6
4., Conpatibility with Existing Network Managenent Protocols....... 6

St ei nberg [Page 1]

RFC 1224 Managi ng Asynchronously Generated Al erts May 1991

5. Closed Loop "Feedback" Alert Reporting with a "Pin" Sliding

WNdow Li miot. .. 6
5.1 Use of FeedbackK. 7
5. 1.1 EXanpl €. .. 8
5.2 Notes on Feedback/Pin usage.......... 8
6. Polled, Logged Al erts. 9
6.1 Use of Polled, Logged Alerts........... ... 10
6. 1.1 EXampl €. .o 12
6.2 Notes on Polled, Logged Alerts........ ..., 12
7. Conpatibility with SNMP and CMOT 14
7.1 Closed Loop Feedback Alert Reporting............. 14
7.1.1 Use of Feedback with SNVP. 14
7.1.2 Use of Feedback with CMOT. 14
7.2 Polled, Logged Al ertsS. 14
7.2.1 Use of Polled, Logged Alerts with SNVP...................... 14
7.2.2 Use of Polled, Logged Alerts with CMOT...................... 15
8. Notes on Miultiple Manager Environments......................... 15
O, SUMITBI Y. o ot ot e 16
10. Ref erenCes. 16
11. AcknOow edgement S. 17
Appendi x A. Exanmple of polling costs............ 17
Appendix B. MB object definitions.............. 19
Security Considerati ONS.t 22
AUt NOr " S AdAr BSS. . . ot 22

1. Introduction

This nenp defines nmechanisns to prevent a renotely nanaged entity
from burdeni ng a nmanager or network with an unexpected anount of

net wor Kk managenent information, and to ensure delivery of "inportant"
information. The focus is on controlling the flow of asynchronously
generated information, and not how the information is generated.
Mechani sms for generating and controlling the generation of
asynchronous information may invol ve protocol specific issues.

There are two understood mechani sns for transferring network
managenent information froma managed entity to a nanager: request-
response driven polling, and the unsolicited sending of "alerts".
Alerts are defined as any nanagenent information delivered to a
manager that is not the result of a specific query. Advantages and
di sadvant ages exi st within each nethod. They are detailed in section
2 bel ow.

Alerts in a failing systemcan be generated so rapidly that they
adversely inpact functioning resources. They may also fail to be
delivered, and critical information maybe | ost. Methods are needed
both to linmt the volunme of alert transmission and to assist in
delivering a m ni mum anount of information to a nanager.

St ei nberg [Page 2]

RFC 1224 Managi ng Asynchronously Generated Al erts May 1991

It is our belief that nanaged agents capabl e of asynchronously

generating alerts should attenpt to adopt mechanisns that fill both
of these needs. For reasons shown in section 2.4, it is necessary to
fulfill both al ert-managenent requirenents. A conplete alert-driven

system nust ensure that alerts are delivered or their |oss detected
with a means to recreate the lost information, AND it rnust not allow
itself to overburden its nanager with an unreasonabl e anpunt of

i nformati on.

2. Probl em Definition

The follow ng discusses the rel ati ve advantages and di sadvant ages of
polled vs. alert driven managenent.

2.1 Polling Advant ages
(a) Reliable detection of failures.

A manager that polls for all of its information can
nore readily determ ne machi ne and network fail ures;

a lack of a response to a query indicates problens
with the machi ne or network. A manager relying on
notification of problenms night assume that a faulty
systemis good, should the alert be unable to reach
its destination, or the managed system be unable to
correctly generate the alert. Exanples of this

i nclude network failures (in which an isol ated network
cannot deliver the alert), and power failures (in which
a failing nachine cannot generate an alert). Mre
subtle fornms of failure in the nmanaged entity m ght
produce an incorrectly generated alert, or no alert at
all.

(b) Reduced protocol conplexity on nmanaged entity

The use of a request-response based systemis based on
conservative assunptions about the underlying transport
protocol. Tinmeouts and retransmts (re-requests) can
be built into the manager. |In addition, this allows
the manager to affect the anobunt of network nanagenent
information flowi ng across the network directly.

(c) Reduced performance inpact on managed entity
In a purely polled system there is no danger of having
to often test for an alert condition. This testing

takes CPU cycles away fromthe real mssion of the
managed entity. Cearly, testing a threshold on each

St ei nberg [Page 3]

RFC 1224 Managi ng Asynchronously Generated Al erts May 1991

packet received could have unwanted performance effects
on machi nes such as gateways. Those who wi sh to use
threshol ds and al erts nmust choose the paraneters to be
tested with great care, and should be strongly

di scouraged fromupdating statistics and checki ng val ues
frequently.

(d) Reduced Configuration Requirenents to nanage renote
entity

Renot e, managed entities need not be configured

with one or nore destinations for reporting information.
Instead, the entity merely responds to whonever

makes a specific request. Wen changing the network
configuration, there is never a need to reconfigure

all renote manageabl e systens. |n addition, any nunber
of "authorized" managers (i.e., those passing any

aut hentication tests inposed by the network nanagenent
protocol) may obtain information from any nmanaged entity.
This occurs w thout reconfiguring the entity and

wi t hout reaching an entity-inposed linit on the maxi num
nunber of potential managers.

2.2 Polling Disadvant ages
(a) Response tinme for probl em detection

Having to poll many M B [2] variables per machi ne on
a | arge nunber of machines is itself a rea

problem The ability of a nanager to nonitor

such a systemis limted; should a systemfail
shortly after being polled there may be a significant
delay before it is polled again. During this tine,
the manager nust assunme that a failing systemis
acceptable. See Appendix A for a hypotheti cal
exanpl e of such a system

It is worthwhile to note that while inproving the nmean
time to detect failures m ght not greatly inprove the
time to correct the failure, the problemw || generally
not be repaired until it is detected. |In addition

nost network managers woul d prefer to at | east detect
faults before network users start phoning in.

(b) Vol une of network managenent traffic

Pol ling many objects (M B variables) on many machi nes
greatly increases the anmount of network management

St ei nberg [Page 4]

RFC 1224 Managi ng Asynchronously Generated Al erts May 1991

traffic flowing across the network (see Appendi x A).
Wiile it is possible to mnimze this through the use
of hierarchies (polling a machine for a general status
of all the machines it polls), this aggravates the
response time problem previously discussed.

2.3 Alert Advantages
(a) Real-tinme Know edge of Problens

Al'l owi ng the manager to be notified of problens
elimnates the delay inposed by polling nmany objects/
systenms in a | oop

(b) Mninmal amount of Network Managenent Traffic

Alerts are transmitted only due to detected errors.

By renoving the need to transfer |arge ampbunts of status
information that nerely denpnstrate a healthy system
network and system (rmachi ne processor) resources nmay be
freed to acconplish their primary m ssion

2.4 Aert Disadvantages
(a) Potential Loss of Critical Infornmation

Alerts are nost likely not to be delivered when the
managed entity fails (power supply fails) or the

net wor k experi ences problens (saturated or isol ated).
It is inportant to renenber that failing nachi nes and
net wor ks cannot be trusted to i nforma manager that
they are failing.

(b) Potential to Over-informthe Manager

An "open | oop"” systemin which the flow of alerts to

a manager is fully asynchronous can result in an excess
of alerts being delivered (e.g., |link up/down nessages
when lines vacillate). This information places an extra
burden on a strained network, and could prevent the
manager from di sabling the nmechani sm generating the
alerts; all avail able network bandwi dth into the manager
coul d be saturated with incom ng alerts.

Most maj or network nanagenent systens strive to use an optinma

conbi nation of alerts and polling. Doing so preserves the advantages
of each while elimnating the disadvantages of pure polling.

St ei nberg [Page 5]

RFC 1224 Managi ng Asynchronously Generated Al erts May 1991

3. Specific Goals of this Meno

Thi s menp suggests nechani sns to mnimze the di sadvantages of alert
usage. An optimal system recogni zes the potential problens

associ ated with sending too many alerts in which a manager becones

i neffective at managi ng, and not adequately using alerts (especially
gi ven the volunes of data that nust be actively nonitored with poor
scaling). It is the author’s belief that this is best done by
allowing alert nmechanisns that "close down" automatically when over-
del i vering asynchronous (unexpected) alerts, and that also allow a
fl ow of synchronous alert information through a polled log. The use
of "feedback" (with a sliding wi ndow "pin") discussed in section 5
addresses the former need, while the discussion in section 6 on
"pol l ed, logged alerts" does the latter.

This meno does not attenpt to define mechanisns for controlling the
asynchronous generation of alerts, as such matters deal with

speci fics of the management protocol. |In addition, no attenpt is
made to define what the content of an alert should be. The feedback
mechani sm does require the addition of a single alert type, but this
is not meant to inpact or influence the techniques for generating any
other alert (and can itself be generated froma M B object or the
managenent protocol). To nmake any effective use of the alert
nmechani sns described in this neno, inplenentation of several MB
objects is required in the rel evant nmanaged systens. The |ocation of
these objects in the MB is under an experinental subtree del egated
to the Alert-Man working group of the Internet Engi neering Task Force
(I'ETF) and published in the "Assigned Nunbers" RFC [5]. Currently,
this subtree is defined as

alertMan ::= { experinmental 24 }.
4. Conpatibility Wth Existing Network Management Protocols

It is the intent of this docunment to suggest nechani snms that violate
neither the letter nor the spirit of the protocols expressed in CMOT
[3] and SNWP [4]. To achieve this goal, each nechani sm descri bed
will give an exanmple of its conformant use with both SNWMP and CMOT

5. C osed Loop "Feedback"” Alert Reporting with a "Pin" Sliding
W ndow Lim t

One technique for preventing an excess of alerts from being delivered
i nvol ves required feedback to the managed agent. The nane "feedback"
describes a required positive response froma potentially "over-
reported" nanager, before a renpte agent may continue transnitting
alerts at a high rate. A sliding window "pin" threshold (so naned
for the nmetal on the end of a neter) is established as a part of a

St ei nberg [Page 6]

RFC 1224 Managi ng Asynchronously Generated Al erts May 1991

user-defined SNMP trap, or as a managed CMOT event. This threshold
defines the maxi num al | owabl e nunber of alerts ("maxAl ertsPerTi me")
that nay be transmitted by the agent, and the "w ndowTi me" in seconds
that alerts are tested against. Note that "maxAl ertsPerTi ne"
represents the sumtotal of all alerts generated by the agent, and is
not duplicated for each type of alert that an agent m ght generate.
Bot h "maxAl ert sPerTi me" and "wi ndowTi ne" are required M B objects of
SM [1] type I NTEGER, mnust be readable, and nay be writable shoul d
the inplenmentation permt it.

Two other itens are required for the feedback technique. The first
is a Boolean M B object (SM type is INTECER, but it is treated as a

Bool ean whose only value is zero, i.e., "FALSE') naned
"al ert sEnabl ed", which nust have read and wite access. The second
is a user defined alert nanmed "al ertsDi sabl ed". Please see Appendi X

B for their conplete definitions.
5.1 Use of Feedback

When an excess of alerts is being generated, as determ ned by the
total nunber of alerts exceeding "maxAl ertsPerTinme" wthin

"wi ndowTi me" seconds, the agent sets the Bool ean val ue of

"al ertsEnabl ed" to "FALSE' and sends a single alert of type

"al ertsDi sabl ed"

Agai n, the pin nmechani smoperates on the sumtotal of all alerts
generated by the renpte system Feedback is inplenented once per
agent and not separately for each type of alert in each agent. Wile
it is also possible to inplenent the Feedback/Pin technique on a per
alert-type basis, such a discussion belongs in a docunent dealing
with controlling the generation of individual alerts.

The typical use of feedback is detailed in the follow ng steps:

(a) Upon initialization of the agent, the val ue of
"al ertsEnabl ed" is set to "TRUE".

(b) Each tinme an alert is generated, the val ue of
"al ertsEnabl ed" is tested. Should the value be "FALSE",
no alert is sent. If the value is "TRUE", the alert is
sent and the current time is stored |ocally.

(c) If at least "maxAl ertsPerTi ne" have been generated, the
agent cal culates the difference of tine stored for the
new alert fromthe tinme associated with alert generated
"maxAl ertsPerTi me" previously. Should this anobunt be
| ess than "w ndowTi ne", a single alert of the type
"al ertsDi sabled" is sent to the manager and the val ue of

St ei nberg [Page 7]

RFC 1224 Managi ng Asynchronously Generated Al erts May 1991

"al ertsEnabl ed" is then set to "FALSE".

(d) Wien a nanager receives an alert of the type "Alerts-
Di sabl ed", it is expected to set "al ertsEnabl ed" back
to "TRUE" to continue to receive alert reports.

5.1.1 Exanple

In a sanpl e system the maxi rum nunber of alerts any single managed
entity may send the nanager is 10 in any 3 second interval. A
circular buffer with a maxi rum depth of 10 tinme of day elenents is
defined to accommopdate statistics keeping.

After the first 10 alerts have been sent, the managed entity tests
the tinme difference between its ol dest and newest alerts. By testing
the time for a fixed nunber of alerts, the systemw || never disable
itself merely because a few alerts were transnitted back to back

The mechanismwi Il disable reporting only after at |east 10 alerts
have been sent, and the only if the last 10 all occurred within a 3
second interval. As alerts are sent over tine, the |ist mmintains

data on the last 10 alerts only.
5.2 Notes on Feedback/Pin Usage

A manager may periodically poll "alertsEnabled" in case an

"al ertsDi sabl ed" alert is not delivered by the network. Some

i npl emrenters may al so choose to add COUNTER M B objects to show t he
total nunber of alerts transnitted and dropped by "al ertsEnabl ed”
being FALSE. Wile these may yield sone indication of the nunber of
|l ost alerts, the use of "Polled, Logged Alerts" offers a superset of
this function.

Testing the alert frequency need not begin until a m ni mum nunber of
al erts have been sent (the circular buffer is full). Even then, the
actual test is the elapsed tine to get a fixed nunber of alerts and
not the nunmber of alerts in a given tinme period. This elimnates the
need for conpl ex averagi ng schenes (keeping current alerts per second
as a frequency and redeterm ning the current value based on the
previous value and the tinme of a newalert). Also elimnated is the
probl em of two back to back alerts; they may i ndeed appear to be a

| arge nunber of alerts per second, but the fact remains that there
are only two alerts. This situation is unlikely to cause a problem
for any manager, and should not trigger the nechanism

Since alerts are supposed to be generated infrequently, maintaining

the pin and testing the threshold should not inpact nornal
perfornmance of the agent (managed entity). Wile repeated testing

St ei nberg [Page 8]

RFC 1224 Managi ng Asynchronously Generated Al erts May 1991

may affect performance when an excess of alerts are being
transnitted, this effect would be m nor conpared to the cost of
generating and sending so many alerts. Long before the cost of
testing (in CPU cycles) becones relatively high, the feedback
mechani sm shoul d di sable alert sending and affect savings both in
alert sending and its own testing (note that the list maintenance and
testing nmechani sns di sabl e thensel ves when they disable alert
reporting). |In addition, testing the value of "al ertsEnabl ed" can
limt the CPU burden of building alerts that do not need to be sent.

It is advised that the inplenmenter consider allowing wite access to
both the wi ndow size and the nunber of alerts allowed in a w ndow s
time. In doing so, a managenment station has the option of varying
these paraneters renptely before setting "al ertsEnabled" to "TRUE".
Shoul d either of these objects be set to 0, a conformant systemw ||
di sabl e the pin and feedback nmechani snms and all ow the agent to send
all of the alerts it generates.

Wil e the feedback mechanismis not high in CPU utilization costs,
those inplenmenting alerts of any kind are again cautioned to exercise
care that the alerts tested do not occur so frequently as to inpact
the performance of the agent’s primry function

The user may prefer to send alerts via TCP to help ensure delivery of
the "alerts disabled" nessage, if avail able.

The feedback technique is effective for preventing the over-reporting
of alerts to a manager. It does not assist with the probl em of
"under-reporting" (see "polled, logged alerts" for this).

It is possible to lose alerts while "al ertsEnabled" is "FALSE".

| deal Iy, the threshold of "nmaxAl ertsPerTine" should be set
sufficiently high that "al ertsEnabled" is only set to "FALSE" during
"over-reporting” situations. To help prevent alerts from possibly
being | ost when the threshold is exceeded, this nmethod can be

conmbi ned with "polled, |ogged alerts" (see bel ow).

6. Polled, Logged Alerts

A sinple systemthat conbines the request-response advant ages of
polling while mnimzing the disadvantages is "Polled, Logged
Alerts". Through the addition of several MB objects, one gains a
systemthat nininizes network managenent traffic, lends itself to
scaling, elininates the reliance on delivery, and inposes no
potential over-reporting problens inherent in pure alert driven
architectures. Mninmzing network nanagenent traffic is affected by
reducing multiple requests to a single request. This technique does
not elimnate the need for polling, but reduces the anpunt of data

St ei nberg [Page 9]

RFC 1224 Managi ng Asynchronously Generated Al erts May 1991

transferred and ensures the manager either alert delivery or
notification of an unreachable node. Note again, the goal is to
address the needs of information (alert) flow and not to control the
| ocal generation of alerts.

6.1 Use of Polled, Logged Alerts

As alerts are generated by a renpte managed entity, they are | ogged
locally in a table. The nanager may then poll a single MB object to
determine if any nunber of alerts have been generated. Each pol
request returns a copy of an "unacknow edged" alert fromthe alert
log, or an indication that the table is enpty. Upon receipt, the
manager ni ght "acknow edge" any alert to renove it fromthe | og.
Entries in the table nust be readable, and can optionally allow the
user to renove themby witing to or deleting them

Thi s technique requires several additional MB objects. The

alert _log is a SEQUENCE OF | ogTabl e entries that nust be readabl e,
and can optionally have a mechanismto renove entries (e.g., SNWP set
or CMOT delete). An optional read-only M B object of type |INTEGER
"maxLogTabl eEntri es" gives the nmaxi num nunber of |og entries the
systemwi || support. Please see Appendix B for their conplete
definitions.

The typical use of Polled, Logged Alerts is detailed bel ow

(a) Upon initialization, the agent builds a pointer to a |og
table. The table is enpty (a sequence of zero entries).

(b) Each tinme a local alert is generated, a | ogTable entry
is built with the follow ng information

SEQUENCE {
alertld | NTEGER,
al ertData OPAQUE
}
(1) alertld nunber of type INTEGER, set to 1 greater
than the previously generated alertld. If this is

the first alert generated, the value is initialized
to 1. This value should wap (reset) to 1 when it
reaches 2**32. Note that the maxi mnum | og depth
cannot exceed (2**32)-1 entries.

(2) a copy of the alert encapsulated in an OPAQUE.

(c) The newlog elenment is added to the table. Should
addition of the el enent exceed the defined maxi mum | og

St ei nberg [Page 10]

RFC 1224 Managi ng Asynchronously Generated Al erts May 1991

tabl e size, the oldest elenent in the table (having the
| owest alertld) is replaced by the new el enent.

(d) A manager may poll the managed agent for either the next
alert in the alert_table, or for a copy of the alert
associated with a specific alertld. A poll request nust
indicate a specific alertld. The nechani sm for obtaining
this information froma table is protocol specific, and
m ght use an SNMP GET or GET NEXT (with GET NEXT
follow ng an instance of zero returning the first table
entry’'s alert) or CMOI's GET with scoping and filtering
to get alertData entries associated with alertld’'s
greater or less than a given instance.

(e) An alertData CET request from a manager mnust al ways be
responded to with a reply of the entire OPAQUE al ert
(SNVWP TRAP, CMOT EVENT, etc.) or a protocol specific
reply indicating that the get request fail ed.

Note that the actual contents of the alert string, and
the format of those contents, are protocol specific.

(f) Once an alert is logged in the local log, it is up to
the individual architecture and inplenentati on whet her
or not to also send a copy asynchronously to the
manager. Doing so could be used to redirect the focus
of the polling (rather than waiting an average of 1/2
the poll cycle to |learn of a problem, but does not
result in significant problens should the alert fail to
be delivered.

(g) Should a manager request an alert with alertld of O,
the reply shall be the appropriate protocol specific
error response.

(h) If a nmanager requests the alert inmediately follow ng
the alert with alertld equal to O, the reply will be the
first alert (or alerts, depending on the protocol used)
in the alert |og.

(i) A manager may renove a specific alert fromthe alert |og
by naming the alertld of that alert and issuing a
protocol specific command (SET or DELETE). If no such
alert exists, the operation is said to have failed and
such failure is reported to the manager in a protocol
speci fi ¢ manner.

St ei nberg [Page 11]

RFC 1224 Managi ng Asynchronously Generated Al erts May 1991

6.1.1 Exanple

In a sanpl e system (based on the exanple in Appendi x A), a manager
must nonitor 40 renote agents, each having between 2 and 15
paranmeters which indicate the relative health of the agent and the
network. During normal nonitoring, the manager is concerned only
with fault detection. Wth an average poll request-response tinme of
5 seconds, the manager polls one MB variable on each node. This

i nvol ves one request and one reply packet of the format specified in
the XYZ network managenent protocol. Each packet requires 120 bytes
"on the wire" (requesting a single object, ASN. 1 encoded, |IP and UDP
envel oped, and placed in an ethernet packet). This results in a
serial poll cycle time of 3.3 mnutes (40 nodes at 5 seconds each is
200 seconds), and a nean tinme to detect alert of slightly over 1.5

m nutes. The total anpbunt of data transferred during a 3.3 minute
poll cycle is 9600 bytes (120 requests and 120 replies for each of 40
nodes). Wth such a snmall anmount of network managenent traffic per
mnute, the poll rate mght reasonably be doubled (assuning the
network performance permts it). The result is 19200 bytes
transferred per cycle, and a nmean tinme to detect failure of under 1
mnute. Parallel polling obviously yields simlar inprovenents.

Should an alert be returned by a rempte agent’s | og, the nanager
notifies the operator and renoves the elenment fromthe alert |og by
setting it with SNMP or deleting it with CMOI. Nornmal alert
detection procedures are then followed. Those SNWP inpl enenters who
prefer to not use SNVWP SET for table entry deletes may al ways define
their log as "read only". The fact that the manager nade a single
query (to the log) and was able to deternine which, if any, objects
merited special attention essentially nmeans that the status of al

al ert capabl e objects was nonitored with a single request.

Conti nui ng the above exanple, should a renote entity fail to respond
to two successive poll attenpts, the operator is notified that the
agent is not reachable. The operator may then choose (if so

equi pped) to contact the agent through an alternate path (such as
serial line IP over a dial up nodem). Upon establishing such a
connection, the nanager may then retrieve the contents of the alert
log for a chronol ogical map of the failure’'s alerts. Alerts
undel i vered because of conditions that may no | onger be present are
still available for analysis.

6.2 Notes on Polled, Logged Alerts
Pol I ed, |ogged alert techniques allow the tracking of many alerts
while actually nonitoring only a single MB object. This

dramatical |y decreases the anount of network managenent data that
must flow across the network to determine the status. By reducing

St ei nberg [Page 12]

RFC 1224 Managi ng Asynchronously Generated Al erts May 1991

t he nunber of requests needed to track nultiple objects (to one), the
poll cycle time is greatly inproved. This allows a faster poll cycle
(mean tine to detect alert) with | ess overhead than woul d be caused
by pure polling.

In addition, this technique scales well to | arge networks, as the
concept of polling a single object to learn the status of many | ends
itself well to hierarchies. A proxy manager nmay be polled to learn
if he has found any alerts in the I ogs of the agents he polls. O
course, this scaling does not save on the nean tinme to learn of an
alert (the cycle tinmes of the manager and the proxy nanager mnust be
consi dered), but the anobunt of network nmanagenent polling traffic is
concentrated at lower levels. Only a snmall amount of such traffic
need be passed over the network’s "backbone"; that is the traffic
generated by the request-response fromthe manager to the proxy
managers.

Note that it is best to return the ol dest logged alert as the first
table entry. This is the object nost likely to be overwitten, and
every attenpt should be made ensure that the manager has seen it. In
a systemwhere log entries may be renoved by the manager, the manager
will probably wish to attenpt to keep all renote alert |logs enpty to
reduce the nunber of alerts dropped or overwitten. 1In any case, the
order in which table entries are returned is a function of the table
mechani sm and is inplenmentati on and/ or protocol specific.

"Pol l ed, |logged alerts" offers all of the advantages inherent in
polling (reliable detection of failures, reduced agent conplexity
with UDP, etc.), while mnimzing the typical polling problens
(potentially shorter poll cycle time and reduced network nanagenent
traffic).

Finally, alerts are not |ost when an agent is isolated fromits
manager. When a connection is reestablished, a history of conditions
that nmay no longer be in effect is available to the nmanager. Wile
not a part of this docunent, it is worthwhile to note that this sane
|l og architecture can be enployed to archive alert and ot her

i nformati on on renpte hosts. However, such non-local storage is not
sufficient to neet the reliability requirenments of "polled, |ogged
alerts".

St ei nberg [Page 13]

RFC 1224 Managi ng Asynchronously Generated Al erts May 1991

7. Conmpatibility with SNVMP [4] and CMOT [3]
7.1 dosed Loop (Feedback) Alert Reporting
7.1.1 Use of Feedback with SNWP

At configuration tinme, an SNMP agent supporting Feedback/Pin is

| oaded with default values of "w ndowTi me" and "nmaxAl erts-PerTi ne",
and "al ertsEnabl ed" is set to TRUE. The manager issues an SNWP GET
to determ ne "maxAl ertsPerTime" and "w ndowTi ne", and to verify the
state of "al ertsEnabled". Should the agent support setting Pin

obj ects, the manager may choose to alter these values (via an SNWP
SET). The new val ues are cal cul ated based upon known network
resource limtations (e.g., the anobunt of packets the manager’s
gateway can support) and the nunber of agents potentially reporting
to this manager.

Upon receipt of an "alertsD sabled" trap, a manager whose state and
network are not overutilized i mediately issues an SNMP SET to nake
"al ert sEnabl ed" TRUE. Should an excessive nunber of "al ertsDi sabl ed”
traps regularly occur, the manager might revisit the values chosen
for inmplenmenting the Pin mechanism Note that an overutilized system
expects its nmanager to delay the resetting of "al ertsEnabl ed".

As a part of each regular polling cycle, the manager includes a GET

REQUEST for the value of "alertsEnabled". |If this value is FALSE, it
is SET to TRUE, and the potential l|oss of traps (while it was FALSE)
i s noted.

7.1.2 Use of Feedback with CMOT

The use of CMOT in inplenenting Feedback/Pin is essentially identica
to the use of SNWP. CMOT CET, SET, and EVENT replace their SNWVP
counterparts.

7.2 Polled, Logged Alerts
7.2.1 Use of Polled, Logged alerts with SNWP

As a part of regular polling, an SNWP manager using Polled, |ogged
alerts may issue a GET_NEXT Request nami ng

{ alertLog | ogTabl eEntry(1) alertld(1l) O }. Returned is either the
alertld of the first table entry or, if the table is enpty, an SNWP
reply whose object is the "l exicographical successor"” to the alert

| 0g.

Should an "alertld" be returned, the manager issues an SNWP CGET
nam ng { alertLog | ogTabl eEntry(1) alertData(2) value } where "val ue"

St ei nberg [Page 14]

RFC 1224 Managi ng Asynchronously Generated Al erts May 1991

is the alertld integer obtained fromthe previously described CGET
NEXT. This returns the SNMP TRAP encapsul ated within an OPAQUE.

If the agent supports the deletion of table entries through SNVP
SETS, the manager may then issue a SET of { alertLog |ogTabl eEntry(1)
alertld(1l) value } to renove the entry fromthe log. Qherw se, the
next CGET NEXT poll of this agent should request the first "alertld"
following the i nstance of "value" rather than an instance of "0".

7.2.2 Use of Polled, Logged Alerts with CMOT

Using polled, logged alerts with CMOT is sinmilar to using themwth
SNWMP. |In order to test for table entries, one uses a CMOT GET and
specifies scoping to the alertLog. The request is for all table
entries that have an alertld value greater than the | ast known
alertld, or greater than zero if the table is normally kept enpty by
the manager. Should the agent support it, entries are renoved with a
CMOT DELETE, an object of alertlLog.entry, and a distinguishing
attribute of the alertld to renove.

8. Miltiple Manager Environnents

The conflicts between nmultiple managers with overl appi ng

admi ni strative domains (generally found in larger networks) tend to
be resolved in protocol specific manners. This docunment has not
addressed them However, real world demands require alert nanagenent
techni ques to function in such environnents.

Conpl ex agents can clearly respond to different managers (or nanagers
in different "communities") with different reply values. This allows
feedback and polled, |logged alerts to appear conpletely independent
to differing autononmous regions (each region sees its own val ue).
Differing feedback threshol ds m ght exist, and feedback can be
actively blocking alerts to one manager even after another nanager
has reenabled its own alert reporting. All of this is transparent to
an SNWP user if based on comunities, or each manager can work with a
different copy of the relevant M B objects. Those inplenenting CMOT
m ght view these as multiple instances of the sane feedback objects
(and all ow one manager to query the state of another’s feedback
mechani snj .

The sanme holds true for polled, |logged alerts. One nmanager (or
manager in a single comunity/region) can delete an alert fromits
view wi t hout affecting the view of another regi on’s nmanagers.

Those preferring |l ess conplex agents will recognize the opportunity

to instrunent proxy nanagenent. Alerts might be distributed froma
manager based al ert expl oder which effectively inplenments feedback

St ei nberg [Page 15]

RFC 1224 Managi ng Asynchronously Generated Al erts May 1991

and polled, logged alerts for its subscribers. Feedback paraneters
are set on each agent to the highest rate of any subscriber, and
limted by the distributor. Logged alerts are deleted fromthe view
at the proxy manager, and truly deleted at the agent only when al
subscri bers have so requested, or inmediately deleted at the agent
with the first proxy request, and maintained as virtual entries by

t he proxy manager for the benefit of other subscribers.

9. Summary

While "polled, logged alerts" may be useful, they still have a
[imtation: the mean tine to detect failures and alerts increases
linearly as networks grow in size (hierarchies offer shorten

i ndi vidual poll cycle tinmes, but the nean detection tine is the sum
of 1/2 of each cycle time). For this reason, it may be necessary to
suppl ement asynchronous generation of alerts (and "polled, |ogged
alerts"”) with unrequested transm ssion of the alerts on very |arge
net wor ks.

Whenever systens generate and asynchronously transnit alerts, the
potential to overburden (over-inform a nanagenent station exists.
Mechani sns to protect a manager, such as the "Feedback/Pin"

technique, risk losing potentially inportant information. Failure to
i npl enent asynchronous alerts increases the tinme for the nanager to
detect and react to a problem Over-reporting nay appear |ess
critical (and likely) a problemthan under-informng, but the
potential for harmexists with unbounded al ert generation

An ideal nanagenent systemw || generate alerts to notify its
managenent station (or stations) of error conditions. However, these
alerts nust be self limting with required positive feedback. In

addi tion, the manager should periodically poll to ensure connectivity
to rempte stations, and to retrieve copies of any alerts that were
not delivered by the network.

10. References

[1] Rose, M, and K MO oghrie, "Structure and ldentification of
Managenent Information for TCP/IP-based Internets”, RFC 1155,
Performance Systens |International and Hughes LAN Systens, My
1990.

[2] Mcd oghrie, K., and M Rose, "Managenent |nformation Base for
Net wor k Managenent of TCP/ | P-based internets”, RFC 1213, Hughes
LAN Systens, Inc., Performance Systens International, March 1991

[3] Warrier, U, Besaw, L., LaBarre, L., and B. Handspi cker, "Conmon
Managenent | nformation Services and Protocols for the Internet

St ei nberg [Page 16]

RFC 1224

[4]

[5]

11.

(CMOT) and (CMP)",
Cor poration, Digital

Case, J., Fedor,

Managi ng Asynchronously Generated Al erts

May 1991

RFC 1189, Netlabs, Hewl ett-Packard, The Mtre
Equi prent Cor por ation, Cctober 1990.

Schoffstall, M, and C. Davin, "Sinple

Net wor kK Managemnent Protocol" RFC 1157, SNMP Research, Performnmance

Systens | nternational

Perf ormance Systens International, MT

Laboratory for Conputer Science, My 1990.

Reynol ds, J., and J.

Postel, "Assigned Numbers", RFC 1060,

USC/ | nformation Sciences Institute, March 1990.

Acknow edgenent s

This nenp is the product of work by the nmenbers of the | ETF Al ert-Mn
Wirking Goup and other interested parties, whose efforts are

gratefully acknow edged here:

Amat zi a Ben- Art zi
Neal Bi er baum

Synopti cs Conmuni cati ons
Vitalink Corp.

Jeff Case Uni versity of Tennessee at Knoxville
John Cook Chi pcom Cor p

Janmes Davin MT

Mar k Fedor Performance Systens International, Inc.

St even Hunt er
Frank Kastenhol z
Lee LaBarre
Bruce Laird

Lawrence Livernore National Labs
Cl ear poi nt Research

Mtre Corp.

BBN, | nc

Gary Mal kin FTP Sof tware, Inc.
Keith MO oghrie Hughes Lan Systens
David Ni emi Contel Federal Systemns
Lee Qattes Uni versity of Toronto
Joel Repl ogl e NCSA

Ji m Sheri dan | BM Cor p.

St eve Wl dbusser
Dan W ntringham
Ri ch Wundy

Car negi e- Mel I on Uni versity
Chi 0 Superconputer Center
| BM Cor p.

Appendi x A
Exanpl e of polling costs

The followi ng exanple is conpletely hypothetical, and arbitrary.
It assunes that a network nmanager has nade deci sions as to which
systens, and which objects on each system nust be continuously
nonitored to determine the operational state of a network. It
does not attenpt to discuss how such decisions are nmade, and
assunes that they were arrived at with the full understandi ng that
the costs of polling many objects nust be wei ghed agai nst the

St ei nberg [Page 17]

RFC 1224 Managi ng Asynchronously Generated Al erts May 1991

| evel of information required.

Consi der a manager that nust nonitor 40 gateways and hosts on a
single network. Further assunme that the average managed entity
has 10 M B objects that nust be watched to determ ne the device's
and network’s overall "health". Under the XYZ network managenent
protocol, the manager may get the values of up to 4 MB objects
with a single request (so that 3 requests nust be nmade to
determine the status of a single entity). An average response
time of 5 seconds is assunmed, and a | ack of response within 30
seconds is considered no reply. Two such "no replies" are needed
to declare the managed entity "unreachabl e", as a single packet
may occasionally be dropped in a UDP system (those preferring to
use TCP for automated retransmits should assune a | onger tineout
val ue before declaring the entity "unreachabl e" which we will
define as 60 seconds).

We begin with the case of "sequential polling". This is defined
as awaiting a response to an outstandi ng request before issuing
any further requests. 1In this exanple, the average XYZ network

managenent protocol packet size is 300 bytes "on the wire"
(requesting multiple objects, ASN. 1 encoded, |IP and UDP envel oped,
and placed in an ethernet packet). 120 request packets are sent
each cycle (3 for each of 40 nodes), and 120 response packets are
expected. 72000 bytes (240 packets at 300 bytes each) nust be
transferred during each poll cycle, nerely to determ ne that the
network is fine.

At five seconds per transaction, it could take up to 10 minutes to
determine the state of a failing machine (40 systens x 3 requests
each x 5 seconds per request). The nmean time to detect a system
with errors is 1/2 of the poll cycle tinme, or 5 minutes. 1In a
failing network, dropped packets (that nust be tined out and
resent) greatly increase the nean and worst case tines to detect
probl ens.

Note that the traffic costs could be substantially reduced by
combi ni ng each set of three request/response packets in a single
request/response transaction (see section 6.1.1 "Exanple").

Wil e the bandwi dth use is spread over 10 minutes (giving a usage
of 120 bytes/second), this rapidly deteriorates should the nanager
decrease his poll cycle tinme to accommpdate nore machi nes or
improve his nmean tinme to fault detection. Conversely, increasing
his delay between polls reduces traffic flow, but does so at the
expense of tinme to detect problens.

Many networ k managers allow nultiple poll requests to be "pending"

St ei nberg [Page 18]

RFC 1224 Managi ng Asynchronously Generated Al erts May 1991

at any given time. It is assumed that such nanagers woul d not
normal Iy poll every machine without any delays. Allow ng
"parallel polling” and initiating a new request inmmedi ately
foll ow ng any response would tend to generate | arger amounts of
traffic; "parallel polling" here produces 40 tines the anount of
network traffic generated in the sinplistic case of "sequenti al
pol I i ng" (40 packets are sent and 40 replies received every 5
seconds, giving 80 packets x 300 bytes each per 5 seconds, or 4800
byt es/ second). Mean tine to detect errors drops, but at the cost
of increased bandw dth. This does not inprove the tinmeout val ue
of over 2 minutes to detect that a node is not responding.

Even with parallel polling, increasing the device count (systens
to manage) not only results in nore traffic, but can degrade
performance. On |arge networks the manager becones bounded by the
nunber of queries that can be built, tracked, responses parsed,
and reacted to per second. The continuous volune requires the

ti meout value to be increased to acconmpdate responses that are
still in transit or have been received and are queued awaiting
processing. The only alternative is to reduce the poll cycle.

Ei ther of these actions increase both nean tinme to detect failure
and worst case tinme to detect problens.

If alerts are sent in place of polling, nmean tine to fault
detection drops fromover a mnute to as little as 2.5 seconds
(1/2 the time for a single request-response transaction). This
time may be increased slightly, depending on the nature of the
problem Typical network utilization is zero (assuming a
"typical" case of a non-failing system.

Appendi x B

Al defined MB objects used in this docunent reside
under the m b subtree:

alertMan ::={ iso(1) org(3) dod(6) internet(1)
experinmental (3) alertMan(24) ver1(1l) }

as defined in the Internet SM [1] and the | atest "Assigned
Nunbers" RFC [5]. nbjects under this branch are assi gned
as follows:

RFC 1224-M B DEFINITIONS ::= BEA N
al ert Man OBJECT IDENTIFIER ::= { experinental 24}
verl OBJECT IDENTIFIER ::= { alertMan 1 }

St ei nberg [Page 19]

RFC 1224

St ei nberg

f eedback OBJECT | DENTI FI ER ::
pol | edLogged OBJECT | DENTI FI ER ::

Managi ng Asynchronously Generated Al erts

{ verl 1}
{ verl 2}

END

1) Feedback Objects

maxAl ertsPerTine { feedback 1 }

Synt ax:
I nt eger

Access:
read-write

St at us:
mandat ory

wi ndowTi me { feedback 2 }

Synt ax:
I nt eger

Access:
read-write

St at us:
mandat ory

al ertskEnabl ed { feedback 3 }

Synt ax:
I nt eger

Access:
read-write

St at us:

May 1991

[Page 20]

RFC 1224

St ei nberg

Managi ng Asynchronously Generated Al erts

mandat ory

2) Polled, Logged Objects

alertLog { polledLogged 1 }

Synt ax:
SEQUENCE OF | ogTabl eEntry

Access:
read-write

St at us:
mandat ory

| ogTabl eEntry { alertLog 1 }
Synt ax:
| ogTabl eEntry ::= SEQUENCE {

alertld
| NTEGER,
al ertDat a
OPAQUE
}

Access:
read-write

St at us:
mandat ory

alertld { |ogTableEntry 1 }

Synt ax:
I nt eger

May 1991

[Page 21]

RFC 1224

Managi ng Asynchronously Generated Al erts
Access:
read-wite

St at us:
mandat ory

alertData { | ogTabl eEntry 2 }

Synt ax:
Opaque

Access:
read-only

St at us:
mandat ory

maxLogTabl eEntries { polledLogged 2 }

Synt ax:

I nt eger
Access:

read-only
St at us:

opti onal

Security Considerations

Security issues are not discussed in this neno.

Aut hor’' s Address

Lou Stei nberg

| BM NSFNET Sof t war e Devel oprent
472 \Wheelers Farns Rd, m's 91

MIlford, Ct.

Phone:
EMai | ;

St ei nberg

06460

203-783-7175
LOU SS@ BM COM

May 1991

[Page 22]

