Net wor k Wor ki ng Group J. Kabat

Request for Coments: 2853 Vali Cert, Inc.
Cat egory: Standards Track M Upadhyay
Sun M crosystens, Inc.

June 2000

Generic Security Service APl Version 2 : Java Bindings
Status of this Meno

Thi s docunment specifies an Internet standards track protocol for the
Internet conmunity, and requests di scussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this meno is unlimnited.

Copyright Notice
Copyright (C) The Internet Society (2000). Al Rights Reserved.
Abstract

The Generic Security Services Application ProgramInterface (GSS-API)
of fers application progranmers uniform access to security services
atop a variety of underlying cryptographi c nmechani snms. This docunent
speci fies the Java bindings for GSS-API which is described at a

| anguage i ndependent conceptual |evel in RFC 2743 [GSSAPI v2- UPDATE] .

The GSS-API allows a caller application to authenticate a principal
identity, to delegate rights to a peer, and to apply security

servi ces such as confidentiality and integrity on a per-nessage
basis. Exanples of security mechani sns defined for GSS-APlI are The

Si npl e Public-Key GSS-API Mechani sm [SPKM and The Kerberos Version 5
GSS- APl Mechani sm [KERBV5] .

Tabl e of Contents

1. Introduction . . G 5
2. GSS-APlI Qperati onaI Par adi gm . 6
3. Additional Controls .o 8
3.1. Delegation . . 9
3.2. Mitual Authenti catl on . . : 10
3.3. Replay and CQut-of - Sequence Det ectl on . 10
3.4. Anonynous Aut hentication . Co 11
3.5. Confidentiality 12
3.6. Inter-process Context Tr ansf er 12
3.7. The Use of Inconplete Contexts . 13

Kabat & Upadhyay St andar ds Track [Page 1]

RFC 285

CoNoh~ONE

PPOODPPODDPODDPOODUNNNUUNNNNUTARRRRARRRRMARRRARARRRRAS
©NOUISWNE

EREEPREEREREREREERERRERERER

3

Ca

10.
11.
12.
12.
12.
12.
13.
14.
15.
16.

I n

De

CoNoh~ONE

. 16.

1.
2.
3.

GSS- APl Java Bi ndi ngs

I'1ing Conventions

Package Nane . .o

Provi der Franmework .

| nt eger types

Opaque Data types

Strings

bj ect Identifiers . .

bj ect Identifier Sets .

Credential s .o

Contexts . . :

Aut henti cati on tokens :

I nt er process tokens .

Error Reporting .
GSS status codes :
Mechani sm specific st at us codes :
Suppl enentary status codes

Nanmes

Channel Bi ndi ngs

Stream Obj ects

Optional Paraneters .

troduction to GSS-API Cl asses and | nterfaces .

GSShanager cl ass .
GSSNane interface . . .
GSSCredential interface
GSSCont ext interface .
MessageProp cl ass
GSSException class .
G d class .
Channel Bi ndi ng cI ass
tailed GSS-API O ass Descri ptl on .
public abstract class GSSwanager
Exanpl e Code .
get I nst ance
get Mechs . . .
get NanesFor I\/Ech
get MechsFor Nare
creat eNane .
creat eNane .
creat eNane .
creat eNane . .o
creat eCredenti al
creat eCredenti al
creat eCredenti al
cr eat eCont ext
cr eat eCont ext
createContext . . .
addPr ovi der At Fr ont
1. Exanpl e Code

Kabat & Upadhyay St andar ds Track

June 2000

13
13
13
14
14
15
15
15
16
18
18
18
19
19
21
21
22
25
26
26
26
26
27
28
28
30
30
30
31
31
31
32
33
33
33
33
33
34
35
35
36
36
37
37
38
38
38
39

[Page 2]

RFC 2853

.17.1. Exanpl e Code

Exanpl e Code .

equal s .
equal s . .
canoni cal i ze .
export
toString .

i SAnonynous
0. i sSMN

POONOGOA~WNE

Exanpl e Code .

di spose
get Name
get Name

CoNoOhAWNE

get Usage .
get Usage
get Mechs
add .
equal s

=
o

ol
Wt

Exanpl e Code .

i ni t SecCont ext .
1. Exanple Code .
i ni t SecCont ext .
1. Exanple Code .
accept SecCont ext
1. Exanple Code .
accept SecCont ext
1. Exanple Code .
i sEst abl i shed
di spose
getVVapS|zeL|mt
10. wap .
11. wap
12. unwap
13. unwap
14. getMC
15. getMC
16. verlnyIC

R R S S A S S e e R S S L S L S R S S S S S S R S R R S S R
CoNoocaO Wb E

AR AR R AR RN RA AR PR AR PR NNNVWWWWRRRWWWNNNNNNNNNNNE R
H
[EE

Kabat & Upadhyay

GSS- API

.17. addProvi der At End

public |nfe;face GSSCredentlaI

Java Bi ndi ngs

public interface GSShbne :

Static Constants

getStrlngNaﬁeType

Static Constants

getRenalnlnngfetlne . .
get Remai ninglnitLifetine .
get Remai ni ngAcceptLifetinme .

public |nte;féce GSSCDntext

Static Constants

St andards Track

i mpl ements Cl oneabl e

June 2000

40
41
42
42
43
44
44
44
45
45
45
45
45
45
46
47
48
48
48
48
49
49
49
49
50
50
51
51
52
54
54
55
56
56
57
58
59
59
60
60
61
61
62
63
64
65
65
66

[Page 3]

RFC 2853

42.

CoNoh~ONE

R R S S A S S e e R S S L S L S R S S S S S S R S R R S S R
aoRhwbE

NNNOOODOPUNNANINNANNNNEARRARARDNARARAARARARRARARD

N =

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

PR
NE=O

GSS- API

verifyMC .

export . :
requestNUtuaIAuth :
request Repl ayDet
request SequenceDet
request Cr edDel eg
request Anonymty

r equest Conf
requestinteg
requestLifetine .
set Channel Bi ndi ng .
get CredDel egSt at e .
get Mut ual Aut hSt at e
get Repl ayDet St ate .
get SequenceDet St at e
get AnonynityState .
i sTransferabl e

i sSProt Ready .

get Conf St at e
getlntegState .
getLifetime .
get Sr cNane

get Tar gNane .

get Mech . . .

get Del egCred
islnitiator

Constructors .
getQOP . . .
get Privacy . .
get M nor St at us
getM nor String
set QOP . .
set Privacy . .o
i sDupl i cat eToken .
i s dToken .

i sUnseqToken

i sGapToken .
setSuppIenentaryState

Constructors . . .
getlnltlatorAddress
get Accept or Addr ess
get ApplicationData .
equal s . .

public clasé a d:

Constructors .
toString .

Kabat & Upadhyay St and

Java Bi ndi ngs

public cl ass NbssageProp

S

public class Channel Bi ndi ng

ards Track

June 2000

67
68
68
69
69
69
69
70
70
70
71
71
71
71
71
72
72
72
72
72
73
73
73
73
73
73
74
74
75
75
75
75
75
75
76
76
76
76
76
77
77
78
78
78
78
79
79
80

[Page 4]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6.7.3. equals 80
6.7.4. QgetDER. 80
6.7.5. containedln 80
6.8. public class GSSException extends Exception 80
6.8.1. Static Constants 8
6.8.2. Constructors .. 83
6.8.3. getMpgjor 84
6.8.4. getMnor 84
6.8.5. getMgjorString 84
6.8.6. getMnorString 84
6.8.7. setMnor 84
6.8.8. toString B85
6.8.9. getMessage ... 85
7. Sanple Applications 85
7.1. Sinple GSS Context Initiator 85
7.2. Sinple GSS Context Acceptor 89
8. Security Considerations 93
9. Acknow edgnments 94
10. Bibliography 9%
11. Authors’ Addresses 9
12. Full Copyright Staterent. 096
1. Introduction

Thi s docunent specifies Java | anguage bindings for the CGeneric
Security Services Application Progranm ng Interface Version 2 (GSS-
APl). GSS-API Version 2 is described in a | anguage i ndependent
format in RFC 2743 [GSSAPI v2- UPDATE] . The GSS-API allows a caller
application to authenticate a principal identity, to delegate rights
to a peer, and to apply security services such as confidentiality and
integrity on a per-nessage basis.

Thi s docunent | everages the work perforned by the W in the area of
RFC 2743 [GSSAPI v2- UPDATE] and the C-bindings RFC 2744 [GSSAPI - C]
Whenever appropriate, text has been used fromthe C bindings RFC 2744
to explain generic concepts and provide direction to the

i mpl enent ors.

The design goals of this APl have been to satisfy all the
functionality defined in RFC 2743 and to provide these services in an
obj ect oriented nethod. The specification also ains to satisfy the
needs of both types of Java application devel opers, those who woul d
like access to a "systemw de" GSS-APlI inplenentation, as well as

t hose who would want to provide their own "custoni inplenentation

Kabat & Upadhyay St andar ds Track [Page 5]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

A "systemw de" inplenentation is one that is available to al
applications in the formof a library package. It may be a standard
package in the Java runtine environment (JRE) being used or it may be
additionally installed and accessible to any application via the
CLASSPATH.

A "custont inplenmentation of the GSS-API, on the other hand, is one
that woul d, in nost cases, be bundled with the application during
distribution. It is expected that such an inplenentati on would be
nmeant to provide for sone particular need of the application, such as
support for sone specific nmechani sm

The design of this APl also ains to provide a flexible framework to
add and manage GSS- APl mechani sns. GSS- APl | everages the Java

Crypt ography Architecture (JCA) provider nodel to support the
plugability of mechani sms. Mechani snms can be added on a "system

wi de" basis, where all users of the framework will have them
avai |l abl e. The specification also allows for the addition of
mechani sns per-instance of the GSS-API

Lastly, this specification presents an APl that will naturally fit
within the operation environment of the Java platform Readers are
assuned to be famliar with both the GSS-API and the Java pl atform

2. GSS-API QOperational Paradi gm

The Ceneric Security Service Application Progranmng Interface
Version 2 [GSSAPI v2- UPDATE] defines a generic security APl to calling
applications. It allows a conmunicating application to authenticate
the user associated with another application, to delegate rights to
anot her application, and to apply security services such as
confidentiality and integrity on a per-nessage basis.

There are four stages to using GSS-API:

1) The application acquires a set of credentials with which it my
prove its identity to other processes. The application’s
credentials vouch for its global identity, which may or may not
be related to any | ocal usernanme under which it may be running.

2) A pair of comuni cating applications establish a joint security
context using their credentials. The security context
encapsul ates shared state information, which is required in
order that per-nmessage security services may be provided.
Exanpl es of state information that mnight be shared between
applications as part of a security context are cryptographic
keys, and nessage sequence nunbers. As part of the
establishnent of a security context, the context initiator is

Kabat & Upadhyay St andar ds Track [Page 6]

RFC 2853

3)

4)

GSS- APl Java Bi ndi ngs June 2000

aut henticated to the responder, and may require that the
responder is authenticated back to the initiator. The
initiator nay optionally give the responder the right to
initiate further security contexts, acting as an agent or

del egate of the initiator. This transfer of rights is terned
"del egation", and is achieved by creating a set of credentials,
simlar to those used by the initiating application, but which
may be used by the responder.

A GSSCont ext object is used to establish and naintain the
shared information that makes up the security context. Certain
GSSCont ext nethods will generate a token, which applications
treat as cryptographically protected, opaque data. The caller
of such GSSContext nethod is responsible for transferring the
token to the peer application, encapsulated if necessary in an
application-to-application protocol. On receipt of such a

t oken, the peer application should pass it to a corresponding
GSSCont ext net hod which will decode the token and extract the
i nformation, updating the security context state informtion
accordingly.

Per - message services are invoked on a GSSContext object to
apply either:

integrity and data origin authentication, or
confidentiality, integrity and data origin authentication

to application data, which are treated by GSS-APlI as arbitrary
octet-strings. An application transnmitting a nessage that it

wi shes to protect will call the appropriate GSSContext nethod
(getM C or wap) to apply protection, and send the resulting
token to the receiving application. The receiver will pass the
received token (and, in the case of data protected by getM C,

t he acconpanyi ng nmessage-data) to the correspondi ng decodi ng
nmet hod of the GSSContext interface (verifyMC or unwap) to
renove the protection and validate the data.

At the conpletion of a communications session (which may extend
across several transport connections), each application uses a
GSSCont ext nmethod to invalidate the security context and

rel ease any system or cryptographic resources held. Miltiple
contexts may al so be used (either successively or

si mul taneously) within a single conmuni cati ons associ ati on, at
the discretion of the applications.

Kabat & Upadhyay St andar ds Track [Page 7]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

3.

Addi tional Controls

This section discusses the optional services that a context initiator
may request of the GSS-API before the context establishnment. Each of
these services is requested by calling the appropriate nutator mnethod
in the GSSContext object before the first call to init is perforned.
Only the context initiator can request context flags.

The optional services defined are:

Del egati on
The (usually tenporary) transfer of rights frominitiator to
acceptor, enabling the acceptor to authenticate itself as an
agent of the initiator.

Mut ual Aut henti cation
In addition to the initiator authenticating its identity to the
context acceptor, the context acceptor should al so authenticate
itself to the initiator.

Repl ay Detection
In addition to providing nmessage integrity services, GSSContext
per - nessage operations of getM C and wap shoul d i ncl ude
nmessage nunbering information to enable verifyMC and unw ap
to detect if a nessage has been dupli cat ed.

Qut - of - Sequence Detection
In addition to providing nmessage integrity services, GSSContext
per - nessage operations (getMC and wap) should include
nmessage sequencing information to enable verifyM C and unw ap
to detect if a nessage has been received out of sequence.

Anonymous Aut henti cati on
The establishnent of the security context should not reveal the
initiator’'s identity to the context acceptor

Sone mechani sms may not support all optional services, and sone
mechani sns may only support some services in conjunction with others.
The GSSContext interface offers query nmethods to allow the
verification by the calling application of which services will be
avail able fromthe context when the establishnment phase is conplete.
In general, if the security nechanismis capable of providing a
requested service, it should do so even if additional services nust
be enabled in order to provide the requested service. |If the
mechani smis incapable of providing a requested service, it should
proceed without the service |leaving the application to abort the
context establishment process if it considers the requested service
to be mandatory.

Kabat & Upadhyay St andar ds Track [Page 8]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

Sonme nmechani sms may specify that support for sonme services is
optional, and that inplenentors of the nechani smneed not provide it.
This is nost comonly true of the confidentiality service, often
because of legal restrictions on the use of data-encryption, but may
apply to any of the services. Such mechanisns are required to send
at | east one token fromacceptor to initiator during context
establ i shnment when the initiator indicates a desire to use such a
service, so that the initiating GSS-API can correctly indicate

whet her the service is supported by the acceptor’s GSS-API.

3.1. Delegation

The GSS-API allows del egation to be controlled by the initiating
application via the request CredDel eg nethod before the first call to
init has been issued. Sone mechani sns do not support del egation, and
for such nechani snms attenpts by an application to enabl e del egation
are ignored.

The acceptor of a security context, for which the initiator enabled
del egation, can check if del egation was enabl ed by using the

get CredDel egSt ate net hod of the GSSContext interface. |n cases when
it is, the del egated credential object can be obtained by calling the
get Del egCred nethod. The obtai ned GSSCredential object may then be
used to initiate subsequent GSS- APl security contexts as an agent or
del egate of the initiator. |If the original initiator’s identity is
"A" and the delegate’'s identity is "B", then, depending on the
underlyi ng mechani sm the identity enbodi ed by the del egat ed
credential may be either "A" or "B acting for A".

For many mechani sns that support del egation, a sinple bool ean does
not provide enough control. Exanples of additional aspects of

del egation control that a mechani sm m ght provide to an application
are duration of delegation, network addresses from which del egation
is valid, and constraints on the tasks that nay be perforned by a
del egate. Such controls are presently outside the scope of the GSS-
APl . GSS-API inplenmentations supporting nechanisnms offering
addi ti onal controls should provide extension routines that all ow
these controls to be exercised (perhaps by nodifying the initiator’s
GSS- APl credential object prior to its use in establishing a
context). However, the sinple delegation control provided by GSS-API
shoul d al ways be able to over-ride other mechani smspecific

del egation controls. |If the application instructs the GSSCont ext

obj ect that delegation is not desired, then the inplenentation nust
not pernmit delegation to occur. This is an exception to the genera
rule that a nmechani sm may enabl e services even if they are not
requested - del egation nay only be provided at the explicit request
of the application.

Kabat & Upadhyay St andar ds Track [Page 9]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

3.2. Mitual Authentication

Usual Iy, a context acceptor will require that a context initiator
authenticate itself so that the acceptor may nmake an access-contro
decision prior to performng a service for the initiator. |In sone

cases, the initiator may al so request that the acceptor authenticate
itself. GSS-APlI allows the initiating application to request this
nmut ual aut hentication service by calling the request Mutual Auth nethod
of the GSSContext interface with a "true" paraneter before making the
first call toinit. The initiating application is inforned as to
whet her or not the context acceptor has authenticated itself. Note
that sone mechani sns may not support mnutual authentication, and other
nmechani sns nmay al ways perform nmutual authentication, whether or not
the initiating application requests it. In particular, nutua

aut hentication may be required by some nechanisnms in order to support
replay or out-of-sequence nessage detection, and for such nmechani sns
a request for either of these services will automatically enable

mut ual aut hentication

3.3. Replay and Qut-of - Sequence Detection

The GSS-APlI may provide detection of ms-ordered nessages once a
security context has been established. Protection nmay be applied to
nmessages by either application, by calling either getMC or wap

nmet hods of the GSSContext interface, and verified by the peer
application by calling verifyMC or unwap for the peer’s GSSCont ext
obj ect .

The getM C nethod cal cul ates a cryptographi c checksum of an
application nessage, and returns that checksumin a token. The
application should pass both the token and the nmessage to the peer
application, which presents themto the verifyM C nethod of the
peer’s GSSCont ext object.

The wrap nethod cal cul ates a cryptographi c checksum of an application
nmessage, and places both the checksum and the nessage inside a single
token. The application should pass the token to the peer

application, which presents it to the unwap nmethod of the peer’s
GSSCont ext obj ect to extract the nessage and verify the checksum

Ei t her pair of routines nmay be capabl e of detecting out-of-sequence
nmessage delivery, or duplication of nmessages. Details of such nis-
ordered nessages are indicated through suppl enmentary query nethods of
the MessageProp object that is filled in by each of these routines.

A nechani smneed not maintain a list of all tokens that have been

processed in order to support these status codes. A typica
mechani sm might retain information about only the nost recent "N

Kabat & Upadhyay St andar ds Track [Page 10]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

t okens processed, allowing it to distinguish duplicates and m ssing
tokens within the nost recent "N' nmessages; the receipt of a token
ol der than the nost recent "N' would result in the isO dToken net hod
of the instance of MessageProp to return "true".

3.4. Anonynous Aut hentication

In certain situations, an application may wish to initiate the

aut hentication process to authenticate a peer, without revealing its
own identity. As an exanple, consider an application providing
access to a database containing nedical information, and offering
unrestricted access to the service. A client of such a service m ght
wi sh to authenticate the service (in order to establish trust in any
information retrieved fromit), but mght not wish the service to be
able to obtain the client’s identity (perhaps due to privacy concerns
about the specific inquiries, or perhaps sinply to avoid being placed
on mailing-lists).

In normal use of the GSS-API, the initiator’'s identity is nade

avail able to the acceptor as a result of the context establishnment
process. However, context initiators nmay request that their identity
not be revealed to the context acceptor. Many mechani sns do not
support anonynous authentication, and for such mechani snms the request
will not be honored. An authentication token will still be
generated, but the application is always informed if a requested
service is unavailable, and has the option to abort context
establishment if anonymity is valued above the other security
services that would require a context to be established.

In addition to infornming the application that a context is

est abl i shed anonymously (via the i sAnonynous net hod of the GSSCont ext
class), the get SrcNane nethod of the acceptor’s GSSCont ext object
will, for such contexts, return a reserved internal-form nane,
defined by the inplenentation.

The toString nethod for a GSSName object representi ng an anonynous
entity will return a printable nane. The returned value will be
syntactically distinguishable fromany valid principal nanme supported
by the inplenentation. The associ ated nanme-type object identifier
will be an oid representing the value of NT_ANONYMOUS. This nane-
type oid will be defined as a public, static G d object of the
GSSNane class. The printable form of an anonynous nanme shoul d be
chosen such that it inplies anonymty, since this name may appear in,
for exanple, audit logs. For exanple, the string "<anonynous>" m ght
be a good choice, if no valid printable names supported by the

i npl enentation can begin with "<" and end with ">".

Kabat & Upadhyay St andar ds Track [Page 11]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

When using the equal nmethod of the GSSNane interface, and one of the
operands is a GSSName instance representing an anonynous entity, the
met hod nust return "fal se"

3.5. Confidentiality

I f a GSSContext supports the confidentiality service, wap nmethod may
be used to encrypt application nessages. Messages are selectively
encrypted, under the control of the setPrivacy nmethod of the
MessageProp object used in the wap nethod.

3.6. Inter-process Context Transfer

GSS- APl V2 provides functionality which allows a security context to
be transferred between processes on a single machine. These are

i npl ement ed using the export nethod of GSSContext and a byte array
constructor of the same class. The npbst common use for such a
feature is a client-server design where the server is inplenented as
a single process that accepts incoming security contexts, which then
| aunches child processes to deal with the data on these contexts. In
such a design, the child processes nust have access to the security
context object created within the parent so that they can use per-
nmessage protection services and delete the security context when the
comuni cati on sessi on ends.

Since the security context data structure is expected to contain
sequencing information, it is inpractical in general to share a

cont ext between processes. Thus GSSContext interface provides an
export nethod that the process, which currently owns the context, can
call to declare that it has no intention to use the context
subsequently, and to create an inter-process token containing

i nformati on needed by the adopting process to successfully re-create
the context. After successful conpletion of export, the origina
security context is made inaccessible to the calling process by GSS-
APl and any further usage of this object will result in failures.

The originating process transfers the inter-process token to the
adopting process, which creates a new GSSCont ext object using the
byte array constructor. The properties of the context are equival ent
to that of the original context.

The inter-process token nay contain sensitive data fromthe origina
security context (including cryptographic keys). Applications using
i nter-process tokens to transfer security contexts nust take
appropriate steps to protect these tokens in transit.

Kabat & Upadhyay St andar ds Track [Page 12]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

| mpl enent ati ons are not required to support the inter-process
transfer of security contexts. Calling the isTransferable nethod of
the GSSContext interface will indicate if the context object is
transferable.

3.7. The Use of Inconplete Contexts

Sone mechani sms may al |l ow the per-nessage services to be used before
the context establishnment process is conplete. For exanple, a
mechani sm may include sufficient information in its initial context-
| evel tokens for the context acceptor to inmedi ately decode nessages
protected with wap or getMC. For such a mechanism the initiating
application need not wait until subsequent context-level tokens have
been sent and received before invoking the per-nmessage protection
servi ces.

An application can invoke the isProtReady nethod of the GSSCont ext
class to deternine if the per-message services are available in
advance of conplete context establishnment. Applications wishing to
use per-nessage protection services on partially-established contexts
shoul d query this nethod before attenpting to i nvoke wap or getMC

4. Calling Conventions

Java provides the inplenmentors with not just a syntax for the

| anguage, but al so an operational environment. For exanple, nenory
is automatically managed and does not require application
intervention. These |anguage features have allowed for a sinpler API
and have led to the elimnation of certain GSS-API functions.

Mor eover, the JCA defines a provider nodel which allows for

i npl ement ati on i ndependent access to security services. Using this
nodel , applications can seanlessly switch between different

i npl eent ati ons and dynam cally add new services. The GSS- AP
specification | everages these concepts by the usage of providers for
t he mechani smi npl enment ati ons.

4.1. Package Name
The classes and interfaces defined in this docunent reside in the
package called "org.ietf.jgss". Applications that wish to nake use
of this APl should inport this package nane as shown in section 7.
4.2. Provider Franework
The Java security APlI's use a provider architecture that allows

applications to be inplenentation i ndependent and security API
i npl ementations to be nodul ar and extensible. The

Kabat & Upadhyay St andar ds Track [Page 13]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

java.security.Provider class is an abstract class that a vendor
extends. This class maps various properties that represent different
security services that are available to the nanes of the actua

vendor classes that inplement those services. Wen requesting a
service, an application sinply specifies the desired provider and the
APl del egates the request to service classes avail able fromthat

provi der.

Usi ng the Java security provider nodel insulates applications from
i npl erentation details of the services they wish to use.
Applications can switch between providers easily and new providers
can be added as needed, even at runtine.

The GSS-API may use providers to find conmponents for specific
underlying security nechanisns. For instance, a particular provider
m ght contain conponents that will allow the GSS-API to support the
Ker beros v5 mechani sm and anot her ni ght contain conmponents to support
the SPKM nechani sm By del egati ng nechani sm specific functionality
to the conponents obtained from providers the GSS-API can be extended
to support an arbitrary list of nechanism

How t he GSS- APl |ocates and queries these providers is beyond the
scope of this docunent and is being deferred to a Service Provider
Interface (SPI) specification. The availability of such a SP
specification is not mandatory for the adoption of this API
specification nor is it mandatory to use providers in the

i mpl enentation of a GSS-API franmewor k. However, by using the provider
framework together with an SPl specification one can create an
extensi bl e and inpl enentati on i ndependent GSS- APl framewor K.

4.3. Integer types

Al'l nuneric values are declared as "int" primtive Java type. The
Java specification guarantees that this will be a 32 bit two's
conpl enment si gned nunber.

Throughout this APlI, the "bool ean" primtive Java type is used
wherever a bool ean value is required or returned.

4.4. (Opaque Data types

Java byte arrays are used to represent opaque data types which are
consuned and produced by the GSS-API in the forms of tokens. Java
arrays contain a length field which enables the users to easily
determ ne their size. The |anguage has automatic garbage collection
which alleviates the need by devel opers to rel ease nenory and
sinplifies buffer ownership issues.

Kabat & Upadhyay St andar ds Track [Page 14]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

4.5. Strings

The String object will be used to represent all textual data. The
Java String object, transparently treats all characters as two-byte
Uni code characters which allows support for many |locals. Al
routines returning or accepting textual data will use the String
obj ect .

4.6. Object ldentifiers

An O d object will be used to represent Universal hject ldentifiers
(Gds). Qds are 1SO defined, hierarchically globally-interpretable
identifiers used within the GSS- APl framework to identify security
nmechani sns and nanme fornats. The G d object can be created froma
string representation of its dot notation (e.g. "1.3.6.1.5.6.2") as
well as fromits ASN. 1 DER encoding. Methods are also provided to
test equality and provide the DER representation for the object.

An inportant feature of the Od class is that its instances are
imutable - i.e. there are no nethods defined that allow one to
change the contents of an Gd. This property allows one to treat
these objects as "statics" without the need to perform copies.

Certain routines allow the usage of a default oid. A "null" val ue
can be used in those cases.

4.7. Object ldentifier Sets

The Java bi ndi ngs represents object identifiers sets as arrays of GO d
objects. Al Java arrays contain a length field which allows for
easy mani pul ati on and reference.

In order to support the full functionality of RFC 2743, the O d cl ass
i ncludes a nmethod which checks for existence of an O d object within
a specified array. This is equivalent in functionality to

gss_test _oid_set_nenber. The use of Java arrays and Java's automatic
garbage collection has elimnated the need for the foll ow ng
routines: gss_create_enpty_oid _set, gss_release_oid _set, and
gss_add_oi d_set _nenber. Java GSS-API inplenmentations will not
contain them Java's automatic garbage collection and the imutable
property of the G d object elimnates the conplicated nenory
managenent issues of the C counterpart.

When ever a default value for an Qbject ldentifier Set is required, a

"null" value can be used. Please consult the detail ed nethod
description for details.

Kabat & Upadhyay St andar ds Track [Page 15]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

4. 8.

Credenti al s

GSS- APl credentials are represented by the GSSCredential interface.
The interface contains several constructs to allow for the creation
of nmost common credential objects for the initiator and the acceptor
Conparisons are performed using the interface's "equal s" nethod. The
foll ow ng general description of GSS-API credentials is included from
the C- bindings specification:

GSS- APl credentials can contain nmechani smspecific principa
authentication data for nultiple nechanisns. A GSS-APlI credential is
conposed of a set of credential-elenments, each of which is applicable
to a single mechanism A credential nmay contain at nost one
credential -el enent for each supported mechanism A credential -

el enent identifies the data needed by a single mechanismto
authenticate a single principal, and conceptually contains two
credential -references that describe the actual mechani smspecific

aut hentication data, one to be used by GSS-API for initiating
contexts, and one to be used for accepting contexts. For nechani sns
that do not distinguish between acceptor and initiator credentials,
both references would point to the sane underlying nmechani smspecific
aut henti cati on dat a.

Credentials describe a set of mechani smspecific principals, and give
their holder the ability to act as any of those principals. Al
principal identities asserted by a single GSS-API credential should
bel ong to the sanme entity, although enforcenent of this property is
an inplementation-specific matter. A single GSSCredential object
represents all the credential elenents that have been acquired.

The creation’s of an GSSCont ext object allows the value of "null" to
be specified as the GSSCredential input paranmeter. This wll
indicate a desire by the application to act as a default principal.
Wil e individual GSS-API inplenentations are free to determ ne such
default behavior as appropriate to the nechanism the foll ow ng
default behavior by these routines is reconmended for portability:

For the initiator side of the context:

1) If there is only a single principal capable of initiating
security contexts for the chosen nmechanismthat the application
is authorized to act on behalf of, then that principal shall be
used, otherw se

Kabat & Upadhyay St andar ds Track [Page 16]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

2) If the platform maintains a concept of a default network-
identity for the chosen nmechanism and if the application is
aut horized to act on behalf of that identity for the purpose of
initiating security contexts, then the principal corresponding
to that identity shall be used, otherw se

3) If the platform maintains a concept of a default |oca
identity, and provides a neans to map local identities into
network-identities for the chosen nechanism and if the
application is authorized to act on behalf of the network-
identity inage of the default local identity for the purpose of
initiating security contexts using the chosen nechanism then
the principal corresponding to that identity shall be used,
ot herw se

4) A user-configurable default identity should be used.
and for the acceptor side of the context

1) If there is only a single authorized principal identity capable
of accepting security contexts for the chosen nechanism then
that principal shall be used, otherw se

2) If the nechanismcan deternine the identity of the target
princi pal by exam ning the context-establishment token
processed during the accept nmethod, and if the accepting
application is authorized to act as that principal for the
pur pose of accepting security contexts using the chosen
mechani sm then that principal identity shall be used,
ot herw se

3) If the nmechani sm supports context acceptance by any princi pal
and if nutual authentication was not requested, any principa
that the application is authorized to accept security contexts
under using the chosen nechani sm nmay be used, otherw se

4) A user-configurable default identity shall be used.

The purpose of the above rules is to allow security contexts to be
established by both initiator and acceptor using the default behavior
whenever possible. Applications requesting default behavior are
likely to be nore portable across nechani snms and i npl enentati ons than
ones that instantiate an GSSCredential object representing a specific
identity.

Kabat & Upadhyay St andar ds Track [Page 17]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

4.9.

4.1

4.1

Cont ext s

The GSSContext interface is used to represent one end of a GSS- API
security context, storing state infornation appropriate to that end
of the peer conmunication, including cryptographic state information.
The instantiation of the context object is done differently by the
initiator and the acceptor. After the context has been instanti ated,
the initiator may choose to set various context options which wll
determ ne the characteristics of the desired security context. When
all the application desired characteristics have been set, the
initiator will call the initSecContext method which will produce a
token for consunption by the peer’'s accept SecContext nethod. It is
the responsibility of the application to deliver the authentication

t oken(s) between the peer applications for processing. Upon

conpl etion of the context establishnent phase, context attributes can
be retrieved, by both the initiator and acceptor, using the accessor
nmet hods. These will reflect the actual attributes of the established
context. At this point the context can be used by the application to
apply cryptographic services to its data.

0. Authentication tokens

A token is a caller-opaque type that GSS-API uses to maintain
synchroni zati on between each end of the GSS-API security context.

The token is a cryptographically protected octet-string, generated by
t he underlying nmechani smat one end of a GSS-API security context for
use by the peer nmechanismat the other end. Encapsulation (if
required) within the application protocol and transfer of the token
are the responsibility of the peer applications.

Java GSS- APl uses byte arrays to represent authentication tokens.
Over| oaded net hods exi st which allow the caller to supply input and
out put streans which will be used for the reading and witing of the
t oken dat a.

1. Interprocess tokens

Certain GSS-API routines are intended to transfer data between
processes in multi-process prograns. These routines use a caller-
opaque octet-string, generated by the GSS-API in one process for use
by the GSS-API in another process. The calling application is
responsi ble for transferring such tokens between processes. Note
that, while GSS- APl inplenmentors are encouraged to avoid placing
sensitive information within interprocess tokens, or to
cryptographically protect them many inplenentations will be unable
to avoid placing key material or other sensitive data within them
It is the application’ s responsibility to ensure that interprocess
tokens are protected in transit, and transferred only to processes

Kabat & Upadhyay St andar ds Track [Page 18]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

4.

4.

that are trustworthy. An interprocess token is represented using a
byte array enitted fromthe export nethod of the GSSCont ext

interface. The receiver of the interprocess token would initialize
an GSSContext object with this token to create a new context. Once a
context has been exported, the GSSContext object is invalidated and
is no | onger avail abl e.

12. FError Reporting

RFC 2743 defined the usage of nmmjor and m nor status values for
signaling of GSS-API errors. The major code, also called GSS status
code, is used to signal errors at the GSS-API |evel independent of
the underlying nechani sn(s). The m nor status val ue or Mechani sm
status code, is a nmechanismdefined error value indicating a
mechani sm specific error code.

Java GSS- APl uses exceptions inplenented by the GSSException class to
signal both nminor and major error values. Both nechanism specific
errors and GSS-API |evel errors are signaled through instances of
this class. The usage of exceptions replaces the need for mgjor and
m nor codes to be used within the APl calls. GSSException class also
contains nethods to obtain textual representations for both the major
and m nor values, which is equivalent to the functionality of
gss_di spl ay_st at us.

12.1. GSS status codes

GSS status codes indicate errors that are independent of the
under | yi ng nechani sn(s) used to provide the security service. The
errors that can be indicated via a GSS status code are generic API
routine errors (errors that are defined in the GSS-API

specification). These bindings take advantage of the Java exceptions
mechani sm thus elimnating the need for calling errors.

A GSS status code indicates a single fatal generic APl error fromthe
routine that has thrown the GSSException. Using exceptions announces
that a fatal error has occurred during the execution of the nethod.
The GSS- APl operational nodel also allows for the signaling of

suppl ementary status information fromthe per-nessage calls. These
need to be handled as return val ues since using exceptions is not
appropriate for informatory or warning-like information. The nethods
that are capabl e of producing supplenentary information are the two
per - nessage net hods GSSCont ext.verifyM C() and GSSCont ext. unw ap().
These nmethods fill the supplenmentary status codes in the MessageProp
obj ect that was passed in.

Kabat & Upadhyay St andar ds Track [Page 19]

RFC 2853 GSS- API

Java Bi ndi ngs June 2000

GSSException object, along with providing the functionality for
setting of the various error codes and translating theminto textual
representation, also contains the definitions of all the nuneric
error values. The following table lists the definitions of error

codes:

Tabl e: GSS St atus Codes

Name

BAD_MECH

BAD_NAVE

BAD_NAMETYPE

BAD_BI NDI NGS

BAD_STATUS

BAD M C

NO_CRED

NO_CONTEXT

DEFECTI VE_TOKEN

DEFECTI VE_CREDENTI AL

CREDENTI ALS_EXPI RED

CONTEXT_EXPI RED

FAI LURE

BAD_QOP

Kabat & Upadhyay

Val ue

1

10

11

12

13

14

Meani ng

An unsupported mechani sm
was requested.

An invalid name was supplied.

A supplied nane was of an
unsupported type.

I ncorrect channel bindings were
suppl i ed.

An invalid status code was
suppl i ed.

A token had an invalid MC
No credentials were supplied, or
the credentials were unavail abl e

or inaccessible.

I nval i d context has been
suppl i ed.

A supplied token was invalid.

A supplied credential was
i nval i d.

The referenced credential s
have expired.

The context has expired.

M scel | aneous fail ure,
unspecified at the GSS-API | evel.

The quality-of-protection
requested coul d not be provided.

St andar ds Track [Page 20]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

UNAUTHORI ZED 15 The operation is forbidden by
| ocal security policy.

UNAVAI LABLE 16 The operation or option is
unavai |l abl e.

DUPLI CATE_ELEMENT 17 The requested credenti al
el enent al ready exists.

NAME_NOT_IWN 18 The provi ded nane was not a
nmechani sm nane.

OLD_TOKEN 19 The token's validity period has
expi red.

DUPLI CATE_TOKEN 20 The token was a duplicate of an

earlier version

The GSS maj or status code of FAILURE is used to indicate that the
under | yi ng nechani sm detected an error for which no specific GSS
status code is defined. The nechani smspecific status code can
provi de nore details about the error.

The different mejor status codes that can be contained in the
GSSException object thrown by the nmethods in this specification are
the sanme as the major status codes returned by the correspondi ng
calls in RFC 2743 [GSSAPI v2- UPDATE] .

4.12.2. Mechani smspecific status codes

Mechani sm specific status codes are comrunicated in two ways, they
are part of any GSSException thrown fromthe mechani sm specific |ayer
to signal a fatal error, or they are part of the MessageProp object
that the per-nessage calls use to signal non-fatal errors.

A default value of 0 in either the GSSException object or the
MessageProp object will be used to represent the absence of any
mechani sm speci fic status code.

4.12.3. Supplenentary status codes

Suppl ementary status codes are confined to the per-nessage net hods of
the GSSContext interface. Because of the informative nature of these
errors it is not appropriate to use exceptions to signal them

| nst ead, the per-nessage operations of the GSSContext interface
return these values in a MessageProp object.

Kabat & Upadhyay St andar ds Track [Page 21]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000
The MessageProp cl ass defines query nethods which return bool ean
val ues indicating the follow ng suppl enmentary states:
Tabl e: Suppl enentary Status Mt hods
Met hod Nane Meani ng when "true" is returned

i sDupl i cateToken The token was a duplicate of an
earlier token

i sA dToken The token's validity period has
expired.

i sUnseqToken A | ater token has al ready been
processed.

i sGapToken An expected per-nessage token was

not received.

"true" return value for any of the above nethods indicates that the
token exhibited the specified property. The application nust
determ ne the appropriate course of action for these supplenentary
values. They are not treated as errors by the GSS-API.

4. 13. Nanmes

A nanme is used to identify a person or entity. GSS-API authenticates
the relationship between a nane and the entity claimng the nane.

Since different authentication nechanisms nay enpl oy different
nanmespaces for identifying their principals, GSS-API’'s nam ng support
is necessarily conplex in multi-mnmechani smenvironnments (or even in
sone singl e-mechani sm environments where the underlying mechani sm
supports multiple nanespaces).

Two distinct conceptual representations are defined for nanes:

1) A GSS-API formrepresented by inplenentations of the GSSNane
interface: A single GSSNane object may contain nultiple names from
di fferent namespaces, but all names should refer to the sanme
entity. An exanple of such an internal nane would be the nane
returned froma call to the getNanme nethod of the GSSCredenti al
interface, when applied to a credential containing credenti al
el ements for multiple authentication nechani sms enpl oyi ng
di fferent namespaces. This GSSNanme object will contain a distinct
nane for the entity for each authenticati on nechani sm

Kabat & Upadhyay St andar ds Track [Page 22]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

For GSS-API inplenentations supporting nultiple namespaces,
GSSNane i nmpl ementati ons nmust contain sufficient information to
determ ne the nanespace to which each primtive nanme bel ongs.

2) Mechani smspecific contiguous byte array and string forms:
Different GSSNane initialization nmethods are provided to handl e
both byte array and string formats and to accommopdat e vari ous
calling applications and nane types. These formats are capabl e of
containing only a single nane (froma single nanespace).

Conti guous string nanes are always acconpani ed by an obj ect
identifier specifying the namespace to which the nane bel ongs, and
their format is dependent on the authentication mechani smthat

enpl oys that name. The string nanme fornms are assunmed to be
printable, and may therefore be used by GSS-API applications for
comuni cation with their users. The byte array nane formats are
assuned to be in non-printable formats (e.g. the byte array
returned fromthe export nethod of the GSSNane interface).

A GSSNane obj ect can be converted to a contiguous representation by
using the toString nmethod. This will guarantee that the nane will be
converted to a printable format. Different initialization nethods in
the GSSNane interface are defined allow ng support for multiple
syntaxes for each supported nanespace, and allow ng users the freedom
to choose a preferred nane representation. The toString nethod
shoul d use an i npl enmentati on-chosen printable syntax for each
supported nane-type. To obtain the printable nane type,

get Stri ngNameType nethod can be used.

There is no guarantee that calling the toString nmethod on the GSSName
interface will produce the sane string formas the original inported
string name. Furthernore, it is possible that the name was not even
constructed froma string representation. The sanme applies to nane-
space identifiers which may not necessarily survive unchanged after a
journey through the internal nane-form An exanple of this might be
a nmechani smthat authenticates X 500 nanes, but provides an

al gorithm ¢ mapping of Internet DNS names into X 500. That
mechani snmi s i npl enentati on of GSSNanme ni ght, when presented with a
DNS nane, generate an internal name that contained both the origina
DNS nane and the equival ent X 500 name. Alternatively, it mght only
store the X. 500 nanme. In the latter case, the toString nethod of
GSSNanme woul d nost |ikely generate a printable X 500 nane, rather
than the original DNS nane.

The context acceptor can obtain a GSSNane obj ect representing the
entity perform ng the context initiation (through the usage of

get SrcNanme nmethod). Since this name has been aut henticated by a
singl e nmechanism it contains only a single name (even if the

i nternal nane presented by the context initiator to the GSSCont ext

Kabat & Upadhyay St andar ds Track [Page 23]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

obj ect had multiple conponents). Such nanes are terned interna
nmechani sm nanes, or "MN's and the nanes enitted by GSSCont ext
interface in the get SrcNane and get TargNanme are al ways of this type.
Since sone applications may require MNs without wanting to incur the
over head of an authentication operation, creation nethods are

provi ded that take not only the name buffer and nane type, but also
the mechanismoid for which this nanme should be created. When
dealing with an existing GSSNanme object, the canonicalize nethod may
be invoked to convert a general internal name into an M\

GSSNane obj ects can be conpared using their equal nethod, which
returns "true" if the two names being conpared refer to the same
entity. This is the preferred way to perform nane conpari sons

i nstead of using the printable nanes that a given GSS- AP

i npl erentati on may support. Since GSS-APlI assunes that all primtive
nanes contained within a given internal nane refer to the sane
entity, equal can return "true" if the two nanes have at |east one
primitive nane in comon. |If the inplenmentation enbodi es know edge
of equival ence rel ati onshi ps between nanes taken fromdifferent
nanespaces, this know edge nay al so all ow successful conparisons of
i nternal nanes containing no overlapping primtive el enents.

When used in large access control lists, the overhead of creating an
GSSNane obj ect on each nane and invoking the equal nethod on each
nane fromthe ACL may be prohibitive. As an alternative way of
supporting this case, GSS-APlI defines a special formof the
contiguous byte array nane which nay be conpared directly (byte by
byte). Contiguous nanes suitable for conparison are generated by the
export nethod. Exported nanes nay be re-inported by using the byte
array constructor and specifying the NT_EXPORT_NAME as the nane type
object identifier. The resulting GSSNane nane will also be a M\

The GSSNane interface defines public static G d objects representing
the standard nane types. Structurally, an exported nanme object

consi sts of a header containing an O D identifying the nmechani smthat
aut henti cated the name, and a trailer containing the nanme itself,
where the syntax of the trailer is defined by the individua
nmechani sm specification. Detailed description of the format is
specified in the | anguage-i ndependent GSS- APl specification

[GSSAPI v2- UPDATE] .

Note that the results obtained by using the equals nethod will in
general be different fromthose obtained by invoking canonicalize and
export, and then conparing the byte array output. The first series
of operation determ nes whether two (unauthenticated) nanmes identify
the same principal; the second whether a particul ar nechani sm woul d
authenticate themas the sane principal. These two operations wll
in general give the sane results only for M\s.

Kabat & Upadhyay St andar ds Track [Page 24]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

It is inportant to note that the above are guidelines as how GSSNane

i mpl enent ati ons shoul d behave, and are not intended to be specific
requi rements of how names objects nust be inplenmented. The mechani sm
designers are free to decide on the details of their inplenmentations
of the GSSNane interface as |long as the behavior satisfies the above
gui del i nes.

4.14. Channel Bindings

GSS- APl supports the use of user-specified tags to identify a given
context to the peer application. These tags are intended to be used
to identify the particular comunications channel that carries the
context. Channel bindings are comunicated to the GSS-API using the
Channel Bi ndi ng object. The application nay use byte arrays to
specify the application data to be used in the channel binding as
wel | as using instances of the |Inet Address. The |InetAddress for the
initiator and/or acceptor can be used within an instance of a
Channel Bi ndi ng. Channel Bi ndi ng can be set for the GSSContext object
usi ng the set Channel Bi ndi ng nmet hod before the first call to init or
accept has been perforned. Unless the setChannel Bi ndi ng nmet hod has
been used to set the Channel Binding for a GSSContext object, "null"
Channel Binding wi Il be assuned. |InetAddress is currently the only
address type defined within the Java platformand as such, it is the
only one supported within the Channel Bi nding class. Applications
that use other types of addresses can include themas part of the
application specific data.

Conceptual ly, the GSS-API concatenates the initiator and acceptor
address information, and the application supplied byte array to form
an octet string. The nechanismcalculates a MC over this octet
string and binds the MC to the context establishment token emtted
by init nethod of the GSSContext interface. The sanme bindings are
set by the context acceptor for its GSSContext object and during
processing of the accept nethod a MCis calculated in the sane way.
The calculated MC is conpared with that found in the token, and if
the MCs differ, accept will throw a GSSException with the nmajor
code set to BAD BI NDINGS, and the context will not be established.
Sonme nechani sms may include the actual channel binding data in the
token (rather than just a MC); applications should therefore not use
confidential data as channel - bi ndi ng conponents.

I ndi vi dual nechani snms may i npose additional constraints on addresses
that may appear in channel bindings. For exanple, a nechanism may
verify that the initiator address field of the channel binding
contains the correct network address of the host system Portable
applications should therefore ensure that they either provide correct
information for the address fields, or onit setting of the addressing
i nformati on.

Kabat & Upadhyay St andar ds Track [Page 25]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

4.15. Stream bjects

The context object provides overl oaded net hods which use input and
output streans as the neans to convey authentication and per-nessage
GSS- APl tokens. It is inportant to note that the streans are
expected to contain the usual GSS-API tokens which would otherw se be
handl ed t hrough the usage of byte arrays. The tokens are expected to
have a definite start and an end. The callers are responsible for

ensuring that the supplied streanms will not block, or expect to block
until a full token is processed by the GSS-API nmethod. Only a single
GSS- APl token will be processed per invocation of the stream based
met hod.

The usage of streans allows the callers to have control and
managenent of the supplied buffers. Because streans are non-
primtive objects, the callers can make the streans as conplicated or
as sinple as desired sinply by using the streans defined in the
java.i o package or creating their own through the use of inheritance.
This will allow for the application’s greatest flexibility.

4.16. Optional Paraneters

Whenever the application wishes to onmit an optional paraneter the
"nul 1" value shall be used. The detailed nethod descriptions

i ndi cate which paraneters are optional. Methods overl oadi ng has al so
been used as a technique to indicate default paraneters.

5. Introduction to GSS-API C asses and | nterfaces

This section presents a brief description of the classes and
interfaces that constitute the GSS-API. The inplenentations of these
are obtained fromthe CLASSPATH defined by the application. |f Java
GSS becones part of the standard Java APlI's then these classes wll
be available by default on all systens as part of the JRE' s system

cl asses.

This section al so shows the correspondi ng RFC 2743 functionality
i mpl enented by each of the classes. Detailed description of these
classes and their nethods is presented in section 6.
5.1. GSSManager cl ass
This abstract class serves as a factory to instantiate

i npl enentations of the GSS-API interfaces and al so provi des nethods
to nmake queries about underlying security mechani smns.

Kabat & Upadhyay St andar ds Track [Page 26]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

A default inplenentation can be obtained using the static nethod
getinstance(). Applications that desire to provide their own

i npl erentati on of the GSSManager class can sinply extend the abstract
cl ass thensel ves.

This class contains equivalents of the follow ng RFC 2743 routi nes:

gss_i nport _nane Create an internal nanme from 6.1.9-
the supplied information. 6.1.12

gss_acquire_cred Acquire credenti al 6.1. 13-
for use. 6.1.15

gss_i nport _sec_cont ext Create a previously exported 6.1.18
cont ext .

gss_i ndi cat e_mechs Li st the nechani sns 6.1.6
supported by this GSS-API
i mpl emrent ati on.

gss_i nqui re_nechs_for_nane Li st the nechani sns 6.1.8
supporting the
speci fied nane type.

gss_i nqui re_nanes_for_nech Li st the nane types 6.1.7

supported by the
speci fi ed mechani sm

5.2. GSSNane interface

GSS- APl nanes are represented in the Java bindings through the
GSSNane interface. Different name formats and their definitions are
identified with universal Cbject Identifiers (oids). The fornmat of

t he nanmes can be derived based on the unique oid of each nane type.
The followi ng GSS-API routines are provided by the GSSNane interface:
RFC 2743 Routi ne Functi on Section(s)
gss_di spl ay_nane Covert internal nane 6.2.7

representation to text format.

gss_conpar e_nane Conpare two internal nanes. 6.2.3, 6.2.4

gss_rel ease_nane Rel ease resources associ at ed N A
with the internal nane.

Kabat & Upadhyay St andar ds Track [Page 27]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

5.

5.

3.

4.

gss_canoni cal i ze_name Convert an internal nane to a 6.1.11,
mechani sm nane.

gss_export _name Convert a mechani smnane to 6.2.6
export format.

gss_dupl i cat e_nane Create a copy of the internal N A

name.
The gss_rel ease_nane call is not provided as Java does its own
garbage collection. The gss_duplicate_name call is also redundant;

the GSSNanme interface has no nutator nethods that can change the
state of the object so it is safe for sharing.

GSSCredential interface

The GSSCredential interface is responsible for the encapsul ati on of
GSS- APl credentials. Credentials identify a single entity and
provi de the necessary cryptographic information to enable the
creation of a context on behalf of that entity. A single credential
may contain nultiple nechani smspecific credentials, each referred to
as a credential elenent. The GSSCredential interface provides the
functionality of the followi ng GSS-API routines:

RFC 2743 Routi ne Functi on Section(s)

gss_add_cred Constructs credentials 6.3.12
incremental ly.

gss_ihquire_cred otain informati on about 6.3.4,6.3.5
credenti al .

gss_i nquire_cred_by nech bt ai n per-mechani sm 6.3.5-6.3.10

i nformati on about
a credenti al

gss_rel ease_cred Di sposes of credentials 6.3.3
after use.

GSSCont ext interface

This interface encapsul ates the functionality of context-level calls
required for security context establishment and managenent between
peers as well as the per-nessage services offered to applications. A
context is established between a pair of peers and all ows the usage
of security services on a per-nmessage basis on application data. It

Kabat & Upadhyay St andar ds Track [Page 28]

RFC 2853

is created over a single security nechanism

GSS- API

Java Bi ndi ngs

The GSSCont ext

June 2000

interface provides the functionality of the follow ng GSS-API

routi nes:
RFC 2743 Routi ne

gss_i nit_sec_cont ext

gss_accept _sec_cont ext

gss_del et e_sec_cont ext

gss_context _tine

gss_i nhqui re_cont ext

gss_wap_size linmt

gss_export _sec_cont ext

gss_get _nmic

gss_verify mc

gss_wrap

gss_unwr ap

Functi on

Initiate the creation of a
security context with a peer.

Accept a security context
initiated by a peer.

Destroy a security context.

Obt ai n remai ni ng cont ext
time.

Obt ai n cont ext
characteristics.

Determ ne token-size limt
for gss_wap.

Transfer security context
to anot her process.

Cal cul ate a cryptographic
Message Integrity Code (M Q)
for a nmessage.

Verify integrity on a received
nmessage.

Attach a MC to a nmessage and
optionally encrypt the nessage
content.

Oobtain a previously w apped
appl i cation nmessage verifying
its integrity and optionally
decrypting it.

Section(s)

6.
6.

6.

4.
4.

4.

.37

.29 to
.42

.18

. 14,
.15

. 16,
.17
. 10,
.11

.12,
.13

The functionality offered by the gss_process_cont ext _token routine

has not been included in the Java bindi ngs specification.

The

corresponding functionality of gss_del ete_sec_context has al so been

nmodi fied to not

Kabat & Upadhyay

return any peer tokens.

St andards Track

Thi s has been proposed in

[Page 29]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

accordance to the recomendations stated in RFC 2743. (GSSCont ext
does offer the functionality of destroying the locally-stored context
i nformati on.

5.5. MessageProp cl ass

This hel per class is used in the per-nessage operations on the
context. An instance of this class is created by the application and
then passed into the per-nmessage calls. 1In sonme cases, the
application conveys information to the GSS-API inplenentation through
this object and in other cases the GSS-API returns infornmation to the
application by setting it in this object. See the description of the
per - nessage operations wap, unwap, getMC, and verifyMC in the
GSSCont ext interfaces for details.

5.6. GSSException class

Exceptions are used in the Java bindings to signal fatal errors to
the calling applications. This replaces the major and mnor codes
used in the C bindings specification as a nethod of signaling
failures. The GSSException class handles both m nor and maj or codes,
as well as their translation into textual representation. Al GSS-
APl methods are declared as throwi ng this exception

RFC 2743 Routi ne Functi on Section

gss_di spl ay_status Retrieve textual 6.8.5, 6.8.6
representati on of error 6.8.8, 6.8.9
codes.

5.7. QGd class

This utility class is used to represent Universal bject ldentifiers
and their associated operations. GSS APl uses object identifiers to
di sti ngui sh between security nechani sns and nane types. This class,
asi de from bei ng used whenever an object identifier is needed,

i mpl enents the following GSS-API functionality:

RFC 2743 Routi ne Functi on Section

gss_test _oid_set_nenber Determine if the specified oid 6.7.5
is part of a set of oids.

Kabat & Upadhyay St andar ds Track [Page 30]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

5.8. Channel Bi ndi ng cl ass

An instance of this class is used to specify channel binding
information to the GSSCont ext object before the start of a security
context establishment. The application nmay use a byte array to
specify application data to be used in the channel binding as well as
use instances of the InetAddress. InetAddress is currently the only
address type defined within the Java platformand as such, it is the
only one supported within the Channel Bi ndi ng cl ass. Applications that
use other types of addresses can include themas part of the
application data.

6. Detailed GSS-API O ass Description

This section lists a detailed description of all the public nethods
t hat each of the GSS-APlI classes and interfaces nust provide.

6.1. public abstract class GSSvanager

The GSSManager class is an abstract class that serves as a factory
for three GSS interfaces: GSSName, GSSCredential, and GSSContext. It
al so provides nethods for applications to determ ne what mechani sns
are available fromthe GSS inpl ementati on and what nanetypes these
mechani sns support. An instance of the default GSSManager subcl ass
may be obtained through the static nethod getlnstance(), but
applications are free to instantiate other subcl asses of GSSManager.

Al'l but one nmethod in this class are declared abstract. This means
that subcl asses have to provide the conplete inplenentation for those
nmet hods. The only exception to this is the static nethod
getlnstance() which will have platform specific code to return an

i nstance of the default subcl ass.

Pl atf orm provi ders of GSS are required not to add any constructors to
this class, private, public, or protected. This will ensure that all
subcl asses invoke only the default constructor provided to the base
class by the conpiler.

A subcl ass extendi ng the GSSManager abstract class may be inpl enment ed
as a nodul ar provider based layer that utilizes sone well known

servi ce provider specification. The GSSvanager APl provides the
application with methods to set provider preferences on such an

i npl erentation. These nmethods al so allow the inplenentation to throw
a wel | -defined exception in case provider based configuration is not
supported. Applications that expect to be portable shoul d be aware of
this and recover cleanly by catching the exception.

Kabat & Upadhyay St andar ds Track [Page 31]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

It is envisioned that there will be three nost comobn ways in which
providers will be used:

1) The application does not care about what provider is used (the
default case).

2) The application wants a particular provider to be used
preferentially, either for a particular nechanismor all the
time, irrespective of mechani sm

3) The application wants to use the locally configured providers
as far as possible but if support is mssing for one or nore
mechani sns then it wants to fall back on its own provider.

The GSSManager class has two nethods that enabl e these nodes of
usage: addProvi derAtFront () and addProvi der At End(). These nethods
have the effect of creating an ordered list of <provider, oid> pairs
where each pair indicates a preference of provider for a given oid.

The use of these nethods does not require any know edge of whatever
servi ce provider specification the GSSManager subclass follows. It is
hoped that these nethods will serve the needs of nobst applications.
Addi tional nethods may be added to an extended GSSManager that could

be part of a service provider specification that is standardized
| ater.

6.1.1. Exanple Code
GSSManager ngr = GSSManager . get | nst ance();

/1 What nmechs are available to us?
G d[] supportedMechs = ngr. get Mechs();

/Il Set a preference for the provider to be used when support is needed
/1 for the nmechanisnms "1.2.840.113554.1.2.2" and "1.3.6.1.5.5.1.1".

Od krb = new G d("1.2.840.113554.1.2.2");
Od spknl = new Gd("1.3.6.1.5.5.1.1");

Provider p = (Provider) (new comfoo.security.Provider());

ngr. addProvi der At Front (p, krb);
ngr. addProvi der At Front (p, spknil);

/1 What name types does this spkminplenentation support?
G d[] nameTypes = ngr. get NanmesFor Mech(spkni) ;

Kabat & Upadhyay St andar ds Track [Page 32]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6.1.2. getlnstance
public static GSSManager getlnstance()
Returns the default GSSManager inplenentation

6.1.3. getMechs
public abstract G d[] getMechs()
Returns an array of G d objects indicating nmechanisns available to
GSS-API callers. A "null" value is returned when no nmechani sm are
avai l abl e (an example of this would be when nmechani smare dynam cally
configured, and currently no nechanisns are installed).

6.1.4. get NanmesFor Mech

public abstract G d[] getNamesFor Mech(G d mech)
t hrows GSSExcepti on

Returns nane type O d' s supported by the specified nechani sm
Par anet er s:
mech The G d object for the mechanismto query.
6.1.5. get MechsFor Nane
public abstract Q@ d[] get MechsFor Nane(QO d nanmeType)
Returns an array of G d objects corresponding to the nechani sms t hat
support the specific name type. "null" is returned when no
nmechani sns are found to support the specified nane type.
Par anet er s:
naneType The GO d object for the nanme type.

6.1.6. cr eat eNane

public abstract GSSNane createNanme(String naneStr, O d naneType)
t hrows GSSExcepti on

Factory nethod to convert a contiguous string name fromthe specified
nanespace to a GSSName object. 1In general, the GSSNane obj ect
created will not be an MN, two exanples that are exceptions to this
are when the nanmespace type paraneter indicates NT_EXPORT_NAME or
when the GSS-API inplenmentation is not nulti-nmechani sm

Kabat & Upadhyay St andar ds Track [Page 33]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

Par anet ers:

nameSt r The string representing a printable formof the nane
to create.

naneType The O d specifying the namespace of the printable name
supplied. Note that naneType serves to describe and
qualify the interpretation of the input naneStr, it
does not necessarily inply a type for the out put
GSSNane i nmpl enmentation. "null" value can be used to
specify that a mechani sm specific default printable
syntax shoul d be assumed by each nechani smthat
exam nes nameStr.

6.1.7. cr eat eNane

public abstract GSSNane createNane(byte nane[], GO d nanmeType)
t hr ows GSSExcepti on

Factory nethod to convert a contiguous byte array containing a nane
fromthe specified namespace to a GSSNane object. |In general, the
GSSNane object created will not be an MN; two exanpl es that are
exceptions to this are when the nanmespace type paraneter indicates
NT_EXPORT_NAME or when the GSS-API inplenentation is not nmulti-
nmechani sm

Par anet er s:
nane The byte array containing the nane to create.

naneType The O d specifying the namespace of the nanme supplied
in the byte array. Note that nameType serves to
describe and qualify the interpretation of the input
nane byte array, it does not necessarily inply a type
for the output GSSNane inplenentation. "null" val ue
can be used to specify that a mechani sm specific
default syntax shoul d be assuned by each mechani sm
t hat exam nes the byte array.

Kabat & Upadhyay St andar ds Track [Page 34]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6. 1. 8. cr eat eNane

public abstract GSSNanme createName(String nameStr, G d naneType,
G d nech) throws GSSException

Factory nethod to convert a contiguous string name fromthe specified
nanespace to an GSSNanme object that is a nmechanismnane (MN). In
other words, this nmethod is a utility that does the equivalent of two
steps: the createNane described in 6.1.7 and then al so the
GSSNane. canoni cal i ze() described in 6.2.5.

Par anet ers:

nameSt r The string representing a printable formof the nane
to create.

naneType The O d specifying the namespace of the printable name
supplied. Note that nameType serves to describe and
qualify the interpretation of the input naneStr, it
does not necessarily inply a type for the out put
GSSNane i nmpl enmentation. "null" value can be used to
specify that a mechani sm specific default printable
syntax shoul d be assunmed when the mechani sm exam nes
nameStr.

nmech G d specifying the nmechani smfor which this nane
shoul d be creat ed.

6.1.09. cr eat eNane

public abstract createNane(byte nane[], G d naneType, O d mech)
t hrows GSSExcepti on

Factory nethod to convert a contiguous byte array containing a nane
fromthe specified namespace to a GSSNane object that is an MN. In
other words, this nmethod is a utility that does the equivalent of two
steps: the createNanme described in 6.1.8 and then al so the
GSSNane. canoni cal i ze() described in 6.2.5.

Par anet er s:
nane The byte array representing the nane to create.
naneType The O d specifying the namespace of the nanme supplied
in the byte array. Note that naneType serves to
describe and qualify the interpretation of the input

nane byte array, it does not necessarily inply a type
for the output GSSNane inplenentation. "null" val ue

Kabat & Upadhyay St andar ds Track [Page 35]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

can be used to specify that a mechani sm specific
default syntax shoul d be assuned by each mechani sm
that exami nes the byte array.

nmech G d specifying the nmechani smfor which this nane
shoul d be creat ed.

6.1.10. createCredenti al

public abstract GSSCredential createCredential (int usage)
t hr ows GSSExcepti on

Factory nethod for acquiring default credentials. This will cause
the GSS-API to use systemspecific defaults for the set of
mechani sns, nane, and a DEFAULT Ilifetine.
Par anet er s:
usage The intended usage for this credential object. The
val ue of this parameter nust be one of:
GSSCr edent i al . ACCEPT_AND | NI TI ATE,
GSSCr edenti al . ACCEPT_ONLY, GSSCredential .| N TI ATE_ONLY
6.1.11. createCredential
public abstract GSSCredential createCredential (GSSNanme aNane,
int lifetine, G d nmech, int usage)
t hrows GSSExcepti on
Factory nethod for acquiring a single nechani smcredential .

Par anet ers:

aNane Nanme of the principal for whomthis credential is to
be acquired. Use "null" to specify the default
princi pal .

lifetinme The nunber of seconds that credentials should remain
valid. Use GSSCredential.|NDEFIN TE LI FETIME to
request that the credentials have the nmaxi mum
permtted lifetime. Use
GSSCr edenti al . DEFAULT_LI FETI ME to request default
credential lifetine.

nmech The oid of the desired nmechanism Use "(Gd) null" to
request the default nechanisn(s).

Kabat & Upadhyay St andar ds Track [Page 36]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

usage The intended usage for this credential object. The
val ue of this parameter nust be one of:
GSSCr edent i al . ACCEPT_AND | NI TI ATE,
GSSCr edenti al . ACCEPT_ONLY, GSSCredential .| N TI ATE_ONLY

6.1.12. createCredenti al

public abstract GSSCredential createCredential (GSSNane aNane,
int lifetime, G d nechs[], int usage)
t hr ows GSSExcepti on

Factory nethod for acquiring credentials over a set of nechani sns.
Acquires credentials for each of the nmechanisnms specified in the
array called nmechs. To deternmine the list of mechanisns’ for which
the acquisition of credentials succeeded, the caller should use the
GSSCr edenti al . get Mechs() net hod.

Par anet ers:

aNane Nanme of the principal for whomthis credential is to
be acquired. Use "null" to specify the default
princi pal .

lifetinme The nunber of seconds that credentials should remain
valid. Use GSSCredential.|NDEFIN TE LI FETIME to
request that the credentials have the nmaxi mum
permtted lifetime. Use
GSSCr edenti al . DEFAULT_LI FETI ME to request default
credential lifetinmne.

nmechs The array of mechani snms over which the credential is
to be acquired. Use "(Gd[]) null"™ for requesting a
system specific default set of nechanisns.

usage The intended usage for this credential object. The
val ue of this parameter nust be one of:
GSSCr edent i al . ACCEPT_AND | NI TI ATE,
GSSCr edenti al . ACCEPT_ONLY, GSSCredential .| N TI ATE_ONLY

6.1.13. createContext

public abstract GSSContext createContext(GSSNane peer, G d nech
GSSCredential nyCred, int lifetinmne)
t hrows GSSExcepti on

Factory nethod for creating a context on the initiator’s side.

Context flags may be nodified through the nutator nmethods prior to
cal li ng GSSCont ext.initSecContext().

Kabat & Upadhyay St andar ds Track [Page 37]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

Par anet er s:
peer Nanme of the target peer.

nmech G d of the desired nmechanism Use "(Gd) null" to
request default nmechani sm

nyCr ed Credentials of the initiator. Use "null" to act as a
default initiator principal.

lifetime The request lifetine, in seconds, for the context.
Use GSSContext. | NDEFI NI TE_LI FETI ME and
GSSCont ext . DEFAULT_LI FETI ME to request indefinite or
default context lifetine.
6.1.14. createContext

public abstract GSSContext createContext(GSSCredential nyCred)
t hr ows GSSExcepti on

Factory nethod for creating a context on the acceptor’ side. The
context’s properties will be determined fromthe input token supplied
to the accept method.

Par anet er s:

nyCr ed Credentials for the acceptor. Use "null" to act as a
default acceptor principal.

6.1.15. createContext

publ i c abstract GSSContext createContext(byte [] interProcessToken)
t hrows GSSExcepti on

Factory nethod for creating a previously exported context. The
context properties will be determned fromthe input token and can’'t
be nodified through the set methods.

Par anet er s:

i nt er ProcessToken
The token previously enmtted fromthe export nethod.

6.1.16. addProvi der At Fr ont

public abstract void addProvi der At Front (Provider p, G d mech)
t hrows GSSExcepti on

Kabat & Upadhyay St andar ds Track [Page 38]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

This nethod is used to indicate to the GSSManager that the
application would like a particular provider to be used ahead of all
ot hers when support is desired for the given nechanism Wen a val ue
of null is used instead of an O d for the nmechanism the GSSManager
must use the indicated provider ahead of all others no natter what
the mechanismis. Only when the indicated provider does not support
t he needed nechani sm shoul d the GSSManager nove on to a different
provi der.

Calling this method repeatedly preserves the ol der settings but
|l owers themin preference thus fornming an ordered |ist of provider
and G d pairs that grows at the top

Cal ling addProviderAtFront with a null Gd will renove all previous
preferences that were set for this provider in the GSSManager
i nstance. Calling addProviderAtFront with a non-null GOd wll renove

any previous preference that was set using this nechanismand this
provi der together.

I f the GSSManager inplenentation does not support an SPI with a

pl uggabl e provider architecture it should throw a GSSException with
the status code GSSException. UNAVAI LABLE to indicate that the
operation is unavail abl e.

Par anet er s:

p The provider instance that shoul d be used whenever
support is needed for nech

nmech The mechani sm for which the provider is being set
6.1.16.1. Exanple Code

Suppose an application desired that the provider A always be checked
first when any nechanismis needed, it would call:

GSSManager ngr = GSSManager . get | nst ance();

/1 mgr nmay at this point have its own pre-configured |ist
/'l of provider preferences. The followng will prepend to
/1 any such list:

ngr . addPr ovi der At Front (A, null);
Now if it also desired that the nechanismof G d nil al ways be
obtai ned fromthe provider B before the previously set A was checked,
it would call:

ngr. addProvi der At Front (B, ni);

Kabat & Upadhyay St andar ds Track [Page 39]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

The GSSvanager would then first check with Bif ml was needed. In
case B did not provide support for nil, the GSSManager woul d conti nue
on to check with A. |If any nechanismn® is needed where n2 is
different fromnml then the GSSManager woul d skip B and check with A
directly.

Suppose at a later tine the following call is nade to the sane
GSSManager i nstance:

ngr . addPr ovi der At Front (B, null)

then the previous setting with the pair (B, ml) is subsuned by this
and shoul d be renoved. Effectively the list of preferences now
becomes {(B, null), (A null),

/1followed by the pre-configured Iist.

Pl ease note, however, that the follow ng call:
ngr. addProvi der At Front (A, nB)

does not subsunme the previous setting of (A null) and the list wll
effectively becone {(A nB), (B, null), (A null), ...}

6.1.17. addProvi der At End

public abstract addProvi der At End(Provider p, G d nech)
t hrows GSSExcepti on

This nethod is used to indicate to the GSSManager that the
application would like a particular provider to be used if no other
provi der can be found that supports the given nechanism Wen a val ue
of null is used instead of an O d for the nmechani sm the GSSManager
must use the indicated provider for any nechanism

Calling this nmethod repeatedly preserves the ol der settings but

rai ses them above newer ones in preference thus form ng an ordered
list of providers and O d pairs that grows at the bottom Thus the
ol der provider settings will be utilized first before this one is.

If there are any previously existing preferences that conflict with
the preference being set here, then the GSSManager should ignore this
request.

I f the GSSManager inplenentation does not support an SPI with a

pl uggabl e provider architecture it should throw a GSSException with
the status code GSSException. UNAVAI LABLE to indicate that the
operation is unavail abl e.

Kabat & Upadhyay St andar ds Track [Page 40]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

Par anet ers:

p The provider instance that should be used whenever
support is needed for nech

nmech The mechani sm for which the provider is being set
6.1.17.1. Exanple Code

Suppose an application desired that when a mechanismof Od ml is
needed the system default providers always be checked first, and only
when they do not support ml should a provider A be checked. It would
then nake the call:

GSSManager ngr = GSSManager . get | nst ance();

ngr . addProvi der At End(A, ml) ;
Now, if it also desired that for all mechani sns the provider B be
checked after all configured providers have been checked, it would
then call:

ngr . addProvi der At End(B, null);

Effectively the list of preferences now becones {..., (A m), (B
null)}.
Suppose at a later tine the following call is nade to the sane

GSSManager i nstance:

ngr. addPr ovi der At End(B, nR)
then the previous setting with the pair (B, null) subsumes this and
therefore this request should be ignored. The sanme woul d happen if a
request is nade for the already existing pairs of (A nil) or (B
nul l).
Pl ease note, however, that the follow ng call:

ngr . addPr ovi der At End(A, null)

is not subsuned by the previous setting of (A ml) and the list wll
effectively becone {..., (A m), (B, null), (A null)}

Kabat & Upadhyay St andar ds Track [Page 41]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6.2. public interface GSSNane

This interface encapsul ates a single GSS-API principal entity.
Different name formats and their definitions are identified with

uni versal Object ldentifiers (Gds). The format of the names can be
derived based on the unique oid of its nanespace type.

6.2.1. Exanple Code

I ncl uded bel ow are code exanples utilizing the GSSNane interface.
The code bel ow creates a GSSNane, converts it to a mechani sm nane
(MN), perforns a conparison, obtains a printable representation of
the name, exports it and then re-inports to obtain a new GSSNane.

GSSMvanager ngr = GSSManager. get | nst ance();

// create a host based service nane
GSSNane nane = ngr.creat eNane("servi ce@ost",
GSSNarre. NT_HOSTBASED SERVI CE) ;

O d krb5 = new G d("1.2.840.113554.1.2.2");
GSSNane nechNane = nane. canoni cal i ze(kr b5);

/'l the above two steps are equivalent to the foll ow ng
GSSNane nechNane = ngr.creat eNane("servi ce@ost",
GSSNane. NT_HOSTBASED SERVI CE, krb5);

/1 perform nanme conparison
i f (nane. equal s(nmechNane))
print("Names are equals.");

/1 obtain textual representation of name and its printable
/'l nane type
print (mechNane.toString() +

mechNane. get St ri ngNameType().toString());

/'l export and re-inport the nane
byte [] exportNane = nmechNane. export();

/| create a new nane object fromthe exported buffer

GSSNane newName = ngr. cr eat eNanme(export Nare,
GSSNane. NT_EXPORT_NAME) ;

Kabat & Upadhyay St andar ds Track [Page 42]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6.2.2. Static Constants
public static final G d NT_HOSTBASED SERVI CE

O d indicating a host-based service name form It is used to
represent services associated with host conputers. This nane formis
constructed using two el ements, "service" and "hostnane", as foll ows:

servi ce@ost nane

Val ues for the "service" element are registered with the I1ANA It
represents the followi ng value: { 1(iso), 3(org), 6(dod),
1(internet), 5(security), 6(nanetypes), 2(gss-host-based-services) }

public static final O d NT_USER_NAME

Nanme type to indicate a naned user on a local system It represents
the following value: { iso(1l) nenber-body(2) United States(840)
mt(113554) infosys(1l) gssapi (2) generic(1l) user_nane(l) }

public static final O d NT_MACH NE_U D _NAME

Nane type to indicate a numeric user identifier corresponding to a
user on a local system (e.g. Ud). It represents the follow ng
value: { iso(1l) menber-body(2) United States(840) nit(113554)

i nfosys(1) gssapi (2) generic(1l) machi ne_uid_nane(2) }

public static final G d NT_STRI NG U D _NAME

Nane type to indicate a string of digits representing the nuneric
user identifier of a user on a |local system It represents the
following value: { iso(l) nmenber-body(2) United States(840)

m t(113554) infosys(1l) gssapi(2) generic(l) string_uid_nane(3) }
public static final O d NT_ANONYMOUS

Nane type for representing an anonynous entity. It represents the
following value: { 1(iso), 3(org), 6(dod), 1(internet), 5(security),
6(nanet ypes), 3(gss-anonynous-nane) }

public static final O d NT_EXPORT_ NAME

Nane type used to indicate an exported nanme produced by the export

method. It represents the follow ng value: { 1(iso), 3(org), 6(dod),
1(internet), 5(security), 6(nanetypes), 4(gss-api-exported-nane) }

Kabat & Upadhyay St andar ds Track [Page 43]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6.2.3. equals
publ i c bool ean equal s(GSSNane anot her) throws GSSExcepti on
Conpares two GSSNane objects to determ ne whether they refer to the
same entity. This nmethod may throw a GSSExcepti on when the nanes
cannot be conpared. |f either of the names represents an anonynous
entity, the nethod will return "false"
Par anet er s:

anot her GSSNanme object to conpare with.

6.2.4. equals
publ i c bool ean equal s(Obj ect anot her)
A variation of the equals nmethod described in 6.2.3 that is provided
to override the bject.equals() nethod that the inplenenting class
will inherit. The behavior is exactly the sane as that in 6.2.3
except that no GSSException is thrown; instead, false will be
returned in the situation where an error occurs. (Note that the Java
| anguage specification requires that two objects that are equal
according to the equal s(Object) nmethod nust return the same integer
result when the hashCode() nethod is called on them)
Par anet er s:

anot her GSSNanme object to conpare with.

6.2.5. canonicalize
publ i ¢ GSSNane canonicalize(O d nmech) throws GSSException
Creates a nechanismnanme (M) froman arbitrary internal nane. This
is equivalent to using the factory nethods described in 6.1.9 or
6.1.10 that take the mechani sm nane as one of their paraneters.
Par anet er s:

nmech The oid for the mechani smfor which the canonical form
of the name is requested.

Kabat & Upadhyay St andar ds Track [Page 44]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6.2.6. export
public byte[] export() throws GSSException
Ret urns a canoni cal contiguous byte representation of a nmechani sm
nane (MN), suitable for direct, byte by byte conparison by
aut hori zation functions. |If the nane is not an M\, inplenentations
may throw a GSSException with the NAVE _NOT_MN status code. [|If an
i npl enent ati on chooses not to throw an exception, it should use sone
system speci fic default nechanismto canonicalize the nane and then
export it. The format of the header of the output buffer is
specified in RFC 2743.

6.2.7. toString
public String toString()
Returns a textual representation of the GSSNane object. To retrieve
the printed name format, which determines the syntax of the returned
string, the getStringNanmeType nmethod can be used.

6.2.8. getStringNaneType
public O d getStringNameType() throws GSSException
Returns the oid representing the type of nanme returned through the
toString method. Using this oid, the syntax of the printable nane
can be determ ned.

6.2.9. isAnonynous
public bool ean i sAnonynous()

Tests if this name object represents an anonynous entity. Returns
"true" if this is an anonynous nane.

6.2.10. isW
public bool ean i sM\()

Tests if this name object contains only one nmechani smelenment and is
t hus a nechani sm name as defined by RFC 2743.

6.3. public interface GSSCredential inplenments C oneabl e
This interface encapsul ates the GSS-API credentials for an entity. A

credential contains all the necessary cryptographic information to
enabl e the creation of a context on behalf of the entity that it

Kabat & Upadhyay St andar ds Track [Page 45]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

represents. It may contain multiple, distinct, mechani smspecific
credential elements, each containing information for a specific
security nmechanism but all referring to the sanme entity.

A credential may be used to performcontext initiation, acceptance,
or bot h.

GSS- APl i npl ement ati ons rnust inpose a | ocal access-control policy on
callers to prevent unauthorized callers fromacquiring credentials to
which they are not entitled. GSS-APlI credential creation is not
intended to provide a "login to the network" function, as such a
function would involve the creation of new credentials rather than
nmerely acquiring a handle to existing credentials. Such functions,

if required, should be defined in inplenmentation-specific extensions
to the API.

If credential acquisition is time-consunmng for a nechanism the
nmechani sm nay choose to delay the actual acquisition until the
credential is required (e.g. by GSSContext). Such nechanism
specific inplenentation decisions should be invisible to the calling
application; thus the query nethods inmediately follow ng the
creation of a credential object nust return valid credential data,
and may therefore incur the overhead of a deferred credenti al
acqui si tion.

Applications will create a credential object passing the desired
paraneters. The application can then use the query nethods to obtain
specific informati on about the instantiated credential object
(equivalent to the gss_inquire routines). When the credential is no
| onger needed, the application should call the dispose (equivalent to
gss_rel ease_cred) nethod to rel ease any resources held by the
credential object and to destroy any cryptographically sensitive

i nformati on.

Classes inplenmenting this interface also inplenent the C oneable
interface. This indicates the the class will support the clone()
method that will allow the creation of duplicate credentials. This
is useful when called just before the add() call to retain a copy of
the original credenti al

6.3.1. Exanple Code
Thi s exanpl e code denonstrates the creation of a GSSCredenti al

i npl ementation for a specific entity, querying of its fields, and its
rel ease when it is no |onger needed.

Kabat & Upadhyay St andar ds Track [Page 46]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

GSSMvanager ngr = GSSManager . get | nst ance();

/1 start by creating a name object for the entity
GSSNane nane = ngr.creat eNane("user Nanme", GSSNane. NT_USER_NAME)

/'l now acquire credentials for the entity
GSSCredential cred = ngr.createCredenti al (nane,
GSSCr edent i al . ACCEPT_ONLY) ;

/'l display credential information - name, remaining lifetine,
/1 and the mechanisns it has been acquired over
print(cred.getNanme().toString());
print(cred. getRemai ni ngLifetine());
G d [] nmechs = cred. get Mechs();
if (mechs !'= null) {

for (int i =0; i < mechs.length; i++)

print(mechs[i].toString());

}

/'l release systemresources held by the credenti al
cred. di spose();

6.3.2. Static Constants
public static final int I N TIATE_AND ACCEPT

Credential usage flag requesting that it be able to be used for both
context initiation and acceptance.

public static final int I NTIATE_ONLY

Credential usage flag requesting that it be able to be used for
context initiation only.

public static final int ACCEPT_ONLY

Credential usage flag requesting that it be able to be used for
cont ext acceptance only.

public static final int DEFAULT_LI FETI ME
Alifetime constant representing the default credential lifetine.
This value nust be set to O.

public static final int |NDEFIN TE_LIFETI ME

Kabat & Upadhyay St andar ds Track [Page 47]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

Alifetime constant representing indefinite credential lifetine.
This val ue nust be set to the naxi numinteger value in Java -
I nt eger . MAX_VALUE.
6.3.3. dispose
public void dispose() throws GSSException
Rel eases any sensitive information that the GSSCredential object may
be containing. Applications should call this nethod as soon as the
credential is no |onger needed to minimze the time any sensitive
i nformation is maintained.
6.3.4. get Nanme
publ i c GSSNane get Name() throws GSSException
Retrieves the name of the entity that the credential asserts.
6.3.5. getNane
public GSSNane get Name(Q d nechO D) throws GSSException

Retrieves a mechani smnanme of the entity that the credential asserts.
Equi val ent to calling canonicalize() on the name returned by 7.3.3.

Par anet ers:

mechO D The nmechani sm for which informati on should be
r et ur ned.

6.3.6. getRenainingLifetine
public int getRerainingLifetinme() throws GSSException

Returns the remaining lifetine in seconds for a credential. The
remaining lifetime is the mnimumlifetine for any of the underlying
credenti al mechanisns. A return val ue of
GSSCredenti al . | NDEFI NI TE_LI FETI ME i ndi cates that the credential does
not expire. A return value of O indicates that the credential is

al ready expired.

Kabat & Upadhyay St andar ds Track [Page 48]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6.3.7. getRemaininglnitLifetine
public int getRemaininglnitLifetinme(Q d nech) throws GSSException
Returns the remaining lifetine is seconds for the credential to
remai n capable of initiating security contexts under the specified
mechanism A return value of GSSCredential .| NDEFI NI TE_LI FETI ME
i ndicates that the credential does not expire for context initiation.
A return value of 0 indicates that the credential is already expired.
Par anet er s:

mechO D The nmechani sm for which informati on should be
r et ur ned.

6.3.8. getRemmi ni ngAcceptLifetine
public int getRemai ni ngAcceptLifetinme(Q d nech) throws GSSException
Returns the remaining lifetine is seconds for the credential to
remai n capabl e of accepting security contexts under the specified
mechanism A return value of GSSCredenti al .| NDEFI NI TE_LI FETI ME
i ndicates that the credential does not expire for context acceptance.
A return value of 0 indicates that the credential is already expired.
Par anet er s:

mechO D The nmechani sm for which informati on should be
r et ur ned.

6.3.9. getUsage
public int getUsage() throws GSSException
Returns the credential usage flag. The return value will be one of
GSSCredential . I NI TI ATE_ONLY, GSSCredenti al . ACCEPT_ONLY, or
GSSCr edenti al . I NI TI ATE_AND_ACCEPT.
6.3.10. getUsage
public int getUsage(G d mechd D) throws GSSException
Returns the credential usage flag for the specified credential
mechanism The return value will be one of

GSSCredential . I NI TI ATE_ONLY, GSSCredenti al . ACCEPT_ONLY, or
GSSCr edenti al . | NI TI ATE_AND_ACCEPT.

Kabat & Upadhyay St andar ds Track [Page 49]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

Par anet ers:

mechO D The nmechani sm for which informati on should be
r et ur ned.

6.3.11. getMechs

public O d[] getMechs() throws GSSException

Returns an array of mechani sns supported by this credential.
6.3.12. add

public void add(GSSNane aNane, int initLifetime, int acceptLifetine,
O d nmech, int usage) throws GSSException

Adds a nechani sm specific credential -elenment to an existing
credential. This nmethod allows the construction of credentials one
mechanismat a tine.

This routine is envisioned to be used mainly by context acceptors
during the creation of acceptance credentials which are to be used
with a variety of clients using different security nechani sns.

This routine adds the new credential elenment "in-place". To add the
el enent in a new credential, first call clone() to obtain a copy of
this credential, then call its add() nethod.

Par anet ers:

aNane Nanme of the principal for whomthis credential is to
be acquired. Use "null" to specify the default
princi pal .

initLifetinme
The nunber of seconds that credentials should remain
valid for initiating of security contexts. Use
GSSCredenti al . | NDEFI NI TE_LI FETI ME to request that the
credentials have the maximumpermtted lifetinme. Use
GSSCr edenti al . DEFAULT_LI FETI ME to request default
credential lifetine.

acceptlLifetine
The nunber of seconds that credentials should remnain
valid for accepting of security contexts. Use
GSSCredenti al . | NDEFI NI TE_LI FETI ME to request that the

Kabat & Upadhyay St andar ds Track [Page 50]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

credentials have the maxi numpernmitted lifetinme. Use
GSSCr edenti al . DEFAULT_LI FETI ME to request default

credential lifetinmne.

nmech The mechani sns over which the credential is to be
acqui red.

usage The intended usage for this credential object. The

val ue of this parameter nust be one of:
GSSCr edent i al . ACCEPT_AND | NI TI ATE,
GSSCr edenti al . ACCEPT_ONLY, GSSCredential .| N TI ATE_ONLY

6.3.13. equals
publ i c bool ean equal s(Obj ect anot her)

Tests if this GSSCredential refers to the sanme entity as the supplied
object. The two credentials nust be acquired over the sane

mechani sns and nust refer to the same principal. Returns "true" if
the two GSSCredentials refer to the sane entity; "false" otherw se.
(Note that the Java | anguage specification requires that two objects
that are equal according to the equal s(Object) nethod nust return the
same integer result when the hashCode() method is called on them)

Par anet er s:
anot her Anot her GSSCredential object for conparison.
6.4. public interface GSSCont ext

This interface encapsul ates the GSS-APlI security context and provides
the security services (wap, unwap, getMC, verifyMC that are
avail abl e over the context. Security contexts are established

bet ween peers using locally acquired credentials. Miltiple contexts
may exi st sinultaneously between a pair of peers, using the same or
different set of credentials. GSS-API functions in a nanner

i ndependent of the underlying transport protocol and depends on its
calling application to transport its tokens between peers.

Bef ore the context establishnment phase is initiated, the context
initiator may request specific characteristics desired of the
establi shed context. These can be set using the set nmethods. After
the context is established, the caller can check the actual
characteristic and services offered by the context using the query
nmet hods.

Kabat & Upadhyay St andar ds Track [Page 51]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

The context establishment phase begins with the first call to the
init method by the context initiator. During this phase the

i ni t SecCont ext and accept SecCont ext nethods will produce GSS- AP

aut hentication tokens which the calling application needs to send to
its peer. If an error occurs at any point, an exception will get
thrown and the code will start executing in a catch block. |If not,
the nornal flow of code continues and the application can nake a cal
to the isEstablished() nmethod. |If this method returns false it
indicates that a token is needed fromits peer in order to continue

t he context establishnent phase. A return value of true signals that
the local end of the context is established. This may still require
that a token be sent to the peer, if one is produced by GSS-API
During the context establishnent phase, the isProtReady() nethod may
be called to determine if the context can be used for the per-nessage
operations. This allows applications to use per-nmessage operations
on contexts which aren't fully established.

After the context has been established or the isProtReady() nethod
returns "true", the query routines can be invoked to determ ne the
actual characteristics and services of the established context. The
application can also start using the per-nessage nethods of wap and
getM C to obtain cryptographi c operations on application supplied
dat a.

Wien the context is no |onger needed, the application should cal
di spose to rel ease any systemresources the context nay be using.

6.4.1. Exanple Code

The exanpl e code presented bel ow denpnstrates the usage of the
GSSContext interface for the initiating peer. Different operations
on the GSSContext object are presented, including: object
instantiation, setting of desired flags, context establishnment, query
of actual context flags, per-nessage operations on application data,
and finally context deletion.

GSSMvanager ngr = GSSManager . get | nst ance();

/1l start by creating the nanme for a service entity
GSSNane target Name = ngr. creat eNanme("servi ce@ost",
GSSNarne. NT_HOSTBASED SERVI CE) ;

/'l create a context using default credentials for the above entity
/1 and the inplenmentation specific default nechani sm
GSSCont ext context = ngr.creat eCont ext (target Nane,

nul |, /* default nmechani sm*/

nul |, /* default credentials */

GSSCont ext . | NDEFI NI TE_LI FETI ME) ;

Kabat & Upadhyay St andar ds Track [Page 52]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

I/ set desired context options - all others are false by default
cont ext. request Conf (true);

cont ext. request Mut ual Aut h(true);

cont ext.request Repl ayDet (true);

cont ext . request SequenceDet (true);

/'l establish a context between peers - using byte arrays
byte []inTok = new byte[O0];

try {
do {

byt e[] outTok = context.initSecContext(inTok, O,
i nTok. | engt h) ;

/'l send the token if present
if (outTok !'= null)
sendToken(out Tok) ;

/'l check if we should expect nore tokens
if (context.isEstablished())
br eak;

/'l anot her token expected from peer
i nTok = readToken();

} while (true);

} catch (GSSException e) {
print("GSSAPI error: " + e.getMessage());
}

/'l display context infornmation

print("Remaining lifetine in seconds =" + context.getLifetime());
print("Context mechanism =" + context.getMech().toString());
print("lnitiator =" + context.getSrcNanme().toString());
print("Acceptor =" + context.getTargNanme().toString());

if (context.getConfState())
print("Confidentiality security service avail able");

if (context.getlntegState())
print("lIntegrity security service avail able");

/'l performwap on an application supplied nessage, appMsg,

/1 using QOP = 0, and requesting privacy service
byte [] appMsg ...

Kabat & Upadhyay St andar ds Track [Page 53]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

MessageProp nmProp = new MessageProp(0, true);
byte []Jtok = context.w ap(appMsg, 0, appMsg.|ength, nProp);

if (nmProp.getPrivacy())
print("Message protected with privacy.");

sendToken(t ok);

/'l release the |ocal-end of the context
cont ext. di spose();

6.4.2. Static Constants
public static final int DEFAULT_LI FETI ME

Alifetime constant representing the default context lifetine. This
val ue nust be set to O.

public static final int |NDEFIN TE_LIFETI ME

Alifetime constant representing indefinite context lifetine. This
val ue nmust be set to the maxi muminteger value in Java -
I nt eger . MAX_VALUE.

6.4.3. initSecContext

public byte[] initSecContext(byte inputBuf[], int offset, int |en)
t hrows GSSExcepti on

Called by the context initiator to start the context creation
process. This is equivalent to the stream based nethod except that
the token buffers are handl ed as byte arrays instead of using stream
objects. This method may return an out put token which the
application will need to send to the peer for processing by the
accept call. Typically, the application would do so by calling the
flush() method on an Qutput Streamthat encapsul ates the connection
between the two peers. The application can call isEstablished() to
determne if the context establishment phase is conplete for this
peer. A return value of "false" fromisEstablished() indicates that
nore tokens are expected to be supplied to the initSecContext()
method. Note that it is possible that the initSecContext() nethod
return a token for the peer, and isEstablished() return "true" al so.
This indicates that the token needs to be sent to the peer, but the
| ocal end of the context is now fully established.

Kabat & Upadhyay St andar ds Track [Page 54]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

Upon conpl etion of the context establishnent, the avail abl e context
options may be queried through the get nethods.

Par anet ers:

i nput Buf Token generated by the peer. This paraneter is ignored
on the first call.

of f set The offset within the inputBuf where the token begins.

I en The length of the token within the inputBuf (starting
at the offset).

6.4.3.1. Exanple Code

/| Create a new GSSContext inplenmentation object.
/| GSSCont ext wrapper inplenments interface GSSContext.
GSSCont ext context = ngr.createContext(...);

byte []inTok = new byte[O0];

try {

do {
byt e[] outTok = context.initSecContext(inTok, O,
i nTok. | engt h) ;

/'l send the token if present
if (outTok !'= null)
sendToken(out Tok) ;

/'l check if we should expect nore tokens
if (context.isEstablished())
br eak;

/'l anot her token expected from peer
i nTok = readToken();
} while (true);

} catch (GSSException e) {
print("GSSAPI error: " + e.getMessage());
}

Kabat & Upadhyay St andar ds Track [Page 55]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6.4. 4. i ni t SecCont ext

public int initSecContext(lnputStreaminStream
Qut put St ream out Stream) throws GSSExcepti on

Called by the context initiator to start the context creation
process. This is equivalent to the byte array based nethod. This
nmet hod may wite an output token to the outStream which the
application will need to send to the peer for processing by the
accept call. Typically, the application would do so by calling the
flush() method on an Qutput Streamthat encapsul ates the connection
between the two peers. The application can call isEstablished() to
determ ne if the context establishnment phase is conplete for this
peer. A return value of "false" fromisEstablished indicates that
nore tokens are expected to be supplied to the initSecContext method.
Note that it is possible that the initSecContext() nethod return a
token for the peer, and isEstablished() return "true" also. This

i ndi cates that the token needs to be sent to the peer, but the |ocal
end of the context is now fully established.

The GSS- APl aut hentication tokens contain a definitive start and end.
This nethod will attenpt to read one of these tokens per invocation,
and may bl ock on the streamif only part of the token is avail able.

Upon conpl etion of the context establishnent, the avail abl e context
options may be queried through the get nethods.

Par anet ers:

i nStream Contains the token generated by the peer. This
paraneter is ignored on the first call

out Stream Qut put stream where the output token will be witten
During the final stage of context establishment, there
may be no bytes witten.

6.4.4.1. Exanple Code

This sanpl e code nerely denonstrates the token exchange during the
context establishment phase. It is expected that npst Java
applications will use custominplenentations of the Input and Qutput
streans that encapsul ate the conmunication routines. For instance, a
sinple read on the application InputStream when called by the
Context, might cause a token to be read fromthe peer, and a sinple
flush() on the application QutputStream m ght cause a previously
written token to be transmitted to the peer.

I/ Create a new GSSContext inplenmentation object.

Kabat & Upadhyay St andar ds Track [Page 56]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000
/| GSSCont ext wrapper inplenments interface GSSContext.
GSSCont ext context = ngr.createContext(...);
/'l use standard java.io stream objects

Byt eArrayQut put Stream os = new Byt eArrayCQut put Stream() ;
Byt eArrayl nput Streamis = null

try {

context.initSecContext(is, 0S);
/'l send token if present
if (os.size() > 0)
sendToken(o0s);
/'l check if we should expect nore tokens
if (context.isEstablished())
br eak;

/'l anot her token expected from peer
is = recvToken();

} while (true);
} catch (GSSException e) {
print("GSSAPI error: " + e.getMessage());
}
6.4.5. accept SecCont ext

public byte[] acceptSecContext(byte inTok[], int offset, int |en)
t hrows GSSExcepti on

Call ed by the context acceptor upon receiving a token fromthe peer.

This call is equivalent to the stream based net hod except that the
token buffers are handled as byte arrays instead of using stream
obj ect s.

This method may return an out put token which the application wll
need to send to the peer for further processing by the init call.

"null" return value indicates that no token needs to be sent to the
peer. The application can call isEstablished() to determine if the
context establishment phase is conplete for this peer. A return

val ue of "false" fromisEstablished() indicates that nore tokens are
expected to be supplied to this mnethod.

Kabat & Upadhyay St andar ds Track [Page 57]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

Note that it is possible that acceptSecContext() return a token for
the peer, and isEstablished() return "true" also. This indicates
that the token needs to be sent to the peer, but the local end of the
context is now fully established.

Upon conpl etion of the context establishnent, the avail abl e context
options may be queried through the get nethods.

Par anet ers:

i nTok Token generated by the peer.
of f set The offset within the inTok where the token begins.
I en The length of the token within the inTok (starting at

the offset).
6.4.5.1. Exanple Code

/'l acquire server credentials
GSSCredential server = ngr.createCredential (...);

/| create acceptor GSS-APlI context fromthe default provider
GSSCont ext context = ngr.createContext(server, null);

try {
do {

byte [] inTok readToken();

byt e []out Tok

cont ext . accept SecCont ext (i nTok, O,
i nTok. | engt h) ;

/'l possibly send token to peer
if (outTok !'= null)
sendToken(out Tok) ;

/'l check if local context establishnent is conplete
if (context.isEstablished())
br eak;
} while (true);

} catch (GSSException e) {
print("GSS-APlI error: " + e.getMessage());
}

Kabat & Upadhyay St andar ds Track [Page 58]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6.4.6. accept SecCont ext

public void accept SecCont ext (I nput Stream i nSt ream
Qut put St ream out Stream) throws GSSExcepti on

Call ed by the context acceptor upon receiving a token fromthe peer.
This call is equivalent to the byte array nmethod. It may wite an
out put token to the outStream which the application will need to
send to the peer for processing by its initSecContext nethod.
Typically, the application would do so by calling the flush() nethod
on an Qut put Stream t hat encapsul ates the connecti on between the two
peers. The application can call isEstablished() to determine if the
context establishment phase is conplete for this peer. A return

val ue of "false" fromisEstablished() indicates that nore tokens are
expected to be supplied to this mnethod.

Note that it is possible that acceptSecContext() return a token for
the peer, and isEstablished() return "true" also. This indicates
that the token needs to be sent to the peer, but the local end of the
context is now fully established.

The GSS- APl aut hentication tokens contain a definitive start and end.
This nethod will attenpt to read one of these tokens per invocation,
and may bl ock on the streamif only part of the token is avail able.

Upon conpl etion of the context establishnent, the avail abl e context
options may be queried through the get nethods.

Par anet er s:
i nStream Contains the token generated by the peer.

out Stream Qut put stream where the output token will be witten
During the final stage of context establishment, there
may be no bytes witten.

6.4.6.1. Exanple Code

This sanpl e code nerely denonstrates the token exchange during the
context establishment phase. It is expected that npst Java
applications will use custominplenentations of the Input and Qutput
streans that encapsul ate the conmunication routines. For instance, a
sinple read on the application InputStream when called by the
Context, might cause a token to be read fromthe peer, and a sinple
flush() on the application QutputStream m ght cause a previously
written token to be transmitted to the peer.

/'l acquire server credentials

Kabat & Upadhyay St andar ds Track [Page 59]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

GSSCredential server = ngr.createCredential (...);

/| create acceptor GSS-APlI context fromthe default provider
GSSCont ext context = ngr.createContext(server, null);

/'l use standard java.io stream objects

Byt eArrayQut put Stream os = new Byt eArrayCQut put Stream() ;
Byt eArrayl nput Streamis = null

try {
do {

is = recvToken();

cont ext . accept SecContext(is, 0S);

/'l possibly send token to peer

if (os.size() > 0)

sendToken(o0s);
/'l check if local context establishnent is conplete
if (context.isEstablished())
br eak;
} while (true);
} catch (GSSException e) {
print("GSS-APlI error: " + e.getMessage());
}
6.4.7. isEstablished
publ i c bool ean i sEst ablished()
Used during context establishnment to determine the state of the
context. Returns "true" if this is a fully established context on
the caller’s side and no nore tokens are needed fromthe peer.
Should be called after a call to initSecContext() or
accept SecCont ext () when no GSSException is thrown.
6.4.8. dispose

public void dispose() throws GSSException

Rel eases any systemresources and cryptographic information stored in
the context object. This will invalidate the context.

Kabat & Upadhyay St andar ds Track [Page 60]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6.4.9. getWapSi zeLi mit

public int getWapSizeLinmt(int gop, bool ean conf Req,
i nt maxTokenSi ze) throws GSSExcepti on

Ret urns the maxi mum nmessage size that, if presented to the wap
nmet hod with the same confReq and qop paraneters, will result in an
out put token containing no nore than the naxTokenSi ze byt es.

This call is intended for use by applications that comruni cate over
protocols that inpose a maxi mum nessage size. It enables the
application to fragnent nessages prior to applying protection.

GSS- APl i npl ementations are recommended but not required to detect
invalid QOP val ues when getWapSi zeLimt is called. This routine
guarantees only a naxi num nessage size, not the availability of
speci fic QOP values for nessage protection.

Successful conpletion of this call does not guarantee that wap wll
be able to protect a nessage of the conputed length, since this
ability may depend on the availability of systemresources at the
time that wap is called. However, if the inplenmentation itself

i nposes an upper limt on the length of nessages that may be
processed by wap, the inplenmentation should not return a val ue that
is greater than this |ength.

Par anet ers:

gop Indicates the level of protection wap will be asked
to provide.

conf Req Indicates if wap will be asked to provide privacy
servi ce.

maxTokenSi ze
The desired maxi num size of the token emitted by wap.

6.4.10. wap

public byte[] wap(byte inBuf[], int offset, int |en,
MessageProp nmsgProp) throws GSSException

Applies per-nmessage security services over the established security
context. The nmethod will return a token with a cryptographic M C and
may optionally encrypt the specified inBuf. This nethod is
equivalent in functionality to its streamcounterpart. The returned
byte array will contain both the MC and the nessage.

Kabat & Upadhyay St andar ds Track [Page 61]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

The MessageProp object is instantiated by the application and used to
speci fy a QOP val ue which selects cryptographic algorithns, and a
privacy service to optionally encrypt the nessage. The underlying
mechanismthat is used in the call may not be able to provide the

privacy service. |t sets the actual privacy service that it does
provide in this MessageProp object which the caller should then query
upon return. |If the nmechanismis not able to provide the requested

QOP, it throws a GSSException with the BAD QOP code.

Si nce sone application-level protocols may wi sh to use tokens em tted
by wap to provide "secure framing", inplenentations should support
the wrappi ng of zero-1length nessages.

The application will be responsible for sending the token to the
peer.

Par anet ers:

i nBuf Application data to be protected.
of f set The offset within the i nBuf where the data begins.
I en The length of the data within the inBuf (starting at

the offset).

nsgPr op I nstance of MessageProp that is used by the
application to set the desired QOP and privacy state.
Set the desired QOP to O to request the default QOP.
Upon return fromthis nmethod, this object will contain
the the actual privacy state that was applied to the
nmessage by the underlying mechani sm

6.4.11. wap

public void wap(lnputStreaminStream Qutput Stream out Stream
MessageProp nmsgProp) throws GSSException

Allows to apply per-nessage security services over the established
security context. The method will produce a token with a
cryptographic M C and may optionally encrypt the nmessage in inStream
The outStreamw || contain both the M C and the nessage.

The MessageProp object is instantiated by the application and used to
speci fy a QOP val ue which selects cryptographic algorithns, and a
privacy service to optionally encrypt the nessage. The underlying
mechanismthat is used in the call may not be able to provide the
privacy service. |t sets the actual privacy service that it does

Kabat & Upadhyay St andar ds Track [Page 62]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

provide in this MessageProp object which the caller should then query
upon return. |If the nmechanismis not able to provide the requested
QOP, it throws a GSSException with the BAD QOP code.

Si nce sone application-level protocols may wi sh to use tokens em tted
by wap to provide "secure framing", inplenentations should support
the wrappi ng of zero-length nessages.

The application will be responsible for sending the token to the
peer.

Par anet ers:

inStream I nput stream containing the application data to be
pr ot ect ed.

out Stream The output streamto wite the protected nessage to.
The application is responsible for sending this to the
ot her peer for processing in its unwap nethod.

nsgPr op I nstance of MessageProp that is used by the
application to set the desired QOP and privacy state.
Set the desired QOP to O to request the default QOP.
Upon return fromthis nmethod, this object will contain
the the actual privacy state that was applied to the
nmessage by the underlying mechani sm

6.4.12. unwap

public byte [] unwap(byte[] inBuf, int offset, int len
MessageProp nmsgProp) throws GSSException

Used by the peer application to process tokens generated with the
wap call. This call is equal in functionality to its stream
counterpart. The nmethod will return the nessage supplied in the peer
application to the wap call, verifying the enbedded MC

The MessageProp object is instantiated by the application and is used
by the underlying mechanismto return information to the caller such
as the QOP, whether confidentiality was applied to the nmessage, and
ot her suppl enentary nessage state infornmation

Si nce sone application-level protocols may wi sh to use tokens em tted

by wap to provide "secure framing", inplenentations should support
the wrappi ng and unw appi ng of zero-Ilength nessages.

Kabat & Upadhyay St andar ds Track [Page 63]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

Par anet ers:

i nBuf GSS- APl wrap token received from peer
of f set The of fset within the i nBuf where the token begins.
I en The length of the token within the inBuf (starting at

the offset).

nsgPr op Upon return fromthe nethod, this object will contain
the applied QOP, the privacy state of the nmessage, and
suppl ementary i nformation described in 4.12.3 stating
whet her the token was a duplicate, old, out of
sequence or arriving after a gap

6.4.13. unwap

public void unw ap(lnputStreaminStream QutputStream out Stream
MessageProp nmsgProp) throws GSSException

Used by the peer application to process tokens generated with the
wrap call. This call is equal in functionality to its byte array
counterpart. It will produce the nessage supplied in the peer
application to the wap call, verifying the enbedded MC

The MessageProp object is instantiated by the application and is used
by the underlying mechanismto return information to the caller such
as the QOP, whether confidentiality was applied to the nessage, and
ot her suppl enentary nessage state infornation

Si nce sone application-level protocols may wi sh to use tokens em tted
by wap to provide "secure framing", inplenentations should support
the wrappi ng and unw appi ng of zero-Ilength nessages.

Par anet ers:

i nStream I nput stream containing the GSS-API w ap token
recei ved fromthe peer.

out Stream The output streamto wite the application nessage to.

nsgPr op Upon return fromthe nethod, this object will contain
the applied QOP, the privacy state of the nmessage, and
suppl ementary i nformation described in 4.12.3 stating
whet her the token was a duplicate, old, out of
sequence or arriving after a gap

Kabat & Upadhyay St andar ds Track [Page 64]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6.4.14. getMC

public byte[] getM C(byte []inMsg, int offset, int I|en,
MessageProp nmsgProp) throws GSSException

Returns a token containing a cryptographic MC for the supplied
message, for transfer to the peer application. Unlike wap, which
encapsul ates the user nessage in the returned token, only the nmessage
MCis returned in the output token. This nethod is identical in
functionality to its stream counterpart.

Note that privacy can only be applied through the wap call.

Si nce sone application-level protocols may wi sh to use tokens emtted
by getM C to provide "secure framing", inplenentations should support
derivation of MCs from zero-I|ength nessages.

Par anet ers:

i nMsg Message to generate M C over.
of f set The offset within the inMsg where the token begins.
I en The length of the token within the inMsg (starting at

the offset).

nsgPr op I nstance of MessageProp that is used by the
application to set the desired QOP. Set the desired
QP to 0 in negProp to request the default QOP.
Alternatively pass in "null" for nmsgProp to request

defaul t QOP.
6.4.15. getMC

public void getM C(I nput StreaminStream QutputStream out Stream
MessageProp nmsgProp) throws GSSException

Produces a token containing a cryptographic MC for the supplied
nmessage, for transfer to the peer application. Unlike wap, which
encapsul ates the user nessage in the returned token, only the nessage
M C is produced in the output token. This nethod is identical in
functionality to its byte array counterpart.

Note that privacy can only be applied through the wap call.
Si nce sone application-level protocols may wi sh to use tokens emtted

by getM C to provide "secure framing", inplenentations should support
derivation of MCs from zero-I|ength nessages.

Kabat & Upadhyay St andar ds Track [Page 65]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

Par anet ers:

inStream inStream |nput stream containing the nessage to
generate M C over.

out Stream out Stream Qutput streamto wite the GSS- APl out put
t oken to.

nsgPr op I nstance of MessageProp that is used by the
application to set the desired QOP. Set the desired
QOP to 0 in negProp to request the default QOP.
Alternatively pass in "null" for msgProp to request

defaul t QOP.

6.4.16. verifyMC
public void verifyM C(byte []JinTok, int tokOffset, int tokLen,
byte[] inMsg, int nmegOfset, int nsglLen,
MessageProp nmsgProp) throws GSSException
Verifies the cryptographic MC, contained in the token paraneter,
over the supplied nessage. This nethod is equivalent in
functionality to its stream counterpart.
The MessageProp object is instantiated by the application and is used
by the underlying mechanismto return information to the caller such
as the QOP indicating the strength of protection that was applied to
the message and ot her suppl enentary nmessage state information.
Si nce sone application-level protocols may wi sh to use tokens em tted
by getM C to provide "secure framing", inplenentations should support
the cal cul ation and verification of MCs over zero-length nessages.
Par anet er s:
i nTok Token generated by peer’s getM C net hod.
tokOf fset The offset within the i nTok where the token begins.

tokLen The length of the token within the inTok (starting at
the offset).

i nMsg Application nmessage to verify the cryptographic MC
over.

megOf fset The offset within the inMsg where the nessage begins.

Kabat & Upadhyay St andar ds Track [Page 66]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

nsglLen The |l ength of the nmessage within the inMsg (starting
at the offset).

nsgPr op Upon return fromthe nethod, this object will contain
the applied QOP and suppl enentary infornmation
described in 4.12.3 stating whether the token was a
duplicate, old, out of sequence or arriving after a
gap. The confidentiality state will be set to
"fal se".

6.4.17. verifyMC

public void verifyM C(I nputStreamtokStream | nputStream nsgStream
MessageProp nmsgProp) throws GSSException

Verifies the cryptographic MC, contained in the token paraneter,
over the supplied nessage. This nethod is equivalent in
functionality to its byte array counterpart.

The MessageProp object is instantiated by the application and is used
by the underlying mechanismto return information to the caller such
as the QOP indicating the strength of protection that was applied to
the message and ot her suppl enentary nmessage state information

Si nce sone application-level protocols may wi sh to use tokens em tted
by getM C to provide "secure framing", inplenentations should support
the cal cul ation and verification of MCs over zero-length nessages.

Par anet ers:

tokStream | nput stream containing the token generated by peer’s
get M C net hod.

nmegStream | nput stream contai ning the application nmessage to
verify the cryptographic M C over

nsgPr op Upon return fromthe nethod, this object will contain
the applied QOP and suppl enentary infornmation
described in 4.12.3 stating whether the token was a
duplicate, old, out of sequence or arriving after a
gap. The confidentiality state will be set to
"fal se".

Kabat & Upadhyay St andar ds Track [Page 67]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6.4.18. export
public byte [] export() throws GSSException

Provided to support the sharing of work between multiple processes.
This routine will typically be used by the context-acceptor, in an
application where a single process receives inconing connection
requests and accepts security contexts over them then passes the
establ i shed context to one or nore other processes for nmessage
exchange.

This net hod deactivates the security context and creates an

i nt erprocess token which, when passed to the byte array constructor
of the GSSContext interface in another process, will re-activate the
context in the second process. Only a single instantiation of a

gi ven context nay be active at any one tine; a subsequent attenpt by
a context exporter to access the exported security context will fail.

The inplenentation may constrain the set of processes by which the

i nterprocess token nmay be inported, either as a function of |ocal
security policy, or as a result of inplenentation decisions. For
exanpl e, some inplenentations may constrain contexts to be passed
only between processes that run under the sane account, or which are
part of the sane process group

The interprocess token may contain security-sensitive information
(for exanple cryptographic keys). Wile nmechanisns are encouraged to
ei ther avoid placing such sensitive information within interprocess
tokens, or to encrypt the token before returning it to the
application, in a typical GSS-APlI inplenentation this nay not be
possi ble. Thus the application nust take care to protect the

i nterprocess token, and ensure that any process to which the token is
transferred is trustworthy.

6.4.19. requestMitual Auth
public void request Mut ual Aut h(bool ean state) throws GSSException
Sets the request state of the nutual authentication flag for the
context. This method is only valid before the context creation
process begins and only for the initiator.

Par anet ers:

state Bool ean representing if mutual authentication should
be requested during context establishment.

Kabat & Upadhyay St andar ds Track [Page 68]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6. 4.20. request Repl ayDet
public void request Repl ayDet (bool ean state) throws GSSException
Sets the request state of the replay detection service for the
context. This method is only valid before the context creation
process begins and only for the initiator.

Par anet ers:

state Bool ean representing if replay detection is desired
over the established context.

6.4.21. request SequenceDet
public void request SequenceDet (bool ean state) throws GSSException
Sets the request state for the sequence checking service of the
context. This method is only valid before the context creation
process begins and only for the initiator.

Par anet ers:

state Bool ean representing if sequence detection is desired
over the established context.

6.4.22. requestCredDel eg
public void request CredDel eg(bool ean state) throws GSSException
Sets the request state for the credential delegation flag for the
context. This method is only valid before the context creation
process begins and only for the initiator.

Par anet ers:

state Bool ean representing if credential delegation is
desir ed.

6.4.23. requestAnonynity
public void request Anonymity(bool ean state) throws GSSException
Request s anonynous support over the context. This nethod is only

valid before the context creation process begins and only for the
initiator.

Kabat & Upadhyay St andar ds Track [Page 69]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

Par anet ers:

state Bool ean representing if anonymity support is
request ed.

6.4.24. request Conf
public void request Conf (bool ean state) throws GSSException
Requests that confidentiality service be available over the context.
This nethod is only valid before the context creation process begins
and only for the initiator.

Par anet ers:

state Bool ean indicating if confidentiality services are to
be requested for the context.

6.4.25. requestinteg
public void requestlnteg(bool ean state) throws GSSException
Requests that integrity services be avail able over the context. This
method is only valid before the context creation process begins and
only for the initiator.

Par anet ers:

state Bool ean indicating if integrity services are to be
requested for the context.

6.4.26. requestLifetine
public void requestLifetine(int lifetine) throws GSSException
Sets the desired lifetine for the context in seconds. This nethod is
only valid before the context creation process begins and only for
the initiator. Use GSSContext.|NDEFI NI TE LI FETI ME and
GSSCont ext . DEFAULT_LI FETI ME to request indefinite or default context
lifetine.
Par anet er s:

[ifetime The desired context lifetinme in seconds.

Kabat & Upadhyay St andar ds Track [Page 70]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6.4.27. setChannel Bi ndi ng
public void set Channel Bi ndi ng(Channel Bi ndi ng cb) throws GSSExcepti on

Sets the channel bindings to be used during context establishnent.
This nethod is only valid before the context creation process begins.

Par anet er s:
cb Channel bindings to be used.
6.4.28. getCredDel egState
publ i c bool ean get CredDel egSt at e()

Returns the state of the delegated credentials for the context. When
i ssued before context establishnent is conpleted or when the

i sProt Ready nmethod returns "false", it returns the desired state,
otherwise it will indicate the actual state over the established
cont ext .

6.4.29. getMitual AuthState
publ i ¢ bool ean get Mut ual Aut hSt at e()

Returns the state of the nutual authentication option for the
context. \Wen issued before context establishment conpletes or when

the i sProtReady nethod returns "false", it returns the desired state,
otherwise it will indicate the actual state over the established
cont ext .

6.4.30. getReplayDet State
publi ¢ bool ean get Repl ayDet St at e()

Returns the state of the replay detection option for the context.
When i ssued before context establishnment conpletes or when the

i sProt Ready nmethod returns "false", it returns the desired state,
otherwise it will indicate the actual state over the established
cont ext .

6.4.31. get SequenceDet State
publ i c bool ean get SequenceDet St at e()
Returns the state of the sequence detection option for the context.

When i ssued before context establishnment conpletes or when the
i sProt Ready nmethod returns "false", it returns the desired state,

Kabat & Upadhyay St andar ds Track [Page 71]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

otherwise it will indicate the actual state over the established
cont ext .

6.4.32. getAnonynityState
publ i c bool ean get AnonynityState()
Returns "true" if this is an anonynous context. Wen issued before
context establishment conpletes or when the isProtReady nethod

returns "false", it returns the desired state, otherwise it wll
indicate the actual state over the established context.

6.4.33. isTransferable
publ i c bool ean isTransferable() throws GSSException

Returns "true" if the context is transferable to other processes
through the use of the export nethod. This call is only valid on
fully established contexts.

6.4.34. isProtReady
public bool ean i sProt Ready()
Returns "true" if the per nmessage operations can be applied over the
context. Sone mechani snms may all ow the usage of per-nmessage
operations before the context is fully established. This will also

indicate that the get nethods will return actual context state
characteristics instead of the desired ones.

6.4.35. getConfState
publ i ¢ bool ean get Conf St at e()
Returns the confidentiality service state over the context. When
i ssued before context establishnment conpletes or when the isProtReady
nmet hod returns "false", it returns the desired state, otherwise it
will indicate the actual state over the established context.

6.4.36. getintegState
public bool ean getlntegState()
Returns the integrity service state over the context. Wen issued
bef ore context establishment conpl etes or when the isProtReady nethod

returns "false", it returns the desired state, otherwise it wll
indicate the actual state over the established context.

Kabat & Upadhyay St andar ds Track [Page 72]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6.4.37. getlLifetinme
public int getLifetinme()
Returns the context lifetine in seconds. Wen issued before context
establ i shment conpl etes or when the isProtReady nethod returns
"false", it returns the desired lifetine, otherwise it will indicate
the remaining lifetine for the context.

6.4.38. get SrcNane

publ i c GSSNane get SrcNane() throws GSSException

Returns the nanme of the context initiator. This call is valid only
after the context is fully established or the isProtReady nethod
returns "true". It is guaranteed to return an M\

6.4.39. get TargNane

publ i ¢ GSSNane get TargName() throws GSSException

Returns the nane of the context target (acceptor). This call is
valid only after the context is fully established or the isProtReady
nmet hod returns "true". It is guaranteed to return an M\

6.4.40. get Mech
public O d getMech() throws GSSException
Returns the mechanismoid for this context. This nethod nmay be called
before the context is fully established, but the mechani smreturned
may change on successive calls in negotiated mechani sm case.

6.4.41. getDel egCred
public GSSCredential getDel egCred() throws GSSException
Returns the del egated credential object on the acceptor’s side. To
check for availability of delegated credentials cal
getDel egCredState. This call is only valid on fully established
cont exts.

6.4.42. islnitiator
public boolean islnitiator() throws GSSException

Returns "true" if this is the initiator of the context. This call is
only valid after the context creation process has started.

Kabat & Upadhyay St andar ds Track [Page 73]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6.5. public class MessageProp

This is a utility class used within the per-nmessage GSSCont ext
nmet hods to convey per-nmnmessage properties.

When used with the GSSContext interface’s wap and getM C net hods, an
instance of this class is used to indicate the desired QOP and to
request if confidentiality services are to be applied to caller
supplied data (wap only). To request default QOP, the value of 0O
shoul d be used for QOP.

When used with the unwap and verifyM C nmethods of the GSSCont ext

interface, an instance of this class will be used to indicate the
applied QOP and confidentiality services over the supplied nessage.
In the case of verifyMC, the confidentiality state will always be
"false". Upon return fromthese nethods, this object will also

contain any supplenentary status val ues applicable to the processed
token. The suppl enentary status val ues can indicate old tokens, out
of sequence tokens, gap tokens or duplicate tokens.

6.5.1. Constructors
publ i c MessageProp(bool ean privState)

Constructor which sets QOP to O indicating that the default QOP is
request ed.

Par anet er s:
privState The desired privacy state. "true" for privacy and
"false" for integrity only.
publ i c MessageProp(int qop, bool ean privState)
Constructor which sets the values for the qop and privacy state.
Par anet er s:
gop The desired QOP. Use 0 to request a default QOP

privState The desired privacy state. "true" for privacy and
"false" for integrity only.

Kabat & Upadhyay St andar ds Track [Page 74]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6.5.2. getQOP
public int get QOP()
Retrieves the QOP val ue.
6.5.3. getPrivacy
public bool ean get Privacy()
Retrieves the privacy state.
6.5.4. getM nor Status
public int getM norStatus()

Retrieves the mnor status that the underlying nmechani sm m ght have
set .

6.5.5. getMnorString
public String getM norString()

Returns a string explaining the nechani smspecific error code. nul
will be returned when no nechani smerror code has been set.

6.5.6. setQOP
public void set QOP(int qopVal)
Sets the QOP val ue.
Par anet er s:

gopVval The QOP value to be set. Use 0 to request a default
QOP val ue.

6.5.7. setPrivacy
public void setPrivacy(bool ean privState)
Sets the privacy state.
Par anet er s:

privState The privacy state to set.

Kabat & Upadhyay St andar ds Track [Page 75]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6.5.8. isDuplicateToken

publ i c bool ean isDuplicateToken()

Returns "true" if this is a duplicate of an earlier token
6.5.9. isddToken

public bool ean i sO dToken()

Returns "true" if the token's validity period has expired.
6.5.10. isUnseqgToken

publ i c bool ean i sUnseqToken()

Returns "true" if a later token has already been processed.
6.5.11. isGapToken

publ i c bool ean i sGapToken()

Returns "true" if an expected per-nessage token was not received.
6.5.12. set Suppl enent arySt at es

public void set Suppl enent arySt at es(bool ean dupl i cate,

bool ean ol d, bool ean unseq, bool ean gap,
int mnorStatus, String mnorString)

This nethod sets the state for the supplenentary information flags

and the minor status in MessageProp. It is not used by the

application but by the GSS inplenmentation to return this information

to the caller of a per-nmessage context nethod.

Par anet ers:

duplicate true if the token was a duplicate of an earlier token

fal se otherw se

old true if the token’s validity period has expired, false
ot herwi se
unseq true if a later token has already been processed,

fal se otherw se

gap true if one or nore predecessor tokens have not yet
been successfully processed, false otherw se

Kabat & Upadhyay St andar ds Track [Page 76]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

m nor St at us the integer mnor status code that the underlying
mechani smwants to set

mnorString the textual representation of the mnorStatus
val ue

6.6. public class Channel Bi ndi ng

The GSS- APl acconmpdates the concept of caller-provided channel

bi ndi ng i nformati on. Channel bindings are used to strengthen the
quality with which peer entity authentication is provided during
context establishment. They enable the GSS-API callers to bind the
establi shnment of the security context to relevant characteristics
i ke addresses or to application specific data.

The caller initiating the security context nust determ ne the
appropriate channel binding values to set in the GSSCont ext object.
The acceptor nust provide an identical binding in order to validate
that received tokens possess correct channel -rel ated characteristics.

Use of channel bindings is optional in GSS-APlI. Since channel -

bi nding information may be transmtted in context establishnent

t okens, applications should therefore not use confidential data as
channel - bi ndi ng conponents.

6.6.1. Constructors

publ i ¢ Channel Bi ndi ng(| net Address i nitAddr, |net Address accept Addr,
byte[] appData)

Creat e a Channel Bi ndi ng object with user supplied address infornmation
and data. "null" values can be used for any fields which the
application does not want to specify.

Par anet ers:

initAddr The address of the context initiator. "null" value
can be supplied to indicate that the application does
not want to set this val ue.

accept Addr The address of the context acceptor. "null" value can
be supplied to indicate that the applicati on does not
want to set this val ue.

appData Application supplied data to be used as part of the
channel bindings. "null" value can be supplied to
i ndicate that the application does not want to set
this val ue.

Kabat & Upadhyay St andar ds Track [Page 77]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

publ i ¢ Channel Bi ndi ng(byte[] appData)
Creates a Channel Bi ndi ng obj ect without any addressing information.
Par anet er s:

appData Application supplied data to be used as part of the
channel bi ndi ngs.

6.6.2. getlnitiatorAddress
public I net Address getlnitiatorAddress()

Returns the initiator’s address for this channel binding. "null" is
returned if the address has not been set.

6.6.3. getAcceptorAddress
public | net Address get Accept or Address()

Returns the acceptor’s address for this channel binding. "null" is
returned if the address has not been set.

6.6.4. getApplicationData
public byte[] getApplicationData()
Returns application data being used as part of the Channel Bi ndi ng.
"null" is returned if no application data has been specified for the
channel bi ndi ng.

6.6.5. equals
publ i c bool ean equal s(Cbj ect obj)
Returns "true" if two channel bindings match. (Note that the Java
| anguage specification requires that two objects that are equal
according to the equal s(Object) nmethod nust return the same integer
result when the hashCode() nethod is called on them)

Par anet ers:

obj Anot her channel binding to conpare with.

Kabat & Upadhyay St andar ds Track [Page 78]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6.7. public class Gd

This class represents Universal Object Identifiers (G ds) and their
associ at ed operations.

O ds are hierarchically globally-interpretable identifiers used
within the GSS-API framework to identify mechani sns and nanme fornats.

The structure and encoding of Gds is defined in | SO EC- 8824 and
| SO EC-8825. For exanple the G d representation of Kerberos V5
mechanismis "1.2.840.113554.1.2.2"

The GSSNane nane cl ass contains public static O d objects
representing the standard name types defined in GSS-API.

6.7.1. Constructors
public G d(String strAd) throws GSSException

Creates an O d object froma string representation of its integer
conmponents (e.g. "1.2.840.113554.1.2.2").

Par anet er s:

strGd The string representation for the oid.
public G d(lnputStream derG d) throws GSSException
Creates an G d object fromits DER encoding. This refers to the full
encodi ng including tag and I ength. The structure and encodi ng of
O ds is defined in | SO EC 8824 and | SO EC-8825. This nethod is
identical in functionality to its byte array counterpart.
Par anet er s:

derG d Stream cont ai ni ng the DER encoded oi d.
public O d(byte[] DERQ d) throws GSSException
Creates an G d object fromits DER encoding. This refers to the full
encodi ng including tag and I ength. The structure and encodi ng of
O ds is defined in | SO EC 8824 and | SO EC-8825. This nethod is
identical in functionality to its byte array counterpart.

Par anet ers:

derG d Byte array storing a DER encoded oi d.

Kabat & Upadhyay St andar ds Track [Page 79]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

6.7.2. toString
public String toString()

Returns a string representation of the oid s integer conponents in
dot separated notation (e.g. "1.2.840.113554.1.2.2").

6.7.3. equals
publ i c bool ean equal s(Cbj ect Obj)
Returns "true" if the two O d objects represent the sanme oid val ue.
(Note that the Java | anguage specification requires that two objects

that are equal according to the equal s(Object) nethod nust return the
same integer result when the hashCode() method is called on them)

Par anet er s:
obj Anot her O d object to conpare with.
6.7.4. getDER
public byte[] getDER()

Returns the full ASN. 1 DER encoding for this oid object, which
i ncludes the tag and | ength.

6.7.5. containedln
publ i c bool ean contai nedln(QG d[] oids)

Autility method to test if an O d object is contained within the
supplied G d object array.

Par anet er s:
oi ds An array of oids to search
6.8. public class GSSException extends Exception

Thi s exception is thrown whenever a fatal GSS-APlI error occurs

i ncl udi ng mechani sm specific errors. It may contain both, the najor
and minor, GSS-APlI status codes. The mechani sminplenmenters are
responsi ble for setting appropriate nminor status codes when throw ng
this exception. Aside fromdelivering the nuneric error code(s) to
the caller, this class perfornms the mapping fromtheir numeric val ues
to textual representations. All Java GSS- APl nethods are decl ared
throwi ng this exception

Kabat & Upadhyay St andar ds Track [Page 80]

RFC 2853 GSS- APl Java Bi ndi ngs

Al'l inmplenmentations are encouraged to use the Java
i nternationalization techniques to provide local translation
nmessage strings.

June 2000

s of the

nst ant s

6.8.1. Static Constants
Al'l valid major GSS-APlI error code values are declared as co
in this class.
public static final int BAD_BI NDI NGS
Channel bindings nmismatch error.
public static final int BAD_ MECH
Unsupported mechani smrequested error.
public static final int BAD_NAME
I nvalid nanme provided error.
public static final int BAD_NAMETYPE
Nane of unsupported type provided error.
public static final int BAD_STATUS
Invalid status code error - this is the default status val ue.
public static final int BADMC
Token had invalid integrity check error.
public static final int CONTEXT_EXPI RED
Specified security context expired error.
public static final int CREDENTI ALS EXPI RED
Expired credentials detected error.

Kabat & Upadhyay St andar ds Track

[Page 81]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

public static final int DEFECTI VE_CREDENTI AL

Def ecti ve credential error.

public static final int DEFECTI VE_TOKEN

Def ecti ve token error.

public static final int FAl LURE

General failure, unspecified at GSS-API |evel.

public static final int NO_CONTEXT

Invalid security context error.

public static final int NO CRED

Invalid credentials error.

public static final int BAD_QOP

Unsupported QOP val ue error.

public static final int UNAUTHORI ZED

Oper ati on unaut hori zed error.

public static final int UNAVAI LABLE

Operati on unavail abl e error.

public static final int DUPLI CATE_ELEMENT

Duplicate credential el enment requested error.

public static final int NAME_NOT_MN

Nanme contai ns nulti-nechani smel enents error.

Kabat & Upadhyay St andar ds Track [Page 82]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

public static final int DUPLI CATE_TOKEN

The token was a duplicate of an earlier token. This is a fatal error
code that may occur during context establishnent. It is not used to
i ndi cate suppl ementary status val ues. The MessageProp object is used
for that purpose.

public static final int OLD_TOKEN

The token’s validity period has expired. This is a fatal error code
that may occur during context establishnment. It is not used to

i ndi cate suppl ementary status val ues. The MessageProp object is used
for that purpose.

public static final int UNSEQ TOKEN
A later token has already been processed. This is a fatal error code
that may occur during context establishnment. It is not used to
i ndi cate suppl ementary status val ues. The MessageProp object is used
for that purpose.
public static final int GAP_TOKEN
An expected per-nessage token was not received. This is a fatal
error code that nmay occur during context establishnent. It is not
used to indicate supplenentary status values. The MessageProp object
is used for that purpose.

6.8.2. Constructors
publ i c GSSException(int major Code)
Creates a GSSException object with a specified major code.

Par anet ers:

maj or Code The GSS error code causing this exception to be
t hr own.

publ i c GSSException(int majorCode, int mnorCode, String minorString)
Creates a GSSException object with the specified major code, ninor
code, and nminor code textual explanation. This constructor is to be

used when the exception is originating fromthe security nechani sm
It allows to specify the GSS code and the mechani sm code.

Kabat & Upadhyay St andar ds Track [Page 83]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

Par anet ers:

maj or Code The GSS error code causing this exception to be
t hr own.
m nor Code The nechani sm error code causing this exception

to be thrown.

nmi nor String The textual explanation of the mechani smerror
code.

6.8.3. getMjor
public int getMjor()

Returns the major code representing the GSS error code that caused
this exception to be thrown.

6.8.4. getM nor
public int getM nor()
Returns the nechanismerror code that caused this exception. The
m nor code is set by the underlying nechanism Value of 0 indicates
t hat mechani smerror code is not set.
6.8.5. getMajorString
public String getMajorString()

Returns a string explaining the GSS najor error code causing this
exception to be thrown.

6.8.6. getMnorString
public String getM norString()

Returns a string explaining the nechani smspecific error code. nul
will be returned when no nechani smerror code has been set.

6.8.7. setMnor
public void setM nor(int mnorCode, String nmessage)

Used internally by the GSS-API inplenentation and the underlying
mechani sns to set the minor code and its textual representation

Kabat & Upadhyay St andar ds Track [Page 84]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

Par anet er s:
nm nor Code The nmechani sm specific error code.
nessage A textual explanation of the mechani smerror code.
6.8.8. toString
public String toString()

Returns a textual representation of both the mgjor and ninor status
codes.

6.8.9. getMessage
public String get Message()
Returns a detailed nessage of this exception. Overrides
Thr owabl e. get Message. It is customary in Java to use this method to
obtai n exception information
7. Sanple Applications
7.1. Sinple GSS Context Initiator

i nmport org.ietf.jgss.*;

*

/
This is a partial sketch for a sinple client programthat acts
as a GSS context initiator. It illustrates howto use the Java
bi ndi ngs for the GSS-API specified in

Generic Security Service APl Version 2 : Java bindi ngs

Thi s code sketch assunes the existence of a GSS-API

i mpl ement ati on that supports the mechanismthat it will need and
is present as a library package (org.ietf.jgss) either as part of
the standard JRE or in the CLASSPATH the application specifies.

*Oo% X X X X X X X X X X

~

public class SinmpleCient {
private String serviceNane; // nanme of peer (ie. server)
private GSSCredential clientCred = null;
private GSSContext context = null
private G d nech; // underlying nmechanismto use

private GSSManager ngr = GSSManager. getl nstance();

Kabat & Upadhyay St andar ds Track [Page 85]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

private void clientActions() {
initializeGSS();
establ i shContext();
doCommuni cation();

}

/**

* Acquire credentials for the client.
*/

private void initializeGSS() {

try {

clientCred = ngr.createCredential (null /*default princ*/,
GSSCredential . I NDEFI NI TE LIFETIME /* max lifetime */,
mech /* nechanism to use */,
GSSCredential . INITIATE_ONLY /* init context */);

print("GSSCredential created for " +
cred. get Nane().toString());
print("Credential lifetinme (sec)=" +
cred. get Remai ni ngLifetinme());
} catch (GSSException e) {
print("GSS-APlI error in credential acquisition:
+ e. get Message());

}
/**

* Does the security context establishnent with the
* server.

*/

private void establishContext() ({

byte[] inToken = new byte[O0];
byt e[] out Token = null;

try {

GSSNane peer = ngr.creat eNane(servi ceNane,

Kabat & Upadhyay St andar ds Track [Page 86]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

GSSName. NT_HOSTBASED_SERVI CE) ;

context = ngr.createContext(peer, mech, gssCred,
GSSCont ext . | NDEFI NI TE_LI FETI ME/ *1ifetime*/);

/1 WIIl need to support confidentiality
cont ext. request Conf (true);

while (!context.isEstablished()) {

out Token = context.initSecContext(inToken, O,
i nToken. | engt h);

if (outToken !'= null)
wri t eGSSToken(out Token);

if (!'context.isEstablished())
i nToken = readGSSToken();

}

GSSNane peer = context.get SrcNane();
print("Security context established with + peer +
" using underlying mechanism" + nech.toString());
} catch (GSSException e) {
print("GSS-APlI error during context establishment:
+ e. get Message());

}
/**

* Sends sonme data to the server and reads back the
* response.
*/
private void doConmuni cation() {
byte[] inToken = null;
byt e[] out Token = nul |
byte[] buffer;

/1l Container for multiple input-output argunents to and
/'l fromthe per-nessage routines (e.g., wap/unw ap).
MessageProp nmessgl nfo = new MessageProp();

try {

Kabat & Upadhyay St andar ds Track [Page 87]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

/*
* Now send sone bytes to the server to be
* processed. They will be integrity protected but
* not encrypted for privacy.
*/

buffer = readFrontil e();

/1l Set privacy to false and use the default QOP
nmessgl nfo. set Privacy(fal se);

out Token = context.wap(buffer, 0, buffer.Ilength,

nmessgl nf o) ;
wri t eGSSToken(out Token) ;
/*
* Now read the response fromthe server
*/

i nToken = readGSSToken();

buf fer = context.unw ap(inToken, 0, inToken.I|ength,
nmessgl nf o) ;

I/ Al ok if no exception was thrown!

GSSNane peer = context.get SrcNanme();

print("Message from" + peer.toString()
+ " arrived.");

print("Was it encrypted? " +
nmessgl nfo. get Privacy());

print("Duplicate Token? " +
nmessgl nf o. |sDupI|cateToken())

print("Ad Token? "
nmessgl nf o. |sC]dToken()),

print("Unsequenced Token? " +
nmessgl nfo. i sUnseqToken());

print("CGap Token? " +
nmessgl nfo. i sGapToken());

} catch (GSSException e) {
print("GSS-APlI error in per-nessage calls:
+ e. get Message());

Kabat & Upadhyay St andar ds Track [Page 88]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

7.

Kabat & Upadhyay

} /1 end of doConmunication nethod

} // end of class Sinpledient

2.

Si npl e GSS Cont ext Accept or

i nmport org.ietf.jgss.*;

/

* 0% X X X X X X X X X

~

*

This is a partial sketch for a sinple server programthat acts
as a GSS context acceptor. It illustrates howto use the Java
bi ndi ngs for the GSS-API specified in

Generic Security Service APl Version 2 : Java bindi ngs

Thi s code sketch assunes the existence of a GSS- API

i mpl ement ati on that supports the mechanisns that it will need and
is present as a library package (org.ietf.jgss) either as part of
the standard JRE or in the CLASSPATH the application specifies.

i nport org.ietf.jgss.*;

public class SinpleServer {

private String servi ceNaneg;
private GSSNane nane;
private GSSCredential cred,

private GSSManager ngr;

/**

* WAit for client connections, establish security contexts and
* provide service.

*/

private void | oop() {

St andar ds Track [Page 89]

RFC 2853

}

/**
* I nner class ServerThread whose run() nethod provides the
* secure service to a connection

private class ServerThread extends Thread {

cred

* handl es al
* this client.

GSS- APl Java Bi ndi ngs

ngr = GSSManager . get | nst ance();

name = ngr.creat eNane(servi ceNane,
GSSNarre. NT_HOSTBASED _SERVI CE) ;

nul |,

GSSCr edent i al . ACCEPT_ONLY) ;
/1 Loop infinitely
while (true) {

Socket s = serverSock. accept ();

/] Start a new thread to serve this connection
Thread serverThread = new Server Thread(s);

server Thread. start();

Deals with the connection fromone client.
GSSException’'s thrown while talking to

public void run() {

byte[] inToken = null;
byt e[] out Token = nul |
byte[] buffer;

GSSNane peer;

Kabat & Upadhyay St andar ds Track

ngr. creat eCredenti al (nane,
GSSCr edenti al . | NDEFI NI TE_LI FETI MVE,

June 2000

It al so

[Page 90]

RFC 2853

GSS- APl Java Bi ndi ngs June 2000

/1 Container for nultiple input-output argunents to and
/1l fromthe per-nessage routines (ie. wap/unwap).
MessageProp suppl Info = new MessageProp();

GSSCont ext secCont ext

nul |

try {

Kabat & Upadhyay

/1 Now do the context establishment |oop
GSSCont ext context = ngr. createContext(cred);
while (!context.isEstablished()) {

i nToken = readGSSToken();

out Token = cont ext. accept SecCont ext (i nToken, 0,
i nToken. | engt h);

if (outToken !'= null)
wri t eGSSToken(out Token) ;

/'l SinpleServer wants confidentiality to be
/1 avail able. Check for it.
if (!'context.getConfState()){

}

GSSNane peer = context.get SrcNane();
G d nmech = context.getMech();
print("Security context established with " +
peer.toString() +
" using underlying nechanism" +
mech.toString() +
" from Provider " +
cont ext. get Provi der (). get Name());

/1 Now read the bytes sent by the client to be
/'l processed.
i nToken = readGSSToken();

/1 Unwrap the nmessage

St andards Track [Page 91]

RFC 2853

Kabat & Upadhyay

GSS- APl Java Bi ndi ngs June 2000

buffer = context.unwap(i nToken, 0, inToken.|ength,
suppl I nfo);
I/ Al ok if no exception was thrown!

/1l Print other supplenmentary per-nessage status
/1 information

print("Message from" +

peer.toString() + " arrived.");
print("Was it encrypted? " +

suppl I nfo. get Privacy());
print("Duplicate Token? " +

suppl I nfo.isbDuplicateToken());
print("Ad Token? " + supplInfo.isddToken());
print ("Unsequenced Token? " +

suppl I nfo. i sUnseqToken());
print("Gap Token? " + supplInfo.isGapToken());

/*
* Now process the bytes and send back an encrypted
* response.
*/

buffer = serverProcess(buffer);
/1l Encipher it and send it across

suppl I nfo. setPrivacy(true); // privacy requested

suppl Info.set QOP(0); // default QOP

out Token = context.wap(buffer, 0, buffer.Ilength,
suppl I nf o) ;

wr i t eGSSToken(out Token) ;

} catch (GSSException e) {

print("GSS-APlI Error: " + e.getMessage());

/1 Alternatively, could call e.getMyjorMssage()
/1 and e.getM nor Message()

print (" Abandoni ng security context.");

} /1 end of run nmethod in Server Thread

St andards Track [Page 92]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

8.

} /1 end of inner class ServerThread

} // end of class SinpleServer
Security Considerations

The Java | anguage security nodel allows platformproviders to have
policy based fine-grained access control over any resource that an
application wants. Wen using a Java security manager (such as, but
not linmted to, the case of applets running in browsers) the
application code is in a sandbox by default.

Adm nistrators of the platform JRE determ ne what perm ssions, if
any, are to be given to source fromdifferent codebases. Thus the
admi ni strator has to be aware of any special requirenents that the
GSS provider might have for systemresources. For instance, a

Ker beros provider might wish to nake a network connection to the KDC
to obtain initial credentials. This would not be allowed under the
sandbox unl ess the admninistrator had granted pernissions for this.
Al'so note that this granting and checki ng of permni ssions happens
transparently to the application and is outside the scope of this
docunent .

The Java | anguage all ows adm nistrators to pre-configure a list of
security service providers in the <JRE>/Iib/security/java.security
file. At runtime, the system approaches these providers in order of
preference when | ooking for security related services. Applications
have a nmeans to nodify this list through nmethods in the "Security"
class in the "java.security" package. However, since these
nodi fi cati ons would be visible in the entire JVM and thus affect al
code executing init, this operation is not available in the sandbox
and requires special permissions to perform Thus when a GSS
application has special needs that are net by a particular security
provider, it has two choices:

1) To install the provider on a JVM w de basis using the
java.security. Security class and then depend on the systemto
find the right provider automatically when the need ari ses.
(This would require the application to be granted a
"insertProvider SecurityPernission".)

2) To pass an instance of the provider to the |ocal instance of
GSSManager so that only factory calls going through that
GSSManager use the desired provider. (This would not require
any perm ssions.)

Kabat & Upadhyay St andar ds Track [Page 93]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

9. Acknow edgnents

Thi s proposed APl | everages earlier work performed by the | ETF s CAT
W5 as outlined in both RFC 2743 and RFC 2744. Many conceptua
definitions, inplenmentation directions, and expl anati ons have been

i ncl uded fromthese docunents.

We would like to thank M ke Eisler, Lin Ling, Ram Marti, M chae
Saltz and other nmenbers of Sun’s devel opnent team for their hel pful
i nput, comments and suggesti ons.

W would also like to thank Joe Sal owey, and M chael Smith for many
i nsightful ideas and suggestions that have contributed to this
docunent .

10. Bibliography

[GSSAPI v2] Linn, J., "Ceneric Security Service Application
Program Interface, Version 2", RFC 2078, January
1997.

[GSSAPI v2- UPDATE] Linn, J., "Ceneric Security Service Application
Program Interface, Version 2, Update 1", RFC 2743,
January 2000.

[GSSAPI - Cbi nd] Way, J., "Generic Security Service APl Version 2
C- bi ndi ngs", RFC 2744, January 2000.

[KERBVS] Linn, J., "The Kerberos Version 5 GSS-API
Mechani sni', RFC 1964, June 1996

[SPKM Adans, C., "The Sinple Public-Key GSS-AP
Mechani sm', RFC 2025, Cctober 1996.

Kabat & Upadhyay St andar ds Track [Page 94]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

11. Authors’ Addresses
Address comments related to this nenorandumto:
<cat-ietf@rt.edu>

Jack Kabat

ValiCert, Inc.

339 N. Bernardo Avenue
Mountain View, CA
94043, USA

Phone: +1-650-567-5496
EMai | : jackk@alicert.com

Mayank Upadhyay

Sun M crosystens, |nc.

901 San Antoni o Road, Ms CUP02-102
Palo Alto, CA 94303

Phone: +1-408-517-5956
EMai | : nmdu@ng. sun. com

Kabat & Upadhyay St andar ds Track [Page 95]

RFC 2853 GSS- APl Java Bi ndi ngs June 2000

12. Full Copyright Statenent
Copyright (C) The Internet Society (2000). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
ot hers, and derivative works that comment on or otherw se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng I nternet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into |Ianguages other than
Engli sh.

The limted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknow edgenent

Fundi ng for the RFC Editor function is currently provided by the
I nternet Society.

Kabat & Upadhyay St andar ds Track [Page 96]

