Vint Cerf - UCLA

Eric Harslem - Rand

RFC 194 John Heafner - Rand
Nl C 7139
Category: D. 4 Bob Metcalfe - MT

Updat es: None
Obsol et es: None JimWite - UCSB

THE DATA RECONFI GURATI ON SERVI CE - -

COWPI LER/ | NTERPRETER | MPLEMENTATI ON NOTES

. NEW FEATURES OF THE LANGUAGE

1. The neaning of S(#,E,,I) is only find an arbitrary
nunber (<=256) of EBCDI C characters and store themin
identifier S. This descriptor is termnated only by
an invalid EBCDI C or by exceedi ng maxi mum perm ssi bl e

character count (256).

2. The assignnent (S .<=. T) causes all attributes of
identifier Tto be givento S, i.e., length, type,
and contents.

3. (S .<=. T || X) concatenates X onto the right-hand

side of T and stores the result in S. [If T and X
are binary the resulting value has a | ength equal
to the sumL(T) + L(X).

4. T(X) joins L(X) and V(X) as a built-in identifier

function.

T(X) = type of identifier X

L(X) = length of contents of X

V(X) = contents of X converted to binary

(decimal - binary is presently the only
transformation).
5. New types ED and AD are EBCDI C and ASCI| encoded
deci mal, respectively. These have been added to
conmpl ement the V(X) function.

6. New type SB has been added as signed binary. Type B

is a logical binary string.
7. The syntactic notation for return-froma-form has
been changed. See new synt ax.

[Page 1]

Dat a Reconfiguration Service RFC 194

I'1. NEW SYNTAX

form =rule | form

rule = | abel inputstream out putstream

| abel = I NTEGER | NULL

i nput st ream = terns | NULL

terns =term| terns, term

out put stream = :terms | NULL

term = identifier | identifier descriptor |
descriptor | conparator

identifier <al pha foll owed by 0-3 al phanunerics>

descri ptor (replicationexpr, datatype, val ueexpr,

| engt hexpr control)

(concat expr connective concatexpr control) |
(identifier .<=. concatexpr control)

| arithmetricexpr | NULL

conpar at or

replicati onexpr

dat at ype =B| Ol X| E| A| ED| AD| SB| T (identifier)
val ueexpr = concatexpr | NULL
| engt hexpr = arithmeticexpr | NULL
connective = .LE. | .LT. | .GT. | .GE. | .EQ | .NE
concat expr = val ue | concat expr val ue
val ue = literal | arithneticexpr
arithnmeti cexpr = primary | arithmeticexpr operator prinmary
primary = identifier | L(identifier) | V(identifier) |
| NTEGER
oper at or =+ - * |/
literal = literaltype "string"
literal type =B| 0| X| E| A| ED| AD| SB
string = <fromO to 256 chars>
control = roptions | NULL
opti ons = SFUR (arithmeticexpr) | SFUR (arithneticexpr),
SFUR (arithneticexpr)
SFUR =S| F|] U|] SR| FR| UR

[Page 2]

Dat a Reconfiguration Service RFC 194

1. THE FORM | NTERPRETER
Interpreter Overview

The interpreter is a sinple ninded nmachi ne having the virtue of
hel ping the conpiler witer by providing a rather powerful instruction
set for hard-to-conpile operations. Figure 1 shows the nachine
confi gurati on:

Fomm e e o oo + SR +
| inputstream | | outputstream |
Fomm e e o oo + SR +
I\ /
\ /
\ /
\ \/
o m e e e e e e iaao - +
I CPU I
o m e e e e e e iaao - +
| /\
I I
I I
\/ |
o m e e e e e e iaao - +
St or age: | I'nstruction |
| Sequence |
o m e e e e e e iaao - +
| Label Table |
o m e e e e e e iaao - +
| Literal/ldentifier
| Pool |
o m e e e e e e iaao - +

| Variable length |
| string area |

Fig. 1. FormInterpreter

[Page 3]

Dat a Reconfiguration Service RFC 194

The CPU is a box full of miscellaneous parts, the npbst inportant
being the Arithmetic Logic Unit and the instruction decoding unit. The
CPU al so maintains a collection of state registers to keep track of what
it is doing. Figure 2 shows the rough |ayout.

S + S +
| I'nstruction | | I'nstruction |
| Counter | | Register |
S + S +
I
I
\%
o e e e oo oo oo +
| Operation Code |
| Decoding |
Run Ti nme Stack L +
R + / | \
| Oper ands | / | \
A + \/ \Y, \/
| | o e e e o e oo o +
A + / I nstruction \
| | | I nterpreter |
A + | Rout i nes |
| | \ /
S + SRS +
I I I I\
R I + | |
I I I I
o e e e e o oo o + V |
| | S +
A L R | Arithmetic |
| | ------meee-- > | Logic Unit |
S + SRS +
I I
S +
I I
S +
S + S +
[Initial Input Ptr.| | CQutput pointer |
S + S +
S + S +
| Current Input Ptr.| | True/False Flag |
S + S +

[Page 4]

Dat a Reconfiguration Service RFC 194

Fig. 2. The Central Processor

The CPU is a stack machine driven by a Polish postfix instruction
sequence. Operands placed on the Run Tinme Stack are used for arithnetic
expressi on eval uation and for parameter passing between the interpreter
and the built-in functions.

The Current | nput Pointer and the Qutput Pointer keep track of the
two data streanms. Two input pointers are needed because of the backup
requirement in the event of rule failure. Al of these pointers are bit
pointers into the two streans.

Various inplenentations of the Run Tinme Stack are independent of
the interpretation of the DRS nachine's instruction set. It is
suggested that the stack will contain instruction operands fromthe
instruction stream

The format of a conpiled instruction sequence for a formis shown
in Fig 3.

16 bits

Fomm e - I\ - - +
/ \
o m e e e e e e oo +

| length n in bytes
Fom e e e oo +
I I I
| | conpi | ed |
| | 16-bit |
n < | i nstructions |
I I I
I I I
I I I
Fom e e e oo +

Fig. 3. Conpiled Instruction Sequence For mat

[Page 5]

Dat a Reconfiguration Service RFC 194

The format of the conpiled Label Table is shown in Fig. 4.

16 bits

+----- I\ +

/ \
SR +

| length n |

| in bytes |
+- - o e e oo oo SR +
| | nuneric value of | byte offset |
| | statenment nunber | in inst. seq. |
| Fom e e e e e oo o o e e e e a e oo +
I I I
n < | |
I I I
I I I
I I I
I I I
+- - o m e o e e e e e ememoooo- +
\ /

V
32 bits

Fig. 4. Conpiled Label Table

[Page 6]

Dat a Reconfiguration Service

RFC 194

Literals and Identifiers are conpiled as shown in fig. 5.

2 2
e AL +----f/\----+
/ \ \
NS SR +
1 1 | length n | length n |
/\ /\ | in bytes | in bytes |
Fomm e oo Fomm oo oo oo - NS SR +
I [111111111 | |
| | Type [/7117111171] bit length | byte offset |
[[111111111 | |
| U S U o e e e m oo o +
5*n < | |
|| I
| | Identifiers
| I
Vo I
o m o m o e e e e e e e e e e e e e e e e e mee—a— o +
I I
| literals are |
[byt e-al i gned | Literals
m < | |
|| I
| I
\ o mm o m o e e e e e e e e e e e e e e e e e e eemeamaa - +
Legend
Type 0 = undefi ned
1 = B (binary)
2 =0 (octal)
3 = X (hexadeci mal)
4 = E (EBCDI C)
5=A (ASCI)
6 = ED (EBCDI C encoded deci nal)
7 = AD (ASClI | encoded deci mal)
8 = SB (signed binary, two' s conpl enent)
Fig. 5. Conpiled Literals and ldentifiers

[Page 7]

Dat a Reconfiguration Service RFC 194

Types B, 0, X, AD, ED, and SB point to 32-bit word- aligned data
shown bel ow.

R oo + R LT + wor d- al i gned,
| T /77 L | R SRR > | 32-bit right-
R oo + R LT + justified

Types E and A point to byte-aligned synbol streans
as shown bel ow.

byt e-aligned, L <= 256

N oo - - + o +
I T B |
U Fome e - - + o e e e +

[Page 8]

Dat a Reconfiguration Service RFC 194

I nstructi on For mat

Since literals and identifiers will be stored in the sanme data
area, nore than 256 literals plus identifiers m ght be encountered so
nore than 8 bits are needed to reference literal/id pool. Furthernore,
such references nust be distinguished fromoperators in the instruction
stream so a 16-bit instruction will be used, as shown bel ow.

S Fom e e e eoooooo- +

I 4 | 12 I

S Fom e e e eoooooo- +

I
/
/
/

I

\Y

LD =0 literal or identifier reference (12-bit positive integer)

IC=1 12-bit two’'s conplenent integer constant

OP = 2 operator

AD = 3 address (12-bit positive integer)

ARB = 4 indefinite replication factor
NULL = 5 missing attribute of term

The operation code decoder picks up types 0, 1, 3, 4,
and 5 and deposits themon top of the stack (TOS). LD is an
index into the literal/identifier table, and AD is an index
into the instruction sequence.

The decoder exam nes OP el enents further

4 4 8
S SIS B R . +
| 0010 | [71011
S SIS B R . +
oP I
S R > bi nary operator

0 =
1 = unary operator
2 = special operator

[Page 9]

Dat a Reconfiguration Service RFC 194

Bi nary Operators (*)

Let the TGOS contain y and the next level, x. The binary operators
compute x <bop> y, popping both x, y fromstack, and put the result
back on top of the stack

+---4+ <-- TOS +----- + <-- TOCS
|y | | x-y |
e. g. X-y => +---+ ===> 4----- +
| x| [/1111]
+---+ F----- +

Bi nary Operator Encoding

i nteger +

i nteger -

i nteger x

integer : (or /), no remainder
concat enate |

~ArWNEFLO
[I T |

Al'l binary operations except concatenate expect the top
two el enents on the stack to describe type B, 0, X, or SB. The
result is always a 32-bit type B elenent. The concatenate
operator fails unless both types are identical. For exanple:

(*) As suggested above, the stack really contains instruction
operands that describe data; for convenience in illustrations
the data rather than their descriptors are shown on the stack

[Page 10]

Dat a Reconfiguration Service RFC 194

type L val ue T L \%
Fo-m oo - Fo-m oo - Fo-m oo - + Fo-m oo - Fo-m oo - Fo-m oo - +
TGS ->| B | 32 | 4 | | B | 32 | 12 | <- TOS
S R R R S R + ==> 4------ R R S R +
| B | 8 | 16 | [AL EEE ey rrrrr
Fo-m oo - Fo-m oo - Fo-m oo - + Fo-m oo - Fo-m oo - Fo-m oo - +
Bef or e-operati on after-operation
Fo-m oo - Fo-m oo - Fo-m oo - + Fo-m oo - Fo-m oo - Fo-m oo - +
TS ->| A | 2 | DE | | A | 5 |ABCDE | <- TOS
S R R R S R + ==> 4------ R R S R +
| A | 3 | ABC | [AL EEE ey rrrrr
Fo-m oo - Fo-m oo - Fo-m oo - + Fo-m oo - Fo-m oo - Fo-m oo - +
Before || operation after || operation

No binary operator has any effect on the TRUE/ FALSE fl ag.

Unary Operators

4 4 4 4
S S S Fomm oo o - +
| 0010 | 0001 | | |
S S S Fomm oo o - +
I I
S + |
I I
\Y I
0 = integer ninus \%
1 =load identifier 0 = evaluated contents
(after dec - binary
conver si on)
1 =1length field
2 = type field
2 = Label Tabl e Reference

[Page 11]

Dat a Reconfiguration Service RFC 194

For the unary mnus operator the data described by the top of the
stack is replaced with its 2°’s conplenent. The formfails if the TGOS
type is not SB, B, 0, or X

The Load identifier expects the TOS to describe an index into the
l[iteral/identifier pool (that is, an LD instruction) . The TGOS
described data is replaced by 32-bit type B values. The operation fails
if the contents cannot be converted from encoded decinal to binary. B
0, and X types are treated as unsigned integers, SBis treated as 2's
conpl enent .

The Label Table Reference operator expects a 32-bit type B val ue
descri bed by TCS and searches for this label in the | abel Table. |If
found, the TOS described data is replaced by the relative address in the
i nstruction sequence of the label (in the formof an AD instruction).

If not found, the formfails. No Unary operator has any effect on the
TRUE/ FALSE f I ag.

Speci al Qperators

4 4 4 4
S S Fomm oo o - S, +
| 0010 | 0010 | | |
S S Fomm oo o - S, +
I I
o m e e e e e e ao-- + /
| /
V /
0 = store TOS |
1 =return Vv
2 = branch O =true, 1 = false, 2 = unconditional
3 = conpare 0=.EQ 2 =.LE 4 = . GE
1 = .NE 3 = .LT. 5 = .GI.
4 = nmove input ptr 0 = store current into initial
1 = store initial into current

5 = input call no conpare

conpar e

= O

6 = output call

[Page 12]

Dat a Reconfiguration Service RFC 194

Store TGOS

The TOS describes an index into the ID table and the next | ower
elenment in the stack describes a value to be stored. After execution,
both el enents are popped off the stack.

Ret urn

The TOS describes a value to be returned to the routine which
initiated the FORM MACHI NE. The actual nechanismw || be inplenentation
dependent, but the FORM MACHINE wi Il relin- quish control after this
i nstruction conpl etes executi on.

Br anch

The TGOS describes an index into the instruction sequence to be used
as the new instruction counter (1C) if the branch conditions are
satisfied. The branch instruction checks the state of the TRUE/ FALSE
flag register and either increnents the IC by 1 or replaces it with the
TOS described element. In any case, the TOS i s popped.

Conpare

The conpare operator takes the two el enments described by the two
top stack entries and conpares them (.EQ,.LT.,etc.). |If nis at the
top of the stack, and mis just below, then mxx.n is perforned, and the
TRUE/ Fal se flag is set accordingly. For .xx. = .EQ or .NE we nust
have identical type, length, and content for equality to hold.

The ot her bool ean conparators will not be attenpted if types are
different (i.e., formfails), but for sane types, B, 0, X cause binary-
justified conpares, and A, E, AD, ED cause left-justified string
conpares with the shorter string padded with bl anks.

Move | nput Pointer

This operator (no operands) replaces the Current Input Pointer with
the Initial Input Pointer (back-up), or the Initial Input Pointer with
the current one (entry to rule).

| nput Cal |

This is the nost conplex operator thus far encountered. It requires
four operands fromthe run-tinme stack:

[Page 13]

Dat a Reconfiguration Service RFC 194

TOS 4+---mmm e e e e e e e e e m e - +
| binary or null | length to find
o m e e e e e oooooo-- +
| LDto literal or null | wvalue (literal)
o m e e e e e oooooo-- +
| binary code | input data type
o m e e e e e oooooo-- +
| binary, arbitrary, or null | replication count
o m e e e e e oooooo-- +

The input call operator can be invoked with the "no conpare" flag
set, in which case the val ue expression paraneter is ignored and only

the input type and | ength expressions are used. |In this case, the input
routine tries to find in the input streamas nmany characters of the
required type (bits, digits, etc.) as needed to fill the length
expression requirement. |If successful, the TRUE/ FALSE flag is set TRUE
the stack is popped to renove the input parameters, and the string

obtai ned is described by the TCS. |If the input stream cannot be nmatched

then the paraneters are popped off the stack, and the TRUE/ FALSE flag is
set FALSE.

If the "conpare"” flag is set, the input stream nust be searched for
t he val ue expression. However, we nust take sone care here to be sure
we know what to | ook for. There are several cases:

a) The length expression paranmeter is greater than the

I ength of the value expression but the type of input de-

sired is the sane as the val ue expression type. For B, O

and X types, right-justify val ue expression in |ength-

expression field, sign bit is extended left if type BS.

If type A, E, AD, or ED pad on the right with blanks. b) Sane as
a) but length is too snmall. B, 0, and X type strings

are truncated on the left. A E, AD and ED are truncated

on the right. «¢) The type of the value expression and the type
par anet er

differ. This case is deferred for discussion and pre-

sently is considered an error causing formfailure.

If the input string matches, then the TRUE/ FALSE flag is set true,
the paraneters are popped fromthe stack, and the resulting string is
described by the TOS. Oherwi se, the FALSE flag is set and the
paraneters are popped.

When a successful match is found the input subroutine always
advances the Current Input Pointer by the appropriate anount. Since we
are dealing at the bit level this pointer nust be naintained as a bit
poi nt er!

[Page 14]

Dat a Reconfiguration Service RFC 194

Qut put Cal

This routine utilizes the sane paraneters as the input call, but
operates on the output stream The TRUE/ FALSE flag is not distributed
by this operator. As for input, there are four paranmeters on top of the
stack, the length expression value, the val ue expression value, the
desired output type, and the replication expression value. Wen there
is a ms- match between the output type and the val ue expression type, a
conversion nmust take place. The value expression is trans- forned into
the desired output type and fitted into the field | ength specified by
the [ength expression.

Truncation and Paddi ng Rul es

a) Character -> character (A E AD ED -> A E, AD, ED) conversion

is left-justified and truncated or padded with bl anks

on the right. b) Character -> nuneric and numeric -> character
conversion is

right-justified and truncated or padded on the left with

zeros. Beware! Two’s conplenent nunbers nmay be bolli xed

by this. c¢) MNuneric -> character conversion is right-justified and

| eft padded with blanks or left-truncated. As for the unary
operators, a numeric bit-string is treated as unsigned, except SB which
is treated as two’'s conplenment. Thus we have:

(1, ED, X"FF",3) = E 255’
(1, ED, X" 100", 3) = E 256’
but (1, ED, SB"10000000",4) = E - 256’

If the output routine is able to performthe desired action, it
advances the Qutput Stream Pointer, and pops all paraneters fromthe
run-tine stack.

[Page 15]

Dat a Reconfiguration Service

V. I NSTRUCTI ON SET

it/id ref
i nt const

addr ess

nul | paraneter
add

subtract

mul tiply

di vi de

concat enat e
unary m nus

| oad id val ue
load id | ength

load id type
| ook up | abel
sto

return

branch true
branch fal se
br anch

compare equa

E

compare not eqgua
conpare <=

call output

ut

call input

current ->initia
put

)

initial -> current
put

LD <nune
| C <nunv

AD <nunv
NULL
ADD
SUB
MUL
DV
CON
UNI N
LIV
LIL
LIT
LVL
STO
RET

BT
BF
BU

CEQ

CNE
CLE

IN (INC

SCl P

SI CP

conpar e
no conpare)

RFC 194

Literal or identifier
reference -> TCOS

small 2's conp. integer
constant -> TGS
Address -> TOS

mssing termattribute

TOS = X,y X +y ->T0S
TOS = X,y X -y ->T0CS
TOS = X,y X *y ->T0S
TOS = X,y xly -> TGS
TOS = X,y Xy -> TCS
TOS = X -X -> TOS
TCS = LD x V(LD x) -> TOS
TCS = LD x V(LD x) -> TOS
TCS = LD x V(LD x) -> TOS
TOS = X AD x -> TGS
TOS = X,y y -> X
TOS = X return to
caller with x
TOS = AD x AD x -> Instr.
count er
TOS = AD x AD x -> Instr.
count er
TOS = AD x AD x -> Instr.
count er
TOS = X,y (y.EQ x) ->
TRUE/ FALS
flag
TOS = X,y (y.NE. x) -> T/FF
TOS = X,y (y.LE.x) -> T/FF
TOS = r,t,v,l (r,t,v,1) ->outp
TS =r,t,v,l (r,t,v,l) -> TGOS
CP->1IP (store current in
ptr - initial IP
P ->CP (store initial in
ptr - CP)

[Page 16]

Dat a Reconfiguration Service RFC 194

VI. EXAMPLE COVPI LATI ON

FORM SOURCE GENERATED POLI SH | NSTRUCTI ON SEQUENCE
ADDR. | NSTR COVMVENTS
(NUMB. <=. 1) ; 0 Sl cP RULE PRELUDE
1 IcC 1
2 LD 0 REFERENCE TO NUMB
3 STO STORE | N NUMB
4 SCl P RULE POSTLUDE
1 CC(, E, ,1:FR(99)), 5 Sl cP RULE PRELUDE
6 NULL NO REPLI CATI ON EXPRESSI ON
7 IC 4 TYPE EBCDIC
8 NULL NO VALUE EXPRESS| ON
9 IC 1 LENGTH
10 | NN | NPUT CALL W TH NO COVPARE
11 AD 15
12 BT SKI P RETURN | F | NN SUCCEEDS
13 IC 99 RETURN CODE
14 RET RETURN TO CALLER | F FAI LED
15 LD 1 REFERENCE TO CC
16 STO STORE | NPUT DATA IN CC
LI NE(, E, , 121: 17 NULL NO REPLI| CATI ON EXPRESSI ON
FR(99)), 18 IC 4 TYPE IS EBCDIC
19 NULL NO VALUE EXPRESS| ON
20 IC 121 LENGTH
21 | NN | NPUT W TH NO COVPARE
22 AD 26
23 BT SKI P RETURN | F OK
24 IC 98 RETURN CODE
25 RET RETURN TO CALLER | F FAI LED
26 LD 2 REFERENCE TO LINE
27 STO STORE | NPUT IN LI NE
: CC, 28 SCl P SUCCESSFUL | NPUT
29 NULL NO REPLI| CATI ON FACTOR
30 LD 1 REFERENCE TO CC
31 LI T TYPE OF CC
32 LD 1 REFERENCE TO VALUE OF CC
33 LD 1 CC AGAIN
34 LIL LENGTH OF CC
35 ouT OUTPUT CC
(, ED, NUMB, 2), 36 NULL NO REPLI CATI ON
37 IC 6 TYPE IS ED
38 LD 0 REFERENCE TO VALUE OF NUMVB
39 IC 2 LENGTH OF QUTPUT FIELD
40 out OUTPUT NUMB AS EBCDI C DEC.
(,E E".", 1), 41 NULL NO REPL| CATI ON
42 IC 4 TYPE IS EBCDIC

[Page 17]

Dat a Reconfiguration Service

43
44
45

(, E LINE, 117), 46

47
48
49
50

(NUMB. <=. NUVB+1: 51
u1)); 52

[This RFC was put
into the online RFC archives by Sinone Demel

[

53
54
55
56
57

LD 3
IC 1
auT
NULL
IC 4
LD 2
IC 117
auT

LD O
IC 1
ADD
LD O
STO
AD 5
B

REFERENCE TO E"."

LENGTH TO OUTPUT

QUTPUT THE PERI CD

NO REPLI CATI ON

TYPE IS EBCDI C

REFERENCE TO LI NE

LENGTH TO OUTPUT

PUT OUT CONTENTS OF LI NE
REFERENCE TO NUNMB

AMOUNT TO ADD

ADD TO NuwvB

REFERENCE TO NUNMB

STORE BACK | NTO NUMB
PLACE TO GO

UNCONDI TI ONAL BRANCH BACK

LI TERAL/ | DENTI FI ER TABLE

wWN k- O

NUVB
CcC

LI NE
E"."

LABEL TABLE

LABEL
1

OFFSET
5

RFC 194

i nto machi ne readable formfor entry]

6/ 97]

[Page 18]

