Net wor k Wor ki ng Group T. Berners-Lee

Request for Comments: 1945 M T/ LCS
Cat egory: I nfornmational R Fi el di ng
UC Irvine
H Frystyk
M T/ LCS
May 1996

Hypertext Transfer Protocol -- HTTP/ 1.0

Status of This Meno

This meno provides information for the Internet community. This neno
does not specify an Internet standard of any kind. Distribution of
this meno is unlimted.

| ESG Not e:

The | ESG has concerns about this protocol, and expects this docunent
to be replaced relatively soon by a standards track docunent.

Abstract

The Hypertext Transfer Protocol (HTTP) is an application-Ievel
protocol with the |ightness and speed necessary for distributed,

col | aborative, hypernmedia information systenms. It is a generic,
statel ess, object-oriented protocol which can be used for nany tasks,
such as nane servers and distributed object nanagenent systens,

t hrough extension of its request nethods (commands). A feature of
HTTP is the typing of data representation, allow ng systens to be
built independently of the data being transferred.

HTTP has been in use by the Worl d-Wde Wb gl obal infornmation
initiative since 1990. This specification reflects commopn usage of
the protocol referred to as "HTTP/ 1. 0".

Tabl e of Contents

1. INntroduCti ON ... e 4
1.1 PUIPOSE .. 4
1.2 Termnology 4
1.3 Overall Operation 6
1.4 HITP and M VE e e e 8
2. Notational Conventions and Generic Gamar 8
2.1 Augnented BNF 8
2.2 Basic RUlES 10
3. Protocol Parameters e 12

Berners-Lee, et al I nf or mat i onal [Page 1]

RFC 1945 HTTP/ 1.0 May 1996

10.

Berners-Lee, et al I nf or mat i onal [Page 2]

3.1 HTTP VerSi ONn ..o e e e e e e e e 12
3.2 UniformResource ldentifiers 14

3.2.1 Ceneral Syntaxiiiiii e 14

3.2.2 http URL 15
3.3 Date/Time Formats e 15
3.4 Character Sets e 17
3.5 Content CodiNGSt 18
3.6 Media TYPeS .ot 19

3.6.1 Canonicalization and Text Defaults 19

3.6.2 Miltipart TYPeS ...t 20
3.7 Product TOKENSt 20
HTTP MeSsage e e e e e 21
4.1 Message TYPeS ...t 21
4.2 Message Headers 22
4.3 Ceneral Header Fields 23
ReqUEST . . 23
5.1 Request-Line 23

5.1.1 Method 24

5.1.2 Request-URl 24
5.2 Request Header Fields 25
RESPONSE . .. 25
6.1 Status-Line 26

6.1.1 Status Code and Reason Phrase 26
6.2 Response Header Fields 28
BNt ity 28
7.1 Entity Header Fields 29
7.2 Entity Body 29

7. 2. L TYPE 29

T7.2.2 Length ... 30
Method Definitions e e e e 30
8. L GET .. 31
8.2 HEAD . .. 31
8. 3 POST .. 31
Status Code Definitions 32
9.1 Informational IXX e 32
9.2 SuccessfuUl 2XX ..o 32
9.3 RedireCtion BXX ... 34
9.4 dAient Brror 4XX 35
9.5 Server EBrror 5XX 37
Header Field Definitions i, 37
10,1 AL OW .o 38
10.2 AuthOorizati On e e e e 38
10.3 Content-Encoding 39
10.4 Content-Length 39
10.5 Content-Type ... 40
10.6 DAt e ... 40
10. 7 EXPires .o 41
10. 8 From ... 42

RFC 1945 HTTP/ 1.0 May 1996

10.9 If-Mdified-Since 42
10.10 Last-Modified e 43

10. 11 Location 44

10. 12 PragimB . ..ottt 44

10. 13 Referer 44

10. 14 SEIr VeI i e 45

10. 15 User- Agent 46
10.16 WWM Authenticate 46

11. Access Authentication 47
11.1 Basic Authentication Scheme 48

12. Security Considerati ONs 49
12.1 Authentication of Clients 49
12.2 Safe Methods e 49
12.3 Abuse of Server Log Information 50
12.4 Transfer of Sensitive Information 50
12.5 Attacks Based On File and Path Names 51

13. Acknow edgment s 51
14, References 52
15, Authors’ AddresSSesSt e 54
Appendi x A. Internet Media Type nmessage/http 55
Appendi x B. Tol erant Applications 55
Appendi x C. Relationship to MME 56
C.1 Conversion to Canonical Form......................... 56

C.2 Conversion of Date Formats, 57

C.3 Introduction of Content-Encoding 57

C.4 No Content-Transfer-Encoding 57

C.5 HITP Header Fields in Miultipart Body-Parts 57
Appendi x D. Additional Features 57
D.1 Additional Request Methods 58

D. 1.1 PUT . 58

D.1.2 DELETE e 58

D. 1.3 LINK . 58

D.1.4 UNLINK ..o 58

D.2 Additional Header Field Definitions 58

D. 2.1 ACCEePt ..ot 58

D.2.2 Accept-Charset 59

D.2.3 Accept-Encoding, 59

D. 2.4 Accept-Languageoii 59

D.2.5 Content-Language, 59

D.2.6 Link ... 59

D.2.7 MME-VErsion 59

D.2.8 Retry-After 60

D.2.9 Title .. 60

D. 2. 10 URI . 60

Berners-Lee, et al I nf or mat i onal [Page 3]

RFC 1945 HTTP/ 1.0 May 1996

1. Introduction
1.1 Purpose

The Hypertext Transfer Protocol (HTTP) is an application-Ievel
protocol with the |ightness and speed necessary for distributed,

col | aborative, hypernedia information systens. HTTP has been in use
by the World-Wde Wb global information initiative since 1990. This
specification reflects commopn usage of the protocol referred too as
"HTTP/ 1.0". This specification describes the features that seemto be
consistently inplenented in nost HITP/1.0 clients and servers. The
specification is split into two sections. Those features of HITP for
whi ch i mpl ementati ons are usually consistent are described in the
mai n body of this docunment. Those features which have few or

i nconsi stent inplenmentations are listed in Appendix D.

Practical information systens require nore functionality than sinple
retrieval, including search, front-end update, and annotation. HITP
al l ows an open-ended set of nmethods to be used to indicate the
purpose of a request. It builds on the discipline of reference

provi ded by the Uniform Resource Identifier (URI) [2], as a | ocation
(URL) [4] or name (URN) [16], for indicating the resource on which a
method is to be applied. Messages are passed in a format sinilar to
that used by Internet Mail [7] and the Ml tipurpose Internet Mail
Extensions (M M) [5].

HTTP is al so used as a generic protocol for comuni cati on between
user agents and proxi es/gateways to other Internet protocols, such as
SMIP [12], NNTP [11], FTP [14], Gopher [1], and WAIS [8], allowi ng
basi ¢ hypermedi a access to resources available from diverse
applications and sinplifying the inplenmentation of user agents.

1.2 Term nol ogy

This specification uses a nunber of terns to refer to the roles
pl ayed by participants in, and objects of, the HTTP comuni cati on.

connection

A transport layer virtual circuit established between two
application prograns for the purpose of conmunication.

nessage
The basic unit of HITP comuni cation, consisting of a structured

sequence of octets matching the syntax defined in Section 4 and
transnitted via the connection

Berners-Lee, et al I nf or mat i onal [Page 4]

RFC 1945 HTTP/ 1.0 May 1996

request

An HTTP request nessage (as defined in Section 5).
response

An HTTP response nessage (as defined in Section 6).
resource

A network data object or service which can be identified by a
URI (Section 3.2).

entity
A particular representation or rendition of a data resource, or
reply froma service resource, that may be enclosed within a
request or response nessage. An entity consists of
nmet ai nformation in the formof entity headers and content in the
formof an entity body.

client

An application programthat establishes connections for the
pur pose of sending requests.

user agent
The client which initiates a request. These are often browsers,
editors, spiders (web-traversing robots), or other end user
tool s.

server

An application programthat accepts connections in order to
servi ce requests by sendi ng back responses.

origin server
The server on which a given resource resides or is to be created.
pr oxy
An intermedi ary programwhich acts as both a server and a client
for the purpose of making requests on behalf of other clients.
Requests are serviced internally or by passing them wth

possi bl e translation, on to other servers. A proxy mnust
interpret and, if necessary, rewite a request nmessage before

Berners-Lee, et al I nf or mat i onal [Page 5]

RFC 1945 HTTP/ 1.0 May 1996

forwarding it. Proxies are often used as client-side portals
t hrough network firewalls and as hel per applications for
handl i ng requests via protocols not inplenmented by the user
agent .

gat enay

A server which acts as an internediary for sone other server
Unlike a proxy, a gateway receives requests as if it were the
origin server for the requested resource; the requesting client
may not be aware that it is comunicating with a gateway.

Gat eways are often used as server-side portals through network
firewalls and as protocol translators for access to resources
stored on non-HTTP systens.

t unnel

A tunnel is an internmediary programwhich is acting as a blind
rel ay between two connections. Once active, a tunnel is not
considered a party to the HITP conmuni cation, though the tunne
may have been initiated by an HTTP request. The tunnel ceases to
exi st when both ends of the relayed connections are cl osed.
Tunnel s are used when a portal is necessary and the internediary
cannot, or should not, interpret the relayed comuni cati on.

cache

A programs | ocal store of response nessages and the subsystem
that controls its nmessage storage, retrieval, and deletion. A
cache stores cachabl e responses in order to reduce the response
time and network bandw dth consunption on future, equival ent
requests. Any client or server may include a cache, though a
cache cannot be used by a server while it is acting as a tunnel

Any given program nmay be capable of being both a client and a server;
our use of these terns refers only to the role being performed by the
program for a particular connection, rather than to the programs
capabilities in general. Likew se, any server may act as an origin
server, proxy, gateway, or tunnel, sw tching behavior based on the
nat ure of each request.

1.3 Overall QOperation

The HTTP protocol is based on a request/response paradigm A client
establ i shes a connection with a server and sends a request to the
server in the formof a request nmethod, URI, and protocol version
followed by a M Me-1i ke nessage containing request nodifiers, client
i nformati on, and possi ble body content. The server responds with a

Berners-Lee, et al I nf or mat i onal [Page 6]

RFC 1945 HTTP/ 1.0 May 1996

status line, including the nmessage’s protocol version and a success
or error code, followed by a M ME-Iike nessage contai ning server
information, entity metai nformati on, and possi bl e body content.

Most HTTP comrunication is initiated by a user agent and consists of
a request to be applied to a resource on sonme origin server. In the
si npl est case, this may be acconplished via a single connection (v)

bet ween t he user agent (UA) and the origin server (O.

A nore conplicated situation occurs when one or nore internediaries
are present in the request/response chain. There are three conmmon
fornms of intermediary: proxy, gateway, and tunnel. A proxy is a
forwardi ng agent, receiving requests for a URI in its absolute form
rewiting all or parts of the nessage, and forwarding the refornmatted
request toward the server identified by the URI. A gateway is a
receiving agent, acting as a | ayer above sone other server(s) and, if
necessary, translating the requests to the underlying server’s
protocol. A tunnel acts as a relay point between two connections

wi t hout changi ng the nessages; tunnels are used when the

comuni cati on needs to pass through an internediary (such as a
firewall) even when the internedi ary cannot understand the contents
of the nessages.

The figure above shows three internediaries (A B, and C) between the
user agent and origin server. A request or response nessage that
travel s the whol e chain nust pass through four separate connections.
This distinction is inportant because some HITP conmuni cation options
may apply only to the connection with the nearest, non-tunne

nei ghbor, only to the end-points of the chain, or to all connections
al ong the chain. Although the diagramis linear, each participant may
be engaged in nmultiple, simultaneous comuni cati ons. For exanple, B
may be receiving requests fromnmany clients other than A and/or
forwardi ng requests to servers other than C, at the same tine that it
is handling A s request.

Any party to the conmmunication which is not acting as a tunnel may
enpl oy an internal cache for handling requests. The effect of a cache
is that the request/response chain is shortened if one of the
participants along the chain has a cached response applicable to that
request. The followng illustrates the resulting chain if B has a

Berners-Lee, et al I nf or mat i onal [Page 7]

RFC 1945 HTTP/ 1.0 May 1996

cached copy of an earlier response fromO (via C) for a request which
has not been cached by UA or A

request chain ---------- >
UA ----- V----- A----- V----- B------C------0
S L response chain

Not all responses are cachabl e, and sone requests may contain
nodi fi ers which place special requirenents on cache behavior. Sone
HTTP/ 1.0 applications use heuristics to describe what is or is not a
"cachabl e" response, but these rules are not standardized.

On the Internet, HITP comunication generally takes place over TCP/IP
connections. The default port is TCP 80 [15], but other ports can be
used. This does not preclude HTTP from being inplenented on top of
any other protocol on the Internet, or on other networks. HITP only
presunes a reliable transport; any protocol that provides such
guar ant ees can be used, and the mapping of the HTTP/ 1.0 request and
response structures onto the transport data units of the protocol in
question is outside the scope of this specification.

Except for experinental applications, current practice requires that
the connection be established by the client prior to each request and
cl osed by the server after sending the response. Both clients and
servers should be aware that either party may close the connection
prematurely, due to user action, automated tinme-out, or program
failure, and should handle such closing in a predictable fashion. In
any case, the closing of the connection by either or both parties

al ways termi nates the current request, regardl ess of its status.

1.4 HITP and M ME

2.

HTTP/ 1. 0 uses many of the constructs defined for MME, as defined in
RFC 1521 [5]. Appendi x C describes the ways in which the context of
HTTP all ows for different use of Internet Media Types than is
typically found in Internet nail, and gives the rationale for those
di fferences.

Not at i onal Conventions and Generic G anmar

2.1 Augnented BNF

Al'l of the nechanisnms specified in this docunent are described in
both prose and an augnmented Backus-Naur Form (BNF) similar to that
used by RFC 822 [7]. Inplenmentors will need to be familiar with the
notation in order to understand this specification. The augnmented BNF
i ncludes the follow ng constructs:

Berners-Lee, et al I nf or mat i onal [Page 8]

RFC 1945 HTTP/ 1.0 May 1996

name = definition

The nanme of arule is sinply the nane itself (w thout any
enclosing "<" and ">") and is separated fromits definition by
the equal character "=". Whitespace is only significant in that
i ndentation of continuation lines is used to indicate a rule
definition that spans nore than one line. Certain basic rules
are in uppercase, such as SP, LW5, HI, CRLF, DIA T, ALPHA, etc.
Angl e brackets are used within definitions whenever their

presence will facilitate discerning the use of rule nanes.

"l'iteral "

Quotation marks surround literal text. Unless stated ot herw se,
the text is case-insensitive.

rulel | rule2

El ements separated by a bar ("1") are alternatives,

e.g., "yes | no" will accept yes or no.

(rulel rule2)
El ements encl osed in parentheses are treated as a single
el enent. Thus, "(elem (foo | bar) elenm)" allows the token
sequences "elemfoo elent and "el em bar el ent.

*rul e
The character "*" preceding an el enment indicates repetition. The
full formis "<n>*<npel enent” indicating at | east <n> and at
nost <mP> occurrences of elenent. Default values are 0 and
infinity so that "*(elenent)" allows any nunber, including zero;
"l1*el ement” requires at |east one; and "1*2elenment” allows one
or two.

[rul e]
Squar e brackets encl ose optional elenents; "[foo bar]" is
equivalent to "*1(foo bar)".

N rule

Specific repetition: "<n>(elenment)" is equivalent to
"<n>*<n>(elenment)"; that is, exactly <n> occurrences of
(element). Thus 2DIA T is a 2-digit nunber, and 3ALPHA is a
string of three al phabetic characters.

Berners-Lee, et al I nf or mat i onal [Page 9]

RFC 1945 HTTP/ 1.0 May 1996

#rul e

A construct "#" is defined, simlar to "*", for defining lists
of elements. The full formis "<n>#<npel erent" indicating at
| east <n> and at nost <nP el enents, each separated by one or

nmore comas (",") and optional |inear whitespace (LWS). This
makes the usual formof lists very easy; a rule such as
"(*LW5 elenment *(*LWS "," *LWS elenent))" can be shown as

"1#el ement”. \Wherever this construct is used, null elenents are
al l owed, but do not contribute to the count of elenents present.
That is, "(element), , (elenment)" is permitted, but counts as
only two el enments. Therefore, where at |east one elenment is
required, at |least one non-null element nust be present. Default
values are 0 and infinity so that "#(elenment)" allows any
nunber, including zero; "1#elenment"” requires at |east one; and
"1#2el enent™ all ows one or two.

; commrent

A sem -col on, set off sone distance to the right of rule text,
starts a comment that continues to the end of line. This is a
sinmpl e way of including useful notes in parallel with the
speci fications.

ied *LW5

The granmar described by this specification is word-based.
Except where noted otherw se, |inear whitespace (LW5) can be

i ncl uded between any two adj acent words (token or

quot ed-string), and between adjacent tokens and deliniters
(tspecials), without changing the interpretation of a field. At
| east one delimter (tspecials) must exist between any two

t okens, since they would otherwi se be interpreted as a single
t oken. However, applications should attenpt to foll ow "comon
form' when generating HITP constructs, since there exist sone
i npl erentations that fail to accept anything beyond the common
forns.

2.2 Basic Rules

The following rules are used throughout this specification to
descri be basic parsing constructs. The US-ASCI | coded character set
is defined by [17].

COCTET = <any 8-bit sequence of data>

CHAR = <any US-ASCI| character (octets 0 - 127)>
UPALPHA = <any US-ASCI| uppercase letter "A".."Z">
LOALPHA = <any US-ASCI| |owercase letter "a".."z">

Berners-Lee, et al I nf or mat i onal [Page 10]

RFC 1945 HTTP/ 1.0 May 1996

ALPHA = UPALPHA | LQALPHA

DAT = <any US-ASCI| digit "0".."9">

CTL = <any US-ASCI| control character
(octets 0 - 31) and DEL (127)>

CR = <US-ASCI| CR, carriage return (13)>

LF = <US-ASClI | LF, linefeed (10)>

SP = <US-ASCI | SP, space (32)>

HT = <US-ASCI | HT, horizontal-tab (9)>

<"> = <US-ASCI | doubl e-quote mark (34)>

HTTP/ 1. 0 defines the octet sequence CR LF as the end-of-1ine marker

for all protocol elenments except the Entity-Body (see Appendix B for
tol erant applications). The end-of-line marker within an Entity-Body
is defined by its associated nedia type, as described in Section 3.6.

CRLF = CR LF
HTTP/ 1.0 headers may be folded onto nmultiple lines if each
continuation line begins with a space or horizontal tab. Al Iinear
whi t espace, including folding, has the sane semantics as SP

LWE = [CRLF] 1*(SP | HT)

However, folding of header lines is not expected by some
applications, and should not be generated by HTTP/ 1.0 applications.

The TEXT rule is only used for descriptive field contents and val ues

that are not intended to be interpreted by the nessage parser. Wrds
of *TEXT may contain octets fromcharacter sets other than US-ASClI

TEXT = <any OCTET except CILs,
but including LWs>

Reci pi ents of header field TEXT containing octets outside the US-
ASCI | character set may assune that they represent |SO 8859-1
characters.

Hexadeci mal nuneric characters are used in several protocol elenents.

HEX = n AII | n BII | n Cl | n Dl | n EII | n FII
| n aIl | n bll | n CIl | n dll | n eIl | Ilf n | DI G T
Many HTTP/ 1.0 header field values consist of words separated by LW5
or special characters. These special characters nust be in a quoted
string to be used within a paraneter val ue.

wor d = token | quoted-string

Ber ners-Lee, et al | nf or mat i onal [Page 11]

RFC 1945 HTTP/ 1.0 May 1996

3.

3.

t oken = 1*<any CHAR except CTLs or tspecial s>
tspecial s =" M)yt <t @

T S A S O

A S I RN BN B

{1 "y SP | HT

Comments may be included in some HTTP header fields by surrounding
the coment text with parentheses. Comments are only allowed in
fields containing "coment" as part of their field value definition.
In all other fields, parentheses are considered part of the field
val ue.

conment
ctext

"(" *(ctext | coment) ")"
<any TEXT excluding "(" and ")">

A string of text is parsed as a single word if it is quoted using
doubl e- quot e marks.

quoted-string = (<"> *(qdtext) <">)

gdt ext <any CHAR except <"> and CILs,

but including LWs>

Si ngl e-character quoting using the backslash ("\") character is not
permitted in HTTP/ 1.0.

Pr ot ocol Paraneters
1 HITP Version

HTTP uses a "<maj or>. <mi nor>" nunbering schene to indicate versions
of the protocol. The protocol versioning policy is intended to all ow
the sender to indicate the format of a nessage and its capacity for
under standi ng further HTTP conmuni cation, rather than the features
obtai ned via that conmunication. No change is nade to the version
nunber for the addition of nessage conponents which do not affect
comuni cati on behavior or which only add to extensible field val ues.
The <ni nor> nunber is incremented when the changes nade to the
protocol add features which do not change the general nessage parsing
al gorithm but which may add to the nmessage senmantics and inply

addi tional capabilities of the sender. The <major> nunber is

i ncrenented when the format of a nessage within the protocol is
changed.

The version of an HTTP nessage is indicated by an HTTP-Version field
inthe first line of the nessage. If the protocol version is not
speci fied, the recipient nmust assunme that the nessage is in the

Ber ners-Lee, et al | nf or mat i onal [Page 12]

RFC 1945 HTTP/ 1.0 May 1996

sinple HITP/ 0.9 format.
HTTP- Ver si on = "HrTP" /" 1*DIAT "." 1*DIAT

Note that the major and minor nunbers should be treated as separate

i ntegers and that each nay be increnented higher than a single digit.
Thus, HTTP/ 2.4 is a | ower version than HTTP/2.13, which in turnis

| ower than HTTP/12.3. Leading zeros should be ignored by recipients
and never generated by senders.

Thi s docunent defines both the 0.9 and 1.0 versions of the HITP
protocol . Applications sending Full-Request or Full-Response
nmessages, as defined by this specification, nust include an HTTP-
Version of "HTTP/1.0".

HTTP/ 1.0 servers nust:

0 recogni ze the format of the Request-Line for HITP/0.9 and
HTTP/ 1. 0 requests;

o understand any valid request in the format of HITP/0.9 or
HTTP/ 1. O;

o respond appropriately with a nessage in the sane protoco
version used by the client.

HTTP/ 1.0 clients nust:
0 recogni ze the format of the Status-Line for HITP/ 1.0 responses;

0 understand any valid response in the format of HTTP/ 0.9 or
HTTP/ 1. 0.

Proxy and gateway applications nust be careful in forwarding requests
that are received in a format different than that of the
application’ s native HTTP version. Since the protocol version

i ndicates the protocol capability of the sender, a proxy/gateway nust
never send a nmessage with a version indicator which is greater than
its native version; if a higher version request is received, the
proxy/ gat eway nust either downgrade the request version or respond
with an error. Requests with a version |lower than that of the
application’s native format may be upgraded before being forwarded;
the proxy/gateway’ s response to that request nust follow the server
requirenents |isted above.

Berners-Lee, et al I nf or mat i onal [Page 13]

RFC 1945 HTTP/ 1.0 May 1996

3.2 Uniform Resource ldentifiers

URI s have been known by many nanes: WWV addresses, Universal Document
I dentifiers, Universal Resource Identifiers [2], and finally the
conbi nati on of Uniform Resource Locators (URL) [4] and Nanes (URN)
[16]. As far as HTTP is concerned, Uniform Resource ldentifiers are
sinmply formatted strings which identify--via nanme, |ocation, or any
ot her characteristic--a network resource.

3.2.1 General Syntax

URI's in HTTP can be represented in absolute formor relative to sone
known base URI [9], depending upon the context of their use. The two
fornms are differentiated by the fact that absolute URIs al ways begin
with a schene nane foll owed by a col on

URI (absoluteURl | relativeURl) ["#" fragnent]

absol ut eURI schene *(uchar | reserved)

net _path | abs_path | rel _path

rel ati veUR

net _path = "/]" net_loc [abs_path]

abs_path ="/" rel _path

rel _path =[path] [";" parans] ["?" query]
pat h = fsegnent *("/" segnent)

f segnent = 1*pchar

segnment = *pchar

par anms = param *(";" param)

par am = *(pchar | "/")

scheme = 1*(ALPHA | DIGT | "+" | "-"] ".")
net | oc = *(pchar | ";" | "?")

query = *(uchar | reserved)

f ragment = *(uchar | reserved)

pchar = uchar | ":" | "@ | "&" | "="] "+"
uchar = unreserved | escape

unr eserved ALPHA | DIG T | safe | extra | national

escape = "9% HEX HEX

reserved S L L B L I I S I I
extra = """ | "k | L | "(" | ll)ll | u,u

safe ="$" | -t

unsaf e = CTL | SP | <"> | " | "og | "n | "

nati onal = <any OCTET excluding ALPHA, DIGAT,

Ber ners-Lee, et al | nf or mat i onal [Page 14]

RFC 1945 HTTP/ 1.0 May 1996

reserved, extra, safe, and unsafe>

For definitive information on URL syntax and semantics, see RFC 1738
[4] and RFC 1808 [9]. The BNF above includes national characters not
allowed in valid URLs as specified by RFC 1738, since HITP servers
are not restricted in the set of unreserved characters allowed to
represent the rel _path part of addresses, and HITP proxies nay
recei ve requests for URIs not defined by RFC 1738.

3.2.2 http URL
The "http" schene is used to |ocate network resources via the HITP
protocol. This section defines the scheme-specific syntax and
semantics for http URLs.

http_URL = "http:" "//" host [":" port] [abs_path]

host <A l egal Internet host donain name
or | P address (in dotted-deciml form,

as defined by Section 2.1 of RFC 1123>

*DAT

port

If the port is enpty or not given, port 80 is assuned. The senantics
are that the identified resource is |ocated at the server listening
for TCP connections on that port of that host, and the Request-UR
for the resource is abs_path. If the abs_path is not present in the
URL, it nust be given as "/" when used as a Request-URlI (Section
5.1.2).

Not e: Al though the HTTP protocol is independent of the transport
| ayer protocol, the http URL only identifies resources by their
TCP |l ocation, and thus non-TCP resources nust be identified by
sonme ot her URI schene.

The canonical formfor "http" URLsS is obtained by converting any
UPALPHA characters in host to their LOALPHA equival ent (hostnanes are
case-insensitive), eliding the [":" port] if the port is 80, and
repl acing an enpty abs_path with "/".

3.3 Date/Tinme Formats

HTTP/ 1.0 applications have historically allowed three different
formats for the representation of date/tine stanps:

Sun, 06 Nov 1994 08:49: 37 GMI ; RFC 822, updated by RFC 1123
Sunday, 06-Nov-94 08:49:37 GV ; RFC 850, obsol eted by RFC 1036
Sun Nov 6 08:49:37 1994 i ANSI C s asctinme() fornmat

Berners-Lee, et al I nf or mat i onal [Page 15]

RFC 1945 HTTP/ 1.0 May 1996

The first format is preferred as an Internet standard and represents
a fixed-length subset of that defined by RFC 1123 [6] (an update to
RFC 822 [7]). The second format is in comon use, but is based on the
obsol ete RFC 850 [10] date format and |acks a four-digit year.

HTTP/ 1.0 clients and servers that parse the date val ue shoul d accept
all three formats, though they nust never generate the third
(asctine) format.

Not e: Reci pients of date val ues are encouraged to be robust in
accepting date val ues that nay have been generated by non-HTTP
applications, as is sonetimes the case when retrieving or posting
nessages vi a proxies/gateways to SMIP or NNTP

Al'l HTTP/ 1.0 date/tine stanps nust be represented in Universal Tine
(UT), also known as Greenwi ch Mean Tinme (GMI), w thout exception

This is indicated in the first two formats by the inclusion of "GV
as the three-letter abbreviation for tinme zone, and should be assuned
when reading the asctine fornat.

HTTP- dat e = rfcll23-date | rfc850-date | asctinme-date
rfcll23-date = wkday "," SP datel SP tinme SP "GV
rf c850-date = weekday "," SP date2 SP tinme SP "GMVI"

ascti ne-date wkday SP date3 SP tinme SP 4DIA T

datel = 2DIGAT SP nonth SP 4DIGA T
; day nmonth year (e.g., 02 Jun 1982)
date2 =2DIAT "-" nmonth "-" 2DIG T
; day-nmont h-year (e.g., 02-Jun-82)
date3 =month SP (2DIAT | (SP 1DIAT))
; nmonth day (e.g., Jun 2)
tine =2DGAT ":" 2D T ":" 2D T
; 00:00:00 - 23:59:59
wkday = "Mon" | "Tue" | "Wed"
| "Thu" | "Fri" | "Sat" | "Sun"
weekday = "Monday" | "Tuesday" | "Wdnesday"
| "Thursday" | "Friday" | "Saturday" | "Sunday"
nmont h = "Jan" | "Feb" | "Mar" | "Apr"
| “May" | "Jun" | "Jul" | "Aug"
| "Sep" | "Cct" | "Nov" | "Dec"

Note: HTTP requirenments for the date/tinme stanp fornmat apply
only to their usage within the protocol stream Cdients and
servers are not required to use these formats for user

Berners-Lee, et al I nf or mat i onal [Page 16]

RFC 1945 HTTP/ 1.0 May 1996

presentation, request |ogging, etc.
3.4 Character Sets

HTTP uses the sane definition of the term"character set" as that
descri bed for M NME:

The term "character set" is used in this docunent to refer to a
nmet hod used with one or nore tables to convert a sequence of
octets into a sequence of characters. Note that unconditional
conversion in the other direction is not required, in that not al
characters may be available in a given character set and a
character set nay provide nore than one sequence of octets to
represent a particular character. This definition is intended to
al | ow various kinds of character encodi ngs, from sinple single-
tabl e mappi ngs such as US-ASCII to conpl ex table swtching nethods
such as those that use | SO 2022’ s techni ques. However, the
definition associated with a M ME character set name nust fully
specify the mapping to be performed fromoctets to characters. In
particul ar, use of external profiling information to determ ne the
exact mapping is not permtted.

Note: This use of the term"character set" is nore conmonly
referred to as a "character encoding." However, since HTTP and

M ME share the sane registry, it is inportant that the terninol ogy
al so be shared.

HTTP character sets are identified by case-insensitive tokens. The
conpl ete set of tokens are defined by the | ANA Character Set registry
[15] . However, because that registry does not define a single,

consi stent token for each character set, we define here the preferred
nanes for those character sets nost likely to be used with HTITP
entities. These character sets include those registered by RFC 1521
[B] -- the US-ASCII [17] and | SO 8859 [18] character sets -- and

ot her nanes specifically recommended for use within M ME charset

par aneters.

charset = "US-ASCI | "
| "I1SO-8859-1" | "1SO 8859-2" | "ISO 8859-3"
| "1SO8859-4" | "1SO 8859-5" | "ISO 8859-6"
| "I1SO-8859-7" | "1SO 8859-8" | "ISO 8859-9"
| "1SO 2022-JP" | "I1SO 2022-JP-2" | "ISO 2022- KR'
| "UNI CODE-1-1" | "UN CODE-1-1-UTF-7" | "UN CODE-1-1-UTF-8"
| token

Al t hough HTTP allows an arbitrary token to be used as a charset
val ue, any token that has a predefined value within the | ANA
Character Set registry [15] must represent the character set defined

Ber ners-Lee, et al | nf or mat i onal [Page 17]

RFC 1945 HTTP/ 1.0 May 1996

by that registry. Applications should Iinmt their use of character
sets to those defined by the | ANA registry.

The character set of an entity body should be | abelled as the | owest
conmon denoni nator of the character codes used within that body, with
the exception that no | abel is preferred over the | abels US-ASCI | or

| SO 8859- 1.

3.5 Content Codings

Content coding values are used to indicate an encoding transfornmation
that has been applied to a resource. Content codings are primarily
used to allow a docunent to be conpressed or encrypted without |osing
the identity of its underlying nmedia type. Typically, the resource is
stored in this encoding and only decoded before rendering or

anal ogous usage.

content-coding = "x-gzip" | "x-conpress" | token

Note: For future conpatibility, HTTP/ 1.0 applications should
consi der "gzip" and "conpress" to be equivalent to "x-gzip"
and "x-conpress", respectively.

Al'l content-coding val ues are case-insensitive. HITP/ 1.0 uses
content-codi ng values in the Content-Encoding (Section 10.3) header
field. Although the val ue describes the content-coding, what is nore
inmportant is that it indicates what decodi ng mechanismw || be
required to renove the encoding. Note that a single programmy be
capabl e of decoding nultiple content-coding formats. Two val ues are
defined by this specification:

X-Qzip
An encodi ng format produced by the file conpression program
"gzi p" (G\U zip) devel oped by Jean-loup Gailly. This format is
typically a Lenpel-Ziv coding (LZ77) with a 32 bit CRC

X- conpr ess
The encodi ng format produced by the file conpression program
"conmpress”. This format is an adaptive Lenpel -Ziv-Wl ch codi ng

(LZW .

Not e: Use of program nanes for the identification of
encoding formats i s not desirable and should be di scouraged
for future encodings. Their use here is representative of

hi storical practice, not good design.

Berners-Lee, et al I nf or mat i onal [Page 18]

RFC 1945 HTTP/ 1.0 May 1996

3.6 Media Types

HTTP uses Internet Media Types [13] in the Content-Type header field
(Section 10.5) in order to provide open and extensible data typing.

medi a-type = type "/" subtype *(";" paraneter)

type = t oken

subt ype = t oken
Paraneters may follow the type/subtype in the formof attribute/val ue
pairs.

par anet er = attribute "=" val ue

attribute = t oken

val ue = token | quoted-string

The type, subtype, and paraneter attribute nanes are case-

i nsensitive. Paraneter values may or may not be case-sensitive,
dependi ng on the semantics of the paranmeter name. LW5 nust not be
gener ated between the type and subtype, nor between an attribute and
its value. Upon receipt of a nedia type with an unrecogni zed
paraneter, a user agent should treat the nmedia type as if the
unrecogni zed paraneter and its val ue were not present.

Sone ol der HTTP applications do not recognize nedia type paraneters.
HTTP/ 1. 0 applications should only use nedia type paraneters when they
are necessary to define the content of a nmessage.

Medi a-type values are registered with the Internet Assigned Number
Authority (I ANA [15]). The nedia type registration process is
outlined in RFC 1590 [13]. Use of non-registered nedia types is

di scour aged.

3.6.1 Canonicalization and Text Defaults

Internet nedia types are registered with a canonical form In
general, an Entity-Body transferred via HITP nust be represented in
the appropriate canonical formprior to its transmssion. |If the body
has been encoded with a Content-Encodi ng, the underlying data shoul d
be in canonical formprior to being encoded.

Medi a subtypes of the "text" type use CRLF as the text |ine break
when in canonical form However, HTTP allows the transport of text
media with plain CR or LF alone representing a |line break when used
consistently within the Entity-Body. HITP applications nmust accept
CRLF, bare CR, and bare LF as being representative of a line break in
text nedia received via HITP.

Berners-Lee, et al I nf or mat i onal [Page 19]

RFC 1945 HTTP/ 1.0 May 1996

In addition, if the text media is represented in a character set that
does not use octets 13 and 10 for CR and LF respectively, as is the
case for sonme nulti-byte character sets, HITP allows the use of

what ever octet sequences are defined by that character set to
represent the equivalent of CR and LF for |ine breaks. This
flexibility regarding |ine breaks applies only to text nmedia in the
Entity-Body; a bare CR or LF should not be substituted for CRLF

wi thin any of the HITP control structures (such as header fields and
mul ti part boundaries).

The "charset" paraneter is used with sone nedia types to define the
character set (Section 3.4) of the data. Wien no explicit charset
paraneter is provided by the sender, nedia subtypes of the "text"
type are defined to have a default charset value of "ISO 8859-1" when
received via HTTP. Data in character sets other than "I SO 8859-1" or
its subsets nust be labelled with an appropriate charset value in
order to be consistently interpreted by the recipient.

Note: Many current HTTP servers provide data using charsets other
than "1 SO 8859-1" without proper labelling. This situation reduces
interoperability and is not recommended. To conpensate for this,
some HTTP user agents provide a configuration option to allow the
user to change the default interpretation of the nedia type
character set when no charset paraneter is given

3.6.2 Multipart Types

M ME provides for a nunmber of "nultipart"” types -- encapsul ati ons of
several entities within a single nessage’s Entity-Body. The nultipart
types registered by 1ANA [15] do not have any special neaning for
HTTP/ 1. 0, though user agents may need to understand each type in
order to correctly interpret the purpose of each body-part. An HITP
user agent should follow the sane or similar behavior as a M ME user
agent does upon receipt of a multipart type. HITP servers shoul d not
assune that all HTTP clients are prepared to handle nultipart types.

Al multipart types share a common syntax and must include a boundary
paraneter as part of the nedia type value. The nmessage body is itself
a protocol elenent and must therefore use only CRLF to represent |ine
breaks between body-parts. Miltipart body-parts nay contain HTTP
header fields which are significant to the neaning of that part.

3.7 Product Tokens
Product tokens are used to allow comuni cating applications to
identify thenselves via a sinple product token, with an optional

sl ash and version designator. Mst fields using product tokens also
al | ow subproducts which forma significant part of the application to

Berners-Lee, et al I nf or mat i onal [Page 20]

RFC 1945 HTTP/ 1.0 May 1996

be listed, separated by whitespace. By convention, the products are
listed in order of their significance for identifying the
appl i cati on.

pr oduct
product - ver si on

token ["/" product-version]
t oken

Exanpl es:
User - Agent : CERN-Li neMode/ 2. 15 |i bww/ 2. 17b3
Server: Apache/O0. 8.4

Product tokens should be short and to the point -- use of themfor
advertizing or other non-essential information is explicitly

forbi dden. Al though any token character may appear in a product-
version, this token should only be used for a version identifier
(i.e., successive versions of the sane product should only differ in
t he product-version portion of the product val ue).

4. HITP Message
4.1 Message Types

HTTP nmessages consi st of requests fromclient to server and responses
fromserver to client.

HTTP- message = Si npl e- Request ; HTTP/ 0.9 nessages
| Sinpl e-Response
| Full - Request ; HTTP/ 1.0 nessages
I

Ful | - Response

Ful | - Request and Ful | - Response use the generic nessage format of RFC
822 [7] for transferring entities. Both nmessages may include optional
header fields (also known as "headers") and an entity body. The
entity body is separated fromthe headers by a null line (i.e., a
line with nothing preceding the CRLF).

Ful | - Request = Request - Li ne ; Section 5.1
*(General - Header ; Section 4.3
| Request - Header ; Section 5.2
| Entity-Header) ; Section 7.1
CRLF
[Entity-Body] ; Section 7.2
Ful | - Response = Status-Line ; Section 6.1
*(General - Header ; Section 4.3
| Response- Header ; Section 6.2

Ber ners-Lee, et al | nf or mat i onal [Page 21]

RFC 1945 HTTP/ 1.0 May 1996

| Entity-Header) ; Section 7.1
CRLF
[Entity-Body] ; Section 7.2

Si npl e- Request and Si npl e- Response do not allow the use of any header
information and are limted to a single request nethod (GET).

"GET" SP Request-URI CRLF

Si npl e- Request

Si npl e- Response [Entity-Body]
Use of the Sinple-Request format is di scouraged because it prevents
the server fromidentifying the media type of the returned entity.

4.2 Message Headers

HTTP header fields, which include General -Header (Section 4.3),
Request - Header (Section 5.2), Response-Header (Section 6.2), and
Entity-Header (Section 7.1) fields, follow the sane generic format as
that given in Section 3.1 of RFC 822 [7]. Each header field consists
of a nane followed inmediately by a colon (":"), a single space (SP)
character, and the field value. Field nanmes are case-insensitive.
Header fields can be extended over nultiple |ines by preceding each
extra line with at |east one SP or HT, though this is not

recommended.

HTTP- header

field-name ":" [field-value] CRLF

t oken
*(field-content | LWS)

fiel d-nane
field-val ue

fiel d-content <the OCTETs nmking up the field-val ue
and consisting of either *TEXT or conbi nations

of token, tspecials, and quoted-string>

The order in which header fields are received is not significant.
However, it is "good practice" to send CGeneral - Header fields first,
foll owed by Request-Header or Response-Header fields prior to the
Entity-Header fields.

Mul tiple HTTP-header fields with the same fiel d-name nay be present
in a nessage if and only if the entire field-value for that header
field is defined as a conma-separated list [i.e., #(values)]. It mnust
be possible to conmbine the nultiple header fields into one "field-
nane: field-value" pair, wthout changing the semantics of the
nmessage, by appendi ng each subsequent field-value to the first, each
separated by a comma

Ber ners-Lee, et al | nf or mat i onal [Page 22]

RFC 1945 HTTP/ 1.0 May 1996

4.3 General Header Fields

5.

1

There are a few header fields which have general applicability for
bot h request and response nessages, but which do not apply to the
entity being transferred. These headers apply only to the nessage
bei ng transmtted.

Cener al - Header = Date ; Section 10.6
| Pragnma ; Section 10.12

General header field names can be extended reliably only in

conmbi nation with a change in the protocol version. However, new or
experinmental header fields nmay be given the senmantics of genera
header fields if all parties in the communication recognize themto
be general header fields. Unrecognized header fields are treated as
Entity-Header fields.

Request

A request nessage froma client to a server includes, within the
first line of that nmessage, the nethod to be applied to the resource,
the identifier of the resource, and the protocol version in use. For
backwards conpatibility with the nore Iinited HITP/ 0.9 protocol

there are two valid formats for an HITP request:

Si mpl e- Request | Ful | - Request

Request

Si npl e- Request "GET" SP Request-URI CRLF

Ful | - Request = Request - Li ne ; Section 5.1
*(General - Header ; Section 4.3
| Request - Header ; Section 5.2
| Entity-Header) ; Section 7.1
CRLF
[Entity-Body] ; Section 7.2

If an HTTP/ 1.0 server receives a Sinple-Request, it nust respond with
an HTTP/ 0.9 Sinpl e- Response. An HITP/ 1.0 client capable of receiving
a Full - Response shoul d never generate a Sinpl e- Request.

Request - Li ne
The Request-Line begins with a method token, followed by the
Request-URI and the protocol version, and ending with CRLF. The
el enents are separated by SP characters. No CR or LF are all owed
except in the final CRLF sequence.

Request-Li ne = Met hod SP Request-URI SP HTTP- Versi on CRLF

Berners-Lee, et al I nf or mat i onal [Page 23]

RFC 1945 HTTP/ 1.0 May 1996

Note that the difference between a Sinpl e-Request and the Request -
Line of a Full-Request is the presence of the HITP-Version field and
the availability of nethods other than CET.

5.1.1 Met hod

The Method token indicates the nmethod to be perfornmed on the resource
identified by the Request-URI. The nmethod is case-sensitive.

Met hod = "CGET" ; Section 8.1
| " HEAD" ; Section 8.2
| "POST" ; Section 8.3
I

ext ensi on- net hod
ext ensi on- et hod = token

The list of methods acceptable by a specific resource can change
dynami cally; the client is notified through the return code of the
response if a nethod is not allowed on a resource. Servers should
return the status code 501 (not inplenmented) if the nethod is
unrecogni zed or not inplenented.

The met hods commonly used by HTTP/ 1.0 applications are fully defined
in Section 8.

5. 1.2 Request - UR

The Request-URI is a Uniform Resource Identifier (Section 3.2) and
identifies the resource upon which to apply the request.

Request - URI = absoluteURl | abs_path

The two options for Request-URI are dependent on the nature of the
request.

The absoluteURI formis only all owed when the request is being nmade
to a proxy. The proxy is requested to forward the request and return
the response. |If the request is GET or HEAD and a prior response is
cached, the proxy nmay use the cached nessage if it passes any
restrictions in the Expires header field. Note that the proxy may
forward the request on to another proxy or directly to the server
specified by the absoluteURI. In order to avoid request |oops, a
proxy nust be able to recognize all of its server nanmes, including
any aliases, local variations, and the nuneric |IP address. An exanple
Request - Li ne woul d be:

GET http://ww. w3. or g/ pub/ WWV ThePr oj ect. html HTTP/ 1.0

Ber ners-Lee, et al | nf or mat i onal [Page 24]

RFC 1945 HTTP/ 1.0 May 1996

The nost common form of Request-URI is that used to identify a
resource on an origin server or gateway. In this case, only the
absol ute path of the URI is transmtted (see Section 3.2.1,
abs_path). For exanple, a client wishing to retrieve the resource
above directly fromthe origin server would create a TCP connecti on
to port 80 of the host "www w3.org" and send the line:

GET / pub/ WAV TheProject. html HTTP/ 1.0

foll owed by the remai nder of the Full-Request. Note that the absolute
path cannot be enpty; if none is present in the original URI, it nust
be given as "/" (the server root).

The Request-URI is transnitted as an encoded string, where sone
characters may be escaped using the "% HEX HEX" encodi ng defined by
RFC 1738 [4]. The origin server nust decode the Request-URl in order
to properly interpret the request.

5.2 Request Header Fields

The request header fields allow the client to pass additional

i nformati on about the request, and about the client itself, to the
server. These fields act as request nodifiers, with semantics

equi val ent to the paraneters on a progranm ng | anguage mnet hod
(procedure) invocation.

Aut hori zati on

Request - Header ; Section 10.2

| From ; Section 10.8
| 1f-Modified-Since ; Section 10.9
| Referer ; Section 10.13
| User - Agent ; Section 10.15

Request - Header field nanes can be extended reliably only in

conbi nation with a change in the protocol version. However, new or
experinmental header fields nmay be given the senmantics of request
header fields if all parties in the communication recognize themto
be request header fields. Unrecognized header fields are treated as
Entity-Header fields.

6. Response

After receiving and interpreting a request nessage, a server responds
in the formof an HITP response nessage.

Response = Si npl e- Response | Full - Response

Si npl e- Response = [Entity-Body]

Berners-Lee, et al I nf or mat i onal [Page 25]

RFC 1945 HTTP/ 1.0 May 1996

Ful | - Response = Status-Line ; Section 6.1
*(General - Header ; Section 4.3
| Response- Header ; Section 6.2
| Entity-Header) ; Section 7.1
CRLF
[Entity-Body] ; Section 7.2

A Si npl e- Response should only be sent in response to an HITP/ 0.9

Si npl e- Request or if the server only supports the nore linted

HTTP/ 0.9 protocol. If a client sends an HTTP/ 1.0 Full - Request and
receives a response that does not begin with a Status-Line, it should
assunme that the response is a Sinple-Response and parse it
accordingly. Note that the Sinple-Response consists only of the
entity body and is term nated by the server closing the connecti on.

6.1 Status-Line

The first line of a Full-Response nessage is the Status-Line,

consi sting of the protocol version followed by a nuneric status code
and its associated textual phrase, with each el enent separated by SP
characters. No CR or LF is allowed except in the final CRLF sequence.

St atus-Li ne = HTTP-Versi on SP St at us- Code SP Reason- Phrase CRLF

Since a status line always begins with the protocol version and
status code

"HTTP/" 1*DIAT "." 1*DIAT SP 3DIG T SP

(e.g., "HTTP/1.0 200 "), the presence of that expression is
sufficient to differentiate a Full-Response from a Sinpl e- Response.
Al t hough the Sinple-Response format may al |l ow such an expression to
occur at the beginning of an entity body, and thus cause a

m sinterpretation of the nessage if it was given in response to a
Ful | - Request, nost HITP/ 0.9 servers are limted to responses of type
"text/htm " and therefore would never generate such a response.

6.1.1 Status Code and Reason Phrase

The Status-Code elenent is a 3-digit integer result code of the
attenpt to understand and satisfy the request. The Reason-Phrase is
intended to give a short textual description of the Status-Code. The
Status-Code is intended for use by automata and the Reason-Phrase is
i ntended for the human user. The client is not required to examine or
di spl ay the Reason-Phrase.

Berners-Lee, et al I nf or mat i onal [Page 26]

RFC 1945 HTTP/ 1.0 May 1996

The first digit of the Status-Code defines the class of response. The
last two digits do not have any categorization role. There are 5
values for the first digit:

o 1xx: Informational - Not used, but reserved for future use

0 2xX: Success - The action was successfully received,
under st ood, and accept ed.

0 3xx: Redirection - Further action nust be taken in order to
conpl ete the request

0 4xx: Cient Error - The request contains bad syntax or cannot
be fulfilled

0 5xx: Server Error - The server failed to fulfill an apparently
valid request

The individual values of the numeric status codes defined for

HTTP/ 1.0, and an exanpl e set of correspondi ng Reason-Phrase’s, are
presented bel ow. The reason phrases listed here are only reconmended
-- they may be replaced by | ocal equivalents without affecting the
protocol. These codes are fully defined in Section 9.

St at us- Code = "200" ;K
| "201" ; Created
| "202" ; Accept ed
| "204" ; No Content
| "301" ; Moved Permanently
| "302" ; Moved Tenmporarily
| "304" ; Not Modified
| "400" ; Bad Request
| "401" ; Unaut hori zed
| "403" ; For bi dden
| "404" ; Not Found
| "500" ; Internal Server Error
| "501" ; Not | npl enent ed
| "502" ; Bad Gat eway
| "503" ; Service Unavail abl e
I

extensioh-code
extension-code = 3DA T
Reason- Phrase = *<TEXT, excluding CR, LF>
HTTP status codes are extensible, but the above codes are the only

ones generally recognized in current practice. HITP applications are
not required to understand the neaning of all registered status

Ber ners-Lee, et al | nf or mat i onal [Page 27]

RFC 1945 HTTP/ 1.0 May 1996

codes, though such understanding is obviously desirable. However,
applications nust understand the class of any status code, as
indicated by the first digit, and treat any unrecogni zed response as
bei ng equivalent to the x00 status code of that class, with the
exception that an unrecogni zed response nust not be cached. For
exanple, if an unrecogni zed status code of 431 is received by the
client, it can safely assune that there was sonething wong with its
request and treat the response as if it had received a 400 status
code. In such cases, user agents should present to the user the
entity returned with the response, since that entity is likely to

i ncl ude hunan-readabl e information which will explain the unusual

st at us.

6.2 Response Header Fields

The response header fields allow the server to pass additional

i nformati on about the response which cannot be placed in the Status-
Li ne. These header fields give information about the server and about
further access to the resource identified by the Request-URI

Response- Header = Locati on ; Section 10.11
| Server ; Section 10. 14
| WAM Aut henti cate ; Section 10. 16

Response- Header field names can be extended reliably only in

conbi nation with a change in the protocol version. However, new or

experimental header fields may be given the semantics of response

header fields if all parties in the communication recognize themto
be response header fields. Unrecognized header fields are treated as
Entity-Header fields.

7. Entity

Ful | - Request and Ful | - Response nessages may transfer an entity within
some requests and responses. An entity consists of Entity-Header
fields and (usually) an Entity-Body. In this section, both sender and
recipient refer to either the client or the server, depending on who
sends and who receives the entity.

Berners-Lee, et al I nf or mat i onal [Page 28]

RFC 1945 HTTP/ 1.0 May 1996

7.1 Entity Header Fields

Entity-Header fields define optional mnetainformation about the
Entity-Body or, if no body is present, about the resource identified
by the request.

Entity-Header = Allow ; Section 10.1
| Content-Encodi ng ; Section 10.3
| Content-Length ; Section 10.4
| Content-Type ; Section 10.5
| Expires ; Section 10.7
| Last-Modified ; Section 10. 10
I

ext ensi on- header
ext ensi on- header = HTTP- header

The extensi on- header nmechani sm all ows additional Entity-Header fields
to be defined w thout changing the protocol, but these fields cannot
be assunmed to be recogni zabl e by the recipient. Unrecogni zed header
fields should be ignored by the recipient and forwarded by proxies.

7.2 Entity Body

The entity body (if any) sent with an HTTP request or response is in
a format and encodi ng defined by the Entity-Header fields.

Enti t y- Body = *OCTET

An entity body is included with a request nessage only when the
request nethod calls for one. The presence of an entity body in a
request is signaled by the inclusion of a Content-Length header field
in the request nmessage headers. HITP/ 1.0 requests containing an
entity body nust include a valid Content-Length header field.

For response nessages, whether or not an entity body is included with
a message i s dependent on both the request nethod and the response
code. All responses to the HEAD request nethod nust not include a
body, even though the presence of entity header fields may | ead one
to believe they do. Al 1xx (informational), 204 (no content), and
304 (not nodified) responses nust not include a body. Al other
responses nust include an entity body or a Content-Length header
field defined with a value of zero (0).

7.2.1 Type
When an Entity-Body is included with a nessage, the data type of that

body is determined via the header fields Content-Type and Content -
Encodi ng. These define a two-layer, ordered encodi ng nodel :

Berners-Lee, et al I nf or mat i onal [Page 29]

RFC 1945 HTTP/ 1.0 May 1996

entity-body := Content-Encodi ng(Content-Type(data))

A Content-Type specifies the nmedia type of the underlying data. A
Cont ent - Encodi ng may be used to indicate any additional content
coding applied to the type, usually for the purpose of data
conpression, that is a property of the resource requested. The
default for the content encoding is none (i.e., the identity
function).

Any HTTP/ 1.0 nessage containing an entity body should include a
Cont ent - Type header field defining the nedia type of that body. If
and only if the nedia type is not given by a Content-Type header, as
is the case for Sinple-Response nessages, the recipient may attenpt
to guess the nedia type via inspection of its content and/or the name
extension(s) of the URL used to identify the resource. If the nedia
type renai ns unknown, the recipient should treat it as type
"application/octet-strean'.

7.2.2 Length

When an Entity-Body is included with a nessage, the |length of that
body may be deternmined in one of two ways. If a Content-Length header
field is present, its value in bytes represents the Iength of the
Entity-Body. O herw se, the body length is determined by the closing
of the connection by the server.

Cl osing the connection cannot be used to indicate the end of a
request body, since it |eaves no possibility for the server to send
back a response. Therefore, HTTP/ 1.0 requests containing an entity
body rust include a valid Content-Length header field. If a request
contains an entity body and Content-Length is not specified, and the
server does not recognize or cannot calculate the length from other
fields, then the server should send a 400 (bad request) response.

Not e: Sonme ol der servers supply an invalid Content-Length when
sendi ng a docunent that contains server-side includes dynamcally
inserted into the data stream It nust be enphasized that this
will not be tolerated by future versions of HITP. Unless the
client knows that it is receiving a response froma conpliant
server, it should not depend on the Content-Length val ue being
correct.

8. Method Definitions
The set of common nethods for HTTP/ 1.0 is defined bel ow. Although

this set can be expanded, additional nethods cannot be assuned to
share the sane semantics for separately extended clients and servers.

Berners-Lee, et al I nf or mat i onal [Page 30]

RFC 1945 HTTP/ 1.0 May 1996

8.1 GET

The GET nethod neans retrieve whatever information (in the formof an
entity) is identified by the Request-URI. If the Request-URlI refers
to a data-producing process, it is the produced data which shall be
returned as the entity in the response and not the source text of the
process, unless that text happens to be the output of the process.

The semantics of the CGET method changes to a "conditional GET" if the
request nessage includes an |f-Mdified-Since header field. A

condi tional GET nethod requests that the identified resource be
transferred only if it has been nodified since the date given by the
| f-Modi fied-Since header, as described in Section 10.9. The
conditional CET nethod is intended to reduce network usage by

al l owi ng cached entities to be refreshed without requiring multiple
requests or transferring unnecessary data.

8.2 HEAD

The HEAD nethod is identical to GET except that the server must not
return any Entity-Body in the response. The netai nfornmati on contained
in the HTTP headers in response to a HEAD request should be identical
to the information sent in response to a GET request. This method can
be used for obtaining nmetai nformati on about the resource identified
by the Request-URI without transferring the Entity-Body itself. This
method is often used for testing hypertext links for validity,
accessibility, and recent nodification.

There is no "conditional HEAD' request anal ogous to the conditional
GET. If an If-Mdified-Since header field is included with a HEAD
request, it should be ignored.

8.3 POST
The POST nethod is used to request that the destination server accept
the entity enclosed in the request as a new subordi nate of the
resource identified by the Request-URl in the Request-Line. POST is
designed to allow a uniformnethod to cover the follow ng functions:

0 Annotation of existing resources;

0 Posting a nessage to a bulletin board, newsgroup, mailing list,
or simlar group of articles;

o Providing a block of data, such as the result of submtting a
form[3], to a data-handling process;

o0 Extendi ng a database through an append operati on.

Berners-Lee, et al I nf or mat i onal [Page 31]

RFC 1945 HTTP/ 1.0 May 1996

The actual function perforned by the POST nethod is determ ned by the
server and is usually dependent on the Request-URI. The posted entity
is subordinate to that URI in the sane way that a file is subordinate
to a directory containing it, a news article is subordinate to a
newsgroup to which it is posted, or a record is subordinate to a

dat abase.

A successful POST does not require that the entity be created as a
resource on the origin server or made accessible for future
reference. That is, the action perfornmed by the POST nmet hod mi ght not
result in a resource that can be identified by a URI. In this case,
either 200 (ok) or 204 (no content) is the appropriate response
status, dependi ng on whether or not the response includes an entity
that describes the result.

If a resource has been created on the origin server, the response
shoul d be 201 (created) and contain an entity (preferably of type
"text/htm ") which describes the status of the request and refers to
t he new resource.

A valid Content-Length is required on all HTTP/ 1.0 POST requests. An
HTTP/ 1.0 server should respond with a 400 (bad request) nessage if it
cannot deternine the |l ength of the request nmessage’s content.

Applications nust not cache responses to a POST request because the
application has no way of know ng that the server would return an
equi val ent response on some future request.

9. Status Code Definitions

Each Status-Code is described below including a description of which
nmet hod(s) it can follow and any netainformation required in the
response.

9.1 Infornmational 1xx

This class of status code indicates a provisional response,
consisting only of the Status-Line and optional headers, and is
ternminated by an enpty line. HTTP/ 1.0 does not define any 1xx status
codes and they are not a valid response to a HTTP/ 1. 0 request.
However, they may be useful for experinental applications which are
outside the scope of this specification

9.2 Successful 2xx

This class of status code indicates that the client’s request was
successfully received, understood, and accept ed.

Berners-Lee, et al I nf or mat i onal [Page 32]

RFC 1945 HTTP/ 1.0 May 1996

200 &

The request has succeeded. The information returned with the
response i s dependent on the nethod used in the request, as foll ows:

GET an entity corresponding to the requested resource is sent
in the response;

HEAD the response nmust only contain the header information and
no Entity- Body;

POST an entity describing or containing the result of the action.
201 Created

The request has been fulfilled and resulted in a new resource being
created. The newly created resource can be referenced by the URI(S)
returned in the entity of the response. The origin server should
create the resource before using this Status-Code. |If the action
cannot be carried out imediately, the server nust include in the
response body a description of when the resource will be avail abl e;
ot herwi se, the server should respond with 202 (accepted).

O the nethods defined by this specification, only POST can create a
resource.

202 Accepted

The request has been accepted for processing, but the processing
has not been conpl eted. The request nmay or may not eventually be
acted upon, as it nay be disallowed when processing actually takes
pl ace. There is no facility for re-sending a status code from an
asynchronous operation such as this.

The 202 response is intentionally non-committal. Its purpose is to
all ow a server to accept a request for sone other process (perhaps
a batch-oriented process that is only run once per day) wi thout
requiring that the user agent’s connection to the server persist
until the process is conpleted. The entity returned with this
response should include an indication of the request’s current
status and either a pointer to a status nonitor or sonme estinmate of
when the user can expect the request to be fulfilled.

204 No Content
The server has fulfilled the request but there is no new

information to send back. If the client is a user agent, it should
not change its docunment view fromthat which caused the request to

Berners-Lee, et al I nf or mat i onal [Page 33]

RFC 1945 HTTP/ 1.0 May 1996

be generated. This response is primarily intended to allow input
for scripts or other actions to take place w thout causing a change
to the user agent’s active docunent view. The response may i ncl ude
new netai nformation in the formof entity headers, which should
apply to the docunment currently in the user agent’s active view

9.3 Redirection 3xx

This class of status code indicates that further action needs to be
taken by the user agent in order to fulfill the request. The action
required may be carried out by the user agent wi thout interaction
with the user if and only if the nmethod used in the subsequent
request is GET or HEAD. A user agent should never automatically
redirect a request nore than 5 tinmes, since such redirections usually
indicate an infinite | oop.

300 Mul tiple Choices

This response code is not directly used by HITP/ 1.0 applications,
but serves as the default for interpreting the 3xx class of
responses.

The requested resource is available at one or nore |ocations.
Unless it was a HEAD request, the response should include an entity
containing a list of resource characteristics and |ocations from
whi ch the user or user agent can choose the one nost appropriate.

If the server has a preferred choice, it should include the URL in
a Location field; user agents may use this field value for
automatic redirection.

301 Moved Pernmanently

The requested resource has been assigned a new pernmanent URL and
any future references to this resource should be done using that
URL. Cients with link editing capabilities should autonatically
relink references to the Request-URlI to the new reference returned
by the server, where possible.

The new URL nust be given by the Location field in the response
Unless it was a HEAD request, the Entity-Body of the response
shoul d contain a short note with a hyperlink to the new URL.

If the 301 status code is received in response to a request using

t he POST nmethod, the user agent nust not automatically redirect the
request unless it can be confirnmed by the user, since this m ght
change the conditions under which the request was issued.

Berners-Lee, et al I nf or mat i onal [Page 34]

RFC 1945 HTTP/ 1.0 May 1996

Not e: When autonatically redirecting a POST request after
receiving a 301 status code, sone existing user agents will
erroneously change it into a GET request.

302 Moved Tenporarily

The requested resource resides tenmporarily under a different URL.
Since the redirection may be altered on occasion, the client should
continue to use the Request-URI for future requests.

The URL nust be given by the Location field in the response. Unless
it was a HEAD request, the Entity-Body of the response should
contain a short note with a hyperlink to the new URI(Ss).

If the 302 status code is received in response to a request using
the POST nethod, the user agent nust not automatically redirect the
request unless it can be confirnmed by the user, since this m ght
change the conditions under which the request was issued.

Not e: When autonatically redirecting a POST request after
receiving a 302 status code, sone existing user agents will
erroneously change it into a GET request.

304 Not Modified

If the client has perforned a conditional GET request and access is
al | owed, but the docunment has not been nodified since the date and
time specified in the If-Mdified-Since field, the server nust
respond with this status code and not send an Entity-Body to the
client. Header fields contained in the response should only include
i nformati on which is relevant to cache managers or which nmay have
changed i ndependently of the entity s Last-Modified date. Exanples
of relevant header fields include: Date, Server, and Expires. A
cache should update its cached entity to reflect any new field

val ues given in the 304 response.

9.4 dient Error 4xx

The 4xx class of status code is intended for cases in which the
client seens to have erred. If the client has not conpleted the
request when a 4xx code is received, it should i mediately cease
sending data to the server. Except when responding to a HEAD request,
the server should include an entity containing an expl anation of the
error situation, and whether it is a tenporary or permnmanent
condition. These status codes are applicable to any request nethod.

Berners-Lee, et al I nf or mat i onal [Page 35]

RFC 1945 HTTP/ 1.0 May 1996

Note: If the client is sending data, server inplenentations on TCP
shoul d be careful to ensure that the client acknow edges receipt

of the packet(s) containing the response prior to closing the

i nput connection. If the client continues sending data to the
server after the close, the server’s controller will send a reset
packet to the client, which may erase the client’s unacknow edged

i nput buffers before they can be read and interpreted by the HITP
appl i cati on.

400 Bad Request

The request could not be understood by the server due to mal formed
syntax. The client should not repeat the request without
nmodi fi cations.

401 Unaut hori zed

The request requires user authentication. The response nust include
a WAV Aut henticate header field (Section 10.16) containing a
chal l enge applicable to the requested resource. The client may
repeat the request with a suitable Authorization header field
(Section 10.2). If the request already included Authorization
credentials, then the 401 response indicates that authorization has
been refused for those credentials. If the 401 response contains
the sanme chal l enge as the prior response, and the user agent has

al ready attenpted authentication at |east once, then the user
shoul d be presented the entity that was given in the response,
since that entity nmay include relevant diagnostic information. HITP
access authentication is explained in Section 11.

403 For bi dden

The server understood the request, but is refusing to fulfill it.
Aut horization will not help and the request should not be repeat ed.
I f the request nethod was not HEAD and the server wi shes to nmake
public why the request has not been fulfilled, it should describe
the reason for the refusal in the entity body. This status code is
conmonly used when the server does not wish to reveal exactly why

t he request has been refused, or when no other response is
appl i cabl e.

404 Not Found

The server has not found anything matching the Request-URI. No
indication is given of whether the condition is tenporary or
permanent. |f the server does not wish to nake this infornmation
available to the client, the status code 403 (forbidden) can be
used i nstead.

Berners-Lee, et al I nf or mat i onal [Page 36]

RFC 1945 HTTP/ 1.0 May 1996

9.5 Server Error 5xx

10.

Response status codes beginning with the digit "5" indicate cases in
which the server is aware that it has erred or is incapable of
perform ng the request. If the client has not conpleted the request
when a 5xx code is received, it should i medi ately cease sendi ng data
to the server. Except when responding to a HEAD request, the server
shoul d include an entity containing an explanation of the error
situation, and whether it is a tenporary or permanent condition

These response codes are applicable to any request nethod and there
are no required header fields.

500 Internal Server Error

The server encountered an unexpected condition which prevented it
fromfulfilling the request.

501 Not | npl enent ed

The server does not support the functionality required to fulfill
the request. This is the appropriate response when the server does
not recogni ze the request nethod and is not capable of supporting
it for any resource.

502 Bad Gat eway

The server, while acting as a gateway or proxy, received an invalid
response fromthe upstream server it accessed in attenpting to
fulfill the request.

503 Service Unavail abl e

The server is currently unable to handle the request due to a
tenporary overl oadi ng or mai ntenance of the server. The inplication
is that this is a tenporary condition which will be alleviated
after sone del ay.

Not e: The existence of the 503 status code does not inply
that a server nust use it when beconi ng overl oaded. Sone
servers may wish to sinply refuse the connection

Header Field Definitions

This section defines the syntax and semantics of all commonly used
HTTP/ 1.0 header fields. For general and entity header fields, both
sender and recipient refer to either the client or the server,
dependi ng on who sends and who receives the nessage.

Berners-Lee, et al I nf or mat i onal [Page 37]

RFC 1945 HTTP/ 1.0 May 1996

10.

10.

1 Alow

The Al'low entity-header field lists the set of nethods supported by
the resource identified by the Request-URI. The purpose of this field
is strictly to informthe recipient of valid nethods associated with
the resource. The All ow header field is not permitted in a request
usi ng the POST net hod, and thus should be ignored if it is received
as part of a POST entity.

Al | ow = "Alow ":" 1#nethod
Exanpl e of use:
Al'l ow. GET, HEAD

This field cannot prevent a client fromtrying other methods.

However, the indications given by the Al ow header field val ue should
be foll owed. The actual set of allowed nethods is defined by the
origin server at the time of each request.

A proxy must not nodify the Al ow header field even if it does not
understand all the nmethods specified, since the user agent may have
ot her means of communicating with the origin server.

The Al'l ow header field does not indicate what nethods are inpl enmented
by the server.

2 Authorization

A user agent that wishes to authenticate itself with a server--

usual Iy, but not necessarily, after receiving a 401 response--my do
so by including an Authorization request-header field with the
request. The Authorization field value consists of credentials
containing the authentication informati on of the user agent for the
real mof the resource being request ed.

Aut horization = "Authorization" credential s

HTTP access authentication is described in Section 11. If a request
is authenticated and a real mspecified, the sane credentials should
be valid for all other requests within this realm

Responses to requests containing an Authorization field are not
cachabl e.

Berners-Lee, et al I nf or mat i onal [Page 38]

RFC 1945 HTTP/ 1.0 May 1996

10.

10.

3 Content - Encodi ng

The Content-Encoding entity-header field is used as a nodifier to the
nmedi a-type. \Wen present, its value indicates what additional content
codi ng has been applied to the resource, and thus what decodi ng
mechani sm nust be applied in order to obtain the nedia-type
referenced by the Content-Type header field. The Content-Encoding is
primarily used to allow a docunent to be conpressed without |osing
the identity of its underlying nmedia type.

Cont ent - Encodi ng = "Cont ent - Encodi ng" ":" content-codi ng
Content codings are defined in Section 3.5. An exanple of its use is
Cont ent - Encodi ng: x-gzip

The Content-Encoding is a characteristic of the resource identified
by the Request-URI. Typically, the resource is stored with this
encoding and is only decoded before rendering or anal ogous usage.

4 Content-Length

The Content-Length entity-header field indicates the size of the
Entity-Body, in deciml nunber of octets, sent to the recipient or,
in the case of the HEAD net hod, the size of the Entity-Body that
woul d have been sent had the request been a CET.

Content-Length = "Content-Length" ":" 1*DIAT
An exanple is
Cont ent - Lengt h: 3495

Applications should use this field to indicate the size of the
Entity-Body to be transferred, regardless of the nedia type of the
entity. Avalid Content-Length field value is required on al
HTTP/ 1. 0 request nessages containing an entity body.

Any Content-Length greater than or equal to zero is a valid val ue.
Section 7.2.2 describes how to determine the |ength of a response
entity body if a Content-Length is not given.

Note: The meaning of this field is significantly different from
the corresponding definition in MME, where it is an optiona
field used within the "nessage/ external - body" content-type. In
HTTP, it shoul d be used whenever the entity’'s |length can be
determ ned prior to being transferred.

Berners-Lee, et al I nf or mat i onal [Page 39]

RFC 1945 HTTP/ 1.0 May 1996

10.

10.

5 Content-Type

The Content-Type entity-header field indicates the nedia type of the
Entity-Body sent to the recipient or, in the case of the HEAD net hod,
the nmedia type that woul d have been sent had the request been a GET.

Cont ent - Type = "Cont ent - Type" medi a-type

Media types are defined in Section 3.6. An exanple of the field is
Cont ent - Type: text/htn

Further discussion of nethods for identifying the nedia type of an
entity is provided in Section 7.2.1.

6 Date

The Date general -header field represents the date and tine at which
the message was origi nated, having the sane semantics as orig-date in
RFC 822. The field value is an HTTP-date, as described in Section
3.3.

Dat e = "Date" ":" HITP-date
An exanple is
Date: Tue, 15 Nov 1994 08:12: 31 GMI

If a message is received via direct connection with the user agent
(in the case of requests) or the origin server (in the case of
responses), then the date can be assuned to be the current date at
the receiving end. However, since the date--as it is believed by the
origin--is inportant for eval uating cached responses, origin servers
shoul d al ways include a Date header. Cients should only send a Date
header field in nessages that include an entity body, as in the case
of the POST request, and even then it is optional. A received nessage
whi ch does not have a Date header field should be assigned one by the
recipient if the nmessage will be cached by that recipient or
gatewayed via a protocol which requires a Date.

In theory, the date should represent the nonent just before the
entity is generated. In practice, the date can be generated at any
time during the nessage origination without affecting its semantic
val ue.

Note: An earlier version of this docunment incorrectly specified
that this field should contain the creation date of the encl osed
Entity-Body. This has been changed to reflect actual (and proper)

Berners-Lee, et al I nf or mat i onal [Page 40]

RFC 1945 HTTP/ 1.0 May 1996

usage.
10.7 Expires

The Expires entity-header field gives the date/tine after which the
entity should be considered stale. This allows information providers
to suggest the volatility of the resource, or a date after which the
informati on may no | onger be valid. Applications nust not cache this
entity beyond the date given. The presence of an Expires field does

not inply that the original resource will change or cease to exi st
at, before, or after that tinme. However, information providers that
know or even suspect that a resource will change by a certain date

shoul d include an Expires header with that date. The format is an
absolute date and tine as defined by HITP-date in Section 3.3.

Expires = "Expires" ":" HITP-date
An exanple of its use is
Expires: Thu, 01 Dec 1994 16: 00: 00 GMVIr

If the date given is equal to or earlier than the value of the Date
header, the recipient nmust not cache the enclosed entity. If a
resource is dynamic by nature, as is the case with nmany data-
produci ng processes, entities fromthat resource should be given an
appropriate Expires value which reflects that dynani sm

The Expires field cannot be used to force a user agent to refresh its
display or reload a resource; its semantics apply only to caching
nmechani sns, and such nechani sns need only check a resource’s
expiration status when a new request for that resource is initiated.

User agents often have history nmechani sms, such as "Back" buttons and
history lists, which can be used to redisplay an entity retrieved
earlier in a session. By default, the Expires field does not apply to
hi story nechanisns. |If the entity is still in storage, a history
mechani sm shoul d display it even if the entity has expired, unless
the user has specifically configured the agent to refresh expired

hi story docunents.

Note: Applications are encouraged to be tol erant of bad or

nm sinfornmed i npl enentati ons of the Expires header. A value of zero
(0) or an invalid date format should be consi dered equivalent to
an "expires imediately." Al though these values are not legitimte
for HTTP/ 1.0, a robust inplenentation is always desirable.

Ber ners-Lee, et al | nf or mat i onal [Page 41]

RFC 1945 HTTP/ 1.0 May 1996

10.8 From

10.

The Fromrequest-header field, if given, should contain an |nternet
e-mai |l address for the human user who controls the requesting user
agent. The address shoul d be machi ne-usabl e, as defined by mailbox in
RFC 822 [7] (as updated by RFC 1123 [6]):

From = "Front ":" mmil box
An exanpl e is:
From webnaster @\V3. org

This header field may be used for |ogging purposes and as a neans for
identifying the source of invalid or unwanted requests. It should not
be used as an insecure formof access protection. The interpretation
of this field is that the request is being performed on behal f of the
person given, who accepts responsibility for the nmethod performed. In
particul ar, robot agents should include this header so that the
person responsi ble for running the robot can be contacted if problens
occur on the receiving end.

The Internet e-mail address in this field may be separate fromthe
I nternet host which issued the request. For exanple, when a request
is passed through a proxy, the original issuer’s address should be
used.

Note: The client should not send the From header field wi thout the
user’'s approval, as it may conflict with the user’s privacy
interests or their site’'s security policy. It is strongly
recommended that the user be able to disable, enable, and nodify
the value of this field at any tinme prior to a request.

9 |If-Modified-Since
The | f-Mdified-Since request-header field is used with the GET
method to nake it conditional: if the requested resource has not been
nodi fied since the tine specified in this field, a copy of the
resource will not be returned fromthe server; instead, a 304 (not
nodi fi ed) response will be returned without any Entity- Body.

| f-Mdified-Since = "If-Mdified-Since" ":" HITP-date
An exanple of the field is:

| f-Modified-Since: Sat, 29 Oct 1994 19:43:31 GVI

Ber ners-Lee, et al | nf or mat i onal [Page 42]

RFC 1945 HTTP/ 1.0 May 1996

10.

A conditional GET nethod requests that the identified resource be
transferred only if it has been nodified since the date given by the
| f-Modi fied-Since header. The algorithmfor determning this includes
the foll ow ng cases:

a) If the request would nornally result in anything other than
a 200 (ok) status, or if the passed If-Mdified-Since date
is invalid, the response is exactly the sane as for a
normal CET. A date which is later than the server’s current
time is invalid.

b) If the resource has been nodified since the
| f-Modified-Since date, the response is exactly the sanme as
for a normal GET

c) If the resource has not been nodified since a valid
| f-Modified-Since date, the server shall return a 304 (not
nodi fi ed) response.

The purpose of this feature is to allow efficient updates of cached
information with a m ni nrum anount of transacti on overhead.

10 Last-Modified

The Last-Mdified entity-header field indicates the date and tine at
whi ch the sender believes the resource was |ast nodified. The exact
semantics of this field are defined in terns of how the recipient
should interpret it: if the recipient has a copy of this resource
which is older than the date given by the Last-Mdified field, that
copy shoul d be considered stale.

Last-Modified = "Last-Mdified" ":" HITP-date
An exanple of its use is
Last-Mdified: Tue, 15 Nov 1994 12:45:26 GMI

The exact neaning of this header field depends on the inplenentation
of the sender and the nature of the original resource. For files, it
may be just the file systemlast-nodified tine. For entities with
dynamically included parts, it nmay be the nost recent of the set of
last-nmodify tines for its conmponent parts. For database gateways, it
may be the last-update tinestanp of the record. For virtual objects,
it my be the last tinme the internal state changed.

An origin server nmust not send a Last-Mdified date which is later
than the server’s tine of nessage origination. In such cases, where
the resource’s last nodification would indicate sone tinme in the

Berners-Lee, et al I nf or mat i onal [Page 43]

RFC 1945 HTTP/ 1.0 May 1996

10.

10.

10.

future, the server nust replace that date with the nessage
origination date.

11 Location
The Location response-header field defines the exact |ocation of the
resource that was identified by the Request-URI. For 3xXx responses,
the location nust indicate the server’'s preferred URL for autonatic
redirection to the resource. Only one absolute URL is all owed.
Locati on = "Location" ":" absol uteUR
An exanple is
Location: http://ww. w3. org/ hypertext/WW NewLocati on. htm
12 Pragm
The Pragma general -header field is used to include inplenentation-
specific directives that may apply to any recipient along the
request/response chain. Al pragma directives specify optional

behavi or fromthe viewpoint of the protocol; however, sonme systens
may require that behavior be consistent with the directives.

Pragma = "Pragma" ":" 1#pragnma-directive
pragna-di rective = "no-cache" | extension-pragnha
extensi on-pragna = token ["=" word]

When t he "no-cache" directive is present in a request nessage, an
application should forward the request toward the origin server even
if it has a cached copy of what is being requested. This allows a
client to insist upon receiving an authoritative response to its
request. It also allows a client to refresh a cached copy which is
known to be corrupted or stale.

Pragnma directives nust be passed through by a proxy or gateway
application, regardless of their significance to that application
since the directives nmay be applicable to all recipients along the
request/response chain. It is not possible to specify a pragnma for a
specific recipient; however, any pragna directive not relevant to a
reci pient should be ignored by that recipient.

13 Referer
The Referer request-header field allows the client to specify, for

the server’s benefit, the address (URI) of the resource from which
t he Request-URI was obtained. This allows a server to generate lists

Berners-Lee, et al I nf or mat i onal [Page 44]

RFC 1945 HTTP/ 1.0 May 1996

10.

of back-links to resources for interest, |ogging, optimzed caching,
etc. It also allows obsolete or mistyped links to be traced for

mai nt enance. The Referer field nust not be sent if the Request-UR
was obtained froma source that does not have its owm URI, such as

i nput fromthe user keyboard.

Ref er er = "Referer"” ":" (absoluteURl | relativeURl)
Exanpl e:
Referer: http://ww. w3. or g/ hypert ext/ Dat aSour ces/ Overvi ew. ht m

If a partial URI is given, it should be interpreted relative to the
Request-URI. The URI nust not include a fragnment.

Not e: Because the source of a link may be private information or
may reveal an otherw se private information source, it is strongly
recommended that the user be able to select whether or not the
Referer field is sent. For exanple, a browser client could have a
toggle switch for browsing openly/anonynously, which would
respectively enabl e/ di sabl e the sending of Referer and From

i nformati on.

14 Server

The Server response-header field contains information about the
software used by the origin server to handle the request. The field
can contain nultiple product tokens (Section 3.7) and conments
identifying the server and any significant subproducts. By
convention, the product tokens are listed in order of their
significance for identifying the application.

Server = "Server" ":" 1*(product | conment)
Exanpl e:
Server: CERN 3.0 Iibww 2.17

If the response is being forwarded through a proxy, the proxy
application nust not add its data to the product list.

Not e: Revealing the specific software version of the server nmay
all ow the server machine to beconme nore vulnerable to attacks
agai nst software that is known to contain security holes. Server
i mpl ementors are encouraged to make this field a configurable
opti on.

Berners-Lee, et al I nf or mat i onal [Page 45]

RFC 1945 HTTP/ 1.0 May 1996

10.

10.

Not e: Some existing servers fail to restrict thenmselves to the
product token syntax within the Server field.

15 User - Agent

The User- Agent request-header field contains infornmation about the
user agent originating the request. This is for statistical purposes,
the tracing of protocol violations, and automated recognition of user
agents for the sake of tailoring responses to avoid particul ar user
agent limtations. Although it is not required, user agents should
include this field with requests. The field can contain nmultiple
product tokens (Section 3.7) and coments identifying the agent and
any subproducts which forma significant part of the user agent. By
convention, the product tokens are listed in order of their
significance for identifying the application.

User - Agent = "User-Agent" ":" 1*(product | conmment)
Exanpl e:
User - Agent : CERN-Li neMode/ 2. 15 |i bww 2. 17b3

Not e: Sone current proxy applications append their product
information to the list in the User-Agent field. This is not
reconmended, since it makes machine interpretation of these
fi el ds anbi guous.

Note: Sone existing clients fail to restrict themselves to
the product token syntax within the User-Agent field.

16 WAV Aut henti cat e

The WAV Aut henti cate response-header field nust be included in 401
(unaut hori zed) response nessages. The field value consists of at

| east one challenge that indicates the authentication schenme(s) and
paraneters applicable to the Request-UR

WAV Aut henti cate = "WWM Aut henti cate" ":" 1#chal |l enge

The HTTP access authentication process is described in Section 11.
User agents nust take special care in parsing the WWV Aut henticate
field value if it contains nore than one challenge, or if nore than
one WAV Aut henticate header field is provided, since the contents of
a challenge nmay itself contain a comma-separated |ist of

aut henti cati on paraneters.

Berners-Lee, et al I nf or mat i onal [Page 46]

RFC 1945 HTTP/ 1.0 May 1996

11. Access Aut hentication

HTTP provides a sinple chall enge-response aut henticati on mechani sm
whi ch may be used by a server to challenge a client request and by a
client to provide authentication information. It uses an extensible,
case-insensitive token to identify the authentication scheneg,

foll owed by a comma-separated |ist of attribute-value pairs which
carry the paraneters necessary for achieving authentication via that

schene.
aut h- schene = token
aut h- par am = token "=" quoted-string

The 401 (unauthorized) response nessage is used by an origin server
to chall enge the authorization of a user agent. This response nust
i nclude a WAWM Aut henti cate header field containing at |east one
chal | enge applicable to the requested resource.

chal | enge aut h-scheme 1*SP realm *("," auth-param)

"realn "=" real mval ue
quot ed-stri ng

realm
real mval ue

The realmattribute (case-insensitive) is required for al

aut henti cati on schenes which issue a challenge. The real mval ue
(case-sensitive), in conbination with the canonical root URL of the
server being accessed, defines the protection space. These real ns
allow the protected resources on a server to be partitioned into a
set of protection spaces, each with its own authentication schene
and/ or authorization database. The realmvalue is a string, generally
assigned by the origin server, which may have additional semantics
specific to the authentication schene.

A user agent that wishes to authenticate itself with a server--
usual |l y, but not necessarily, after receiving a 401 response--may do
so by including an Authorization header field with the request. The
Aut horization field value consists of credentials containing the

aut hentication informati on of the user agent for the real mof the
resource being request ed.

credential s = basi c-credential s
| (auth-schenme #auth-param)

The dormai n over which credentials can be automatically applied by a
user agent is deternmined by the protection space. If a prior request
has been authorized, the sane credentials nay be reused for all other
requests within that protection space for a period of time determn ned

Berners-Lee, et al I nf or mat i onal [Page 47]

RFC 1945 HTTP/ 1.0 May 1996

11.

by the authentication schenme, paraneters, and/or user preference.
Unl ess ot herwi se defined by the authentication schene, a single
protection space cannot extend outside the scope of its server

If the server does not wish to accept the credentials sent with a
request, it should return a 403 (forbidden) response.

The HTTP protocol does not restrict applications to this sinple

chal | enge-response mechani sm for access authentication. Additional
nmechani sns may be used, such as encryption at the transport |evel or
vi a message encapsul ation, and with additional header fields

speci fying authentication infornmation. However, these additional
nmechani sns are not defined by this specification.

Proxi es nust be conpletely transparent regardi ng user agent
authentication. That is, they nmust forward the WWV Aut henticate and
Aut hori zati on headers untouched, and nust not cache the response to a
request containing Aut horization. HTTP/ 1.0 does not provide a nmeans
for a client to be authenticated with a proxy.

1 Basic Authentication Schene

The "basic" authentication schenme is based on the nodel that the user
agent nust authenticate itself with a user-1D and a password for each
real m The real mval ue should be considered an opaque string which
can only be conpared for equality with other realnms on that server
The server will authorize the request only if it can validate the
user-1D and password for the protection space of the Request-UR
There are no optional authentication paraneters.

Upon recei pt of an unauthorized request for a URI within the
protection space, the server should respond with a challenge |like the
fol |l ow ng:

WANM Aut hent i cate: Basic real m="Val | yWor| d"

where "Vl lywrld" is the string assigned by the server to identify
the protection space of the Request-URI.

To receive authorization, the client sends the user-1D and password,
separated by a single colon (":") character, within a base64 [5]
encoded string in the credentials.

basi c-credentials = "Basic" SP basic-cookie

<base64 [5] encodi ng of userid-password,
except not limted to 76 char/line>

basi c- cooki e

Berners-Lee, et al I nf or mat i onal [Page 48]

RFC 1945 HTTP/ 1.0 May 1996

12.

12.

12.

userid- password = [token] ":" *TEXT

| f the user agent wi shes to send the user-1D "Al addi n* and password
"open sesane”, it would use the follow ng header field:

Aut hori zation: Basic QAhZGRpbj pvcGVul HNI c2Ft ZQ==

The basic authentication scheme is a non-secure nethod of filtering
unaut hori zed access to resources on an HTTP server. It is based on
the assunption that the connection between the client and the server
can be regarded as a trusted carrier. As this is not generally true
on an open network, the basic authentication scheme should be used
accordingly. In spite of this, clients should inplenment the schenme in
order to communicate with servers that use it.

Security Considerations

This section is neant to informapplication devel opers, information
providers, and users of the security limtations in HITP/1.0 as
described by this docunent. The discussion does not include
definitive solutions to the problens reveal ed, though it does nake
sone suggestions for reducing security risks.

1 Authentication of Cients

As nmentioned in Section 11.1, the Basic authentication schene is not
a secure nethod of user authentication, nor does it prevent the
Entity-Body frombeing transmitted in clear text across the physical
network used as the carrier. HITP/ 1.0 does not prevent additional

aut henti cati on schenes and encryption mechani snms from bei ng enpl oyed
to increase security.

2 Safe Methods

The witers of client software should be aware that the software
represents the user in their interactions over the Internet, and
shoul d be careful to allow the user to be aware of any actions they
may take which may have an unexpected significance to thensel ves or
ot hers.

In particular, the convention has been established that the CGET and
HEAD net hods shoul d never have the significance of taking an action
other than retrieval. These nethods shoul d be considered "safe.” This
al l ows user agents to represent other methods, such as POST, in a
speci al way, so that the user is nade aware of the fact that a

possi bly unsafe action is being requested.

Berners-Lee, et al I nf or mat i onal [Page 49]

RFC 1945 HTTP/ 1.0 May 1996

12.

12.

Naturally, it is not possible to ensure that the server does not
generate side-effects as a result of performng a GET request; in
fact, some dynam c resources consider that a feature. The inportant
distinction here is that the user did not request the side-effects,
so therefore cannot be held accountable for them

3 Abuse of Server Log Information

A server is in the position to save personal data about a user’s
requests which may identify their reading patterns or subjects of
interest. This information is clearly confidential in nature and its
handl i ng may be constrained by law in certain countries. People using
the HTTP protocol to provide data are responsible for ensuring that
such material is not distributed without the pernission of any

i ndividuals that are identifiable by the published results.

4 Transfer of Sensitive Infornmation

Li ke any generic data transfer protocol, HITP cannot regul ate the
content of the data that is transferred, nor is there any a priori

nmet hod of determning the sensitivity of any particular piece of
information within the context of any given request. Therefore,
applications should supply as rmuch control over this information as
possible to the provider of that information. Three header fields are
worth special nmention in this context: Server, Referer and From

Reveal ing the specific software version of the server may allow the
server machine to becone nore vul nerable to attacks agai nst software
that is known to contain security holes. |Inplenmentors should rmake the
Server header field a configurable option

The Referer field allows reading patterns to be studied and reverse
links drawn. Although it can be very useful, its power can be abused
if user details are not separated fromthe information contained in
the Referer. Even when the personal information has been renoved, the
Referer field may indicate a private docunment’s URI whose publication
woul d be inappropri ate.

The information sent in the Fromfield nmight conflict with the user’s
privacy interests or their site’s security policy, and hence it
shoul d not be transmitted without the user being able to disable,
enabl e, and nodify the contents of the field. The user nust be able
to set the contents of this field within a user preference or
application defaults configuration.

We suggest, though do not require, that a convenient toggle interface
be provided for the user to enable or disable the sending of From and
Ref erer information.

Berners-Lee, et al I nf or mat i onal [Page 50]

RFC 1945 HTTP/ 1.0 May 1996

12.

13.

5 Attacks Based On File and Path Nanes

| npl ementations of HITP origin servers should be careful to restrict
the docunents returned by HITP requests to be only those that were

i ntended by the server administrators. |If an HTTP server translates
HTTP URIs directly into file systemcalls, the server nust take
special care not to serve files that were not intended to be
delivered to HTTP clients. For exanple, Unix, Mcrosoft Wndows, and
ot her operating systens use ".." as a path conponent to indicate a
directory | evel above the current one. On such a system an HITP
server nust disallow any such construct in the Request-URl if it
woul d ot herw se all ow access to a resource outside those intended to
be accessible via the HTTP server. Simlarly, files intended for
reference only internally to the server (such as access contro
files, configuration files, and script code) nust be protected from
i nappropriate retrieval, since they mght contain sensitive

i nformati on. Experience has shown that minor bugs in such HITP server
i npl enentati ons have turned into security risks.

Acknow edgnent s

This specification mkes heavy use of the augnented BNF and generic
constructs defined by David H Crocker for RFC 822 [7]. Simlarly, it
reuses many of the definitions provided by Nathani el Borenstein and
Ned Freed for MME [5]. W hope that their inclusion in this
specification will help reduce past confusion over the relationship
between HTTP/ 1.0 and Internet mail mnessage formats.

The HTTP protocol has evol ved consi derably over the past four years.
It has benefited froma |arge and active devel oper conmunity--the
many peopl e who have participated on the wwtalk mailing list--and
it is that comunity which has been nost responsible for the success
of HTTP and of the World-Wde Wb in general. Marc Andreessen, Robert
Cailliau, Daniel W Connolly, Bob Denny, Jean-Francois Goff, Phillip
M Hal | am Baker, Hakon W Lie, Ari Luotonen, Rob MCool, Lou
Montul | i, Dave Raggett, Tony Sanders, and Marc VanHeyni ngen deserve
speci al recognition for their efforts in defining aspects of the
protocol for early versions of this specification

Paul Hoffman contributed sections regarding the infornational status
of this docunent and Appendi ces C and D

Berners-Lee, et al I nf or mat i onal [Page 51]

RFC 1945

HTTP/ 1.0

May 1996

Thi s docunent has benefited greatly fromthe coments of all those

participating in the HITP- WG

In addition to those al ready nenti oned,

the follow ng individuals have contributed to this specification:

Gary Adans

Keith Ball

Paul Burchard

M ke Cow i shaw
M chael A. Dol an
Jim CGettys

Koen Hol t man

Bob Jerni gan
Martijn Koster
Dani el LalLi berte
Al bert Lunde
Larry Masinter
Jeffrey Mogul
Bill Perry

Onen Rees

Davi d Robi nson
Rich Sal z

Chuck Shotton
Sinon E. Spero
Francoi s Yergeau

Jean- Phili ppe Martin-Flatin

14. Ref erences

[1] Anklesaria, F.,

McCahi l |,
Torrey, D., and B. Al berti,

Haral d Tveit Al vestrand
Bri an Behl endor f
Mauri zi o Codogno
Roman Czyborra
John Franks

Mar ¢ Hedl und

Al ex Hoprmann
Shel Kaphan

Dave Kri st ol

Paul Leach

John C. Mallery
Mtra

Gavin Nicol
Jeffrey Perry
Luigi Rizzo

Mar c Sal onon

Ji m Sei dman

Eric W Sink
Robert S. Thau
Mary Ellen Zurko

Li ndner, P., Johnson, D.,
"The Internet Gopher Protocol: A

Di stri buted Docunent Search and Retrieval Protocol", RFC 1436,

[2]

[3]

[4]

Ber ners-Lee, et al

Uni versity of M nnesota, March 1993.

Berners-Lee, T., "Universal Resource ldentifiers in WWW A
Uni fying Syntax for the Expression of Nanes and Addresses of
hj ects on the Network as used in the Wrl d-Wde Wb",

RFC 1630, CERN, June 1994.

Berners-Lee, T., and D. Connolly, "Hypertext Markup Language -
2.0", RFC 1866, M T/WBC, Novenber 1995.

Berners-Lee, T., Musinter, L., and M MCahill, "Uniform

Resource Locators (URL)", RFC 1738, CERN, Xerox PARC,
University of M nnesota, Decenber 1994.

| nf or mat i onal [Page 52]

RFC 1945 HTTP/ 1.0 May 1996

[5] Borenstein, N, and N. Freed, "M ME (Mil tipurpose Internet Mai
Ext ensi ons) Part One: Mechani sns for Specifying and Descri bing
the Format of |Internet Message Bodi es", RFC 1521, Bellcore,

I nnosoft, Septenber 1993.

[6] Braden, R, "Requirenents for Internet hosts - Application and
Support", STD 3, RFC 1123, |ETF, Cctober 1989.

[7] Crocker, D., "Standard for the Format of ARPA Internet Text
Messages", STD 11, RFC 822, UDEL, August 1982.

[8] F. Davis, B. Kahle, H Morris, J. Salem T. Shen, R Wang,
J. Sui, and M Ginbaum "WAIS Interface Protocol Prototype
Functional Specification.” (v1.5), Thinking Machines
Corporation, April 1990.

[9] Fielding, R, "Relative Uniform Resource Locators", RFC 1808,
UC Irvine, June 1995.

[10] Horton, M, and R Adans, "Standard for interchange of USENET
Messages", RFC 1036 (Obsol etes RFC 850), AT&T Bel |
Laboratories, Center for Seismic Studies, Decenber 1987.

[11] Kantor, B., and P. Lapsley, "Network News Transfer Protocol:
A Proposed Standard for the Stream Based Transm ssion of News",
RFC 977, UC San Di ego, UC Berkel ey, February 1986.

[12] Postel, J., "Sinple Mail Transfer Protocol." STD 10, RFC 821
USC/ I SI, August 1982.

[13] Postel, J., "Media Type Registration Procedure." RFC 1590,
Usc/ I SI, March 1994.

[14] Postel, J., and J. Reynolds, "File Transfer Protocol (FTP)"
STD 9, RFC 959, USC/ISI, Cctober 1985.

[15] Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC
1700, UsSC/ I SI, October 1994.

[16] Sollins, K, and L. Msinter, "Functional Requirenments for
Uni f orm Resource Nanes", RFC 1737, M T/LCS, Xerox Corporation,
Decenber 1994.

[17] US-ASCII. Coded Character Set - 7-Bit American Standard Code

for Information Interchange. Standard ANSI X3.4-1986, ANS|
1986.

Berners-Lee, et al I nf or mat i onal [Page 53]

RFC 1945 HTTP/ 1.0 May 1996

[18] 1SO 8859. International Standard -- Information Processing --
8-bit Single-Byte Coded Graphic Character Sets --

Part 1: Latin al phabet No. 1, |SO 8859-1:1987.

Part 2: Latin al phabet No. 2, |SO 8859-2, 1987.
Part 3: Latin al phabet No. 3, |SO 8859-3, 1988.
Part 4: Latin al phabet No. 4, |SO 8859-4, 1988.
Part 5: Latin/Cyrillic al phabet, |1SO 8859-5, 1988.
Part 6: Latin/Arabic al phabet, |SO 8859-6, 1987.
Part 7: Latin/ G eek al phabet, |SO 8859-7, 1987.
Part 8: Latin/Hebrew al phabet, |SO 8859-8, 1988.
Part 9: Latin al phabet No. 5, |SO 8859-9, 1990.

15. Authors’ Addresses

Ti m Ber ners-Lee

Director, WB Consortium

M T Laboratory for Conputer Science
545 Technol ogy Square

Canbridge, MA 02139, U. S A

Fax: +1 (617) 258 8682
EMai | : tinbl @8.org

Roy T. Fielding

Departnent of Information and Conputer Science
University of California

Irvine, CA 92717-3425, U.S. A

Fax: +1 (714) 824-4056
EMai |l : fielding@cs.uci.edu

Henri k Frystyk Niel sen

WB Consortium

M T Laboratory for Conputer Science
545 Technol ogy Square

Canbridge, MA 02139, U. S A

Fax: +1 (617) 258 8682
EMai | : frystyk@s. org

Berners-Lee, et al I nf or mat i onal [Page 54]

RFC 1945 HTTP/ 1.0 May 1996

Appendi ces

These appendi ces are provided for informational reasons only -- they
do not forma part of the HITP/ 1.0 specification

A. Internet Media Type nessage/ http
In addition to defining the HITP/ 1.0 protocol, this docunent serves

as the specification for the Internet nmedia type "nessage/http". The
followng is to be registered with [ANA [13].

Medi a Type nane: nessage

Medi a subtype nane: http

Requi red paraneters: none

Opti onal paraneters: ver si on, nsgtype

version: The HITP-Version nunber of the encl osed nessage
(e.g., "1.0"). If not present, the version can be
determined fromthe first line of the body.

negtype: The nessage type -- "request" or "response". |f
not present, the type can be deternined fromthe
first line of the body.

Encodi ng considerations: only "7bit", "8bit", or "binary" are
permtted

Security considerations: none
B. Tol erant Applications

Al t hough this docunent specifies the requirenents for the generation
of HTTP/ 1.0 nessages, not all applications will be correct in their

i npl erentation. W therefore recomend that operational applications
be tol erant of deviations whenever those deviations can be

i nterpreted unambi guously.

Clients should be tolerant in parsing the Status-Line and servers
tol erant when parsing the Request-Line. In particular, they should
accept any anount of SP or HT characters between fields, even though
only a single SP is required.

The line termnator for HITP-header fields is the sequence CRLF.

However, we recomend that applications, when parsing such headers,
recogni ze a single LF as a line term nator and ignore the | eading CR

Berners-Lee, et al I nf or mat i onal [Page 55]

RFC 1945 HTTP/ 1.0 May 1996

C

Rel ati onship to M Me

HTTP/ 1.0 uses many of the constructs defined for Internet Mail (RFC
822 [7]) and the Miltipurpose Internet Mail Extensions (MME [5]) to
allow entities to be transmitted in an open variety of
representations and with extensible nmechanisns. However, RFC 1521

di scusses mail, and HTTP has a few features that are different than
t hose described in RFC 1521. These differences were carefully chosen
to optinize performance over binary connections, to allow greater
freedomin the use of new nedia types, to nmake date conparisons
easier, and to acknow edge the practice of sonme early HITP servers
and clients.

At the tine of this witing, it is expected that RFC 1521 will be
revised. The revisions may include sone of the practices found in
HTTP/ 1.0 but not in RFC 1521.

Thi s appendi x descri bes specific areas where HITP differs from RFC
1521. Proxies and gateways to strict M M environnents shoul d be
aware of these differences and provide the appropriate conversions
where necessary. Proxies and gateways from M ME environnents to HITP
al so need to be aware of the differences because some conversions may
be required.

C.1 Conversion to Canonical Form

RFC 1521 requires that an Internet mail entity be converted to
canonical formprior to being transferred, as described in Appendix G
of RFC 1521 [5]. Section 3.6.1 of this docunment describes the forns
all oned for subtypes of the "text" nedia type when transmtted over
HTTP.

RFC 1521 requires that content with a Content-Type of "text"
represent line breaks as CRLF and forbids the use of CR or LF outside
of line break sequences. HITP allows CRLF, bare CR, and bare LF to
indicate a line break within text content when a nmessage is
transmtted over HITP

Where it is possible, a proxy or gateway from HTTP to a strict RFC
1521 environment should translate all |line breaks within the text
nmedi a types described in Section 3.6.1 of this docunent to the RFC
1521 canonical formof CRLF. Note, however, that this may be
conplicated by the presence of a Content-Encoding and by the fact
that HTTP all ows the use of sone character sets which do not use
octets 13 and 10 to represent CR and LF, as is the case for sone
mul ti-byte character sets.

Berners-Lee, et al I nf or mat i onal [Page 56]

RFC 1945 HTTP/ 1.0 May 1996

C.2 Conversion of Date Formats

HTTP/ 1.0 uses a restricted set of date formats (Section 3.3) to
sinplify the process of date conparison. Proxies and gateways from

ot her protocols should ensure that any Date header field present in a
nmessage conforns to one of the HITP/1.0 formats and rewite the date
i f necessary.

C.3 Introduction of Content-Encoding

RFC 1521 does not include any concept equivalent to HTTP/ 1.0’ s

Cont ent - Encodi ng header field. Since this acts as a nodifier on the
medi a type, proxies and gateways from HTTP to M ME-conpl i ant
protocols nust either change the value of the Content-Type header
field or decode the Entity-Body before forwardi ng the nessage. (Sone
experimental applications of Content-Type for Internet nmail have used
a nmedi a-type parameter of ";conversions=<content-codi ng>" to perform
an equi val ent function as Content-Encodi ng. However, this paraneter
is not part of RFC 1521.)

C.4 No Content-Transfer-Encoding

HTTP does not use the Content-Transfer-Encoding (CTE) field of RFC
1521. Proxies and gateways from M Me-conpliant protocols to HTTP nust
renove any non-identity CTE ("quoted-printable" or "base64") encoding
prior to delivering the response nessage to an HTTP client.

Proxi es and gateways from HTTP to M Me-conpliant protocols are
responsi ble for ensuring that the nessage is in the correct format
and encodi ng for safe transport on that protocol, where "safe
transport" is defined by the linmitations of the protocol being used.
Such a proxy or gateway should | abel the data with an appropriate
Content - Transfer-Encoding if doing so will inprove the Iikelihood of
safe transport over the destination protocol

C.5 HITP Header Fields in Miultipart Body-Parts

In RFC 1521, nost header fields in nmultipart body-parts are generally
ignored unless the field nanme begins with "Content-". In HITP/ 1.0,

mul tipart body-parts may contain any HTTP header fields which are
significant to the nmeaning of that part.

D. Additional Features
Thi s appendi x docunents protocol elenents used by sonme existing HITP
i npl erent ati ons, but not consistently and correctly across nost

HTTP/ 1.0 applications. Inplenmentors should be aware of these
features, but cannot rely upon their presence in, or interoperability

Berners-Lee, et al I nf or mat i onal [Page 57]

RFC 1945 HTTP/ 1.0 May 1996

with, other HTTP/ 1.0 applications.
D.1 Additional Request Methods
D.1.1 PUT

The PUT nethod requests that the enclosed entity be stored under the
supplied Request-URI. If the Request-URI refers to an al ready

exi sting resource, the enclosed entity should be considered as a
nodi fi ed version of the one residing on the origin server. |If the
Request - URI does not point to an existing resource, and that URI is
capabl e of being defined as a new resource by the requesting user
agent, the origin server can create the resource with that URI

The fundanental difference between the POST and PUT requests is
reflected in the different nmeaning of the Request-URI. The URI in a
POST request identifies the resource that will handl e the encl osed
entity as data to be processed. That resource nay be a data-accepting
process, a gateway to some other protocol, or a separate entity that
accepts annotations. In contrast, the URI in a PUT request identifies

the entity enclosed with the request -- the user agent knows what UR
is intended and the server should not apply the request to sone other
resource.

D. 1.2 DELETE

The DELETE net hod requests that the origin server delete the resource
identified by the Request-URI.

D.1.3 LINK
The LI NK net hod establishes one or nore Link rel ati onshi ps between
the existing resource identified by the Request-URl and ot her
exi sting resources.

D. 1.4 UNLINK

The UNLI NK net hod renpves one or nore Link rel ationships fromthe
exi sting resource identified by the Request-URI.

D.2 Additional Header Field Definitions

D. 2.1 Accept
The Accept request-header field can be used to indicate a |ist of
medi a ranges whi ch are acceptable as a response to the request. The

asterisk "*" character is used to group nedia types into ranges, wth
"*[*" jndicating all nmedia types and "type/*" indicating all subtypes

Berners-Lee, et al I nf or mat i onal [Page 58]

RFC 1945 HTTP/ 1.0 May 1996

of that type. The set of ranges given by the client should represent
what types are acceptable given the context of the request.

D. 2. 2 Accept - Char set

The Accept - Charset request-header field can be used to indicate a
list of preferred character sets other than the default US-ASCI I and
| SO-8859-1. This field allows clients capable of understanding nore
conpr ehensi ve or speci al - purpose character sets to signal that
capability to a server which is capable of representing docunents in
t hose character sets.

D. 2. 3 Accept - Encodi ng

The Accept - Encodi ng request-header field is simlar to Accept, but
restricts the content-codi ng val ues which are acceptable in the
response.

D. 2.4 Accept - Language

The Accept - Language request-header field is simlar to Accept, but
restricts the set of natural |anguages that are preferred as a
response to the request.

D. 2.5 Content - Language

The Cont ent - Language entity-header field describes the natural

| anguage(s) of the intended audi ence for the enclosed entity. Note
that this may not be equivalent to all the | anguages used within the
entity.

D. 2.6 Link

The Link entity-header field provides a neans for describing a
relationship between the entity and sone ot her resource. An entity
may include nmultiple Link values. Links at the netainformation |evel
typically indicate relationships |ike hierarchical structure and
navi gati on pat hs.

D. 2.7 M Me- Ver si on

HTTP nmessages may i nclude a single M Me-Version general -header field
to indicate what version of the MME protocol was used to construct

t he nessage. Use of the M Me-Version header field, as defined by RFC
1521 [5], should indicate that the nessage is M Me-conformant.
Unfortunately, sone older HTTP/1.0 servers send it indiscrimnately,
and thus this field should be ignored.

Berners-Lee, et al I nf or mat i onal [Page 59]

RFC 1945 HTTP/ 1.0 May 1996

D.2.8 Retry-After

The Retry-After response-header field can be used with a 503 (service
unavail abl e) response to indicate how |l ong the service is expected to
be unavailable to the requesting client. The value of this field can
be either an HTTP-date or an integer nunmber of seconds (in decinal)
after the tine of the response.

D.2.9 Title

The Title entity-header field indicates the title of the entity.

D.2.10 URI

The URI entity-header field nay contain sonme or all of the Uniform
Resource ldentifiers (Section 3.2) by which the Request-URI resource
can be identified. There is no guarantee that the resource can be
accessed using the URI(s) specified.

Berners-Lee, et al I nf or mat i onal [Page 60]

