Net wor k Wor ki ng Group R Srinivasan
Request for Comments: 1832 Sun M crosystens
Cat egory: Standards Track August 1995

XDR: External Data Representation Standard
Status of this Meno
Thi s docunment specifies an Internet standards track protocol for the
Internet conmunity, and requests di scussion and suggestions for
i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this meno is unlimnited.
ABSTRACT

Thi s docunent describes the External Data Representation Standard
(XDR) protocol as it is currently deployed and accepted.

TABLE OF CONTENTS

1. | NTRODUCTI ON 2
2. BASI C BLOCK SI ZE 2
3. XDR DATA TYPES 3
3.1 I nteger 3
3.2 Unsigned Integer 4
3.3 Enuneration 4
3.4 Bool ean 4
3.5 Hyper Integer and Unsigned Hyper I|nteger 4
3.6 Fl oating-point 5
3.7 Doubl e-precision Floating-point 6
3.8 Quadrupl e-preci sion Floating-point 7
3.9 Fixed-length Opaque Data 8
3.10 Vari abl e-1 engt h Opaque Data 8
3.11 String 9
3.12 Fixed-length Array 10
3.13 Variable-1ength Array 10
3.14 Structure 11
3.15 Discrimnated Union 11
3.16 Void 12
3.17 Constant 12
3. 18 Typedef 13
3.19 Optional -data 14
3.20 Areas for Future Enhancenent 15
4. DI SCUSSI ON 15
5. THE XDR LANGUAGE SPECI FI CATI ON 17
5.1 Notational Conventions 17

Sri ni vasan St andar ds Track [Page 1]

RFC 1832 XDR: External Data Representation Standard August 1995

5.2 Lexical Notes 17
5.3 Syntax Infornmation 18
5.4 Syntax Notes 19
6. AN EXAMPLE OF AN XDR DATA DESCRI PTI ON 20
7. TRADEMARKS AND OMNERS 21
APPENDI X A: ANSI /| EEE Standard 754-1985 22
APPENDI X B: REFERENCES 24
Security Considerations 24
Aut hor’ s Address 24

1. | NTRODUCTI ON

XDR is a standard for the description and encoding of data. It is
useful for transferring data between different conputer

architectures, and has been used to comunicate data between such

di verse machi nes as the SUN WORKSTATI ON*, VAX*, | BM PC*, and Cray*.
XDR fits into the | SO presentation |ayer, and is roughly anal ogous in
purpose to X. 409, |SO Abstract Syntax Notation. The nmajor difference
between these two is that XDR uses inplicit typing, while X 409 uses
explicit typing.

XDR uses a |l anguage to describe data formats. The | anguage can only
be used only to describe data; it is not a progranm ng | anguage.

Thi s | anguage allows one to describe intricate data formats in a
conci se manner. The alternative of using graphical representations
(itself an informal |anguage) quickly becones inconprehensible when
faced with conplexity. The XDR | anguage itself is simlar to the C

| anguage [1], just as Courier [4] is similar to Mesa. Protocols such
as ONC RPC (Renote Procedure Call) and the NFS* (Network File Systen)
use XDR to describe the format of their data.

The XDR standard makes the followi ng assunption: that bytes (or
octets) are portable, where a byte is defined to be 8 bits of data.

A given hardware device shoul d encode the bytes onto the various
media in such a way that other hardware devi ces may decode the bytes
wi t hout | oss of meaning. For exanple, the Ethernet* standard
suggests that bytes be encoded in "little-endian" style [2], or |east
significant bit first.

2. BASI C BLOCK SI ZE

The representation of all itens requires a nultiple of four bytes (or
32 bits) of data. The bytes are nunbered O through n-1. The bytes
are read or witten to sone byte stream such that byte m al ways
precedes byte mtl. |If the n bytes needed to contain the data are not
a multiple of four, then the n bytes are foll owed by enough (0 to 3)
residual zero bytes, r, to nake the total byte count a nultiple of 4.

Sri ni vasan St andar ds Track [Page 2]

RFC 1832 XDR: External Data Representation Standard August 1995

We include the famliar graphic box notation for illustration and
conmparison. In nost illustrations, each box (delinited by a plus
sign at the 4 corners and vertical bars and dashes) depicts a byte.
Ellipses (...) between boxes show zero or nore additional bytes where

required.
S S +, . - e - - S, +, . - - - - +
| byte O | byte 1 |...|byte n-1| o |...] 0 | BLOCK
S S +, . - e - - S, +, . - - - - +
| <----ce-en-- n bytes---------- >l <------ r bytes------ >|
| <-------m--- n+r (where (n+r) mod 4 = 0)>----------- >|

3. XDR DATA TYPES

Each of the sections that follow describes a data type defined in the
XDR standard, shows how it is declared in the | anguage, and incl udes
a graphic illustration of its encoding.

For each data type in the | anguage we show a general paradi gm
declaration. Note that angle brackets (< and >) denote

vari abl el ength sequences of data and square brackets ([and]) denote
fixed-1ength sequences of data. "n", "ni and "r" denote integers.

For the full Ianguage specification and nore formal definitions of
ternms such as "identifier" and "declaration", refer to section 5:
"The XDR Language Specification".

For sone data types, nore specific exanples are included. A nore
extensi ve exanple of a data description is in section 6: "An Exanple
of an XDR Data Description".

3.1 Integer
An XDR signed integer is a 32-bit datumthat encodes an integer in
the range [-2147483648, 2147483647]. The integer is represented in
two’s conpl enment notation. The nost and | east significant bytes are
0 and 3, respectively. Integers are declared as foll ows:

int identifier;

(MSB) (LSB)
S S S S S S S S +
| byte O |byte 1 |byte 2 |byte 3 | | NTEGER
S S S S S S S S +
S 32 bits------------ >

Sri ni vasan St andar ds Track [Page 3]

RFC 1832 XDR: External Data Representation Standard August 1995

3.2. Unsigned Integer

An XDR unsigned integer is a 32-bit datumthat encodes a nonnegative
integer in the range [0, 4294967295]. It is represented by an

unsi gned bi nary nunmber whose npbst and | east significant bytes are 0
and 3, respectively. An unsigned integer is declared as foll ows:

unsigned int identifier;

(MSB) (LSB)
Fomm e - Fomm e - Fomm e - Fomm e - +
| byte O |byte 1 |byte 2 |byte 3 | UNSI GNED | NTEGER
Fomm e - Fomm e - Fomm e - Fomm e - +
S L 32 bits------------ >

3.3 Enuneration
Enuner ati ons have the sanme representation as signed integers.
Enunerations are handy for describing subsets of the integers.
Enunerated data is declared as follows:

enum{ nanme-identifier = constant, ... } identifier;

For example, the three colors red, yellow and blue could be
descri bed by an enunerated type:

enum{ RED = 2, YELLOW= 3, BLUE = 5} colors;

It is an error to encode as an enum any ot her integer than those that
have been given assignments in the enum declaration

3. 4 Bool ean
Bool eans are inportant enough and occur frequently enough to warrant
their own explicit type in the standard. Booleans are declared as
foll ows:
bool identifier;
This is equivalent to:
enum{ FALSE = 0, TRUE = 1 } identifier;
3.5 Hyper Integer and Unsigned Hyper I|nteger
The standard al so defines 64-bit (8-byte) nunbers called hyper

i nteger and unsi gned hyper integer. Their representations are the
obvi ous extensions of integer and unsigned integer defined above.

Sri ni vasan St andar ds Track [Page 4]

RFC 1832 XDR: External Data Representation Standard August 1995

They are represented in twd's conpl enent notation. The nost and
| east significant bytes are O and 7, respectively. Their
decl ar ati ons:

hyper identifier; unsigned hyper identifier;

(MSB) (LSB)
Fomm e - Fomm e - Fomm e - Fomm e - Fomm e - R Fomm e - Fomm e +
| byte O |byte 1 |byte 2 |byte 3 |byte 4 |byte 5 |byte 6 |byte 7 |
Fomm e - Fomm e - Fomm e - Fomm e - Fomm e - R Fomm e - Fomm e +
A T 64 bits-----------------“--- - >

HYPER | NTEGER
UNSI GNED HYPER | NTEGER

3.6 Fl oating-point
The standard defines the floating-point data type "float" (32 bits or
4 bytes). The encoding used is the | EEE standard for nornmalized
si ngl e-preci sion floating-point nunbers [3]. The follow ng three
fields describe the single-precision floating-point nunber:

S: The sign of the nunmber. Values 0 and 1 represent positive and
negative, respectively. One bit.

E: The exponent of the nunber, base 2. 8 bits are devoted to this
field. The exponent is biased by 127.

F: The fractional part of the nunber’s mantissa, base 2. 23 bits
are devoted to this field.

Therefore, the floating-point nunber is described by:
(-1)**s * 2**(E-Bias) * 1.F
It is declared as follows:

float identifier;

S NG S NG S NG S +
| byte O |byte 1 |byte 2 |byte 3 | SI NGLE- PRECI SI ON
sS E | F | FLOATI NG- POl NT NUMBER
S NG S NG S NG S +
1] <- 8 ->| <------- 23 bits------ >|
S 32 bits------------ >

Just as the nost and | east significant bytes of a nunber are 0 and 3,
the nost and least significant bits of a single-precision floating-
poi nt nunber are 0 and 31. The beginning bit (and nost significant

Sri ni vasan St andar ds Track [Page 5]

RFC 1832 XDR: External Data Representation Standard August 1995

bit) offsets of S, E, and F are 0, 1, and 9, respectively. Note that
these nunbers refer to the mathemati cal positions of the bits, and
NOT to their actual physical |ocations (which vary fromnmediumto
medi unj .

The | EEE specifications should be consulted concerning the encodi ng
for signed zero, signed infinity (overflow), and denormalized nunbers
(underflow) [3]. According to | EEE specifications, the "NaN' (not a
nunber) is system dependent and shoul d not be interpreted within XDR
as anything other than "NaN'.

3.7 Doubl e-preci sion Floating-point
The standard defines the encoding for the doubl e-precision floating-
poi nt data type "double" (64 bits or 8 bytes). The encoding used is
the | EEE standard for normalized doubl e-precision floating-point
nunbers [3]. The standard encodes the following three fields, which
descri be the doubl e-precision floating-point nunber:

S: The sign of the nunmber. Values 0 and 1 represent positive and
negative, respectively. One bit.

E: The exponent of the nunber, base 2. 11 bits are devoted to
this field. The exponent is biased by 1023.

F: The fractional part of the nunber’s mantissa, base 2. 52 bits
are devoted to this field.

Therefore, the floating-point nunber is described by:
(-1)**s * 2**(E-Bias) * 1.F
It is declared as follows:

doubl e identifier;

S N, +---o - - S N, +---- - - S N, +---- - - S N, +---- - - +
| byte O] byte 1| byte 2| byte 3| byte 4| byte 5| byte 6| byte 7|
S| E | F I
S N, +---o - - S N, +---- - - S N, +---- - - S N, +---- - - +
1] <--11-->| <------mmmme - - - 52 bits----------mmmaao - >|
e 64 bits------------------------- >

DOUBLE- PRECI SI ON FLOATI NG PO NT

Just as the nost and | east significant bytes of a nunber are 0 and 3,
the nost and least significant bits of a doubl e-precision floating-
poi nt nunber are 0 and 63. The beginning bit (and nost significant
bit) offsets of S, E, and F are 0, 1, and 12, respectively. Note

Sri ni vasan St andar ds Track [Page 6]

RFC 1832 XDR: External Data Representation Standard August 1995

that these nunbers refer to the mathenatical positions of the bits,
and NOT to their actual physical |ocations (which vary fromnmediumto
medi unj .

The | EEE specifications should be consulted concerning the encodi ng
for signed zero, signed infinity (overflow), and denormalized nunbers
(underflow) [3]. According to | EEE specifications, the "NaN' (not a
nunber) is system dependent and shoul d not be interpreted within XDR
as anything other than "NaN'.

3.8 Quadr upl e-preci sion Floating-poi nt
The standard defines the encoding for the quadruple-precision
floating-point data type "quadruple" (128 bits or 16 bytes). The
encodi ng used is designed to be a sinple anal og of of the encoding
used for single and doubl e-precision floating-point nunbers using one
form of | EEE doubl e ext ended precision. The standard encodes the
following three fields, which describe the quadrupl e-precision
fl oati ng- poi nt nunber:

S: The sign of the nunmber. Values 0 and 1 represent positive and
negative, respectively. One bit.

E: The exponent of the nunber, base 2. 15 bits are devoted to
this field. The exponent is biased by 16383.

F: The fractional part of the nunber’s mantissa, base 2. 112 bits
are devoted to this field.

Therefore, the floating-point nunber is described by:
(-1)**s * 2**(E-Bias) * 1.F
It is declared as follows:

quadrupl e identifier

S N, +---o - - S N, +---- - - S N, +---- - - +- B g +
| byte O] byte 1| byte 2| byte 3| byte 4| byte 5| | byt el5
S| E I
S N, +---o - - S N, +---- - - S N, +---- - - T Sy, +
1] <----15---->| <------mmmo-- 112 bits--------------u--- >|
e 128 bits------------------------ >

QUADRUPLE- PRECI SI ON FLOATI NG- PO NT
Just as the nost and | east significant bytes of a nunber are 0 and 3,

the nost and least significant bits of a quadrupl e-precision
fl oating-point nunber are 0 and 127. The beginning bit (and nost

Sri ni vasan St andar ds Track [Page 7]

RFC 1832 XDR: External Data Representation Standard August 1995

significant bit) offsets of S, E, and F are 0, 1, and 16,
respectively. Note that these nunbers refer to the mathemati cal
positions of the bits, and NOT to their actual physical |ocations
(which vary fromnediumto nmediun.

The encoding for signed zero, signed infinity (overflow), and
denormal i zed nunbers are anal ogs of the correspondi ng encodi ngs for
singl e and doubl e-preci sion floating-point nunbers [5], [6]. The
"NaN' encoding as it applies to quadrupl e-precision floating-point
nunbers is system dependent and shoul d not be interpreted within XDR
as anything other than "NaN'.

3.9 Fixed-length Opaque Data

At tines, fixed-length uninterpreted data needs to be passed anobng
machi nes. This data is called "opaque" and is declared as foll ows:

opaque identifier[n];

where the constant n is the (static) nunber of bytes necessary to
contain the opaque data. If nis not a multiple of four, then the n
bytes are foll owed by enough (0 to 3) residual zero bytes, r, to make
the total byte count of the opaque object a multiple of four

0 1 .
S S +, . - e - - S, +, . - - - - +
| byte O | byte 1 |...|byte n-1| o |...] 0 |
S S +, . - e - - S, +, . - - - - +
| <----ce-en-- n bytes---------- >l <------ r bytes------ >|
| <-------m--- n+r (where (n+r) mod 4 = 0)------------ >

FI XED- LENGTH OPAQUE
3.10 Vari abl e-1 ength Opaque Data
The standard al so provides for variable-length (counted) opaque data,
defined as a sequence of n (nunmbered O through n-1) arbitrary bytes

to be the nunber n encoded as an unsigned integer (as described
bel ow), and followed by the n bytes of the sequence.

Sri ni vasan St andar ds Track [Page 8]

RFC 1832 XDR: External Data Representation Standard August 1995

Byte m of the sequence al ways precedes byte mtl of the sequence, and
byte 0 of the sequence always follows the sequence’s length (count).
If nis not a multiple of four, then the n bytes are foll owed by
enough (0 to 3) residual zero bytes, r, to nake the total byte count
a multiple of four. Variable-length opaque data is declared in the
foll ow ng way:

opaque identifier<np;
or
opaque identifier<>

The constant m denotes an upper bound of the nunber of bytes that the
sequence may contain. If mis not specified, as in the second
declaration, it is assunmed to be (2**32) - 1, the maxi mum | ength.

The constant mwould normally be found in a protocol specification
For example, a filing protocol may state that the maxi mum data
transfer size is 8192 bytes, as follows:

opaque fil edat a<8192>;

0 1 2 3 4 5 ...
e e e F--- - - F--- - - F--- - - +, . - e +, . - +
| length n | byt eO| bytel|...|] n-1] 0 | | 0 |
e e e F--- - - F--- - - F--- - - +, . - e +, . - +
| <=------ 4 bytes------- >l <------ n bytes------ >| <---r bytes--->
| <----n+r (where (n+r) nod 4 = 0)---->

VARI ABLE- LENGTH OPAQUE

It is an error to encode a length greater than the nmaxi num descri bed
in the specification.

3.11 String

The standard defines a string of n (nunbered O through n-1) ASC I
bytes to be the nunber n encoded as an unsigned integer (as described
above), and followed by the n bytes of the string. Byte mof the
string always precedes byte mtl of the string, and byte 0 of the
string always follows the string’s length. If nis not a multiple of
four, then the n bytes are followed by enough (0 to 3) residual zero
bytes, r, to make the total byte count a nmultiple of four. Counted
byte strings are declared as foll ows:

string object<np;
or
string object<>;

The constant m denotes an upper bound of the nunber of bytes that a
string may contain. |If mis not specified, as in the second

Sri ni vasan St andar ds Track [Page 9]

RFC 1832 XDR: External Data Representation Standard August 1995

declaration, it is assumed to be (2**32) - 1, the naxi num | ength.
The constant mwould nornally be found in a protocol specification
For example, a filing protocol may state that a file nane can be no
| onger than 255 bytes, as foll ows:

string fil enane<255>;

0 1 2 3 4 5 ...
e e e F--- - - F--- - - F--- - - +, . - e +, . - +
| length n | byt eO| bytel|...|] n-1 | O | | 0 |
e e e F--- - - F--- - - F--- - - +, . - e +, . - +
| <=------ 4 bytes------- >l <------ n bytes------ >| <---r bytes--->
| <----n+r (where (n+r) nod 4 = 0)---->
STRI NG

It is an error to encode a length greater than the nmaxi num descri bed
in the specification.

3.12 Fixed-length Array

Decl arations for fixed-length arrays of honbgeneous el enents are in
the following form

type-nane identifier[n];

Fi xed-l ength arrays of elenents nunbered O through n-1 are encoded by
i ndividually encoding the elements of the array in their natura
order, O through n-1. Each element’s size is a nultiple of four
bytes. Though all elenents are of the sane type, the el enments may
have different sizes. For exanple, in a fixed-length array of
strings, all elenents are of type "string", yet each elenent wll
vary in its |ength.

T, T T U S S

| element O | element 1 |...] element n-1 |
S T S T s i P L
S R R nelements------------------- >|

FI XED- LENGTH ARRAY
3.13 Variable-length Array

Counted arrays provide the ability to encode variabl e-1ength arrays of
honobgeneous el enents. The array is encoded as the elenment count n (an
unsi gned integer) followed by the encoding of each of the array’s

el ements, starting with elenment 0 and progressing through el ement n- 1.
The declaration for variable-length arrays follows this form

Sri ni vasan St andar ds Track [Page 10]

RFC 1832 XDR: External Data Representation Standard August 1995

type-name identifier<np,;
or
type-name identifier<>;

The constant m specifies the maxi num acceptabl e el ement count of an
array; if mis not specified, as in the second declaration, it is
assuned to be (2**32) - 1.

0O 1 2 3
T S T i U o S Y S
| n | element O | elenent 1 |...|elenent n-1|
T S T i U o S Y S
| <-4 bytes->|<-------------- n elements------------- >|

COUNTED ARRAY

It is an error to encode a value of n that is greater than the
maxi mum descri bed in the specification.

3.14 Structure
Structures are declared as foll ows:

struct {
conmponent - decl ar ati on- A;
component - decl arati on-B

}oi déhtifi er;

The conponents of the structure are encoded in the order of their
declaration in the structure. Each conponent’s size is a nmultiple of
four bytes, though the conponents may be different sizes.

| conponent A | conponent B |... STRUCTURE

3.15 Discrimnated Union

A discrimnated union is a type conposed of a discrininant followed
by a type selected froma set of prearranged types according to the
val ue of the discrimnant. The type of discrimnant is either "int",
"unsigned int", or an enunerated type, such as "bool". The conmponent
types are called "arnms" of the union, and are preceded by the val ue
of the discrimnant which inplies their encoding. Discrimnated

uni ons are declared as foll ows:

union switch (discrimnant-declaration) {
case discrim nant-val ue- A

Srini vasan St andards Track [Page 11]

RFC 1832 XDR: External Data Representation Standard August 1995

arm decl arati on- A;
case di scrim nant-val ue-B
arm decl ar ati on- B;

dé%ault: defaul t-decl arati on
} identifier;

Each "case" keyword is followed by a |l egal value of the discrininant.
The default armis optional. |If it is not specified, then a valid
encodi ng of the union cannot take on unspecified discrimnant val ues.
The size of the inplied armis always a multiple of four bytes.

The discrimnated union is encoded as its discrimnant foll owed by
the encoding of the inplied arm

0 1 2 3
S S

| discrimnant | inplied arm | DI SCRI M NATED UNI ON
e

| <---4 bytes--->|
3.16 Void
An XDR void is a O-byte quantity. Voids are useful for describing
operations that take no data as input or no data as output. They are
al so useful in unions, where sone arns nmay contain data and ot hers do
not. The declaration is sinply as follows:
voi d;
Voids are illustrated as foll ows:
++
|l va D
++
--><-- 0 bytes
3.17 Const ant
The data declaration for a constant follows this form
const nane-identifier = n;
"const" is used to define a synbolic nane for a constant; it does not
decl are any data. The synbolic constant may be used anywhere a

regul ar constant may be used. For exanple, the foll ow ng defines a
synbol i ¢ constant DOZEN, equal to 12.

Srini vasan St andards Track [Page 12]

RFC 1832 XDR: External Data Representation Standard August 1995

const DOZEN = 12;
3. 18 Typedef

"typedef" does not declare any data either, but serves to define new
identifiers for declaring data. The syntax is:

typedef decl aration

The new type nane is actually the variable name in the declaration
part of the typedef. For exanple, the follow ng defines a new type
cal l ed "eggbox" using an existing type called "egg":

t ypedef egg eggbox[DOZEN] ;

Vari abl es decl ared using the new type nanme have the sane type as the
new type nane would have in the typedef, if it was considered a
variable. For exanple, the following two decl arati ons are equival ent
in declaring the variable "fresheggs":

eggbox fresheggs; egg fresheggs[DOZEN] ;
When a typedef involves a struct, enum or union definition, there is
anot her (preferred) syntax that may be used to define the sane type.
In general, a typedef of the followi ng form

typedef <<struct, union, or enumdefinition>> identifier;
may be converted to the alternative formby renoving the "typedef"
part and placing the identifier after the "struct", "union", or
"enunt keyword, instead of at the end. For exanple, here are the two
ways to define the type "bool":

typedef enum { /* using typedef */

FALSE = O,
TRUE = 1
} bool;
enum bool { /* preferred alternative */
FALSE = O,
TRUE = 1

b

The reason this syntax is preferred is one does not have to wait
until the end of a declaration to figure out the nanme of the new

t ype.

Sri ni vasan St andar ds Track [Page 13]

RFC 1832 XDR: External Data Representation Standard August 1995

3.19 Optional -data

Optional -data is one kind of union that occurs so frequently that we
give it a special syntax of its own for declaring it. It is declared
as follows:

type-nane *identifier;
This is equivalent to the follow ng union

uni on switch (bool opted) {
case TRUE:
type-nane el enent;
case FALSE
voi d;
} identifier;

It is also equivalent to the follow ng variable-1ength array
decl aration, since the bool ean "opted" can be interpreted as the
I ength of the array:

type-nanme identifier<1>

Optional-data is not so interesting initself, but it is very usefu
for describing recursive data-structures such as linked-lists and
trees. For exanple, the followi ng defines a type "stringlist" that
encodes lists of arbitrary length strings:

struct *stringlist {
string itenk>;
stringlist next;

1
It could have been equivalently declared as the follow ng union:

union stringlist switch (bool opted) {
case TRUE:
struct {
string itenx>;
stringlist next;
} el enent;
case FALSE
voi d;
1

or as a variable-length array:

struct stringlist<1> {

Srini vasan St andards Track [Page 14]

RFC 1832 XDR: External Data Representation Standard August 1995

string itenx>;
stringlist next;

b

Both of these declarations obscure the intention of the stringlist
type, so the optional-data declaration is preferred over both of
them The optional-data type also has a close correlation to how
recursive data structures are represented in high-1Ievel |anguages
such as Pascal or C by use of pointers. In fact, the syntax is the
same as that of the C | anguage for pointers.

3.20 Areas for Future Enhancenent

The XDR standard | acks representations for bit fields and bitmaps,
since the standard is based on bytes. Al so missing are packed (or
bi nary- coded) deci mal s.

The intent of the XDR standard was not to describe every kind of data
t hat peopl e have ever sent or will ever want to send from machine to
machi ne. Rather, it only describes the nost commonly used data-types
of high-level |anguages such as Pascal or C so that applications
written in these | anguages will be able to communicate easily over
sone nedi um

One coul d i magi ne extensions to XDR that would let it describe al nbst
any existing protocol, such as TCP. The m ni mum necessary for this
are support for different block sizes and byte-orders. The XDR

di scussed here could then be considered the 4-byte big-endi an nenber
of a larger XDR famly.

4. DI SCUSSI ON

(1) Why use a | anguage for describing data? What's wong with
di agrans?

There are many advantages in using a data-description | anguage such
as XDR versus using diagranms. Languages are nore formal than
diagranms and lead to | ess anbi guous descriptions of data. Languages
are also easier to understand and all ow one to think of other issues
instead of the lowlevel details of bit-encoding. A so, there is a
cl ose anal ogy between the types of XDR and a high-1evel |anguage such
as C or Pascal. This nakes the inplenentation of XDR encodi ng and
decodi ng nodul es an easier task. Finally, the |anguage specification
itself is an ASCII string that can be passed from machi ne to machi ne
to performon-the-fly data interpretation

Sri ni vasan St andar ds Track [Page 15]

RFC 1832 XDR: External Data Representation Standard August 1995

(2) Wiy is there only one byte-order for an XDR unit?

Supporting two byte-orderings requires a higher |evel protocol for
determ ning in which byte-order the data is encoded. Since XDRis
not a protocol, this can’t be done. The advantage of this, though,
is that data in XDR format can be witten to a nmagnetic tape, for
exanpl e, and any machine will be able to interpret it, since no

hi gher level protocol is necessary for determ ning the byte-order.

(3) Wiy is the XDR byte-order big-endian instead of little-endian?
Isn’t this unfair to little-endian machi nes such as the VAX(r), which
has to convert fromone formto the other?

Yes, it is unfair, but having only one byte-order neans you have to
be unfair to somebody. Many architectures, such as the Mtorola
68000* and | BM 370*, support the big-endian byte-order.

(4) Wiy is the XDR unit four bytes wi de?

There is a tradeoff in choosing the XDR unit size. Choosing a snal

size such as two makes the encoded data small, but causes alignment
probl ens for machines that aren’t aligned on these boundaries. A
| arge size such as eight neans the data will be aligned on virtually

every machi ne, but causes the encoded data to grow too big. W chose
four as a conpronise. Four is big enough to support nost
architectures efficiently, except for rare machi nes such as the

ei ght-byte aligned Cray*. Four is also small enough to keep the
encoded data restricted to a reasonabl e size.

(5) Why nust variable-length data be padded with zeros?

It is desirable that the sane data encode into the sane thing on al
machi nes, so that encoded data can be neani ngfully conpared or
checksumred. Forcing the padded bytes to be zero ensures this.

(6) Wiy is there no explicit data-typing?

Data-typing has a relatively high cost for what small advantages it
may have. One cost is the expansion of data due to the inserted type
fields. Another is the added cost of interpreting these type fields
and acting accordingly. And nost protocols already know what type
they expect, so data-typing supplies only redundant information
However, one can still get the benefits of data-typing using XDR One
way is to encode two things: first a string which is the XDR data
description of the encoded data, and then the encoded data itself.
Another way is to assign a value to all the types in XDR, and then
define a universal type which takes this value as its discrim nant
and for each val ue, describes the correspondi ng data type.

Sri ni vasan St andar ds Track [Page 16]

RFC 1832 XDR: External Data Representation Standard August 1995

5. THE XDR LANGUAGE SPECI FI CATI ON
5.1 Notati onal Conventi ons

This specification uses an extended Back-Naur Form notation for
describing the XDR | anguage. Here is a brief description of the
not ati on:

(1) The characters |, "(', ")', '"[', '], """, and '*' are special
(2) Terminal symbols are strings of any characters surrounded by
doubl e quotes. (3) Non-termninal synbols are strings of non-special
characters. (4) Alternative itens are separated by a vertical bar
("]"). (5) Optional itenms are enclosed in brackets. (6) Itens are
grouped together by enclosing themin parentheses. (7) A’'*’
followng an itemneans O or nore occurrences of that item

For example, ~consider the follow ng pattern

a "very" (", " "very")* [" cold " "and "] rainy "

("day" | "night")
An infinite nunmber of strings match this pattern. A few of themare

a very rainy day"
a very, very rainy day"
"a very cold and rainy day"
a very, very, very cold and rainy night"

5.2 Lexi cal Notes

(1) Comments begin with '/*' and termnate with **/’. (2) Wite
space serves to separate itens and is otherwise ignored. (3) An
identifier is a letter followed by an optional sequence of letters,
digits or underbar (' _'). The case of identifiers is not ignored.
(4) A constant is a sequence of one or nore decinmal digits,
optionally preceded by a mnus-sign ('-").

Srini vasan St andards Track [Page 17]

RFC 1832 XDR: Ext er nal

5.3 Syntax I nfornmation

decl arati on:
type- specifier
| type-specifier
| type-specifier
| "opaque" identifi
| "opaque" identifi
| "string" identifi
I
I

type-specifier "*"

"voi d"

val ue:
const ant
| identifier

type-specifier:

["unsigned"] "i
| ["unsigned"]
| "float"
| "doubl e"
| "quadruple"
| "bool™"
| enumtype-spec
| struct-type-spec
| union-type-spec
| identifier

enum t ype- spec:
"enum' enum body

enum body:

(identifier "="
("," identifier

oy

struct-type-spec:

Dat a Representation Standard

identifier
identifier "[" value "]"
identifier "<"

[value] ">"
er "[" value "]"

er "<" [value] ">"

er "<" [value] ">"
identifier

nt n

"hyper"

val ue)
"=" value)*

Sri ni vasan

"struct" struct-body

st ruct - body:

(declaration ";")
(declaration ";")*

oy

uni on-t ype- spec:
"uni on" uni on- body

St andards Track

August 1995

[Page 18]

RFC 1832 XDR: External Data Representation Standard August 1995

uni on- body:
"switch" "(" declaration ")" "{"

("case" value ":" declaration ";")
("case" value ":" declaration ";")*
["default" ":" declaration ";"]
Il}ll
const ant - def :
"const" identifier "=" constant ";"
type-def:

"typedef" declaration ";
| "enunt identifier enumbody ";"

| "struct" identifier struct-body ";
| "union" identifier union-body ";"

definition:
t ype- def
| constant - def

speci ficati on:
definition *

5.4 Syntax Notes

(1) The follow ng are keywords and cannot be used as identifiers:

"bool ", "case", "const", "default", "double", "quadruple", "enuni,
"float", "hyper", "opaque", "string", "struct", "switch", "typedef",
"uni on", "unsigned" and "void".

(2) Only unsigned constants may be used as size specifications for
arrays. |If an identifier is used, it nust have been decl ared
previously as an unsigned constant in a "const" definition.

(3) Constant and type identifiers within the scope of a specification
are in the sane nane space and nust be declared uniquely within this
scope.

(4) Sinmilarly, variable names nmust be unique within the scope of
struct and uni on declarations. Nested struct and uni on decl arati ons
create new scopes.

(5) The discrimnant of a union nust be of a type that evaluates to
an integer. That is, "int", "unsigned int", "bool", an enunerated
type or any typedefed type that evaluates to one of these is |egal.
Al so, the case values nust be one of the l|egal values of the
discriminant. Finally, a case value nay not be specified nore than
once within the scope of a union declaration.

Sri ni vasan St andar ds Track [Page 19]

RFC 1832

XDR: External Data Representation Standard August 1995

6. AN EXAMPLE OF AN XDR DATA DESCRI PTI ON

Here is a short XDR data description of a thing called a "file",

whi ch

m ght be used to transfer files from one machine to anot her.

const MAXUSERNAME = 32; /* max | ength of a user nane */
const MAXFI LELEN = 65535; /* max length of a file */
const MAXNAMELEN = 255; /* max length of a file nane */
/*
* Types of files:
*/
enum fil ekind {

TEXT = 0, /* ascii data */

DATA = 1, /* raw data */

EXEC = 2 /* executable */
1
/*
* File information, per kind of file:
*/
union filetype switch (filekind kind) {
case TEXT:

voi d; /* no extra information */
case DATA:

string creat or <MAXNAMELEN>; /* data creator */
case EXEC

string interpretor<MAXNAMELEN>; /* programinterpretor */
1
/*
* A conplete file:
*/

struct file {
string fil enane<MAXNAMELEN>; /* name of file */

filetype type; /* info about file */
string owner <MAXUSERNAME>; /* owner of file */
opaque dat a<MAXFI LELEN>; /* file data */

Sri ni vasan St andar ds Track [Page 20]

RFC 1832

Suppose now that there is a user
lisp program"sillyprog" that contains just the data "(quit)".

XDR: Ext er nal

Dat a Representation Standard August 1995

named "john" who wants to store his
H s

file woul d be encoded as foll ows:

CFFSET HEX BYTES

0 00 00 00
4 73 69 6¢C
8 79 70 72
12 67 00 00
16 00 00 00
20 00 00 00
24 6c 69 73
28 00 00 00
32 6a 6f 68
36 00 00 00
40 28 71 75
44 74 29 00
7. TRADEMARKS AND OANERS

SUN WORKSTATI ON
VAX

| BM PC

Cray

NFS

Et her net

Mot or ol a 68000

| BM 370

Sri ni vasan

09
6¢C
6f

00
02
04
70
04
6e
06
69
00

ASCl |

I ength of filenane
fil ename characters
and nore characters ...
... and 3 zero-bytes of fill
filekind is EXEC = 2
I ength of interpretor
interpretor characters
| ength of owner 4
owner characters
length of file data
file data bytes ...
and 2 zero-bytes of fill

9

4

6

Sun M crosystens, Inc.

Di gi tal Equi prent Cor poration

I nternational Business Machi nes Corporation
Cray Research

Sun M crosyst ens,
Xer ox Cor por ati on.
Mot orol a, Inc.
I nt ernati onal

I nc.

Busi ness Machi nes Cor poration

St andards Track [Page 21]

RFC 1832

XDR: External Data Representation Standard August 1995

APPENDI X A: ANSI/ | EEE Standard 754-1985

The definition of NaNs, signed zero and infinity, and denornmalized
nunbers from|[3] is reproduced here for convenience. The definitions
for quadruple-precision floating point nunbers are anal ogs of those
for single and doubl e-precision floating point nunbers, and are
defined in [3].

In the following, 'S
and 'F for the fractiona
undefined bit (0 or 1).

stands for the sign bit, '"E for the exponent,
part. The synbol 'u stands for an

For single-precision floating point nunbers:

Type S (1 bit) E (8 bits) F (23 bits)
signal ling NaN u 255 (max) . Ouuuuu---u
(with at |east
one 1 bit)
qui et NaN u 255 (max) . luuuuu---u
negative infinity 1 255 (max) . 000000---0
positive infinity 0 255 (max) . 000000---0
negati ve zero 1 0 . 000000---0
positive zero 0 0 . 000000---0
For doubl e-precision floating point nunbers:
Type S (1 bit) E (11 bits) F (52 bits)
signal ling NaN u 2047 (max) . Ouuuuu---u
(with at |east
one 1 bit)
qui et NaN u 2047 (max) . luuuuu---u
negative infinity 1 2047 (max) . 000000---0
positive infinity 0 2047 (max) . 000000---0
negati ve zero 1 0 . 000000---0
positive zero 0 0 . 000000---0

Sri ni vasan

St andards Track

[Page 22]

RFC 1832

XDR: Ext er nal

Dat a Representation Standard

For quadrupl e-precision floating point nunbers:

(-1)**S * 2%*(-126) * O.

August 1995

F (112 bits)

. Ouuuuu- - -u

(with at |east

one 1 bit)

. luuuuu---u

. 000000---0

. 000000---0

. 000000---0

. 000000---0

F

(-1)**S * 2%*(-1022) * O.F

Type S (1 bit) E (15 bits)
signal 1ing NaN “ 32767 (mex)
qui et NaN u 32767 (max)
negative infinity 1 32767 (max)
positive infinity 0 32767 (max)
negative zero 1 0
positive zero 0 0

Subnormal nunbers are represented as foll ows:
Pr eci si on Exponent Val ue
Single o (-1
Doubl e 0
Quadr upl e 0

Sri ni vasan

(-1)**S * 2**(-16382) *

St andards Track

0.F

[Page 23]

RFC 1832 XDR: External Data Representation Standard August 1995

APPENDI X B: REFERENCES

[1] Brian W Kernighan & Dennis M Ritchie, "The C Progranm ng
Language", Bell Laboratories, Miurray Hill, New Jersey, 1978.

[2] Danny Cohen, "On Holy Wars and a Plea for Peace", |EEE Conputer,
Cct ober 1981.

[3] "IEEE Standard for Binary Floating-Point Arithnmetic", ANSI/I|EEE
St andard 754-1985, Institute of Electrical and El ectronics
Engi neers, August 1985.

[4] "Courier: The Renote Procedure Call Protocol", XEROX
Corporation, XSIS 038112, Decenber 1981.

[5] "The SPARC Architecture Manual: Version 8", Prentice Hall,
| SBN 0- 13-825001- 4.

[6] "HP Precision Architecture Handbook", June 1987, 5954-9906.

[7] Srinivasan, R, "Renote Procedure Call Protocol Version 2",
RFC 1831, Sun M crosystens, Inc., August 1995.

Security Considerations
Security issues are not discussed in this neno.
Aut hor’ s Address

Raj Srinivasan

Sun M crosystens, Inc.
ONC Technol ogi es

2550 Garcia Avenue

M S MIV-5-40

Mountain View, CA 94043
USA

Phone: 415-336-2478

Fax: 415-336- 6015
EMai | : raj @ng. sun.com

Srini vasan St andards Track [Page 24]

