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Status of this Meno

This nenp defines an Experinental Protocol for the Internet
comunity. It does not specify an Internet standard. D scussion and
suggestions for inprovenment are requested. Please refer to the
current edition of the "Internet O ficial Protocol Standards" for the
standardi zati on state and status of this protocol. Distribution of
this nenp is unlimted.
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| nt r oducti on

1.1 What i s DASS?

Aut hentication is a security service. The goal of authentication is
to reliably learn the nane of the originator of a nessage or request.
The classic way by which people authenticate to conputers (and by

whi ch conputers authenticate to one another) is by supplying a
password. There are a nunber of problens with existing password
based schenes which DASS attenpts to solve. The goal of DASS is to
provi de aut hentication services in a distributed environment which
are both nore secure (nore difficult for a bad guy to inpersonate a
good guy) and easier to use than existing nmechanisns.

In a distributed environnent, authentication is particularly
chal l enging. Users do not sinply log on to one nachi ne and use
resources there. Users start processes on one machi ne which may
request services on another. |In some cases, the second system nust
request services froma third systemon behalf of the user. Further
gi ven current network technology, it is fairly easy to eavesdrop on
conversations between conputers and pick up any passwords that mni ght
be goi ng by.

DASS uses cryptographi c nmechanisns to provide "strong, nutual"”

aut henti cation. Mitual authentication neans that the two parties
comuni cating each reliably learn the name of the other. Strong

aut henti cation neans that in the exchange neither obtains any
information that it could use to inpersonate the other to a third
party. This can’t be done with passwords al one. Mt ual

aut henti cati on can be done with passwords by having a "sign" and a
"counter-sign" which the two parties nust utter to assure one anot her

Kauf man [ Page 2]



RFC 1507 DASS Sept ember 1993

of their identities. But whichever party speaks first reveals

i nformati on which can be used by the second (unauthenticated) party
to inpersonate it. Longer sequences (often seen in spy novies)
cannot solve the problemin general. Further, anyone who can
eavesdrop on the conversation can inpersonate either party in a
subsequent conversation (unless passwords are only good once).

Crypt ography provi des a nmeans whereby one can prove know edge of a
secret without revealing it. People cannot execute cryptographic
algorithnms in their heads, and thus cannot strongly authenticate to
computers directly. DASS |lays the groundwork for "smart cards"

m croconputers sealed in credit cards which when activated by a PIN
will strongly authenticate to a conputer. Until smart cards are
avail able, the first link froma user to a DASS node remains

vul nerabl e to eavesdroppi ng. DASS nmechani sns are constructed so that
after the initial authentication, smart card or password based

aut henti cation | ooks the sane.

Today, systens are constructed to think of user identities in terns
of accounts on individual conmputers. |If | have accounts on ten
machi nes, there is no way a priori to see that those ten accounts al
belong to the sanme individual. |If | want to be able to access a
resource through any of the ten machines, | nust tell the resource
about all ten accounts. | nust also tell the resource when | get an
el eventh account.

DASS supports the concept of global identity and network login. A
user is assigned a nane from a gl obal nanespace and that nane will be
recogni zed by any node in the network. (ln sone cases, a resource
may be configured as accessible only by a particular user acting
through a particular node. That is an access control decision, and
it is supported by DASS, but the user is still known by his gl oba
identity). Froma practical point of view, this neans that a user
can have a single password (or smart card) which can be used on al
systens which allow hi maccess and access control nechani sns can
conveni ently give access to a user through any conputer the user
happens to be logged into. Because a single user secret is good on
all systens, it should never be necessary for a user to enter a
password other than at initial login. Because cryptographic

nmechani sns are used, the password shoul d never appear on the network
beyond the initial |ogin node.

DASS was designed as a conponent of the Distributed System Security
Architecture (DSSA) (see "The Digital Distributed System Security
Architecture"” by M CGasser, A oldstein, C Kaufrman, and B. Lanpson,
1989 National Computer Security Conference). It is a goal of DSSA
that access control on all systens be based on users’ gl obal nanes
and the concept of "accounts" on conputers eventually be replaced
with unnanmed rights to execute processes on those conputers. Unti
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this happens, conmputers will continue to support the concept of
"l ocal accounts" and access controls on resources on those systens
will still be based on those accounts. There is today within the

Berkel ey rtools running over the Internet Protocol suite the concept
of a ".rhosts database" which gives access to | ocal accounts from
renote accounts. W envision that those databases will be extended
to support granting access to |ocal accounts based on DASS gl oba
nanes as a bridge between the past and the future. DASS should
greatly sinplify the adm nistration of those databases for the
(presumably conmon) case where a user should be granted access to an
account ignoring his choice of internediate systens.

1.2 Central Concepts
1.2.1 Strong Authentication with Public Keys

DASS nmekes heavy use of the RSA Public Key cryptosystem The
i nportant properties of the RSA algorithns for purposes of this
di scussi on are:

- It supports the creation of a public/private key pair, where
operations with one key of the pair reverse the operations of
the other, but it is conputationally infeasible to derive the
private key fromthe public key.

- It supports the "signing" of a nessage with the private key,
after which anyone knowi ng the public key can "verify" the
signature and know that it was constructed with know edge of
the private key and that the nmessage was not subsequently
al tered.

- It supports the "enciphering" of a nessage by anyone know ng
the public key such that only soneone wi th know edge of the
private key can recover the nmessage.

Wth access to the RSA algorithnms, it is easy to see how one could
construct a "strong" authentication nechanism Each "principal"”
(user or conputer) would construct a public/private key pair, publish
the public key, and keep secret the private key. To authenticate to

you, | would wite a nessage, sign it with ny private key, and send
it to you. You would verify the nessage using nmy public key and know
the nessage came fromnme. |If nutual authentication were desired, you

coul d create an acknow edgnment and sign it with your private key; |
could verify it with your public key and | would know you received ny
nessage.

The authentication algorithnms used by DASS are considerably nore
conpl ex than those described in the paragraph above in order to deal
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with a | arge nunber of practical concerns including subtle security
threats. Sone of these are discussed bel ow

1.2.2 Tinmestanps vs. Chall enge/ Response

Cryptosystens give you the ability to sign messages so that the

recei ver has assurance that the signer of the nessage knew sone
cryptographic secret. Free-standing public key based authentication
is sufficiently expensive that it is unlikely that anyone woul d want
to sign every nessage of an interactive comunication, and even if
they did they would still face the threat of soneone rearranging the
nmessages or playing themnultiple tines. Authentication generally
takes place in the context of establishing sone sort of "connection,"”
where a conversation will ensue under the auspices of the single
peer-entity authentication. This connection night be
cryptographically protected against nodification or reordering of the
nmessages, but any such protection would be |argely independent of the
aut henti cati on which occurred at the start of the connection. DASS
provides as a side effect of authentication the provision of a shared
key which may be used for this purpose.

If in our sinple mnded authentication above, | signed the nessage
"It'’s really ne!™ with nmy private key and sent it to you, you could
verify the signature and know t he nmessage cane fromnme and give the
connection in which this nessage arrived access to nmy resources.
Anyone wat chi ng this nmessage over the network, however, could replay
it to any server (just like a password!) and inpersonate ne. It is
i nportant that the nessage | send you only be accepted by you and
only once. | can prevent the nmessage from being useful at any other
server by including your nanme in the message. You will only accept
the nessage if you see your nane in it. Keeping you from accepting
the nmessage twi ce is harder.

There are two "standard" ways of providing this replay protection.
One is called challenge/response and the other is called tinestanp-

based. In a challenge response type schene, | tell you | want to
aut henticate, you generate a "challenge" (generally a nunber), and |
i nclude the challenge in the nessage | sign. You will only accept a

nmessage if it contains the recently generated challenge and you wl|l
make sure you never issue the same challenge to ne twice (either by
usi ng a sequence nunber, a tinestanp, or a random nunber big enough
that the probability of a duplicate is negligible). 1In the

ti mest anp- based schene, | include the current time in nmy nessage.
You have a rule that you will not accept nessages nore than - say -
five minutes old and you keep track of all nessages you' ve seen in
the last five mnutes. |If sonmeone replays the nessage within five
mnutes, you will reject it because you will remenber you' ve seen it
before; if someone replays it after five mnutes, you will reject it
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as tinmed out.

The di sadvantage of the chall enge/ response based schene is that it
requires extra nmessages. While one-way authentication could

ot herwi se be done with a single nmessage and nutual authentication
with one nessage in each direction, the challenge/response schene
al ways requires at |east three nessages.

The di sadvantage of the tinestanp-based schenme is that it requires
secure synchronized tine. |If our clocks drift apart by nore than
five minutes, you will reject all of ny attenpts to authenticate. |If
a network tine service spoofer can convince you to turn back your

cl ock and then subsequently replays an expired nmessage, you will
accept it again. The nulticast nature of existing distributed tine
services and the |ikelihood of detection nmake this an unlikely
threat, but it nust be considered in any analysis of the security of
the schenme. The tinmestanp schenme also requires the server to keep
state about all nessages seen in the clock skewinterval. To be
secure, this nust be kept on stable storage (unless rebooting takes
| onger than the pernmitted clock skew interval).

DASS uses the tinmestanp-based schene. The primary notivations behind
this decision were so that authentication nmessages could be

" pi ggybacked" on existing connection establishnment nessages and so
that DASS would fit within the same "formfactor” (nunber and
direction of nmessages) as Kerberos.

1.2.3 Del egation

In a distributed environnent, authentication alone is not enough.
Whien | log onto a conputer, not only do | want to prove ny identity
to that conmputer, | want to use that conputer to access network
resources (e.g., file systens, database systens) on ny behalf. M
files should (normally) be protected so that | can access them

t hrough any node | log in through. DASS allows themto be so
protected without allowing all of the systens that | might ever use
to access those files in nmy absence. In the process of |ogging in,
my password gives ny login node access to ny RSA secret. It can use
that secret to "inpersonate" me on any requests it makes on ny
behal f. It should forget all secrets associated with ne when | |og
off. This limts the trust placed in conputer systens. |f someone
takes control of a conputer, they can inpersonate all people who use
that conputer after it is taken over but no others.

Normal |y when | access a network service, | want to strongly
authenticate to it. That is, | want to prove ny identity to that
service, but I don't want to allow that service to |earn anything
that would allow it to inpersonate nme. This allows nme to use a
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service without trusting it for nore than the service it is
delivering. Wen using some services, for exanple renote | ogin
services, | may want that service to act on ny behalf in calling
addi ti onal services. DASS provides a nmechani smwhereby | can pass
secrets to such services that allow themto inpersonate ne.

Future versions of this architecture may allow "limted del egation"
so that a user may del egate to a server only those rights the server
needs to carry out the user’s wishes. This version can limt

del egation only in terns of tine. The information a user gives a
server (other than the initial |ogin node) can be used to inpersonate
the user but only for alinmted period of tinme. Smart cards wll
permit that tine linmtation to apply to the initial |ogin node as
wel | .

1.2.4 Certification Authorities

A flaw in the strong authentication nechani sm descri bed above is that
it assumes that every "principal" (user and node) knows the public
key of every other principal it wants to authenticate. |If | can fool
a server into thinking nmy public key is actually your public key, |
can inpersonate you by signing a nessage, saying it is fromyou, and
havi ng the server verify the nmessage with what it thinks is your
public key.

To avoid the need to securely install the public key of every
principal in the database of every other principal, the concept of a
"Certification Authority" was invented. A certification authority is
a principal trusted to act as an introduction service. Each
principal goes to the certification authority, presents its public
key, and proves it has a particular nanme (the exact nechani sms for
this vary with the type of principal and the | evel of security to be
provided). The CA then creates a "certificate" which is a nessage
containing the name and public key of the principal, an expiration
date, and bookkeeping information signed by the CA's private key.

Al'l "subscribers" to a particular CA can then be authenticated to one
anot her by presenting their certificates and proving know edge of the
correspondi ng secret. CAs need only act when new principals are
bei ng naned and new private keys created, so that can be naintained
under tight physical security.

The two problenms with the schene as described so far are "revocation”
and "scal eability".

1.2.4.1 Certificate Revocation

Revocation is the process of announcing that a key has (or may have)
fallen into the wong hands and should no | onger be accepted as proof
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of sone particular identity. Wth certificates as descri bed above,
someone who | earns your secret and your certificate can inpersonate
you indefinitely - even after you have | earned of the conpronise. It
| acks the ability corresponding to changi ng your password. DASS
supports two i ndependent mnechanisns for revoking certificates. In the
future, a third may be added.

One nmethod for revocation is using tinmeouts and renewal s of
certificates. Part of the signed nessage which is a certificate may
be a tinme after which the certificate should not be believed.
Periodically, the CA would renew certificates by signing one with a
later tineout. |If a key were conpronised, a new key woul d be
generated and a new certificate signed. The old certificate would
only be valid until its timeout. Tineouts are not perfect revocation
nmechani sns because they provide only slow revocation (timeouts are
typically measured in nonths for the I oad on the CA and contmuni cati on
with users to be kept manageabl e) and they depend on servers having
an accurate source of the current time. Sonmeone who can trick a
server into turning back its clock can use expired certificates.

The second nethod is by listing all non-revoked certificates in the
nam ng service and believing only certificates found there. The
advantage of this nmethod is that it is alnpbst i mediate (the only
delay is for nanme service "skul king" and caching delays). The

di sadvant ages are: (1) the availability of authentication is only as
good as the availability of the nam ng service and (2) the security
of revocation is only as good as the security of the naming service.

A third nmethod for revocation - not currently supported by DASS - is
for certification authorities to periodically issue "revocation
lists" which list certificates which should no | onger be accept ed.

1.2.4.2 Certification Authority H erarchy

Wiile using a certification authority as an introduction service
scal es nuch better than having every principal |earn the public key
of every other principal by sonme out of band neans, it has the
problemthat it creates a central point of trust. The certification
authority can inpersonate any principal by inventing a new key and
creating a certificate stating that the new key represents the
principal. 1In a large organization, there may be no individual who
is sufficiently trusted to operate the CA. Even if there were, in a
| arge organi zation it would be inpractical to have every individua
authenticate to that single person. Replicating the CA solves the
avail ability problem but nakes the trust problem worse. Wen
authentication is to be used in a global context - between conpanies
- the concept of a single CA is untenable.
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DASS addresses this problemby creating a hierarchy of CAs. The CA
hierarchy is tied to the namng hierarchy. For each directory in the
nanespace, there is a single CA responsible for certifying the public
keys of its nmenbers. That CA will also certify the public keys of
the CAs of all child directories and of the CA of the parent
directory. Wth this cross-certification, it is possible know ng the
public key of any CAto verify the public keys of a series of
internediate CAs and finally to verify the public key of any

princi pal .

Because the CA hierarchy is tied to the nam ng hierarchy, the trust
placed in any individual CAis limted. |If a CAis conpromsed, it
can inpersonate any of the principals listed inits directory, but it
cannot inpersonate arbitrary principals.

DASS provi des mechani snms for every principal to know the public key
of its "parent” CA - the CA controlling the directory in which it is
naned. The result is the following rules for the inplications of a
conpr oni sed CA

a) A CA can inpersonate any principal named in its directory.

b) A CA can inpersonate any principal to a server naned in its
directory.

c) A CA can inpersonate any principal named in a subdirectory to
any server not named in the sane subdirectory.

d) A CA can inpersonate to any server in a subdirectory any
principal not naned in the sane subdirectory.

The inplication is that a conpromise lowin the naning tree wll
conpromni se all principals belowthat directory while a conproni se
high in the naming tree will conprom se only the authentication of
principals far apart in the namng hierarchy. |In particular, when
mul ti pl e organi zati ons share a nanespace (as they do in the case of
X.500), the conpronise of a CAin one organization can not result in
fal se authentication wi thin another organization.

DASS uses the X. 500 directory hierarchy for principal namng. At the
top of the hierarchy are names of countries. National authorities
are not expected to establish certification authorities (at |east
initially), so an alternative mechani smnust be used to authenticate
entities "distant™ in the nam ng hierarchy. The mechanismfor this
in DASS is the "cross-certificate" where a CA certifies the public
key for some CA or principal not its parent or child. By limting
the chains of certificates they will use to parent certificates
followed by a single "cross certificate" foll owed by child
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certificates, a DASS inplenentation can avoid the need to have CAs
near the root of the tree or can avoid the requirenent to trust them
even if they do exist. A special case can al so be supported whereby
a gl obal authority whose nane is not the root can certify the |ocal
roots of independent "islands".

1.2.5 User vs. Node Authentication

In concept, DASS nechani sms support the nutual authentication of two
principals regardl ess of whether those principals are people,
conmputers, or applications. Those nechani sns have been extended,
however, to deal with a common case of a pair of principals acting
together (a user and a node) authenticating to a single principal (a
renote server). This is done by having optionally in each
credentials structure two sets of secrets - one for the user and one
for the node. When authentication is done using such credentials,
both secrets sign the request so the receiving party can verify that
both principals are present.

This setup has a nunber of advantages. |t pernmits access controls to
be enforced based on both the identity of the user and the identity
of the originating node. It also makes it possible to define users

of systens who have no network wide identities who can access network
resources on the basis of node credentials alone. The security of
such a setup is | ess because a node can inpersonate all of its users
even when they are not logged in, but it offers an easier transition
fromexisting global identities for all users.

1.2.6 Protection of User Keys

DASS nechani sms general |y deal with authentication between principals
each knowing a private key. For principals who are people, special
nmechani sns are provided for maintaining that private key. In
particular, it many cases it will be npbst convenient to keep
passwords as secrets rather than private keys. This architecture
specifies a neans of storing private keys encrypted under passwords.
This woul d provide security as good as hiding a private key were it
not that people tend to choose passwords froma small space (like
words in a dictionary) such that a password can be nore easily
guessed than a private key. To address this potential weakness, DASS
specifies a protocol between a |ogin node and a | ogi n agent whereby
the login agent can audit and limt the rate of password guesses.

Use of these features is optional. A user with a smart card coul d
store a private key directly and bypass all of these mechanisns. |If
users can be forced to choose "good" passwords, the |ogin agent could
be elininated and encrypted credentials could be stored directly in

t he nami ng service.
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Anot her way in which user keys are protected is that the architecture
does not require that they be avail able except briefly at |ogin.

This reduces the threat of a user wal king away froma | ogged on

wor kstation and havi ng soneone take over the workstation and extract
his key. It also makes the use of RSA based snart cards practical
the card could keep the user’s private key and execute one signhature
operation at login time to authenticate an entire session.

1.3 What This Docunent Won't Tell You

Architecture docunents are by their nature difficult to read. This
one is no exception. The reason is that an architecture docunent
contains the details sufficient to build interoperable

i npl erentations, but it is not a design specification. It goes out of
its way to | eave out any details which an inpl enentation could choose
without affecting interoperability. It also does not specify all the
uses of the services provided because these services are properly
regarded as general purpose tools.

The remai nder of this section includes information which is not
properly part of the authentication architecture, but which may be
useful in understanding why the architecture is the way it is.

1.3.1 How DASS is Enbedded in an Operating System

While architecturally DASS does not require any operating system
support in order to be used by an application (other than the
services listed in Section 2), it is expected that actua

i npl ementations of DASS will be closely tied to the operating systens
of host conputers. This is done both for security and for

conveni ence.

In particular, it is expected that when a user logs into a node, a
set of credentials will be created for that user and then associ at ed
by the operating systemwith all processes initiated by or on behalf
of the user. Wen a user delegates to a service, the renote
operating systemis expected to accept the delegation and start up
the renpte process with the del egated credentials. Mst nodes are
expected to have credentials of their own and support the concept of
user accounts. Wien user credentials are created, the node is
expected to verify themin its own context, determine the appropriate
user account, and add node credentials to the created credentials
set .

1.3.2 Forns of Credentials

In the DASS architecture, there is a single data structure called
"Credentials" with a |arge nunber of optional parts. In an
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i nplementation, it is possible that not all of the architecturally
al | oned subsets will be supported and credentials structures with
di fferent subsets of the data may be inplenented quite differently.

The maj or categories of credentials likely to be supported in an
i mpl enentation are:

- Caimant credentials - these are the credentials which woul d
normal Iy be associated with a user process in order that it be
able to create authentication tokens. It would contain the
user’s nanme, login ticket, session private key, and (at | east
logically) I ocal node credentials and cached out goi ng
contexts.

- Verifier credentials - these are the credentials which would
normal |y be associated with a server which nust verify tokens
and produce nutual authentication response tokens. Since
servers may be started by a node on demand, sone
representation of verifier credentials nust exist independent
of a process. |f an operating systemw shes to authenticate a
request before starting a server process, the credentials nust
exist in usable form An inplenentation may choose to have
all services on a "node" share a verifier credentials
structure, or it may choose to have each service have its own.

- Conbined credentials - architecturally, a server may have a
structure which is both claimnt credentials and verifier
credentials conbined so that the server may act in either role
using a single structure. There is sone overlap in the
contents. There is no requirenment, however, that an
i mpl ement ati on support such a structure.

- Stub credentials - In the architecture, a credentials
structure is created whenever a token is accepted. |f del egation
took place, these are claimnt credentials usable by their
possessor to create additional tokens. |If no del egation took
pl ace, this structure exists as an architectural place hol der
agai nst which an inplenentation may attenpt to authenticate
user and node nanes. An inplenmentation m ght choose to
i mpl emrent  stub credentials with a different nmechani smthan
claimant or verifier credentials. |In particular, it mnight do
what ever user and node authentication is useful itself and not
support this structure at all.
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1.3.3 Support for Alternative Certification Authority
I mpl enrent ati ons

A notivating factor in nmuch of the design of DASS is the need to
protect certification authorities from conpronise. CAs are only used
to create certificates for new principals and to renew t hem on
expiration (expiration intervals are likely to be neasured in

nont hs). They therefore do not need to be highly avail able. For

maxi num security, CAs could be inplenented on standal one PCs where
the hardware, software, and keys can be locked in a safe when the CA
is not in use. The certificates the CA generates nmust be delivered to
the naming service to be registered, and a possi bl e nmechani sm for
this is for the CAto have an RS232 line to an on-line conponent

whi ch can pass certificates and related information but not login
sessions. The intent would be to nake it inplausible to nount a
network attack against the CA. Alternatively, certificates could be
carried to the network on a floppy disk

For CAs to be secure, a whole host of design details nust be done
right. The nost inportant of these is the design of user and system
manager interfaces that make it difficult to "trick"” a user or system
manager into doing the wwong thing and certifying an inpostor or
revealing a key. Mechanisns for generating keys nust al so be
carefully protected to assure that the generated key cannot be
guessed (because of |ack of randommess) and is not recorded where a
penetrator can get it. Because a certificate contains relatively
little human intelligible information (its nost inportant components
are U Ds and public keys), it will be a challenge to design a user
interface that assures the hunman operator only authorizes the signing
of intented certificates. Such considerations are beyond the scope of
the architecture (since they do not affect interoperability), but
they did affect the design in subtle ways. |In particular, it does
not assune uni form security throughout the CA hierarchy and is
designed to assure that the conpromise of a CAin one part of the

hi erarchy does not have gl obal inplications.

The architecture does not require that CAs be off-line. The CA could
be software that can run on any node when the proper secret is
installed. Adm nistrative conveni ence can be gained by integrating
the CA with account registration utilities and nam ng service

mai nt enance. As such, the CA would have to be on-line when in use in
order to register certificates in the nam ng service. The CA key
coul d be unl ocked with a password and the password could be entered
on each use both to authenticate the CA operator and to assure that
conproni se of the host node while the CAis not in use will not
conproni se the CA.  This design would be subject to attacks based on
pl anting Trojan horses in the CA software, but is entirely
interoperable with a nore secure inplenentation. Realistic tradeoffs
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must be nade between security, cost, and administrative conveni ence
bearing in nmind that a systemis only as secure as its weakest |ink
and that there is no benefit in making the CA substantially nore
secure than the other conponents of the system

1.3.4 Services Provided vs. Application ProgramInterface

Section 3 of this docunment specifies "abstract interfaces" to the
services provided by DASS. This nmeans it tells what services are
provi ded, what paraneters are supplied by the caller, and what data
is returned. It does not specify the calling interfaces. Calling
interfaces may be platform operating system and | anguage dependent.
They do not affect interoperability; different inplenentations which
i npl emrent conpletely different calling interfaces can stil

i nteroperate over a network. They do, however, affect portability. A
program whi ch runs on one platformcan only run on anot her which

i npl emrents an identical API

In order to support portability of applications - not just between

i npl enent ati ons of DASS but between inplenmentati ons of DASS and

i npl enentati ons of Kerberos - a "Ceneric Security Service API" has
been designed and is outlined in Annex B. This APl could be the only
"publ i shed” interface to DASS services. This interface does not,
however, give access to all the functions provided by DASS and it
provi des sone non- DASS services. It does not give access to the

"l ogin" service, for exanple, so the login function cannot be

i nplemented in a portable way. Cearly an inpl enmentation nust provide
sone inplenentation of the login function, though perhaps only to one
system program and the inplenentati on need not be portable.

Simlarly, the Generic APl provides no access to node authentication
i nformati on, so applications which use these services may not be
portabl e.

The Ceneric APl provides services for encryption of user data for
integrity and possibly privacy. These services are not specified as a
part of the DASS architecture. This is because we envisioned that
such services would be provided by the comruni cations network and not
in applications. These services are provided by the Generic API
because these services are provided by Kerberos, there exi st
appl i cations which use these services, and they are desired in the
context of the | ETF- CAT work. The DASS architecture includes a Key

Di stribution service so that the encryption functions of the Generic
APl can be supported and integrated. Annex B specifies how t hose
servi ces can be inplenmented using DASS servi ces.

The Services Provided also differ fromthe GSSAPI because there are

i nportant extensions envisioned to the APl for future applications
and it was inportant to assure that architecturally those services
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were available. In particular, DASS provides the ability for a
principal to have nmultiple aliases and for the receiver of an

aut hentication token to verify any one of them W want DASS to
support the case where a server only learns the nane it is trying to
validate in the course of evaluating an ACL. This may be long after
a connection is accepted. The Services Provided section therefore
separates the Accept_token function fromthe Verify Principal Nane.
The other notivation behind a different interface is that DASS

provi des node authentication - the ability to authenticate the node
fromwhich a request originates as well as the user. Because

Ker ber os provi des no such nechanism the capability is mssing from
the GSSAPI, but we expect sone applications will want to nmake use of
1t.

1.3.5 Use of a Naning Service

Wth the exception of the syntactical representation of nanes, which
is tied to X. 500, the DASS architecture is designed to be independent
of the particular underlying naning service. Wile the intention is
that certificates be stored in an X. 500 naming service in the fields
architecturally reserved for this purpose in the standard, this
specification allows for the possibility of different fornms of
certificate stores. The SPX inplenentati on of DASS inplenments its
own certificate distribution service because we did not want to

i ntroduce a dependency on an X 500 nam ng service.

1.3.6 Key Hiding - Credentials

The abstract interfaces described in section 3 specify that
"credential s" and "keys" are the inputs and outputs of various
routines. Credentials structures in particular contain secret

i nformati on which should not be nade available to the calling
application. 1In nost cases, keeping this information from
applications is sinply a matter of prudence - a ni sbehaving
application can do nearly as much damage using the credentials as it
can by using the secrets directly. Having access to the keys
thensel ves may allow an application to bypass auditing or |eak a key
to an acconplice who can use it on another node where a | arge anount
of activity is less likely to be noticed. |In sone cases, nost
dramatically where a "node key" is present in user credentials, it is
vital that the contents of the credentials be kept out of the hands
of applications.

To acconplish this, a concrete interface is expected to create
"credential s handl es" that are passed in and out of DASS routines.
The credentials thensel ves woul d be kept in sonme portion of menory
where unprivileged code can’'t get at them
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There is another aspect of the way credentials are used which is
inportant to the design of real inplenentations. |In normal use, a
user will create a set of credentials in the process of |ogging on to
a system and then use them from many processes or jobs. Wen many
processes share a set of credentials, it is inportant for the sake of
performance that they share one set of credentials rather than having
a copy of the credentials made for each. This is because infornmation
is cached in credentials as a side effect of some requests and for
good performance those caches shoul d be shared.

As an exanpl e, consider a system executing a series of copy conmands
noving files fromone systemto another. The credentials of the user
wi |l have been established when the user | ogged on. The first tinme a
copy is requested, a new process will start up, open a connection to
the destination system and create a token to authenticate itself.
Creating that token will be an expensive operation, but infornation
will be conmputed and "cached" in the credentials structure which will
al  ow any subsequent tokens on behalf of that user to that server to
be conmputed cheaply. After the copy conpletes, the connection is
closed and the process termnates. In response to a second copy
request, another new process will be created and a new t oken
conmputed. For this operation to get a performance benefit fromthe
caching, the infornmation conputed by the first process nust sonehow
make it to the second.

A model for how this caching might work can be seen in the way

Ker beros caches credentials. Kerberos keeps credentials in a file
whose nane can be conmputed fromthe nane of the local user. This
fileis initialized as part of the login process and its protection
is set so that only processes running under the U D of the user may
read and wite the file. Processes cache information there; al
processes running on behalf of the user share the file.

There are two problens with this schene: first, on a diskless node
putting information in a file exposes it to eavesdroppers on the
network; second, it does not acconplish the "key hiding" function
described earlier in this section. In a nore secure inplenentation
the kernel or a privileged process would nanage sone "pool " of
credentials for all processes on a node and woul d grant access to
themonly through the DASS calls. Credentials structures are conplex
and varying | ength; DASS may organi ze themas a set of pools rather
than as contiguous bl ocks of data. All such design issues are
"beyond the scope of the architecture”. |nplenentations nust decide
how to control access to credentials. They could copy the Kerberos
schenme of having credentials available to processes with the U D of
the login session which created themand to privileged processes or
there may be a nore el aborate nechani smfor "passing" credentials
handl es from process to process. This design should probably foll ow
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the operating system nmechani sns for passing around |ocal privileges.
1.3.7 Key Hding - Contexts

The "GSSAPI" has a concept of a security context which has sone of
the sanme key hiding problens as a credentials structure. Security
contexts are used in calls to cryptographically protect user data
(fromnodification or fromdisclosure and nodification) using keys
establ i shed during authentication. The "services provided"

speci fication says that create_ and accept _token return a "shared
key" and "instance identifier". The GSSAPI says that a context
handle is returned which is an integer. A secure inplenentation
woul d keep the key and instance identifier in protected nenory and
only allow access to themthrough provided interfaces.

Unlike credentials, there is probably no need to provide nechani sns
for contexts to be shared between processes. Contexts will normally
be associated with some notion of a communi cations "connection" and
ends of a connection are not normally shared. |[If an inplenmentation
chooses to provide additional services to applications |ike nmessage
sequenci ng or duplicate detection, contexts will have to contain
additional fields. These can be created and mai ntai ned w thout any
addi ti onal authentication services.

1.4 The Rel ationship between DASS and | SO St andards

This section provides an introduction to DASS authentication in terns
of the I SO Aut hentication Framework (DP10181-2). The purpose of
this introduction is to give the reader an intuitive understandi ng of
the way DASS works and how its mechani sns and term nology relate to
standards. Inportant details have been onmtted here but are spelled
out in section 3.

1.4.1 Concepts

The primary goal of authentication is to prevent inpersonation, that
is, the pretense to a false identity. Authentication always involves
identification in some form Wthout authentication, anyone could
claimto be whonever they w shed and get away with it.

If it didn't matter with whom one was comruni cati ng, el aborate

procedures for authentication would be unnecessary. However, in nost
systens, and in tinmesharing and distributed processing environnents
in particular, the rights of individuals are often circunscribed by
security policy. In particular, authorization (identity based access
control) and accountability (audit) provisions could be circumvented
if masqueradi ng attenpts were inpossible to prevent or detect.
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Al most all practical authentication nmechanisns suitable for use in
distributed environments rely on know edge of sone secret

information. Most differences lie in how one presents evidence that
they know the secret. Sone schenes, in particular the faniliar sinple
use of passwords, are quite susceptible to attack. Generally, the
threats to authentication nay be classified as:

- forgery, attenpting to guess or otherw se fabricate evidence;

- replay, where one can eavesdrop upon another’s authentication
exchange and | earn enough to inpersonate thenm and

- interception, where one slips between the conmunicants and is
able to nodify the conmuni cati ons channel unnoti ced.

Most such attacks can be countered by using what is known as strong
aut hentication. Strong authentication refers to techni ques that
permt one to provide evidence that they know a particul ar secret

wi t hout revealing even a hint about the secret. Thus neither the
entity to whomone is authenticating, nor an eavesdropper on the
conversation can further their ability to inpersonate the
authenticating principal at some future tinme as the result of an
aut henti cati on exchange.

Strong authentication mechanisns, in particular those used here, rely
on cryptographic techniques. In particular, DASS uses public key
cryptography. Note that interception attacks cannot be countered by
strong authentication al one, but generally need additional security
mechani sns to secure the communi cati on channel, such as data
encryption.

1.4.2 Principals and Their Rol es

Al'l authentication is on behalf of principals. In DASS the follow ng
types of principals are recogni zed:

- user principals, normally people with accounts who are
responsi ble for performng particular tasks. Generally it is
users that are authorized to do things by virtue of having
been granted access rights, or who are to be held accountable
for specific actions subject to being audited.

- server principals, which are accessed by users.
- node principals, corresponding to |ocations where users and

servers, or nore accurately, processes acting on behal f of
princi pal s can reside.
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Principals can act in one of two capacities:

- the claimant is the active entity seeking to authenticate
itself, and

- the verifier is the passive entity to whomthe claimant is
aut henti cati ng.

Users normal ly are claimants, whereas servers are usually verifiers,
al t hough sonetimes servers can al so be cl ai mants.

There is another kind of principal:

- certification authorities (CA s) issue certificates which
attest to another principal’s public key.

1.4.3 Representation, Delegation and Representation Transfer

O course, although it is users that are responsible for what the
comput er does, human beings are physically unable to directly do
anything within a conputer system In point of fact, it is a
process executing on behalf of a user that actually perforns
useful work. Fromthe point of view of performng security
controll ed functions, the process is the agent, or

representative, of the user, and is authorized by that user to do
things on his behalf. In the ternms used in the | SO Authentication
Framework, the user is said to have a representation in the
process.

The representation has to come into exi stence sonehow. Del egation
refers to the act of creating a representation. A user is said to
create a representation for thenselves by delegating to a process. |If
the user creates another process, say by doing an rlogin on a
different conputer, a representation nay be needed there as well. This
may be acconplished automatically by a process known as representation
transfer. DASS uses the termdelegation to also nmean the act of
creating additional representations on a renote systens.

A representation is instantiated in DASS as credentials. Credentials
include the identity of the principal as well as the cryptographic
"state" needed to engage in strong authentication procedures. d ai mant
information in credentials enable principals to authenticate

t hensel ves to others, whereas verifier information in credentials
permt principals to verify the clainms of others. Credentials
intended primarily for use by a claimant will be referred to as
claimant credentials in the text which follows. Credentials intended
primarily for use in verification will be referred to as verifier
credentials. A particular set of credentials nmay or may not contain
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all of the data necessary to be used in both roles. That wll depend

on the nechani snms by which the credentials were created.

In sone contexts, but not here, the concept of representation
and/ or delegation is sonmetinmes referred to as proxy. This termis
used in ECVMA TR/ 46. W avoid use of the term because of possible
confusion with an unrelated use of the termin the context of
DECnet .

1.4.4 Key Distribution, Replay, Mitual Authentication and Trust

Strong authentication uses cryptographic techniques. The
particul ar mechani sns used in DASS result in the distribution of
cryptographi c keys as a side effect. These keys are suitable for
use for providing a data origin authentication service and/or a
data confidentiality service between a pair of authenticated
princi pal s.

Repl ay detection is provided using tinmestanps on rel evant

aut henti cati on nessages, conbined with renmenbering previously
accepted nessages until they becone "stale". This is in contrast
to other techni ques, such as challenge and response exchanges.

Aut henti cati on can be one-way or nutual. One-way authentication is

when only one party, in DASS the claimant, authenticates to the other.

Mut ual aut hentication provides, in addition, authentication of the
verifier back to the claimant. In certain comuni cati ons schenes,
exanpl e connectionless transfer, only one-way authentication is

meani ngful . DASS supports nutual authentication as a sinple extension

of one-way authentication for use in environnents where it nakes
sense.

DASS potentially can allow many different "trust relationships”
to exist. Al principals trust one or nore CA's to safeguard the
certification process. Principals use certificates as the basis
for authenticating identities, and trust that CA' s which issue
certificates act responsibly. Users expect CA s to nmake sure that
certificates (and rel ated secrets) are only made for principals
that the CA knows or has properly authenticated on its own.

1.5 An Aut hentication Wl kt hr ough
The OSI Aut hentication Framework characterizes authentication as

occurring in six phases. This section attenpts to descri be DASS
in these terns.
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1.5.1 Installation

In this phase, principal certificates are created, as is the
addi tional information needed to create clainmant and verifier
credentials. OSI defines three sub-phases:

- Enrollnment. In DASS, this is the definition of a principal in
terms of a key, name and U D

- Validation, confirmation of identity to the satisfaction of
the CA, after which the CA generates a certificate.

- Confirmation. |In DASS, this is the act of providing the user
with the certificate and with the CA's own nane, key and Ul D,
foll owed up by the user creating a trusted authority for that
CA. Atrusted authority is a certificate for the CA signed by
t he user.

Included in this step in DASS is the posting of the certificate so as
to be available to principals wishing to verify the principal’s
identity. In addition, the user principal saves the trusted authority
so as to be available when it creates credentials.

1.5.2 Distribution
DASS distributes certificates by placing themin the nane servi ce.
1.5.3 Acquisition
Whenever principals wish to authenticate to one another, they access
the Nanme Service to obtain whatever public key certificates they need
and create the necessary credentials. I n DASS, acquisition nmeans
obt ai ni ng credenti al s.
Clai mant credentials inplement the representation of a principal in a
process, or, nore accurately, provide a representation of the
principal for use by a process. In making this representation, the
principal delegates to a tenporary del egation key. In this fashion
the claimant’s long term principal key need not remain in the system
Cl ai mant credentials are nade by invoking the get credentials
primtive. Caimnt credentials are a DASS specific data structure
cont ai ni ng:
- a nane

- a ticket, a data structure containing
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a validity interval
U D, and
(tenporary) del egation public key, along with a

digital signature on the above nade with the principa
private key

- the del egation private key

Optionally in addition, there may be credential information relating
to the node on which the user is logged in and the account on that
node. A detailed description of all the information found in
credentials can be found in section 3. Verifier credentials are nade
with initialize_server. Verifier credentials consist of a principal
(long term private key. The rationale is that these credentials are
usual |y needed by servers that nust be able to run indefinitely

wi thout re-entry of any long term key.

In addition, claimants and verifiers have a trusted authority, which
consists of information about a trusted CA. That information is its:

- nanme (this will appear in the "issuer"” field in principa
certificates),

- public key (to use in verifying certificates issued by that
CA), and

- UD

Trusted authorities are used by principals to verify certificates for
other principals’ public keys. CAs are arranged in a hierarchy
correspondi ng to the naming hierarchy, where each directory in the
nam ng hierarchy is controlled by a single CA. Each CA certifies the
CA of its parent directory, the CAs of each of its child directories,
and optionally CAs el sewhere in the naming hierarchy (mainly to deal
with the case where the directories up to a commopn ancestor | ack
CAs). Even though a principal has only a single CA as a trusted
authority, it can securely obtain the public key of any principal in
t he nanmespace by "wal ki ng the CA hierarchy".

1.5.4 Transfer
The DASS exchange of authentication information is illustrated in
Figure 1-1. During the transfer phase, the DASS cl ai mant sends an

authentication token to the verifier. Authentication tokens are made
by invoking the create_token primtive. The authentication token is
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cryptographically protected and specified as a DASS data structure in
ASN. 1. The authentication token includes:

a ticket,

- a DES authenticating key encrypted using the intended
verifier’s public key

- one of the foll ow ng:

if delegation is not being performed, a digital signature on
the encrypted DES key using the del egation private key, or

if delegation is being perforned, sending the del egation
private key, DES encrypted using the DES authenticating key

- an authenticator, which is a cryptographi c checksum made usi ng
t he DES aut henticating key over a buffer containing

a tinmestanp

any application supplied "channel bindings". For exanple,
addresses or other context information. The purpose of this
field is to thwart substitution and replay attacks.

- additional optional information concerning node authentication
and context.

As a side effect, after init_authentication_context, the caller
receives a |local authentication context, a data structure containing:

- the DES key, and

- if mutual authentication is being requested, the expected
response.

In order to construct an authentication token, the clainmnt needs to
access the verifier's public key certificate fromthe Nane Service
(1 abel ed CDC, for Certificate Distribution Center, in the figure).

Note that while an authenticator can only be used once, it is

perm ssible to re-establish the same | ocal authentication context
multiple tines. That is, the ticket and DES key establi shnent
conponents of the authentication token may have a relatively |ong
lifetime. This permts a performance inprovenment in that repeated
applications of public key operations can be alleviated if one caches
aut henti cation contexts, along with other conponents froma
successfully used authentication token and the associated verified
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Figure 1 - Authentication Exchange Overvi ew
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1.5.5 Verification

Upon recei pt of an authentication token, the verifier extracts the
DES key using its verifier credentials, accesses the Nane Service
(1 abel ed CDC for Certificate Distribution Center) to obtain the
certificates needed to perform cryptographi c checks on the incomn ng
i nformation, and verifies all of the signatures on the received
certificates and the authentication token. Verification can result
in creation of new clainant credentials if delegation is perforned.

As part of this process, verified authenticators are retained for a
suitabl e ti meout peri od.

1.5.6 Unenrol nent

This is the renoval of information fromthe Nanme Service. The only
other form of revocation supported by DASS is certificate tinmeout.
Every certificate contains an expiration tinme (expected in ordinary
use to be about a year fromits signing date). DASS does not
currently support the revocation lists in X 5009.

2. Services Used

Asi de from operating system services needed to maintain its interna
state, DASS relies on a global distributed database in which to store
its certificates, a reliable source of time, and a source of random
nunbers for creating cryptographic keys.

2.1 Tine Service

DASS requires access to the current tine in several of its
algorithms. Sone of its uses of tinme are security critical. 1In

ot hers, network synchronization of clocks is required. DASS does
not, however, depend on having a single source of time which is both
secure and tightly synchronized.

The requirenents on system provided tinme are:

- For purposes of validating certificates and tickets, the
system needs access to know the date and tinme accurate to
within a few hours with no particular synchronization
requirements. If this tinme is inaccurate, then valid requests
may be rejected and expired nmessages may be accept ed.
Certificate expiration is a backup revocation nechanism so
this can only cause a security conpronise in the event of
multiple failures. |In theory, this could be provided by
having a | ocal clock on every node accurate to within a few
hours over the life of the product to provide this function
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If an insecure network tinme service is used to provide this
time, there are theoretical security threats, but they are
expected to be logistically inpractical to exploit.

- For purposes of detecting replay of authentication tokens, the
system needs access to a strictly nonotonic tinme source which
i s reasonably synchroni zed across the network (within a few
m nutes) for the systemto work, but inaccuracy does not
present a security threat except as noted below. It may
constitute an availability threat because valid requests nay
be rejected. In order to get strict nonotonicity in the
presence of a rapid series of requests, tinme nust be returned
with high precision. There is no requirenent for a high
degree of accuracy. Inaccurate tinme could present a security
threat in the followng scenario: if a client’s clock is nmade
sufficiently fast that its tokens are rejected, soneone
harvesting those tokens fromthe wire could replay themlater
and inpersonate the client. |In sone environnments, this m ght
be an easier threat than harvesting tokens and preventing
their delivery.

- For purposes of aging stale entries from caches, DASS requires
reasonably accurate timng of intervals. To the extent that
intervals are reported as shorter than the actually were,
revocation of certificates fromthe nam ng service nay not be
as tinely as it should be.

2.2 Random Nunbers

In order to generate keys, DASS needs a source of "cryptographic
qual i ty" random nunbers. Cryptographic quality neans that
knowi ng any of the "random nunbers"” returned froma series and
knowing all state information which is not protected, an attacker
cannot predict any of the other nunbers in the series. Hardware
sources are ideal, but there are alternative techni ques which may
al so be acceptable. A 56 bit "truly randont seed (say froma
series of coin tosses) could be used as a DES key to encrypt an
infinite length known text block in CBC node to produce a pseudo-
sequence provided the key and current point in the sequence were
adequately protected. There is considerabl e controversy
surroundi ng what constitutes cryptographic quality random
nunbers, and it is not a goal of this docunent to resolve it.

2.3 Nami ng Service
DASS stores creates and uses "certificates" associated with every

principal in the system and encrypted credential s associ ated
with nost. This information is stored in an on-line service
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associated with the principal being certified. The long term
vision is for DASS to use an X. 500 nani ng service, and DASS wil |
fromits inception authenticate X 500 nanes. To avoid a
dependence on having an X. 500 naming service available (and to
gain the benefits of a "login agent” that controls password
guessing), an alternative certificate distribution center
protocol is also described.

The specific requirenents DASS pl aces on the nam ng service are:

- It nust be highly available. A user’s naming service entry
nmust be avail able to any node where the user is to obtain

services (or service will be denied). A server’s nam ng
service entry must be avail able from any node from which the
service is to be invoked (or service will be denied).

- It nust be tinmely. The presence of "stale" information in the
nani ng service nmay cause sone problens. Wen a password
changes, the old password may remain valid (and the new
password invalid) to the extent the nami ng service provides
stale informati on. Wen a user or server is added to the
network, it will not be able to participate in authentication
until the information added to the naming service is avail able
at the node doing the authentication. |In the unusua
circunstance that a key changes, the entity whose key has
changed will not be able to use the new key until the new
certificate is uniformy avail able.

- It nust be secure with regard to certain specific properties.
In general, the security of DASS protected applications does

not depend on the security of the nanming service. It is
expected that the availability needs of the nam ng service
will prevent it frombeing as secure as sone applications need

to be. There are two aspects of DASS security which do depend
on the security of the naning service: tinmely revocation of
certificates and protection of user secrets against dictionary
based password guessi ng. DASS depends on the renpval of
certificates fromthe naming service in order to revoke them
nore quickly than waiting for themto tine out. For this
nmechani smto provide any actual security, it must not be
possible for a network entity to "inpersonate" the naning
service and the naning service nust be able to enforce access
controls which prevent a revoked certificate from being
reinstated by an unauthorized entity. |In the long run, it is
expected that DASS itself will be used to secure the nam ng
service, which presents certain potential recursion problens
(to be addressed in the nam ng service design). |If the nam ng
service is not authenticated (as is expected in early
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versions) attacks where a revoked certificate is "reinstated"
t hrough i npersonation of the nami ng service are possible.

The specific functions DASS requests of the naming service are
si nmpl e:

- Gven an X.500 nane, store a set of certificates associ ated
wi th that nane.

- Gven an X.500 nane, retrieve the set of certificates
associ ated with that nane.

- Gven an X. 500 name, store a set of encrypted credentials
associ ated with that name.

G ven and X. 500 nane, retrieve a set of encrypted credentials
associ ated with that name.

| mpl enent ati on over a particular nanmi ng service may inplenment nore
speci al i zed functions for reasons of efficiency. For exanple, the
certificates associated with a nane nmay be separated into severa
sets (child, parent, cross, self) so that only the rel evant ones nay
be retrieved. |In order that access to the naming service itself be
secure, the protocols should be authenticated. Certificates should
general |y be readabl e wi thout authentication in order to avoid
recursion problens. Requests to read encrypted credentials should be
speci al i zed and shoul d i ncl ude proof of know edge of the password in
order that the nam ng service can audit and sl ow down fal se password
guesses.

The followi ng sections describe the interfaces to specific nam ng
servi ces:

2.3.1 Interface to X 500

Certificates associated with a particular nane are stored as
attributes of the entry as specified in X 509. X 509 defines
attributes appropriate for parent and cross certificates
(CrossCertificatePair, CACertificate) for some principals; we wll
have to define a DASSUser Princi pal object class including these
attributes in order to properly use themw th ordinary users.
Retrieval is via normal X 500 protocols. Certificates should be
wor | d readabl e and nodifiable only by appropriate authorities.

Encrypted credentials are stored with the entry of the principal
under a yet to be defined attribute. The credentials should be
encoded as specified in section 4. In the absence of extensions to
the X 500 protocol to control password guessing, the encrypted
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credentials should be world readabl e and updatabl e only by the naned
princi pal and other appropriate authorities.

2.3.2 Interface to CDC

The CDC (Certificate Distribution Center) is a special purpose name
server created to service DASS until an X 500 service is available in
all of the environnents where DASS needs to operate. The CDC uses a
speci al purpose protocol to comrunicate with DASS clients. The
protocol was designed for efficiency, sinplicity, and security. CDCs
use DASS as an authenticati on nmechani smand to protect encrypted
credentials fromunaudited password guessing.

Each DASS client naintains a list of CDCs and the portion of the
nanespace served by that CDC. Each directory has a master replica
which is the only one which will accept updates. The CDCs maintain
consi stency with one another using protocols beyond the scope of this
docunment. When a DASS client wishes to make a request of a CDC, it
opens a TCP or DECnet connection to the CDC and sends an ASN. 1 (BER)
encoded request and receives a corresponding ASN. 1 (BER) encoded
response. Cients are expected to learn the IP or DECnet address and
port nunber of the CDC supporting a particular name froma | ocal
configuration file. To maxim ze perfornmance, the requests bundle
what woul d be several requests if nade in terns of requests for

i ndi vidual certificates. It is intended that all certificates needed
for an authentication operation be retrievable with at nost two CDC
request s/ responses (one to the CDC of the client and one to the CDC
of the server).

Docunented here is the protocol a DASS client would use to retrieve
certificates and credentials froma CDC and update a user password.
This protocol does not provide for updates to the certificate and
credential databases. Such updates mnmust be supported for a practical
system but could be done either by extensions to this protocol or by
| ocal security mechani sns inplenented on nodes supporting the CDC
Simlarly, availability can be enhanced by replicating the CDC
Automating the replication of updates could be inplenented by
extensions to this protocol or by some other mechanism This

speci fication assunes that updates and replication are |local matters
sol ved by individual CA/CDC inplenentations.

Requests and responses are encoded as foll ows:
2.3.2.1 ReadPrinCert Request
This request asks the CDC to return the child certificates and

sel ected incom ng cross certificates for the specified object. The
format of the request is:
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ReadPri nCert Request ::= [4] IMPLICI T SEQUENCE {
flags [0] BIT STRING DEFAULT {},
index [1] IMPLICIT | NTEGER DEFAULT O,
resol veFrom [ 2] Name OPTI ONAL,
princi pal Nane,
crossCertlssuers ListOlssuers OPTI ONAL

}
Li st Of | ssuers ::= SEQUENCE OF Nane

The first 24 bits of flags, if present, contain a protocol version
nunber. Cdients following this spec should place the value 2.0.0 in
the three bytes. Servers following this spec should accept any val ue
of the form1.x.x or 2.x.x. flags bits beyond the first 24 are
reserved for future use (should not be supplied by clients and shoul d
be ignored by servers).

index is only used if the response exceeds the size of a single
nmessage; in that case, the query is repeated with index set to the
val ue that was returned by ReadPri nCertResponse. resolveFrom and
principal inply a set of entities for which certificates should be
retrieved. resolveFrom (if present) nust be an ancestor of principa

and child certificates will be retrieved for principal and all nanes
whi ch are ancestors of principal but descendants of resolveFrom The
encodi ng of nanes is per X. 500 and is specified in nore detail in

section 4. The CDC returns the certificates in order of the object
they cane from parents before children

crossCertlssuers is a list of cross certifiers that would be believed

in the context of this authentication. |If supplied, the CDC may
return a chain of certificates starting with one of the named
crossCertlssuers and ending with the nanmed principal. One of

resol veFrom or crossCertlssuers nust be present in any request; if
both are present, the CDC may return either chain.

2.3.2.2 ReadPrinCert Response

This is the response a CDC sends to a ReadPrinCertRequest. Its
syntax is:
ReadPri nCert Response ::= [5] I MPLICI T SEQUENCE ({

status [0] IMPLICI T CDCstatus DEFAULT success,

i ndex [1] | NTEGER OPTI ONAL,

resolveTo [2] Nane OPTI ONAL,

cert Sequence [3] IMPLICIT Cert Sequence,

i ndexl nval i dator [4] OCTET STRING (SIZE(8)) OPTI ONAL,
flags [5] BIT STRI NG OPTI ONAL

}
Cert Sequence ::= SEQUENCE OF Certificate
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status indicates success or the cause of the failure.

index if present indicates that the request could not be fully
satisfied in a single request because of size lintations. The
request should be repeated with this index supplied in the request to
get nore.

resolveTo will be present if index is present and should be supplied
in the request for nore certificates. certSequence contains
certificates found matching the search criteria.

i ndexl nval i dator may be present and indicates the version of the

dat abase being read. |If a set of certificates is being read in

mul tiple requests (because there were too nany to return in a single
nmessage), the reader should check that the value for indexlnvalidator
is the same on each request. |If it is not, the server may have

ski pped or duplicated sone certificates. This field nust not be
present if the version nunber in the request was m ssing or version
1.x.X.

The first 24 bits of flags, if present, indicate the protocol version
nunber. I nplenenters of this version of the spec should supply 2.0.0
and shoul d accept any version nunber of the form1.x.x or 2.X.X.

2. 3. 2.3 ReadQut goi ngCert Request

This requests fromthe CDC a list of all parent and outgoi ng cross
certificates for a specified object. A CDCis capable of storing
cross certificates either with the subject or the issuer of the cross
certificate. 1In response to this request, the CDC will return al
parent and cross certificates stored with the issuer for the naned
principal and all of its ancestors. Its syntax is:

ReadQut goi ngCert Request ::= [6] I MPLICI T SEQUENCE ({
flags [0] BIT STRI NG DEFAULT {},
index [1] IMPLICIT | NTEGER DEFAULT O,
princi pal Name

}

The first 24 bits of flags is a protocol version nunmber and shoul d
contain 2.0.0 for clients inplenenting this version of the spec.
Servers inplementing this version of the spec should accept any
version nunber of the form1l.x.x or 2.x.x. The renmaining bits are
reserved for future use (they should not be supplied by clients and
t hey should be ignored by servers).

index is used for continuation (see ReadPrinCertRequest).
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principal is the name for which certificates are requested.

2. 3. 2.4 ReadQut goi ngCert Response
This is the response to a ReadQut goi ngCert Request. Its syntax is:

ReadQut goi ngCert Response: : = [7] I MPLICI T SEQUENCE {
status [0] IMPLICI T CDCSt at us DEFAULT success,
i ndex [1] | NTEGER OPTI ONAL,
certSequence [2] IMPLICIT Cert Sequence,
i ndexl nvalidator [3] OCTET STRI NG (Sl ZE(8))
OPTI ONAL,
flags [4] BIT STRI NG OPTI ONAL
}

Cert Sequence ::= SEQUENCE OF Certificate
status indicates success of the cause of failure of the operation
i ndex is used for continuation; see ReadPrinCertRequest.
certSequence is the list of parent and outgoing cross certificates.

i ndexl nvalidator is used for continuation; see ReadPrinCertResponse
(the same rules apply with respect to version nunbers).

The first 24 bits of flags, if present, contain the protocol version
nunber. Cients inplenenting this version of the spec should supply
the value 2.0.0. Servers should accept any values of the form1.x.x
or 2.x.Xx. The remaining bits are reserved for future use (they

shoul d not be supplied by clients and should be ignored by servers).

2.3.2.5 ReadCredenti al Request

This request is nmade to retrieve an principal’s encrypted
credentials. To prevent unaudited password guessing, this structure
i ncl udes an encrypted value that proves that the requester knows the
password that will decrypt the structure. The syntax of the request
is:

ReadCredenti al Request ::=[2] I MPLICI T SEQUENCE ({
flags [0] BIT STRI NG DEFAULT {}
princi pal Nane,
| ogi ndata [2] BIT STRI NG DEFAULT {},
token [3] BIT STRI NG OPTI ONAL

}
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The first 24 bits of flags contains the version nunber of the
protocol. The value 2.0.0 should be supplied. Any value of the form
1.x.x or 2.x.x should be accepted. Any additional bits are reserved
for future use (should not be supplied by clients and should be

i gnored by servers).

principal is the name of the principal for whomencrypted credentials
are desired.

| ogindata is an encrypted value. It may only be present if the
version nunber is 2.0.0 or higher. 1t nust be present to read
credentials which are protected by the login agent functionality of
the CDC. It is constructed as a single RSA bl ock encrypted under the
public key of the CDC. The public key of the CDC is |earned by somne
| ocal nmeans. Possibilities include a |ocal configuration file or by
using DASS to read and verify a chain of certificates ending with the
CDC [the CDC serving a directory should have its public key listed
under a nane consisting of the directory name with the RDN
"CSS=X509"; the ODfor the type CSSis 1.3.24.9.1]. The contents of
the block are as foll ows:

- The | ow order eight bytes contain a randomy generated DES key
with the last byte of the DES key placed in the |last byte of
the RSA block. This DES key will be used by the CDC to
encrypt the response. Key parity bits are ignored.

- The next to | ast eight bytes contain a long Posix time wth
the integer tinme encoded as a byte string using big endian
or der.

- The next eight bytes (fromthe end) contain a hash of the
password. The algorithmfor conputing this hash is listed in
section 4.4.2. The CDC never conputes this hash; it sinply
conmpares the value it receives with the value associated with
the credentials.

- The next sixteen bytes (fromthe end) contain zero.

- The renai nder of the RSA bl ock (which should be the sane size
as the public nodulus of the CDC) contains a random nunber
The first byte should be chosen to be non-zero but so the
value in the bl ock does not exceed the RSA nodulus. Servers
shoul d ignore these bits. This random nunber need not be of
crypt ographic strength, but should not be the sane val ue for
all encryptions. Repeating the DES key woul d be adequate.

- The byte string thus constructed is encrypted using the RSA
algorithmby treating the string of bytes as a "big endi an"
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integer and treating the integer result as "big endian" to
make a string of bytes.
token will not be present in the initial inplenmentation but a space
is reserved in case some future inplenentation wants to authenticate

and audit the node fromwhich a user is logging in.

2.3.2.6 ReadCredenti al Prot ect edResponse

This is the second possible response to a ReadPrinLogi nRequest. It
is returned when the encrypted credentials are protected from
password guessing by the CDC acting as a login agent. Its syntax is:

ReadCr edenti al Prot ect edResponse: : =[ 16] | MPLI CI T SEQUENCE {
status [0] IMPLICI T CDCSt at us DEFAULT success,
encryptedCredential [1] BIT STRI NG
flags [2] BIT STRI NG OPTI ONAL
}

status indicates that the request succeeded or the cause of the
failure.

encryptedCredenti al contains the DASSPrivateKey structure (defined in
section 4.1) encrypted under a DES key conputed fromthe user’s name
and password as specified in section 4.4.2 and then reencrypted under
the DES key provided in the ReadPrinLogi nRequest.

The first 24 bits of flags, if present, contains the version nunber
of the protocol. Inplementers of this version of the spec should
supply 2.0.0 and shoul d accept any version nunber of the form 2. x.Xx.
O her bits are reserved for future use (they should not be supplied
and they shoul d be ignored).

2.3.2.7 WiteCredenti al Request

This is a request to update the encrypted credential structure. It
is used when a user’s key or password changes. The syntax of the
request is:

WiteCredential Request ::= [17] IMPLICIT SEQUENCE {
flags [0] BIT STRING DEFAULT {},
aut ht oken [2] BIT STRI NG OPTI ONAL,
principal [3] Nane,
| ogi ndata [4] BIT STRI NG DEFAULT {},
furtherSensitiveStuff [5] BIT STRI NG

}

The first 24 bits of flags is a version nunber. Cients inplenenting
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this version of the spec should supply 2.0.0. Servers should accept
any value of the form2.x.x. Additional bits are reserved for future
use (clients should not supply them and servers should ignore then

token, if present, authenticates the entity meking the request. A
request will be accepted either froma principal proving know edge of
the password (see | ogindata below) or a principal presenting a token
inthis field and satisfying the authorization policy of the CDC
This field need not be present if |ogindata includes the hash2 of the
password (anyone knowi ng the old password nay set a new one).

principal is the nanme of the object for which encrypted credentials
shoul d be updat ed.

| ogindata is encrypted as in ReadPrinLogi nRequest. It proves that

the requester knows the old password of the principal to be updated
(unl ess the token supplied is fromthe user’s CA) and includes the

key which encrypts furtherSensitiveStuff.

furtherSensitiveStuff is an encrypted field constructed as foll ows:

- The first eight bytes consist of the hash2 defined in section
4.4.2 with the last byte of the hash2 value stored first. The
CDC stores this value and conpares it with the val ues supplied
in future requests of ReadCredential Request and
Wit eCredential Request.

- The next (variable nunber of) bytes contains a DASSPrivat eKey
structure (defined in section 4.1). This is the new
credential structure that will be returned by the CDC on
future ReadCredenti al Requests.

- The result is padded with zero bytes to a nultiple of eight
byt es.

- The entire padded string is encrypted using the key from
| ogi ndata or token using DES in CBC nbde with zero IV.

t he new ei ght byte "hash2" defined in section 4.4.2 concatenated with
the DASSPri vat eKey structure encrypted under the new "hashl" al
encrypted under the DES key included in | ogindata.

2.3.2.8 HerelsStatus

This is the response nessage to ill-forned requests and requests that
only return a status and no data. |It’s syntax is:
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HerelsStatus ::= [1] I MPLICI T SEQUENCE ({
status [0] IMPLICI T CDCSt at us DEFAULT success

status indicates success or the cause of the failure.
2.3.2.9 Status Codes
The followi ng are the CDCStatus codes that can be returned by
servers. Not all of these values are possible with all calls, and
sone of the status codes are not possible with any of the calls
described in this docunent.
CDCSt atus ::= | NTECER {

success(0),
accessDeni ed(1),

wr ongCDC( 2) , --this CDC does not store the
--requested i nformation

unr ecogni zedCA( 3),
unr ecogni zedPri nci pal (4),

decodeRequest Error(5),--invalid BER
i Il egal Request (6), --request not recognised

obj ect DoesNot Exi st (7),
illegal Attribute(8),

not Pri maryCDC(9),--write requests not accepted
--at this CDC replica

aut henti cati onFail ure(11),
i ncorrect Password(12),

obj ect Al readyExi sts(13),
obj ect Wul dBeOr phan( 15),

obj ect | sPer manent ( 16),

obj ectlsTentative(17),
parentlsTentative(18),

certificateNot Found(19),
attri but eNot Found(20),

i OErrorOnCerti f Dat abase(100),
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dat abaseFul | (101),

serverl nternal Error(102),
server Fat al Error (103),

i nsuf ficientResources(104)

}

3. Services Provided

This section specifies the services provided by DASS in ternms of
abstract interfaces and a nodel inplenmentation. A particular

i npl erentati on may support only a subset of these services and may
provide them through interfaces which conbine functions and supply
some paraneters inplicitly. The specific calling interfaces are in
some cases | anguage and operating systemspecific. An actua

i npl enentati on may choose, for exanple, to structure interfaces so
that security contexts are established and then passed inplicitly in
calls rather than explicitly including themin every call. It mght
al so bundl e keys into opaque structures to be used with supplied
encryption and decryption routines in order to enhance security and
nmodul arity and better conply with export regul ations. Annex B
describes a Portable APl designed so that applications using a
limted subset of the capabilities of DASS can be easily ported

bet ween operating systens and between DASS and Kerberos based
environnents. The nodel inplenmentation describes data structures
whi ch include cached val ues to enhance perfornance. |nplenentations
may choose different contents or different caching strategies so |ong
as the sanme sequence of calls would produce the sane output for some
cachi ng policy.

DASS operates on four kinds of data structures: Certificates,
Credentials, Tokens, and Certification Authority State. Certificates
and Tokens are passed between inplenmentations and thus their exact
format nust be architecturally specified. This detailed bit-for-bit
specification is in section 4. Credentials generally exist only
within a single node and their format is therefore not specified
here. The contents of all of these data structures is |listed bel ow
followed by the algorithns for mani pulating them

There are three kinds of services provided by DASS: Certificate

Mai nt enance, Credential Maintenance, and Authentication. The first
two kinds exist only in support of the third. Certificate naintenance
functions maintain the database of public keys in the nam ng service.
These functions tend to be fairly specialized and may not be
supported on all platforns. Before authentication can take place,
bot h authenticating principals nust have constructed credentials
structures. These are built using the Credential Miintenance calls.
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The Aut hentication functions use credential information and
certificates, produce and consune authentication tokens and tell the
two comuni cating parties one another’s nanes.

3.1 Certificate Contents

For purposes of this architecture, a certificate is a data structure
posted in the nam ng service which proclains that know edge of the
private key associated with a stated public key authenticates a naned
principal. Certificates are "signed" by sone authority, are readable
by anyone, and can be verified by anyone knowi ng the public key of
the authority. DASS organizes the CA trust hierarchy around the

nam ng hierarchy. There exists a trusted authority associated with
each directory in the nam ng hierarchy. Generally, each authority
creates certificates stating the public keys of each of its children
(in the naming hierarchy) and the public key of its parent (in the
nam ng hierarchy). In this way, anyone knowi ng the public key of any
authority can learn the public key of any other by "wal king the
tree". In order that principals my authenticate even when all of
their ancestor directories do not participate in DASS, authorities
may al so create "cross-certificates"” which certify the public key of
a naned entity which is not a descendent. Rules for finding and
following these cross-certificates are described in the Get_Pub_Keys
routines. Every principal is expected to know the public key of the
CA of the directory in which it is naned. This nust be securely

| earned when the principal is initialized and nmay be naintained in
sone formof |ocal storage or by having the principal sign a
certificate listing the name and public key of its parent and posting
that certificate in the naning service.

The syntax and content of DASS certificates are defined in terns of
X.509 (Directory - Authentication Framework). While that standard
prescribes a single syntax for certificates, DASS considers
certificates to be of one of six types:

- Normal Principal certificates are signed by a CA and certify
the name and public key of a principal where the nane of the
CAis a prefix of the nanme of the principal and is one
component shorter.

- Trusted Authority certificates are signed by an ordinary
principal and certify the name and public key of the
principal’s CA (i.e., the CA whose nane is a prefix of the
principal’s nane and i s one conmponent shorter).

- Child certificates are signed by a CA and certify the nanme and

public key of a CA of a descendent directory (i.e., where the
nane of the issuing CAis a prefix of the nane of the subject
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CA and is one conponent shorter).

- Parent certificates are signed by a CA and certify the nane
and public key of the CA of its parent directory (i.e., whose
name is a prefix of the nane of the issuer and is one
conponent shorter).

- Cross certificates are signed by a CA and certify the nanme and
public key of a CA of a directory where neither nane is a
prefix of the other.

- Self certificates are signed by a principal or a CA and the
i ssuer and subj ect name are the sane. They are not used in
this version of the architecture but are defined as a
conveni ent data structure in which in which inplenmentations
may insecurely pass public keys and they may be used in the
future in certain key roll-over procedures.

It is intended that some future version of the architecture relax the
restrictions above where prefixes nust be one conponent shorter.
Being able to handle certificates where prefixes are two or nore
conmponents shorter conplicates the logic of treewal king sonewhat and
is not inmediately necessary, so such certificates are disallowed for
NOW.

The syntax of certificates is defined in section 4. For purposes of
the algorithnms which follow, the following is the portion of the
content which is used (names in brackets refer to the field nanes in
the ASN. 1 encoded structure):

- UDof the issuer (optional)

- Full name of the issuer (the authority or principal signing)
[issuer]

- U D of the subject (optional)

- Full name of the subject (the authority or principal whose key
is being certified) [subject]

- Public Key of the subject [subjectPublicKey]

- Period of validity (effective date and expiration date)
[valid]

- Signature over the entire content of the certificate created
using the private key of the issuer
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Wien parsing a certificate, the reader conpares the two nane fields
to determine what type of certificate it is. For Parent and Trusted
Authority certificates, the nanes are ignored for purposes of al
further processing. For Child and Normal Principal certificates, only
the suffix by which the child s nane is longer than the parent’s is
used for further processing. The reason for this is so that if a
branch of the namespace is renaned, all of the certificates in the
noved branch remain valid for purposes of DASS processing. The only
pur poses of having full names in these certificates are (1) to conply
with X. 509, (2) for possible interoperability with other
architectures using different algorithnms, and (3) to allow principals
to securely store their own nanes in trusted authority certificates
in the case where they do not have enough |ocal storage to keep it.

3.2 Encrypted Private Key Structure

In order that humans need only remenber a password rather than a ful
set of credentials, and also to nmake installation of nodes and
servers easier, there is a defined format for encrypting RSA secrets
under a password and posting in the nanming service. This structure
need only exist when passwords are used to protect RSA secrets; for
servers which keep their secrets in non-volatile menory or users who
carry snmart cards, they are unnecessary.

This structure includes the RSA private/public key pair encrypted
under a DES key. The DES key is conputed as a one-way hash of the
password. This structure also optionally includes the UD of the
principal. It is needed only if a single RSA key is shared by
multiple principals (with nultiple U Ds).

Since this structure is posted in the nane service and may be used by
mul tiple inplenentations, its format nust be architecturally defined.
The exact encoding is listed in section 4.

3.3 Authenticati on Tokens

This section of the docunent defines the contents of the

aut henti cati on tokens which are produced and consuned by Create_token
and Accept _token. Wth DASS, the token passed fromthe client to the
server is conplex, with a |large nunber of optional parts, while the

t oken passed fromserver to client (in the case of nutua
authentication only) is small and sinple.

The aut hentication token potentially contains a |arge nunber of

parts, nost of which are optional depending on the type of

aut henti cation. The follow ng defines the content and purpose of each
of the parts, but does not describe the actual encoding (in the
belief that such details would be distracting). The encoding is in
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section 4.

The aut hentication process begins when the initiator calls
Create_token with the name of the target. This routine returns an
aut henti cation token, which is sent to the target. The target calls
Accept _token passing it the token. Both routines produce a second
"mutual authentication token". The target returns this to the
initiator to prove that it received the token

3.3.1 Initial Authentication Token

The conponents of the initial authentication token are (nanmes in
brackets refer to the field names within the ASN. 1 encoded structures
defined in section 4):

a) Encrypted Shared Key - [authenticatingKey] - This is a Shared
(DES) key encrypted under the public key of the target. Al so
included in the encrypted structure is a validity interval and
a recogni zabl e pattern so that the receiver can tell whether
the decryption was successful

b) Login Ticket - [sourcePrincipal.userTicket] - This is a
"del egation certificate" signed by a principal’s long term
private key delegating to a short termpublic key. Its "active
i ngredi ents" are:

1) U D of delegating principal [subjectU D
2) Period of validity [validity]
3) Del egation public key [del egatingPubli cKey]

4) Signature by private key of principa
The existence of this signature is testinony that the
private key corresponding to the del egation public key
speaks for the user during the validity interval
This data structure is optional and will be missing if the
authentication is only on behalf of a Local Usernane on a
node (i.e., proxy) rather than on behalf of a real principa
with a real key.

c) Shared Key Ticket - [sourcePrincipal.sharedKeyTi cket Si gnat ure]
- This is a signature of the Encrypted Shared Key by the
Del egation Public key in the Login Ticket. The existence of
this signature is testinony that the DES key in the encrypted
shared key speaks for the user

This data structure is optional and will be missing if the
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authentication is only on behalf of a Local Usernane on a node
(i.e., proxy) rather than on behalf of a real principal with a
real key. It will also be mssing if delegation is taking

pl ace.

d) Node Ticket - [sourceNode.nodeTicketSignature] - This is a
signhature of the Encrypted Shared key and a "Local Usernane"
on the host node by the node's private key. The existence of
this signature is testinony by the node that the DES key in
the encrypted shared key speaks for the naned account on that
node.

e) Del egator - [sourcePrincipal.delegator] - This data structure
contains the private |ogin key encrypted under the Shared key.
It is optional and is present only if the initiator is
del egating to the destination

f) Authenticator - [authenticatorData] - This data structure
contains a tinmestanp and a nessage di gest of the channe
bi ndi ngs signed by the Shared Key. It is always present.

g) Principal name - [sourcePrincipal.userNanme] - This is the nanme
of the initiating principal. It is optional and will be
m ssing for strong proxy where bits on the wire are at a
prem um and where the destination is capable of independently
constructing the nane.

h) Node nane - [sourceNode.nodeNane] - This is the name of the
initiating node. It is optional and will be mssing for strong
proxy where bits on the wire are at a premumand the nanme is
present el sewhere in the nessage bei ng passed.

i) Local Usernanme - [sourceNode.usernane] - This is the |oca
user nanme on the initiating node. It is optional and will be
m ssing for strong proxy where bits on the wire are at a
prem um and where the nanme is present el sewhere in the nessage
bei ng passed.

3.3.2 Mutual Authentication Token
The authentication buffer sent fromthe target to the initiator (in
the case of nutual authentication) is nmuch sinpler. It contains only

the tinmestanp taken fromthe authenticator encrypted under the Shared
Key. It is ASN.1 encoded to allow for future extensions.
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3.4 Credential s

DASS organi zes its internal state with Credentials structures. There
are many kinds of information which can be stored in credenti al s.

Rat her than nmaking a different kind of data structure for each kind
of data, DASS provides a single credentials structure where nost of
its fields are optional. Operating systens nust provide sone
mechani sm for havi ng several processes share credentials. An exanple
of a mechanismfor doing this would be for credentials to be stored
inafile and the name of the file is used as a "handl e" by al
processes which use those credentials. Some of the calls which foll ow
cause credentials structures to be updated. It is inportant to the
performance of a systemthat updates to credentials (such as occur
during the routines Verify Principal _Nane and Verify_Node_Nanme, where
the caches are updated) be visible to all processes sharing those
credential s.

In many of the calls which follow, the credentials passed nmay be

| abel ed: cl aimant credentials, verifier credentials or sone such.
Thi s indi cates whose credentials are being passed rather than a type
of credentials. DASS supports only one type of credentials, though
the fields present in the credentials of one sort of principal may be
quite different fromthose present in the credentials of another

An inplenmentati on nmay choose to support multiple kinds of credentials
structures each of which will support only a subset of the functions
available if it is not inplenenting the full architecture. This
woul d be the case, for exanple, if an inplenentation did not support
the case where a server both received requests fromother principals
and nmade requests on its own behalf using a single set of

credenti al s.

The following are a list of the fields that may be contained in a
credentials structure. They are grouped according to commbpn usage.

3.4.1 Cainmant i nformation

This is the informati on used when the hol der of these credentials is
requesting sonmething. It includes:

a) Full X 500 nanme of the principal
b) Public Key of the principal
c) Login Ticket - a login ticket contains:

1) the U D of the principal
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2) a period of validity (effective date & expiration date)
3) a del egation public key

4) a signature of the ticket contents by the principal’s |ong
term key

d) Del egation Private Key (corresponding to the public key in c¢3)
e) Encrypted Shared Key (present only when credentials were
created by accept _token; this information is needed to verify
a node ticket after credentials are accepted)
3.4.2 Verifier informtion
This is the informati on needed by a server to decrypt inconing
requests. It is also used by generate_server_ticket to generate a
I ogin ticket.
a) RSA private key.
3.4.3 Trusted Authority

This is informati on used to seed the walk of the CA hierarchy to
reliably find the public key(s) associated with a nane.

Normal |y, the trusted authority in a set of credentials wll be
the directory parent of the principal named in d ai mant
information. In some circunstances, it nmay instead be the

directory parent of the node on which the credentials reside.
a) Full X 500 nane of a CA
b) Correspondi ng RSA Public Key
c) Corresponding U D
3.4.4 Renote node authentication
This information is present only for credentials generated by
"Accept _token". It includes information about any renote node which
vouched for the request.
a) Full X 500 nane of the node

b) Local Usernane on the node

c) Node ticket.
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3.4.5 Local node credentials

This information is added by Conbi ne_credentials, and is used by
Create_token to add a node signature to outbound requests.

a) Full X 500 nane of the node

b) Local Usernane on the node

c) RSA private key of the node
3.4.6 Cached outgoing contexts

There may be one (or nore) such structures for each server for which
this principal has created authentication tokens. These represent a
cache: they nmay be discarded at any time with no effect except on
performance. For each association, the following information is kept:

a) Destination RSA Public Key (index)
b) Encrypted Shared key

c) Shared Key Ticket (optional, included if there has been a
non- del egati ng connecti on)

d) Node Ticket

e) Delegator (optional, included if there has been a del egating
connecti on)

f) Validity interval
g) Shared Key
3.4.7 Cached I nconing Contexts

There may be one such structure for each client fromwhich this server
has received an authentication token. These represent a cache: they
may be discarded at any time with no effect except on performance. (An
i npl ementati on may choose to keep one System w de Cache (and |ist of
inconming timestanps). While it is unlikely that the same Encrypted
Shared Key will result fromencryption of Shared keys generated by
different clients or for different servers, an inplenentation nust
ensure that an entry nmade for one client/server can not be reused by
another client/server. Simlarly an inplenentation nmay choose to keep
separate caches for the Shared Key/Validity Interval/Del egation Public
Key, the Nodenane/ U D/ key/usernane and the Principal nane/ U D key.)
For each association, the followi ng information is kept:
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a) Encrypted Shared key (i ndex)

b) Shared Key

c) Validity Interval

d) Full X 500 nanme of dient Principal
e) UDof dient Principal

f) Public Key of Cient Principa

g) Nanme of dient Node

h) U D of Cient Node

i) Public Key of Cdient Node

j) Local Usernane on Client node

k) Del egation Public key of Cient Principal’s Login Ticket

The Nanme, U D and Public key of the Principal are all entered

t oget her once the Login Ticket has been verified. Sinlarly the Node
nanme, Node key and Usernane are entered together once the Node Ticket
has been verified. These pieces of information are only present if

t hey have been verifi ed.

3.4.8 Received Authenticators

A record of all the authenticators received is kept. This is used to
detect replayed nessages. (This list nust be common to all targets
that coul d accept the sane authenticator (channel bindings wll
prevent other targets from accepting the sanme authenticator). This
includes different ‘servers’ sharing the sane key.) The entries in
this Iist may be del eted when the tinmestanp is old enough that they
woul d no | onger be accepted. This list is kept separate fromthe
Cached incoming context in order that the information in the cached
i nconi ng context can be discarded at any tinme. An inplenentation
coul d choose to save these tinmestanps with the cached incom ng
context if it ensures that it can never purge entries fromthe cache
before the timestanp has aged sufficiently. This list is accessed
based on an extract fromthe signature fromthe Authenticator. The
extract nust be at |least 64 bits, to ensure that it is very unlikely
that 2 authenticators will be received with matching signatures.

a) Extract from Signature from Aut henti cat or
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b) Ti mestanp

If an inplenmentation runs out of space to store additional
authenticators, it may either reject the token which would have
overflowed the table or it may tenporarily narrow the allowed cl ock
skew to allowit to free some of the space used to hold "ol d"
authenticators. The first strategy will always falsely reject

t okens; the second may cause fal se rejection of tokens if the all owed

cl ock skew gets narrowed beyond the actual clock skew in the network.
3.5 CA State

The CA needs to mamintain some internal state in order to generate

certificates. This internal state nmust be protected at all tines, and

great care nust be taken to prevent its being disclosed. A CA may
choose to maintain additional state information in order to enhance

security. In particular, it is the responsibility of the CAto
assure that the same U Dis not serially reused by two holders of a
single nane. In nost cases, this can be done by creating the U D at

the time the user is registered. To securely permt users to keep
their U Ds when transferring from another CA the CA nust keep a
record of any U Ds used by previous holders of the nane. Since
actions of a CA are so security sensitive, the CA should al so

mai ntain an audit trail of all certificates signed so that a history
can be reconstructed in the event of a conpromse. Finally, for the
conveni ence of the CA operator, the CA should record a list of the
directories for which it is responsible and their U Ds so that these
need not be entered whenever the CAis to be used. The state
i ncludes at |east the follow ng information:

- Public Key of CA

- Private Key of CA

- Serial nunber of next certificate to be issued
3.6 Data types used in the routines

There are several abstract data types used as paraneters to the
routines described in this section. These are |listed here

a) | nteger

b) Name
Nanes unl ess ot herwi se noted are always X 500 nanes. Wile
nost of the design of DASS is naning service i ndependent, the
syntax of certificates and tokens only pernits X 500 names to
be used. If DASS is to be used in an environnment where somne
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g9)

h)

i)

k)
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other formof nane is used, those nanes nust be translated
into something syntactically conpliant with X 500 using some
nmechani sm which is beyond the scope of this architecture. Th
only other form of name appearing in this architecture is a
"l ocal user nane", which corresponds to the sinple name of an
"account" on a node. As a type, such nanmes appear in
paraneter lists as "Strings".

String
A String is a sequence of printable characters.

Absol ute Tinme

A UTC time. The precision of these Times is not stated. A
preci sion of the order of one second in all tines is
sufficient.

Time Interva
A Tine interval is conposed of 2 tinmes. A Start Tine and an
End Tinme, both of which are Absolute Tines

Ti mest anp

A Tinestanp is a tinme in POSIX format. |.e., two 32 bit

I ntegers. The first representing seconds, and the second
representi ng nanoseconds.

Dur ation
A Duration is the length of a tinme interval

Cctet String
A sequence of bytes containing binary data

Bool ean
A val ue of either True or Fal se

u D
A UDIis an bit string of 128 bits.

ab
An ODis an I SO Cbject Identifier.

Shar ed key
A Shared key is a DES key, a sequence of 8 bytes

CA State
A structure of the formdescribed in 3.5

Credential s
A structure of the formdescribed in 3.4

1993

e
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0)

P)

q)

t)

3.7 Err

Thes
i mpl

a)
b)
c)
d)
e)
f)
9)
h)

3.8 Cer

Certificate
An ASN. 1 encoding of the structure described in 3.1

Aut henti cati on Token
An ASN. 1 encoding of the structure described in '3.3.1

Mut ual Aut henti cation Token
An ASN. 1 encodi ng of the structure described in ’'3.3.2

Encrypted Credential s
An ASN. 1 encoding of the structure described in *3.2

Public key

A representation of an RSA Public key, including all the

i nformati on needed to encode the public key in a certificate.
Set of Public key/U D pairs

A set of Public key/UD pairs. This Data type is only used
internally in DASS - it does not appear in any interface used
to other architectures.

or conditions

e routines can return the following error conditions (an
ementation may indicate errors with nore or |ess precision):

| nconpl ete chain of trustworthy CAs
Target has no keys which can be trusted.
I nval i d Aut henticati on Token

Login Ti cket Expired

I nval i d Password

Invalid Credentials

I nval i d Aut henti cat or

Dupl i cate Authenti cator

tificate Mintenance Functions

1993

Aut henti cati on services depend on a set of data structures maintai ned

int
Cert
of f -

Kauf man

he nami ng service. There are two kinds of information:

i ficates, which associate names and public keys and are signed by

line Certification Authorities; and Encrypted Credentials, wh
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contain RSA Private Keys and certain context
under passwords. Encrypted Credentials are only necessary in

DASS

Sept ember 1993

i nformati on encrypted

envi ronnents where passwords are used. Credentials may alternatively
be stored in some other secure manner (for exanple on a snart card).

The certificate maintenance services are designed so that the npst

sensitive - the actua

off-line authority.

nam ng service to be believed.

signing of certificates -

may be done by an

Once signed, certificates nmust be posted in the

The preci se nmechani sns for

novi ng

certificates between off-line CAs and the on-line nam ng service are

i npl enent ati on dependent.

For the off-1line nechanisns to provide any

actual security, the CAs must be told what to sign in sone reliable

manner .

The abstract interface says that the CAis given al

The mechani sns for doing this are inplenentation dependent.
of the

information that goes into a certificate and it produces the signed

certificate.
audit trail are not
ar e:

3.8.1 Install CA

I nstal | _CA(

There are requirenents surround
CA's actions. The details of what actions are
audit trail is nmintained,

speci fi ed here.

keysi ze
CA state
CA Public_Key

and what utilities
The functi

ng the auditing of a
audi ted, where the
exi st to search that

ons a CA nust provide
| nt eger, --inputs
CA State, --outputs
Publ i c Key)

This routine need only generate a public/private key pair of the
requested size. Keysize is likely to be in inplenentation constant

rather than a paraneter.
640. Key sizes throughout will
factoring technol ogy and CPU speeds i nprove.
the public key is returned so that other CAs

The ‘ Next Serial number’ in the CA state

part of the CA state;
may cross-certify this one.

is set to 1.

3.8.2 Create Certificate

Create_certificate(

Kauf man

Renewa

| ncl ude_UI D

| ssuer _nane

| ssuer _U D

Ef fective_date
Expirati on_date
Subj ect _nane

--inputs
Bool ean,
Bool ean,
Nane,
Ul D,
Absol ute Tine,
Absol ute Tine,
Nane,

The value is likely to be either 512 or
have to increase over tinme as
Bot h keys are stored as
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Subj ect _U D Ul D,
Subj ect _public_key Publ i c Key,

- - updat ed
CA state CA State,

--out puts
Certificate Certificate)

This procedure creates and signs a certificate. Note that the
various contents of the certificate nust be communicated to the CAin
some reliable fashion. The |Issuer_nane and U D are the nanme and U D
of the directory on whose behalf the certificate is being signed.

This routine formats and signs a certificate with the private key in
CA state. It audits the creation of the certificate and updates the
sequence nunber which is part of CA state. The |Issuer and Subject

nanes are X 500 names. |If the CA state includes a history of what
U Ds have previously been used by what nanmes, this call will only
succeed in the collision case if the Renewal boolean is set true. |If
the Include_U D boolean is set true, this routine will generate a

1992 format X 509 certificate; otherwise it will generate a 1988
format X. 509 certificate.

3.8.3 Create Principal

Create_principal (

--inputs
Passwor d String,
keysi ze I nt eger,
Princi pal _nanme Nane,
Princi pal _U D Ul D,
Parent _Publ i c_key Publ i c Key,
Parent _U D Ul D,

--out puts

Encrypted_Credentials Encrypted Credenti al s,
Trusted_authority certificate Certificate)

This procedure creates a new principal by generating a new
public/private key pair, encrypting the public and private keys under
the password, and signing a trusted authority certificate for the

parent CA. In an inplenentation not using passwords (e.g., shart
cards), an alternative mechani smnust be used for initially creating
principals. |If a principal has protected storage for trusted

authority information, it is not necessary to create a trusted
authority certificate and store it in the naming service. Somne
procedure anal ogous to this one nmust be executed, however, in which
the principal learns the public key and UD of its CA and its own
name.
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This routine creates two output structures with the follow ng steps:

a) Cenerate a public/private key pair using the indicated
keysize. An inplenentation will likely fix the keysize as an
i npl ementation constant, nost likely 512 or 640 bits, rather
than accepting it as a paraneter. Key sizes generally wll
have to increase over time as factoring technol ogy and CPU
speeds i nprove.

b) Formthe encrypted credentials by using the public key,
private key, and Principal _U D and encrypting themusing a
hash of the password as the key.

c) Cenerate a trusted authority certificate (which is identica
in format to a "parent” certificate) getting fields as
foll ows:

1) Certificate version is X 509 1992.
2) lssuer name is the Principal nane (which is an X 500 nane).
3) Issuer UDis the Principal U D.
4) Validity is for all tine.
5) Subject nanme is constructed fromthe Principal nane by
renoving the last sinple nanme fromthe hierarchical nane.
6) Subject UDis the CA UD.
7) Subject Public Key is the CA Public_Key
8) Sequence nunber is 1.
9) Sign the certificate with the newy generated private key of
t he princi pal
3. 8.4 Change Password
Change_passwor d( --inputs
Encrypted_credentials Encrypted Credenti al s,
a d_password String,
New_password String,
--out puts
Encrypted_credentials Encrypted Credential s)
If credentials are stored encrypted under a password, it is possible
to change the password if the old one is knowmn. Note that it is
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insufficient to just change a user’s password if the password has
been disclosed. Anyone knowi ng the ol d password may have al r eady
| earned the user’s private key. |f a password has been discl osed,
the secure recovery procedure is to call create_principal again
followed by create_certificate to certify the new key.

Using DASS, it nay not be appropriate for users to periodically
change their passwords as a precaution unless they also change their
private keys by the procedure above. The only likely use of the
change_password procedure is to handle the case where an
admi ni strator has chosen a password for the user in the course of
setting up the account and the user w shes to change it to something
the user can renenber. A future version of the architecture may
snooth key roll-over by having the change_password comand al so
generate a new key and sign a "self" certificate in which the old key
certifies the new one. As a separate step, a CA which notices a self
certificate posted in the nam ng service could certify the new key

i nstead of the old one when the user’s certificate is renewed. Wile
this procedure is not as rapid or as reliable as having the user
directly interact with the CA it offers a reasonable tradeoff

bet ween security and conveni ence when there is no evidence of
password conproni se.

This routine sinply decrypts the encrypted credentials structure
supplied using the password supplied. It returns a bad status if the
format of the decrypted information is bad (indicating an incorrect
password). Otherwise, it creates a new encrypted credentials
structure by encrypting the sane data with the new password. It would
be highly desirable for the user interface to this function to
provide the capability to randomy generate passwords and prohibit
easily guessed user chosen passwords using |length, character set, and
dictionary | ookup rules, but such capabilities are beyond the scope
of this docunent. |If encrypted credentials are stored in sone |oca
secure storage, the above function is all that is necessary (in fact,
if the storage is sufficiently secure, no password i s needed;
credentials could be stored unenci phered). |If they are stored in a
nam ng service, this function nust be coupled wi th one which
retrieves the old encrypted credentials fromthe nam ng service and
stores the new The full protocol is likely to include access
control checks that require the principal to acquire credentials and
produce tokens. For best security, the encrypted credentials should
be accessible only through a login agent. The role of the login
agent is to audit and limt the rate of password guessing. |If
passwords are well chosen, there is no significant threat from
password guessi ng because searching the space is conputationally
infeasible. 1In the context of a |ogin agent, change password will be
i npl enented with a specialized protocol requiring know edge of the
password and (for best security) a trusted authority fromwhich the
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public key of the login agent can be learned. See section 2.3.2 for
the plans for the non-X 500 credential storage facility.
3. 8.5 Change Name

Change_nanmg(

--inputs
Claimant _Credentials Credential s,
New_nane Nane,
CA Public_Key Publ i c Key,
CA U D u D

--out puts

Trusted_Authority_Certificate Certificate)

DASS permits a principal to have many current aliases, but only one
current nane. A principal can authenticate itself as any of its
aliases but verifies the nanmes of others relative to the nanme by
which it knows itself. Aliases can be created sinply by using the
create_certificate function once for each alias. To change the nane
of a principal, however, requires that the principal securely learn
the public key and U D of its new parent CA. As with
create_principal, if a principal has secure private storage for its
trusted authority information, it need not create a certificate, but
some anal ogous procedure nmust be able to install new nam ng

i nformati on.

This routine produces a new Trusted Authority Certificate with
contents as follows:

a) |Issuer nane is New_ nanme (an X 500 nane)

b) Issuer _ UDis Principal UD fromCredentials.

c) Validity is for all tine.

d) Subject nane is constructed fromthe |Issuer name by renoving
the last sinple nanme fromthe hierarchical nane, and
converting to an X. 500 nane.

e) Subject UDis CAUD

f) Subject Public Key is CA Public_Key

g) Sequence nunber is 1.

h) The certificate is signed with the private key of the

principal fromthe credentials. Note that this call will only
succeed if the principal’s private key is in the credential s,
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which will only be true if the credentials were created by
calling Create_server_credentials.

3.9 Credential WMuintenance Functions

DASS credentials can potentially have informati on about two
principals. This functionality is included to support the case
where a user on a node has two identities that night be

recogni zed for purposes of nanagi ng access controls. First,
there is the user’s network identity; second, there is an
identity as controlling a particular "account” or "usernane" on
that node. There are two reasons for recognizing this second
identity: first, access controls mght be specified such that
only a user is only pernmtted access to certain resources when
com ng through certain trusted nodes (e.g., files that can't be
accessed froma ternminal at hone); and second, before the
transition strategy to global identities is conplete, as a way to
refer to USER@GNCDE in a way anal ogous to existing nmechani snms but
with greater security.

The mappi ng of gl obal usernames to |ocal user names on a node is
outside the scope of DASS. This is done via a "proxy database"
or sone anal ogous | ocal nmechanism Wat DASS provides are
mechani sns for addi ng node oriented credentials into a user’s
credentials structure, carrying the dual authentication

i nformation in authentication tokens, and extracting the
information fromthe credentials structure created by
Accept _t oken

Sone applications of DASS will not nmake use of the node

aut hentication rel ated extensions. |In that case, they will never
use the Conbine_credentials, Create_credentials, Get_node_info,
or Verify_node_name functions.

The "normal " sequence of events surrounding a user logging into a
node are as foll ows:

a) Wien the user logs in, he types either a |ocal user ID known
to the node or a global nane (the details of the user
interface are inplenentation specific). Through sone sort of
| ocal mapping, the node determ nes both a global nane and a
| ocal account nanme. The user also enters a password
correspondi ng to the gl obal nane.

b) The node calls network_| ogin specifying the user’s gl obal nane
and the supplied password. The result is credentials which
can be used to access network services but which have not yet
been verified to be valid.
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c) The node calls verify_principal _nanme using its own credentials
to verify the authenticity of the user’s credentials (these
node credential s nmust have previously been established by a
call to initialize_server during node initialization).

d) If that test succeeds, the node adds its credentials to those
of the user by calling combine_credentials.

The set of facilities for manipulating credentials foll ow
3.9.1 Network login

Net wor k_| ogi n(

--inputs

Name Nane,

passwor d String,

keysi ze I nt eger,

expiration Ti me interval

TA credential s Credential s, --optiona
--out puts

Clai mant _credentials Credentials)

This function creates credentials for a principal when the principal
"logs into the network".

Narme is the X 500 nane of the principal

Password is a secret which authenticates the principal to the
net wor k.

Keysi ze specifies the size of the tenporary "login" or "del egation”
key. In areal inplementation, it is expected to be an
i npl ementation constant (nost likely 384 or 512 bits).

Expiration sets a lifetinme for the credentials created. For a nornal
login, this is likely to be an inplenentati on constant on the order
of 8-72 hours. Sone mechanismfor overriding it nust be provided to
make it possible (for exanple) to submit a background job that m ght
run days or even nonths after they are submtted.

TA credential s are used if the encrypted credentials are protected
by a login agent. If they are missing, the password will be | ess well
protected from guessi ng attacks.

This routine does not (as one m ght expect) securely authenticate the
principal to the calling procedure. Since the password is used to
obtain the principal’s private key, this call will nornmally fail if
the principal supplies an invalid password. A penetrator who has
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conproni sed the naning service could plant fake encrypted credentials
under any nane and inpersonate that nanme as far as this call is
concerned. A caller that wi shes to authenticate the user in addition
to obtaining credentials to be able to act on the user’s behal f
shoul d call Verify_principal _nanme (below) wth the created
credentials and the credentials of the calling process.

This routine constructs a credentials structure frominfornmation
found in the nam ng service encrypted using the supplied password.

a) If the encrypted credentials structure is protected with a
| ogin agent, retrieve the public key of the | ogin agent:

1) If TA credentials are available, use themin a call to
Get _Pub_Keys to get the public key of the |ogin agent (whose
nane is derived fromthe name of the principal by truncating
the last elenent of the RDN and addi ng CSS=X509).

2) If TA credentials are not available, ook up the public key
of the login agent in the nam ng service.

Login agents limt and audit password guesses, and are

i mportant when passwords may not be well chosen (as when users
are allowed to choose their own). To fully prevent the
password guessing threat, principals may only | og onto nodes
that already have TA credentials which can be used to
authenticate the login agent. To support nodes which have no
credentials of their own and to allow this procedure to
support node initialization, it is possible to network |ogin
wi t hout TA credenti al s.

A principal who logs into a node that |acks TA credentials is
subject to the following subtle security threat: A penetrator
who i npersonates the nam ng service could post his own public
key and address as those of the login agent. This procedure
woul d then in the process of logging in reveal the the
penetrator enough information for the penetrator to nount an
unaudi t ed password guessing attack agai nst the principal’s
credenti al s.

b) Retrieve the encrypted credentials fromthe namning service or
login agent. In the case of the login agent, the password is
one-way hashed to produce proof of know edge of the password
and the hashed value is supplied to the | ogin agent encrypted
under its public key as part of the request.

c) Decrypt the encrypted credentials structure using a the
suppl i ed password. Verify that the decryption was successfu
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d)

f)
g9)

h)

by verifying that the resulting structure can be parsed
according the the ASN. 1 rules for Encrypted_Credentials and
that the two included prinmes when nultiplied together produce
the included nodulus. If the decryption was unsuccessful then
the routine returns the ‘Invalid password’ error status. The
decryption results in both the Private Key and the Public Key.

Generate a public/private key pair for the Del egati on Key,
using the indicated keysize. Key size is likely to be an

i npl ementation constant rather than a supplied paranmeter, with
i kely values being 384 and 512 bits. Key sizes generally
will have to increase over tinme as factoring technol ogy and
CPU speeds inprove. Delegation keys can be relatively shorter
than | ong term keys because DASS is designed so that
conproni se of the delegation key after it has expired does not
result in a security conpronise. An inportant advantage of
maki ng key size an inplenmentation constant is that nodes can
generate key pairs in advance, thus speeding up this procedure.
Key generation is the nost CPU intensive RSA procedure and
coul d make | ogi n annoyingly sl ow.

Construct a Login Ticket by signing with the user’s private
key a conbination of the public key, a validity period
constructed fromthe current tinme and the expiration passed in
the call, and the principal UD found in the encrypted-key
structure.

Forget the user’s private key.

Retrieve fromthe naming service any trusted authority
certificates stored with the user’s entry. Discard any that
are not signed by the user’s public key and UD. An

i npl enentation in which the |ogin node has credentials of its
own may choose its trusted authority information instead of
retrieving and verifying trusted authority certificates from
the naming service. This will have a subtle effect on the
security of the resulting system

Construct a credentials structure from
1) Cdaimant credentials:
(i) Name of the principal fromcalling parameter
(ii) Login Ticket as constructed in (e)
(iii)Delegation Private key as constructed in (d)
(iv) Public key fromthe encrypted credentials structure

2) No verifier credentials
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3) Trusted Authorities: for the nmobst recently signed trusted
authority certificate (There is normally only one Trusted
Authority Certificate. |If there is nore than one then an
i npl erentation may choose to maintain a list of all the valid
keys. They should all refer to the sane CA (U D and nane).):

(i) Name of the CAfromthe subject field of the certificate
(ii) Public Key of the CA fromthe subject public key field
(iii)UDof the CAfromthe subject UDfield

4) no renote node credentials

5) no |l ocal node credentials

6) no cached out goi ng associ ations

7) no cached incom ng associations
3.9.2 Create Credentials

Create_credenti al s(
--outputs
Clai mant _credentials Credentials)

This routine creates an "enpty" credentials structure. It is needed
in the case of a user logging into a node and obtaini ng node oriented
credentials but no global usernane credentials. Because the

"combi ne_credential s" call wants to nodify a set of user credentials
rather than create a new set, this call is needed to produce the
"shell" for conbine_credentials to fill in.

It is unlikely that any real inplenentation would support this
function, but rather would have sone functions which conbi ne
network | ogin, create_credentials, and conbi ne_credentials in
what ever ways are supported by that node.

3.9.3 Conbine Credentials

Conbi ne_credenti al s(

--inputs
node_credenti al s Credenti al s,
| ocal user nane String,

- - updat ed
user_credentials Credenti al s)

This routine is provided by inplenentations which support the notion
of local node credentials. After the node has verified to its own
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satisfaction that the user_credentials are entitled to access to a
particul ar |local account, this call adds node credential information
to the user_credential structure. This function may be applied to
user _credentials created by network | ogin, create_credentials, or
accept _token

a) Fill in the local node credentials substructure of
user _credentials as follows:

1) Full nanme of the node: from Full nanme of the Principal in
node_credenti al s

2) Local username on the node: from proxy | ookup

3) RSA private key of the node: fromverifier credentials in
node_credenti al s

b) Optionally, change the trusted authorities to match the
trusted authorities fromthe node credentials. This is an
i npl enentation option, done nost likely as a perfornmance
optimzation. The only case where this option is required is
where no trusted authorities existed in the user credentials
(because they were created by create_credential s of
accept _token). Server credentials should generally keep their
own trusted authorities.

It is likely that an inplenmentation will choose not to replicate its
node credentials in every credentials structure that it supports, but
rather will maintain sone sort of pointer to a single copy. This

algorithmis stated as it is only for ease of specification.

3.9.4 Initialize_server

initialize_server(

--inputs

Name Nane,

password String,

TA credential s Credentials, --optional
--out puts

Server _credential s Credential s)

Sonehow a server nust get access to its credentials. One way is for
the credentials to be stored in the nam ng service |ike user
credentials encrypted under a service password. The service then
needs to gain at startup tine access to a service password. This may
be easier to manage and is not insecure so long as the service
password is well chosen. Alternately, the service needs sone

mechani smto gain access directly to its credentials. The credentials
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created by this call are intended to be very long lived. They do not
time out, so a node or server mght store themin Non-Volatile menory
after "initial installation" rather than calling this routine at each
"boot". These credentials are shared between all servers which use
the same key. This routine works as foll ows:

a) Retrieve fromthe nanming service or |login agent the encrypted
credentials structure corresponding to the supplied nane. See
Network_| ogin for a discussion of the use of TA credentials
and | ogi n agents.

b) Decrypt that structure using a one-way hash of the supplied
password. Verify that the decryption was successful. Verify
that the public key in the structure matches the private key.

c) Retrieve fromthe naming service any trusted authority
certificates stored under the supplied nane. Discard any which
do not contain the UD fromthe encrypted credentials
structure or are not signed by the key in the encrypted
credentials structure.

d) Construct a credentials structure from

1) Caimant credentials:
(1) Nanme of the principal fromthe calling paraneter
(ii) UDof the principal fromthe encrypted-key structure
(iii) No login ticket
(iv) No login secret key

2) Verifier credentials:
(1) Server secret key fromthe encrypted-key structure

3) Trusted Authorities: fromthe nost recently signed Trusted
Authority Certificate:
(1) Nanme of CA fromthe Subject Name field
(ii) UDof the CAfromthe Subject UD field
(iii) Public Key of the CA fromthe Subject Public Key field
4) no node credentials
5) no cached out goi ng associ ations

6) no cached inconing associations
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3.9.5 Generate Server Ticket

generate_server _ticket(

--inputs
expiration Time interval

- - updat ed
Server _credential s Credenti al s)

Server credentials created by initialize_server can be used to accept
i ncom ng aut hentication tokens and can act as node_credentials for
out goi ng aut henti cati ons, but cannot create user_credentials of their
own. If a server initiates connections on its own behalf, it nust
have a ticket just |ike any other user might have. That ticket has
limted |lifetine and the right to act on behalf of the server can be
del egated. The server cannot, however, delegate the right to receive
connections intended for it. An inplenentation nust cone up with a
policy for the expiration of server tickets and how | ong before
expiration they are renewed. A likely policy is for this procedure
to be inplicitly called by Create_token if there is no current ticket
present in the credentials. |If so, this interface need not be
exposed.

This routine is inplenmented as foll ows:
a) Generate an RSA public/private key pair.

b) Conpute a validity interval fromthe current tinme and the
expiration supplied.

c) Construct a login ticket fromthe RSA public key (from a),
validity interval (fromb), the UDfromthe credentials, and
signed with the server key in the credentials. (D scard
previous Login Ticket if there was one).

d) Discard all information in the Cached CQutgoi ng Contexts.

3.9.6 Delete Credentials
del ete_credenti al s(
- - updat ed
credential s Credenti al s)

Erases the secrets in the credentials structure and deal |l ocates the
st or age.
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3.10 Authentication Procedures

The guts of the authentication process takes place in the next two
calls. Wien one principal wishes to authenticate to another, it calls
Creat e_token and sends the token which results to the other. The
recipient calls Accept_token and creates a new set of credentials.
The other calls in this section manipulate the received credentials
in order to retrieve its contents and verify the identity of the

t oken creator.

3.10.1 Create Token

Creat e_t oken(

--inputs
target _nane Name,
del eg_reqg_fIl ag Bool ean,
nmutual _reqg_f1 ag Bool ean
replay_det_req_fl ag Bool ean
sequence_req_fl ag Bool ean
chan_bi ndi ngs Cctet String,
I ncl ude_pri nci pal _name Bool ean,
| ncl ude_node_nane Bool ean
| ncl ude_user nane Bool ean,

- - updat ed

cl ai mant _credenti al s Credenti al s,

--out puts

aut henti cati on_t oken Aut henti cati on token
nmut ual _aut henti cati on_t oken

Mut ual Aut hentication token
Shar ed_key Shar ed Key,
i nstance_identifier Ti mest anp)

This routine is used by the initiator of a connection to create an
aut henti cation token which will prove its identity. If the claimnt
credentials includes node/account information, the token will include
node aut henti cati on.

target _nane is the X 500 nanme of the intended recipient of the token.
Only an entity with access to the private key associated with that
nane will be able to verify the created token and generate the

mut ual _aut henti cati on_t oken

del eg_req_flag indicates whether the caller w shes to delegate to the
recipient of the token. If it is set, the delegated credentials
returned by Accept_token will be capable of generating tokens on
behal f of the caller. Node based authentication infornmation cannot be
del egated. The nutual req _flag, replay_det _req flag , and
sequence_req_flag are put in the authentication token and passed to
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the target. This information is included in the token to nmake it
easier to inplement the GSSAPI over DASS. DASS itself makes no use
of this information.

In nost applications, the purpose of a token exchange is to
authenticate the principals controlling the two ends of a

comuni cati on channel. chan_bindings contains an identifier of the
channel which is being authenticated, and thus its format and content
shoul d be tied to the underlying comunication protocol. DASS only

guarantees that the information has been conmunicated reliably to the
naned target. If DASS is used with a cryptographically protected
channel (such as SP4), this data should contain a one-way hash of the
key used to encrypt the channel. If that channel is multiplexed, the
data should al so include the I D of the subchannel. |If the channel is
not encrypted, the network nust be trusted not to nodify data on a
connection. The source and target network addresses and a connection
I D should be included in the chan_bi ndings at the source and checked
at the target. A token exchange also results in the two ends sharing
a key and an instance identifier. |If that key and instance
identifier are used to cryptographically protect subsequent
conmuni cati ons, then chan_bi ndi ngs need not have any cryptographic
significance but may be used to differentiate nultiple entities
sharing the public keys of conmunicating principals. For exanple, if
a service is replicated and all replicas share a public key,
chan_bi ndi ngs should include sonething that identifies a single

i nstance of the service (such as current address) so that the token
cannot be successfully presented to nore than one of the servers.

i ncl ude_princi pal _nane, include_node_nane, and include_usernanme are
flags which determ ne whether the principal name, node nane, and/or
usernane fromthe credentials structure are to be included in the
token. This information is nade optional in a token so that
appl i cati ons which communi cate this information out of band can
produce "conpressed" tokens. If this information is included in the
token, it will be used to populate the corresponding fields in the
credentials structure created by Accept_token. clainant_credentials
are the credentials of the calling procedure. The secrets contained
therein are used to sign the token and the trusted authorities are
used to securely learn the public key of the target. The cached

out goi ng contexts portion of the credentials may be updated as a side
effect of this call.

The maj or output of this routine is an authentication_token which
can be passed to the target in order to authenticate the caller.

In addition to returning an authentication token, this routine

returns a nutual _authentication_token, a shared_key, and an
i nstance_identifier. The nutual authentication token is the sane as

Kauf man [ Page 64]



RFC 1507 DASS Sept ember 1993

the one generated by the Accept _token call at the target. If the
protocol using DASS wi shes nutual authentication, the target should
return this token to the source. The source will conpare it to the
one returned by this routine using Conpare_Mitual _Token (bel ow) and
know that the token was accepted at its proper destination

The DES key and instance identifier can be used to encrypt or sign
data to be sent to this target. The key and instance will be given to
the target by Accept _token, and the key will only be known by the two
parties to the authentication. If a single set of credentials is used
to authenticate to the same target nore than once, the same DES key
is likely to be returned each tinme. |If the parties wi sh to protect
agai nst the possibility of an outside agent mi xi ng and mat chi ng
nmessages from one authenticated session with those of another, they
shoul d include the instance identifier in the nmessages. The instance
identifier is a timestanp and it is guaranteed that the DES
key/instance identifier pair will be unique.

An inplementation may wish to "hide" the DES key fromcalling
applications by placing it in systemstorage and providing calls
whi ch encrypt/decrypt/sign/verify using the key.

The primary tasks of this routine are to create its output
paraneters. As a side effect, it may al so update clai mant _credential s
It’s algorithmis as follows:

a) The login ticket is checked. If it has passed the end of its
lifetime an ‘Login Ticket Expired error is returned. If there
is alogin ticket, but no corresponding private key then an
‘“Invalid credentials’ error is returned (this is the case if
the credentials were created by an authentication-w thout -
del egation operation). |If there is no login ticket or an
expired one and if the long termprivate key is present in the
credentials, an inplenmentati on nmay choose to automatically cal
create_server_ticket to renew the ticket.

b) Create new tinmestanp using the current tine. (This tinestanp
must be unique for this Shared Key. The tinestanp is a 64 bit
POSI X tinme, with a resolution of 1 nanosecond An inplenen tation
must ensure that tinestanps cannot be reused.)

c) The public key and U D of target_name are | ooked up by calling
get _pub_keys, using the target_nane and the Trusted Authority
section of the claimnt_credentials structure. If none is
found, an error status is returned. O herw se, the cached
out bound connections portion of credentials are searched
(i ndexed by target Public Key) for a cached Shared key with a
validity interval which has not expired. If a suitable one is
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d)

f)

g9)

h)

i)

k)

found skip to step g, else create a cache entry as foll ows:

Destination Public Key is the one found | ooking up the target.
A Shared Key is generated at random A validity interval is
chosen according to node policy but not to exceed the validity
interval of the ticket in the credentials (if any).

Create the Encrypted Shared Key, using the public key of the
Target, and place in the cache.

| f node authentication credentials are available in the
credentials structure, create a "Node Ticket" signature using
the node secret and include it in the cache.

If delegation is requested and no del egator is present in the
cache, create one by encrypting the del egation private key
under the Shared key. The del egation private key is
represented as an ASN. 1 data structure containing only one of
the prinmes (p).

If delegation is not requested and no Shared Key Ticket is in
the cache, create one by signing the requisite information
with the delegation private key.

Create the Authenticator. The contents of the Authenticator
(i ncluding the channel bindings) are encoded into ASN.1, and
the signature is conputed. The Authenticator is then
re-encoded, w thout including the Channel Bindings but using
t he same signature.

Creat e output _token as foll ows:

1) Encrypted Shared Key from cache

2) Login Ticket fromdd ainmant Credentials (if present)

3) Shared Key Ticket fromcache (if no delegation and if
present)

4) Node Ticket fromcache (if present)

5) Del egator from cache (if delegation and if present)

6) Aut henti cator

7) Principal name fromcredentials (if present and paraneter
requests this)

8) Node nane fromcredentials (if present and paraneter request
t hi s)

9) Local Username fromcredentials (if present and paraneter
requests this)

Conput e Mutual _aut henti cation_token by encrypting the
timestanp fromthe authenticator using the Shared key.
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) The instance_identifier is the tinmestanp. This and the Shared
key are returned for use by the caller for further encryption
operations (if these are supported).

3.10. 2 Accept_token

Accept _t oken(

--inputs
aut hentication_token Authentication Token,
chan_bi ndi ngs Cctet String,

- -updat ed
verifying_credentials Credentials,

--out puts
accepted _credentials Credentials,
del eg_req_fl ag Bool ean
mut ual _req_fl ag Bool ean
replay_det _req_flag Bool ean
sequence_req_fl ag Bool ean

mut ual _aut henti cati on_t oken

Mut ual aut hentication token
shar ed_key Shar ed Key,
i nstance_i dentifier Ti mest anp)

This routine is used by the recipient of an authentication token to
validate it. authentication_token is the token as received;
chan_bindings is the identifier of the channel being authenticated.
See the description of Create_token for information on the
appropriate contents for chan_bindings. DASS does not enforce any
particul ar content, but checks to assure that the sane value is
supplied to both Create_token and Accept _token

Verifying_credentials are the credentials of the recipient of the
token. They nust include the private key of the entity naned as the
target in Create_token or the call will fail. The cached inconing
contexts section of the verifying credentials nay be nodified as a
side effect of this call.

Accepted credentials will contain additional information about the
token creator. |If delegation was requested, these credentials can be
used to nake additional calls to Create_token on the creator’s
behal f. Whether or not del egati on was requested, they can al so be
used in the calls which follow to gain additional information about
t he token creator.

The deleg_reqg_flag indicates whether the accepted_credentials include
del egation which can be used by the recipient to act on behal f of the
principal. Mtual _req_flag, replay_det _req flag, and
sequence_req_flag are passed through from Create_token in support of
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the GSSAPI. DASS makes no use of these fields.

The rmutual _authentication_token can be returned to the token creator
as proof of receipt. In many protocols, this will be used by a client
to authenticate a server. Only the genuine server would be able to
conmput e the nutual _authentication_token fromthe token

The shared_key and instance_identifier can be used to encrypt or sign
data between the two authenticating parties. See Create_token.

This routine verifies the contents of the authentication token in the
context of the verifying credentials (In particular, the Private Key
of the server is used. Also, the Cached Incom ng Contexts and
Incoming Tinmestanp list is used.) and returns information about it.
The al gorithm updates a cache of information. This cache is not
updated if the algorithmexits with an error. The algorithmis as
foll ows:

a) If there is a Login Ticket, but no Shared Key Ticket or
Del egator then exit with error ‘Invalid Authenticator’. If
there is a Shared Key Ticket or Del egator, but no Login Ticket
then exit with error ‘Invalid Authentication Token’.

Look up the Encrypted Shared key in the Cached Incomi ng Contexts
of the credentials structure. (This cache entry is used during
the execution of this routine. An inplenentation nmust ensure that
references to the cache entry can not be affected by other users
nmodi fying the cache. One way is to use a copy of the cache entry,
and update it at exit.) |If it is not found then create

a new cache entry as follows:

1) Encrypted Shared Key, fromthe Authentication Token

2) Shared Key and Validity Interval, by decrypting the
Encrypted Shared Key using the server private key in
credentials. If the decryption fails then exit with error
‘“Invalid Authentication Token’

b) Check that the Validity Interval (in the cache entry) includes
the current time; return ‘Invalid Authentication Token' if not.

Check the Tinestanp is wthin max-cl ock-skew of the current
time, return “invalid Authentication Token” if not.

Reconstruct the Authenticator including the Channel Bindings
passed as a paraneter.
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Check that the reconstructed Authenticator is signed by the
Shared key. If not then exit with error ‘lInvalid
Aut henti cati on Token’

Look up the Authenticator Signature in the Received

Aut henticators. If the same Signature is found in the |ist
then exit with error ‘Duplicate Authenticator’. O herw se add
the Signature and tinestanp to the list.

If there is a Login Ticket and the Del egation Public key is in
the cache entry, then check that the sane key is specified in
the Login Ticket, if not then exit with error ‘Invalid

Aut henti cati on Token’. Place the Del egation Public key in the
cache if it is not already there.

If there is a Login Ticket, the Del egation Public key was not
previously in the cache entry, and there is a Shared Key
Ticket in the Authentication Token, then check that the Shared
Key Ticket is signed by the Delegation Public Key in the Login
Ticket. If not then exit with error ‘Invalid Authentication
Token’ .

If a delegator is present in the nmessage then decrypt the

del egator using the Shared key. If the private key does not
match the Del egation Public key then exit with error

“Invalid Authentication Token’ (The prime in the del egator

is used to find the other prinme (fromthe nodulus). The division
must not have a remainder. Neither prime nay be 1. The two
primes are then used to reconstruct any other information

needed to perform cryptographic operations.).

Build the delegation credentials data structure as foll ows:

1) dainmant credentials:

(i) Login Ticket fromthe Authentication token

(ii) Delegation Private key fromthe decrypted del egator if
the token is del egating.

(iii)Encrypted Shared Key fromthe Authentication token.

2) There are no verifier credentials.

3) Trusted authorities are copied fromthe verifying_credentials
passed to this routine (If an inplenmentation is able to
obtain the original Trusted Authorities of the Principal then
it may do so instead of using the server’s Trusted
Aut horities.).

4) Renpte node credentials (Node name, Usernane, Node Ticket)

5) There are no |l ocal node credentials.

6) There are no cached contexts.
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c) The returned bool ean val ues are obtained fromthe
Aut henti cat or.

d) Mutual _aut hentication_token is conputed by encrypting the
timestanp fromthe Authenticator with the Shared key fromthe
cache.

e) Instance_identifier is the tinmestanp fromthe Authenticator.
This and the Shared key are returned to the caller for further
encryption operations (if these are supported).

3.10. 3 Conpare Mitual Token

Conpar e_nut ual _t oken(

--inputs
Gener at ed_t oken Mut ual aut hentication token
Recei ved_t oken Mut ual aut hentication token
--outputs

equality flag Bool ean)

This routine conpares two nutual authentication tokens and tells

whet her they match. 1In the expected use, the first is the token
generated by Create_token at the initiating end and the second is the
t oken generated by Accept _token at the accepting end and returned to
the initiating end. This routine can be inplenented as a byte by
byt e conpari son of the two paraneters.

3.10.4 Get Node Info

get _node_i nf o(

--inputs
accepted _credentials Credentials,
--out puts
nodenane Nane,
user nane String)

This routine extracts from accepted credentials the nane of the node
from which the authentication token came and the nanmed account on

t hat node. Because this information is not cryptographically
protected within the token, this information can only be regarded as
a "hint" by the receiving application. 1t can, however, be verified
using Verify node_name in a cryptographically secure nanner. This
information will only be present if these are accepted credentials
and it the caller of Create_token set the include_node_name and/or

i ncl ude_usernane fl ags.

An actual inplenentation is not likely to have get_node_info and
verify _node_nanme as separate calls. They are specified this way
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because there are different ways this information mght be used. For
nost applications, the nodenane and usernane will be included in the
token, and a single function mght extract and verify them (it m ght

in fact be part of accept token). For other applications, the

nodenane and usernane will not be in the token but rather will be
computed fromother informati on passed during connection initiation
so a call would have to take these as inputs. Still other

applications such as ACL eval uators that want to support the renam ng
and aliasing capabilities of DASS woul d defer verifying node
information until they cane upon an ACL which all owed access only
froma particular node. They would then verify that the nane on the
ACL was an authenticatable alias for the node which created the
token. Al of these uses can be defined in terns of calls to

get _node_info and verify_node_nane.

3.10.5 CGet Principal UD

get _princi pal _ui d(
--inputs
accepted _credentials Credentials,
--out puts
ui d Ul D)

This routine extracts a principal UD froma set of credentials.

As with Get_Node_Info, this interface is not likely to appear in an
actual inplenentation, but rather will be bundled with other
routines. It is specified this way because there m ght be a variety
of algorithms by which credentials are evaluated and all of them can
be defined in ternms of these primtives.

In DASS, it is possible for a principal to have many aliases. This
can happen either because the principal was given nultiple nanes to
limt the nunber of CAs that need to be trusted when authenticating
to different servers or because the principal’s nane has changed and
the ol d nane remains behind as an alias. Accept_token returns the
name by which the principal identified itself when creating its
credentials. A service may know the user by some alias. The norma
way to handle this is for the service to know the principal’s UD
(which is constant over name changes) and to conpare it with the U D
in the token to identify a likely alias situation. It gets the UD
fromthe token using this routine. It then confirnms the alias by
calling verify_principal _nane.

The U Dis in a signed portion of accepted credentials, but the

signature may not have been verified at the time this call is issued.
The information returned by this routine nust therefore be regarded
as a hint. If a call to Verify_principal _nanme succeeds, however,

Kauf man [ Page 71]



RFC 1507 DASS Sept ember 1993

then the caller can securely know that the nane given to that routine
and the UDreturned by this one are the authenticated source of the
t oken.

3.10.6 CGet Principal Nane

get _princi pal _nanme(
--inputs
accepted _credentials Credentials,
--out puts
nanme Nane)

This routine extracts a principal name froma set of credentials.
This nane is the name nost recently associated with the principal. It
may be the name that the principal supplied when the credentials were
created (in which case it may not have been verified yet) or it may
be a different nanme that has been verified.

As with Get_Node_ Info and Get_Principal _U D, this routine is not
likely to appear in an actual inplenentation, but will be bundled in
sone fashion with rel ated procedures. The nane returned by this
procedure is not guaranteed to have been cryptographically verified.
Verify_Principal _Nanme perfornms that function

3.10.7 Get Lifetine

get _lifetime(
--inputs
Cl ai mant _credentials Credential s,
--out puts
lifetine Dur ati on)

This routine conputes the life remaining in a set of credentials.
Its nost common use would be to know to renew credential s before they
expire.

Returns the remaining lifetime of the login ticket in the
credentials. This can either be the done on the node where the
original login took place, or at a server which has been del egat ed
to. It indicates how rmuch | onger these credentials can be used for
further delegations. This routine will return O if the login ticket
has passed the end of its life, if there is no login ticket, or if
the credentials do not contain the private key certified by the
ticket (i.e., where they were created by an authentication-w thout-
del egati on operation).
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3.10.8 Verify Node Name

Veri fy_node_name(
--inputs
nodenane Nane,
user nane String,

- -updat ed
verifying_credentials Credentials,
accepted _credentials Credentials,

--out puts
Narme mat ches Bool ean)

This routine tests whether the originating node of an authentication
token can be authenticated as having the provided nanme. Like a
principal, a node may have nultiple aliases. One of them nay be
returned by Get_node_info, but this call allows a suspected alias to
be verified. The verifying credentials supplied with this call nust
be the same credentials as were used in the Accept_token call. The
procedure for conpleting this request is as follows:

a) If there is no Node Ticket in the claimant credentials then
return Fal se.

b) Search the incom ng context cache of the verifying credentials
for an entry containing the sane encrypted shared key as the
encrypted shared key subfield of the claimnt information of
the accepted credentials. In the steps which foll ow,
references to "the cache" refer to this entry. |If none is
found, initialize such an entry as foll ows:

1) Encrypted shared key fromthe encrypted shared key subfield
of the claimant information of the accepted credentials.

2) The shared key and validity interval are determ ned by
decrypting the encrypted shared key using the RSA private
key in the verifier information of the server credentials.
If this procedure is called after a call to Accept_token
usi ng the sane server credentials (as is required for
correct use), the shared key and validity interval nust

correctly decrypt. If called in sonme other context, the
results are undefined. The validity interval is not
checked.

3) Initialize all other entries in the cache to m ssing.
c) If there is a "local usernanme on client node" in the cache and

it does not match the usernane supplied as a paraneter, return
Fal se.
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d) If there is a "name of client node" in the cache and it
mat ches t he nodenane supplied as a paraneter:

1) Set the "Full nanme of the node" subfield of the renote node
authentication field of the accepted credentials to be the
nodenane supplied as a paraneter.

2) Set the "Local Usernane on the node" subfield of the renote
node authentication field of the accepted credentials to be
t he username supplied as a paraneter.

3) return True.

e) Call the Get_Pub_Keys subroutine with the server_credentials,
t he nodenanme supplied as a paraneter, and Try_Har d=Fal se.

f) If "Public Key of Client Node" is missing fromthe cache,
check all of the Public keys returned to see if one verifies
the node ticket. |If one does, set the "Public Key of dient
Node" and "U D of Client Node" fields in the cache to be the
PK/U D pair that verified the ticket and set the "Local
Usernane on Client node" field to be the usernane supplied as
a paraneter..

g) If any of the Public Key/U D pairs match the "Public Key of
Client Node" and "U D of Cient Node" fields in the cache,
t hen:

1) Set the "nane of client node" in the cache equal to the
nodenane supplied as a paraneter.

2) Set the "Full nane of the node" subfield of the renote node
authentication field of the accepted credentials to be the
nodenane supplied as a paraneter.

3) Set the "Local Usernane on the node" subfield of the renote
node authentication field of the accepted credentials to be
t he username supplied as a paraneter.
4) Return True.
h) If none of them match, call Get_Pub_Keys again with

Try_Hard=True and repeat steps 6 & 7. If Step 7 fails a
second tine, return Fal se.
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3.10.9 Verify Principal Nane

Verify_principal _name(
--inputs
princi pal _nanme Nane,

- -updat ed
verifier_credentials Credentials,
claimant _credentials Credentials,

--out puts
Narme mat ches Bool ean)

This routine tests (in the context of the verifier credentials)
whet her the claimant credentials are authenticatable as being those
of the nanmed principal. This procedure is called with a set of
accepted credentials to authenticate their source, or with a set of
credentials produced by network login to authenticate the creator of

those credentials. |If the claimnt credentials were created by
Accept _token, then the verifier credentials supplied in this cal
must be the sane as those used in that call. The procedure for

conpleting this request is as foll ows:

a) If there is no Login Ticket in the claimnt credentials, then
return Fal se.

b) If the current tine is not wwthin the validity interval of the
Login Ticket, then return Fal se.

c) If there is an Encrypted Shared Key present in the d ai mant
information field of the claimnt credentials, then find or
create a matching cache entry in the Cached I nconing Contexts

of the verifier credentials. In the description which
follows, references to "the cache" refer to this entry. |If
the cache entry nmust be created, its contents is set to be as
foll ows:

1) Encrypted shared key fromthe encrypted shared key subfield
of the claimant information of the accepted credentials.

2) The shared key and validity interval are determ ned by
decrypting the encrypted shared key using the RSA private
key in the verifier information of the server credentials.
If this procedure is called after a call to Accept_token
usi ng the sane server credentials (as is required for
correct use), the shared key and validity interval nust

correctly decrypt. |If called in sonme other context, the
results are undefined. The validity interval is not
checked.
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e)

f)

g9)

h)

Kauf man

3) Initialize all other entries in the cache to m ssing.

If there is a cache entry and if the "Public Key of Cient
Principal" field is present and if the "U D of Cient
Principal" field is present and matches the U D in the Login
Ti cket, then

1) Set the Public Key of the principal field in the d ai mant
information to be the Public Key of Cient Principal

2) If the "Full nanme of the principal" field is mssing from
the claimant information of the claimnt credentials, then
set it to the "Name of Client Principal"” field fromthe
cache.

If there is a cache entry and if the "Name of dient
Principal" field is present and if it matches the principa
nane supplied to this routine and if the UDin the cache
mat ches the U D in the Login Ticket, return True.

Call the Get_Pub_Keys subroutine with the nane and verifier
credentials supplied to this routine and Try_Har d=FALSE

1993

I gnore any keys retrieved where the corresponding U D does not

match the U D in the claimnt credential s.

If the Public Key of the principal is mssing fromthe

claimant information of the claimant credentials, then attenpt

to verify the signature on the login ticket with each public
key returned by Get_Pub_Keys. [If verification succeeds:

1) Set the Public Key of the principal in the claimnt

i nformati on of the clainmant credentials to be the Public Key

that verified the ticket.

2) If the Full name of the principal in the clainmant
i nformation of the clainmant credentials is missing, set it
to the nane supplied to this routine.

3) If there is a cache entry, set the Name of Client Principa

to be the name supplied to this routine, the UD of dient
Principal to be the UD fromthe Login Ticket, and the
Public Key of Cient Principal to be the Public Key that
verified the ticket.

4) Return True.

If the Public Key of the principal is present in the claimnt

information of the claimant credentials, then see if it
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mat ches any of the public keys returned by Get_Pub_Keys. |If
one of them mat ches:

1) If the Full nane of the principal in the claimnt
i nformation of the clainmant credentials is missing, set it
to the nane supplied to this routine.

2) If there is a cache entry, set the Name of Client Principa
to be the nanme supplied to this routine, the UD of dient
Principal to be the UD fromthe Login Ticket, and the
Public Key of Cient Principal to be the Public Key that
verified the ticket.

3) Return True.

i) If steps 7 & 8 fail, retry the call to Get_Pub_Keys with
Try Hard=TRUE, and retry steps 7 & 8. If they fail again
return fal se

3.10.10 Get Pub Keys

Get _Pub_Keys(

--inputs
TA credential s Credential s
Try Hard Bool ean
Tar get Nane Nanme,
--out puts
Pub_keys Set of Public key/U D pairs

This conmon subroutine is used in the execution of Create_Token
Verify_Principal _Nanme, and Verify_Node_Nanme. G ven the nane of a
principal, it retrieves a set of public key/U D pairs which

aut henticate that principal (normally only one pair). It does this
by retrieving fromthe nam ng service a series of certificates,
verifying the signatures on those certificates, and verifying that
the sequence of certificates constitute a valid "treewal k"

The credentials structure passed into this procedure represent a
starting point for the treewalk. Included in these credentials will
be the public key, UD, and name of an authority that is trusted to
authenticate all renote principals (directly or indirectly).

The "Try_Hard" bit is a specification anomaly resulting fromthe fact
that caches nmintained by this routine are not transparent to the
calling routines. It tells this procedure to bypass caches when
doing all nane service | ookups because the information in caches is
believed to be stale. 1In general, a routine will call Get_Pub_Keys
with Try _Hard set false and try to use the keys returned. |If use of
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t hose keys fails, the calling routine may call this routine again
with Try Hard set true in hopes of getting additional keys.
Routinely calling this routine with Try Hard set true is likely to
have adverse performance inplications but would not affect the
correctness or the security of the operation.

The nanme supplied is the full X 500 nane of the principal for whom
public keys are needed as part of some authentication process.

This procedure securely learns the public keys and U Ds of foreign
principals by constructing a valid chain of certificates between its
trusted TA and the certificate naming the foreign principal. 1In the
si npl est case, where the TA has signed a certificate for the foreign
principal, the chain consists of a single certificate. O herw se,
the chain nust consist of a series of certificates where the first is
signed by the TA the last is a certificate for the foreign
principal, and the subject of each principal in the chain is the

i ssuer of the next. What follows is first a definition of what
constitutes a valid chain of certificates foll owed by a nodel

al gorithm which constructs all of (and only) the valid chains which
exi st between the TA and the target nane.

In order to linmit the inplications of the conpronise of a single CA
and also to linit the conplexity of the search of the certificate
space, there are restrictions on what constitutes a valid chain of
certificates fromthe TA to the Name provided. The only CAs whose
conproni se should be able to conprom se an authentication are those
controlling directories that are ancestors of one of the two names
and that are not above a common ancestor. Therefore, only
certificates signed by those CAs will be considered valid in a
certificate chain. Normally, the CA for a directory is expected to
certify a public key and U D for the CA of each child directory and
one parent directory. A CA may also certify another CA for sone
renote part of the nami ng hierarchy, and such certificates are
necessary if there are no CAs assigned to directories high in the
nam ng hi erarchy.

A certificate chain is considered valid if it nmeets the follow ng
criteria:

a) It must consist of zero or nore parent certificates, followed
by zero or one cross certificates, followed by zero or nore
child certificates.

b) The nunber of parent certificates may not exceed the nunber of
levels in the naming hierarchy between the TA nane and the
nane of the | east conmon ancestor in the nam ng hierarchy
between the TA nanme and the target nane.
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c)

d)

f)

g9)

h)

i)

k)
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Each parent certificate nust be stored in the nam ng service

under the entry of its issuer.

The subject of the cross certificate (if any) nust be an

1993

ancestor of the target name but nust be a | onger name than the

| east conmon ancestor of the TA nane and the target nane.

The cross certificate (if any) must have been stored in the
nam ng service under the entry of its issuer or there nust
have been an indication in the nam ng service that
certificates signed by this issuer nay be stored with their
subj ect s.

The issuer of each parent certificate does not have stored
with it in the naming service a cross certificate with the
sane issuer whose subject is an ancestor of the target nane.

Each child certificate nust be stored in the nami ng service
under the entry of its subject.

The subject of each child certificate does not have associ at ed

with it in the naming service a cross certificate with the

sane subject whose issuer is the same as the issuer of any of

the parent certificates or the cross certificate of the chain.

The subj ect of each certificate nust be the issuer of the

certificate that follows in the chain. The equality test can

be met by either of two mnethods:

1) The public key of the subject in the earlier certificate
verifies the signature of the later and the subject U D in

the earlier certificate is equal to the issuer UDin the
| ater; or

2) The public key of the subject in the earlier certificate

verifies the signature of the later, the earlier |lacks a
subject U D and/or the later lacks an issuer U D and the

nane of the subject in the earlier certificate is equal to

the nane of the issuer in the |later.

The Public Key of the TA verifies the signature of the first
certificate.

The U D of the TA equals the U D of the issuer of the first

certificate or the UDis nissing on one or both places and
the nanme of the TA equals the nane of the issuer of the first

certificate.
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) All of the certificates are valid X 509 encodi ngs and the
current tinme is within all of their validity intervals.

If a chain is valid, the nane which it authenti cates can be
constructed as foll ows:

a) If the chain contains a cross certificate, the nane
aut henti cated can be constructed by taking the subject name
fromthe cross certificate and appending to it a relative nane
for each child certificate which follows. The relative nane
is the extension by which the subject nane in the child
certificate extends the issuer nane.

b) If the chain does not contain a cross certificate, the nane
aut henti cated can be constructed by taking the TA nane,
truncating fromit the last n nane conponents where n is the
nunber of parent certificates in the chain, and appending to
the result a relative nane for each child certificate. The
relative name is the extension by which the subject nane in
the child certificate extends the issuer nane.

In the conmon case, the authenticated name will be the subject
nane in the last certificate. The authenticated nane is
constructed by the rules above to deal with nanmespace

reorgani zation. |If a branch of the nanespace is renaned (due to,
for exanple, a corporate acquisition or reorganization), only the
certificates around the break point need to be regenerat ed.

Certificates below the break will continue to contain the old
nanes (until renewed), but the algorithms above assure the
principals in that branch will be able to authenticate as their

new nanes. Further, if the certificates at the branch point are
mai nt ai ned for both the old and new nanes for an interim period,
principals in the noved branch will be able to authenticate as
either their old or new nanmes for that interimperiod wthout
havi ng duplicate certificates.

A final conplication that the algorithmnust deal with is the

| ocation of cross certificates. |If a key is conprom sed or for
some other reason it is inportant to revoke a certificate ahead
of its expiration, it is renoved fromthe namng service. This
algorithmwi Il only use certificates that it has recently
retrieved fromthe nam ng service, so revocation is as effective
as the nechani snms that prevent inpersonation of the naning

servi ce. There are plans to eventually use DASS nechanisns to
secure access to the naming service; until they are in place,
nane service inpersonation is a theoretical threat to the
security of revocation. Opinions differ as to whether it is a
practical threat. Child certificates are always stored with the
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subj ect and will not be found unless stored in the name server of
t he subj ect. Parent certificates are always stored with the
i ssuer and will not be found unless stored in the nanme server of

the issuer. For best security, cross certificates should be
stored with the issuer because the nane server for the subject
may not be adequately trustworthy to performrevocation. There
are performance and availability penalties, however, in doing so.
The architecture and the algorithmtherefore support storing
cross certificates with either the issuer or the subject. There
must be sone sort of flag in the nane service associated with the
i ssuer saying whether cross certificates fromthat issuer are
permitted to be stored in the subject’s nane service entry, and
if that flag is set such certificates will be found and used.

In order to make revocation effective, DASS nmust assure that

nam ng servi ce caches do not becone arbitrarily stale (the

al l oned age of a cache entry is included in the sumof tinmes with
toget her nake up the revocation tine). |f DASS uses a narm ng
servi ce such as DNS that does not tinme out cache entries, it mnust
bypass cache on all calls and (to achi eve reasonabl e perfornance)
mai ntain its own naming service cache. It may be advant ageous to
mai ntain a cache in any case so the that the fact that the
certificates have been verified can be cached as well as the fact
that they are current.

3.10.10.1 Basic Al gorithm

For ease of exposition, this first description will ignore the
operation of any caches. Pernissible nodifications to take
advant age of caches and enhance performance will be covered in

the next section. This path will be followed if the Try_Hard bit
is set True on the call.

Rat her than trying construct all possible chains between the TA
and the nane to be authenticated (in the event of nultiple
certificates per principal, there could be exponentially many
valid chains), this algorithmconputes a set of PK/ U D/ Nane
triples that are valid for each principal on the path between the
TA and the nane to be authenticated. By doing so, it nininizes
the processing of redundant information

a) Deternining path and initialization

Several state variables are manipul ated during the tree wal k.
These are call ed:
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Current-directory-nane
This is the name indicating the current place in the tree
wal k. Initially, this is the nane of the TA

Least - Common- Ancest or - Nane

This is the portion of the nanmes which is comon to both the
CA and the Target. This is conmputed at initialization and
does not change during the treewal k

Tr ust ed- Key- Set

For each nanme which is an ancestor of either the TA or the
Target but not of the Least-Comron-Ancestor, a l|ist of
PK/U D Nane triples. This is initialized to a single triple
fromthe TA information in the supplied credenti al s.

Sear ch- when- descendi ng
This is a list of PK/UD Nane triples of issuers that wll
be trusted when descending the tree. This set is initially

enpty.

Saved- RDNs

This is a sequence of Relative D stinguished Nanes ( RDNs)
stripped off the right of the target nane to form

Least - cormon- ancestor-nanme. This "stack” is initially enpty
and i s popul ated during Step 3.

b) Ascending the "TA side" of the tree

While Current-directory-nane is not identical to
Conmon- poi nt - Nanme the al gorithm noves up the tree. At each
step it does the follow ng operations.

1)

Kauf man

Find all cross certificates stored in the nam ng service
under Current-directory-name in which the subject is an
ancestor of the principal to be authenticated or an
indication that cross certificates fromthis issuer are
stored in the subject entry. |If there is an indication that
such certificates are stored in the subject entry, copy all
triples in Trusted-Key-Set for Current-directory-nanme into

t he "Sear ch-when-descending” list. |If any such certificates
are found, filter themto include only those which neet the
followng criteria:

(i) For sone triple in the Trusted-Key-Set corresponding to
the Current-directory-nane, the public key in the triple
verifies the signature on the certificate and either the
UDin the triple matches the issuer UDin the
certificate or the UDin the triple and/or the
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certificate is mssing and the nane in the triple matches
the issuer nane in the certificate.

(ii) No certificates were found signed by this issuer in which
the subject name is | onger than the subject name in this
certificate (i.e., if there are cross certificates to two
di fferent ancestors, accept only those which lead to the
cl osest ancestor).

(iii)The current tinme is within the validity interval of the
certificate.

If any cross certificates were found (whether or not they
were all elimnated as part of the filtering process), set
Current-directory-name to the | ongest nane that was found in
any certificate and construct a set of PK/ U D/ Nane triples
for that name fromthe certificates which pass the filter
and place themin the Trusted Key Set associated with their
subject. Exit the ascending tree loop at this point and
proceed directly to step 3. Note that this neans that if
there are cross certificates to an ancestor of the target
but they are all rejected (for exanple if they have
expired), the treewal k will not construct a chain through
the | east common ancestor and will ultimately fail unless a
crosslink froma | ower ancestor is found stored with its
subject. This is a security feature.

If no cross certificates are found, find all the parent
directory certificates for the directory whose name is in
the Current-directory-nane. Filter these to find only those
whi ch neet the following criteria:

(i) The current tinme is within the validity interval

(ii) For some triple corresponding to the
Current-directory-name, the public key in the triple
verifies the signature on the certificate and either the
UDin the triple matches the issuer UDin the
certificate or the UDin the triple and/or the
certificate is mssing and the nane in the triple natches
the issuer nane in the certificate.

Construct PK/ U D/ Nanme triples fromthe remaining
certificates for the directory whose nane is constructed by
stripping the rightnost sinple nane fromthe
Current-directory-nanme and place themin the Trusted-Key- Set.
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5) Strip the rightnost sinple nanme of the
Current-directory-nane.

6) Repeat fromstep (a) (testing to see if
current-directory-name is the same as Common- poi nt - Nane) .

c) Searching the "target side" of the tree for a crosslink

1) Initialization: set Current-directory-nane to the nanme
supplied as input to this procedure.

2) Retrieve fromthe nam ng service all cross certificates
associated with Current-directory-nane. Filter to only
those that neet the following criteria:

(i) The current time is within their validity interval
(ii) The subject nanme is equal to Current-directory-nane.

(iii)For some PK/U D Nane triple in the
" Sear ch- when-descendi ng" list conpiled while ascending
the tree, the Public Key verifies the signature on the
certificate and either the U D matches the issuer UDin
the certificate or a UDis mssing fromthe triple
and/or the certificate and the Nane in the triple matches
the issuer nane in the certificate.

(iv) There are no certificates found nmeeting criteria (ii) and
(iii) matching a PK/U D/ Nare triple in the
Sear ch-when- descendi ng i st whose subject is a directory
| ower in the nam ng hierarchy.

3) If any qualifying certificates are found, construct
PK/U D/ Nane triples for each of them these should replace
rat her than supplenment any triples already in the
Trust ed-key-set for that directory.

4) |If after steps (b) and (c), there are no PK/U D/ Nane triples
corresponding to Current-directory-name in Trusted-Key- Set,
shorten Current-directory-name by one RDN (pushing it onto
the Saved- RDNs stack) and repeat this process until
Current-directory-nane is equal to
Least - cormon-ancestor-name or there is at |east one triple
in Trusted-key-set corresponding to Current-directory-nane.

d) Descending the tree

While the list Saved-RDNs is not Enpty the al gorithm noves
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down the tree. At each step it does the foll ow ng operations.

1) Renove the first RDN from Saved- RDNs and append it to the
Current-directory-nane.

2) Find all the child directory certificates for the directory
whose nanme is in the current-directory-nane.

3) Filter these certificates to find only those which neet the
followng criteria:

(i) The current tinme is within the validity interval

(ii) For sonme PK/U D/ Nane triple in the Current-key-set for
the parent directory, the Public Key verifies the
signature on the certificate and either the U D matches
the issuer UD of the certificate or the UDis nissing
fromthe triple and/or the certificate and the Name in
the triple matches the issuer name in the certificate.

(iii)The issuer name in the certificate is a prefix of the
subj ect nane and the difference between the two nanes is
the final RDN of Current-directory-nane.

4) Take the key, U D, and nanme from each remaining certificate
and forma new triple corresponding to
Current-directory-nane in Trusted-Key-Set. If this set is
enpty then the algorithmexits with the
"I nconpl ete-chai n-of -trustwort hy-CAs’ error condition

5) repeat fromstep (a), appending a new sinple nane to
Current-directory-nane.

e) Find public keys:
If there are no triples in the Trusted-Key-Set for the nanmed
principal, then the algorithmexits with the * Target-has-no-keys-w
error condition. O herwi se, the Public Key and U D are
extracted fromeach pair, duplicates are elininated, and this
set is returned as the Pub_keys.

3.10.10.2 Al owed Variations - Caching

Sone use of caches can be inplenented without affecting the semantics
of the Get _Pub_Keys routine. For exanple, a crypto-cache could
remenber the public key that verified a signature in the past and
could avoid the verification operation if the sane key was used to
verify the sane data structure again. In sone cases, however, it is
i npossi ble (or at |east inconvenient) for a cache inplementation to
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be conpletely transparent.

In particular, for good performance it is inportant that certificates
not be re-retrieved fromthe nam ng service on every authentication
This nust be bal anced agai nst the need to have changes to the
contents of the naming service be reflected in DASS calls on a tinely
basis. There are two cases of interest: changes which cause an

aut henti cati on which previously woul d have succeeded to fail and
changes whi ch cause an authentication which previously would have
failed to succeed. These two cases are subject to different tine
constraints.

I n general, changes that cause authentication to succeed nust be
reflected quite quickly - on the order of nminutes. |If a user
attenpts an operation, it fails, the user tracks down a system
manager and causes the appropriate updates to take place, and the
user retries the operation, it is unacceptable for the operation to
continue to fail for an extended period because of stal e caches.

Changes that cause authentication to fail nust be reflected reliably
within a bounded period of tinme for security reasons. |If a user

| eaves the conpany, it nust be possible to revoke his ability to
authenticate within a relatively short period of tinme - say hours.

These constraints nean that a nam ng service cache which contains
arbitrarily old information is unacceptable. To nmeet the second
constraint, naning service cache entries nust be timed out within a
reasonabl e period of tinme unless in inplenentation verifies that the
certificate is still present (a crypto-cache which |asted |onger
woul d be legal; rather than deleting a nanme service cache entry, in
i npl ementation might instead verify that the entry was still present
in the naming service. This would avoid repeating the cryptographic
"verify").

In order to assure that information cached for even a few hours not
deny authentication for that extended period, it nust be possible to
bypass caches when the result would otherwi se be a failure. Since
the performance of authentication failures is not a serious concern
it is acceptable to expect that before an operation fails a retry
will be made to the naming service to see if there are any new

rel evant certificates (or in certain obscure conditions, to see if
any relevant certificates have been del eted).

If on a call to Get_Pub_Keys, the Try Hard bit is True, then this
procedure nmust return results based on the contents of the nam ng
service no nore than five mnutes previous (this would nornmally be
acconpl i shed by ignoring nanme service caches and maki ng al
operations directly to the namng service). |If the Try_Hard bit is
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Fal se, this procedure may return results based on the contents of the
nam ng service any time in the previous few hours, in the sense that
it may ignore any certificate added in the previous few hours and may
use any certificate deleted in the previous few hours. Procedures
which call this routine with Try Hard set to false nust be prepared
tocall it again with Try_Hard True if their operation fails possibly
fromthis result.

The exact timer values for "five mnutes" and "a few hours" are
expected to be inplenentation constants.

In the envisioned implenentation, the entire "ascending treewal k" is
retrieved, verified, and its digested contents cached when a
principal first establishes credentials. A nmechani sm should be
provided to refresh this information periodically for principals
whose sessions night be long lived, but it would probably be
acceptable in the unlikely event of a user’s ancestor’s keys changi ng
to require that the user log out and Iog back in. This is consistent
with the observed behavior of existing security mechani smns.

The descendi ng treewal k, on the other hand, is expected to be

mai ntai ned as a nore conventional cache, where entries are kept in a
fixed anpbunt of menory with a "least recently used" replacenent
policy and a watchdog tinmer that assures that stale information is
not kept indefinitely. A call to Get_Pub_Keys with Try Hard set

fal se would first check that cache for relevant certificates and only
if none were found there would it go out to the nam ng service. |If
there were newer certificates in the naning service, they night not
be found and an authentication mght therefore fail.

Wien Try_Hard is false, an inplenentati on may assune that
certificates not in the cache do not exist so |long as that assunption
does not cause an authentication to falsely succeed. In that case,

it may only make that assunption if the certificates have been
verified to not exist within the revocation time (a few hours).

3.11 DASSI essness Determ nation Functions

In order to provide better interoperability with alternative

aut henti cati on nmechani sms and to provide backward conmpatibility with
ol der (insecure) authentication mechanisns, it is sometinmes inportant
to be able to determne in a secure way what the appropriate

aut henti cati on nmechanismis for a particular named principal. For
some applications, this will be done by a | ocal nechanism where

ei ther the person creating access control information nust know and
speci fy the nechani smfor each principal or a system admi nistrator on
the node nust nmintain a database mappi ng names to nechani snms. Three
applications conme to nmind where scaleability makes such nechani sns
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i npl ausi bl e:

a) To transparently secure proxy-based applications (like rlogin)
in an environment where sonme hosts have been upgraded to
support DASS and sonme have not, a node nust be willing to
accept connections authenticated only by their network
addresses but only if they can be assured that such nodes do
not have DASS installed. Access to a resource becones secure
wi t hout admi nistrative action when all nodes authorized to
access it have been upgraded.

In this scenario, the server node nust be able to determ ne
whet her the client node is DASSl ess in a secure fashion

b) Simlarly, in a nixed environnment where sonme servers are
runni ng DASS and sone are not, it may be desirable for clients
to authenticate servers if they can but it would be
unacceptable for a client to stop being able to access a
DASS| ess server once DASS is installed on the client. In such
a situation where server authentication is desirable but not
essential, the client would like to determne in a secure
fashi on whether the server can accept DASS authentication

c) In a DASS/ Kerberos interoperability scenario, a server may
deci de that Kerberos authentication is "good enough" for
principals that do not have DASS credentials wthout
introducing trust in on-line authorities when DASS credentials
are available. In parallel with case 1, we want it to be true
that when the last principal with authority to access an
obj ect is upgraded to DASS, we automatically cease to trust
PasswdEt c servers wi thout administrative action on the part of
the object owner. For this purpose, the authenticator rnust
learn in a secure fashion that the principal is incapable of
DASS aut henti cati on.

Rel i ably determ ni ng DASS| essness is optional for inplenentations of
DASS and for applications. No other capabilities of DASS rely on
this one.

The interface to the DASSI essness inquiry function is specified as a
call independent of all others. This capability nust be exposed to
the calling application so that a server that receives a request and
no token can ask whether the naned principal should be believed
without a token. It mght inprove performance and usability if in
real interfaces DASSI essness were returned in addition to a bad
status on the function that creates a token if the token is targeted
toward a server incapable or processing it. An application could

t hen deci de whether to make the request without a token (and give up
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server authentication) or to abort the request.
3.11.1 Query DASSI essness

Query_DASSI essnhess(
--inputs
verifying_credentials Credentials,
princi pal _nanme Nane,
--out puts
al ternate_aut hentication Set of O Ds)

This function uses the verifying credentials to search for an
alternative authentication mechanismcertificate for the naned
principal or for any CA on the path between the verifying credentials
and the naned principal. Such a certificate is identical to an DASS
X. 509 certificate except that it lists a different al gorithm
identifier for the public key of the subject than that expected by
DASS.

This function is inplenented identically to Get_Pub_Keys except:

a) If in any set of certificates found, no valid DASS certificate
is found and one or nore certificates are found that woul d
ot herwi se be valid except for an invalid subject public key
OD the ODfromthat certificate or certificates is returned
and the al gorithmterninates.

b) On initial execution, Try Hard=False. |If the first execution
fails to retrieve any valid PK/UD pairs but also fails to
find any invalid OD certificates, repeat the execution with
Try_Hard=True.

c) If the either execution finds PK/U D pairs or if neither finds
and invalid OD certificates, fail by returning a null set.

4. Certificate and nmessage formats
4.1 ASN. 1 encodi ng
Sone definitions are taken from X 501 and X 509.
Dass DEFINITIONS :: =
BEG N
--CCITT Definitions:

joint-iso-ccitt OBJECT | DENTIFIER ::= {2}
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ds OBJECT IDENTIFIER ::= {joint-iso-ccitt 5}

al gorithm OBJECT | DENTI FI ER ::= {ds 8}

encrypti onAl gorithm OBJECT I DENTIFIER ::= {algorithm 1}

hashAl gorithm OBJECT | DENTI FI ER ::= {al gorithm 2}
signatureAl gorithm OBJECT I DENTIFIER ::= {al gorithm 3}

rsa OBJECT | DENTI FIER ::= {encryptionAl gorithm 1}
i so OBJECT | DENTI FIER ::= {1}

i dentified-organizati on OBJECT IDENTIFIER ::= {iso 3}

ecna OBJECT | DENTIFIER ::= {identified-organization 12}
nmenber - conpany OBJECT | DENTIFIER ::= {ecma 2}

di gi tal OBJECT | DENTI FI ER :: = {nenber-conpany 1011}

--1989 OSl | nplenentors Wrkshop "Stabl e" Agreenents

oi w OBJECT | DENTIFIER ::= {identified-organi zation 14}

dssi g OBJECT IDENTIFIER ::= {oiw 7}

oi WAl gorithm OBJECT | DENTI FI ER ::= {dssig 2}

oi Wwencrypti onAl gorithm OBJECT | DENTI FIER ::= {oi wAl gorithm 1}

oi wHashAl gori thm OBJECT | DENTI FI ER :: = {oi wAl gorithm 2}

oi WSi gnat ureAl gorithm OBJECT | DENTIFIER ::= {oi wAl gorithm 3}

oi wivD2 OBJECT | DENTI FI ER :: = {oi wHashAl gorithm 1}
--null paraneter

oi wvD2wi t hRSA OBJECT | DENTI FI ER :: = {oi wSi gnat ureAl gorithm 1}

--null paraneter
--X. 501 definitions

AttributeType ::= OBJECT | DENTI FI ER
AttributeVvalue ::= ANY
AttributeVal ueAssertion ::= SEQUENCE {AttributeType, Attri buteVal ue}

Narme ::= CHO CE { --only one for now
RDNSequence

}
RDNSequence ::= SEQUENCE OF Rel ativeDi sti ngui shedNane
Di sti ngui shedNane ::= RDNSequence

Rel ati veDi stingui shedNane ::= SET OF Attri buteVal ueAssertion
--X. 509 definitions (wWith proposed 1992 extensions presuned)

ENCRYPTED MACRO : :
BEG N

TYPE NOTATI ON t ype( ToBeEnci pher ed)
VALUE NOTATI ON val ue(VALUE BI T STRI NG
END -- of ENCRYPTED
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type (ToBeSi ghed)
val ue (VALUE

SEQUENCE{

END

SI GNATURE MACRO : :

BEG N

TYPE NOTATI ON
VALUE NOTATI ON

ToBeSi gned,

Al gorithm dentifier, --of the algorithmused to
--generate the signature

ENCRYPTED OCTET STRING --where the octet string is the
--result of the hashing of the
--val ue of "ToBeSi gned"

}
-- of SIGNED

type (OF Si ghature)
val ue (VALUE

SEQUENCE {
Al gorithmdentifier, --of the algorithmused to conpute
ENCRYPTED OCTET STRING -- the signature where the octet
-- string is a function (e.g., a
-- conpressed or hashed version)
-- of the value 'O Si gnature’
-- which may include the
-- identifier of the algorithm
-- used to conpute the signature
}
END -- of SI GNATURE
Certificate ::= SI GNED SEQUENCE ({
version [0] Ver si on DEFAULT v1988,
seri al Nunmber CertificateSerial Number,
si ghature Al gorithmdentifier,
i ssuer Nare,
valid Validity,
subj ect Nane,
subj ect Publ i cKey Subj ect Publ i cKeyl nf o,
i ssuerU D [1] IMPLICIT U D OPTI ONAL, -- v1992
subjectUD[2] IMPLICT UD OPTIONAL  -- v1992
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--and in the signature itself is:
-- oi WWD2wi t hRSA (1.3.14.7.2.3.1)

Version ::= I NTEGER {v1988(0), v1992(1)}
CertificateSerial Number ::= | NTEGER
Validity ::= SEQUENCE ({
Not Bef or e UTCTi ne,
Not Af t er UTCTi ne
}
Al gorithmdentifier ::= SEQUENCE {
al gorithm OBJECT | DENTI FI ER,
par anet er ANY DEFI NED BY al gorithm OPTI ONAL
}

--The algorithns we support in one context or another are:
--0i WWD2wi t hRSA (1.3.14.7.2.3.1) with paraneter NULL
--rsa (2.5.8.1.1) with paraneter keysize | NTEGER which is
-- the keysize in bits
--decDEA (1.3.12.1001.7.1.2) with optional paraneter

-- nm ssi ng
--decDEAMAC (1.3.12.2.1011.7.3.3) with optional paraneter
-- nm ssi ng
Subj ect Publ i cKeylnfo ::= SEQUENCE ({
al gorithm Al gorithm dentifier, -- rsa (2.5.8.1.1)
subj ect Publ i cKey BI T STRI NG
-- the "bits" further decode into a DASS public key
}
UD::=BIT STRING

-- the followng definitions are for Digital specified Al gorithns
crypt oAl gorithm OBJECT I DENTIFIER ::= {digital 7}

decEncrypti onAl gorithm OBJECT IDENTIFIER ::= {cryptoAl gorithm 1}

decHashAl gorithm OBJECT I DENTIFIER ::= {cryptoAl gorithm 2}
decSi gnatureAl gorithm OBJECT I DENTIFIER ::= {cryptoAl gorithm 3}
decDASSLessness OBJECT | DENTIFIER ::= {cryptoAl gorithm 6}

decMD2wi t hRSA  OBJECT | DENTI FI ER : :
decMD4wi t hRSA  OBJECT | DENTI FI ER : :
decDEAVAC OBJECT | DENTI FI ER ::

{decSi gnat ur eAl gorithm 1}
{decSi gnat ur eAl gorithm 2}
{decSi gnat ur eAl gorithm 3}
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decDEA OBJECT | DENTI FI ER :: = {decEncryptionAl gorithm 2}
decMD2 OBJECT | DENTI FI ER :: = {decHashAl gorithm 1}
decMX4 OBJECT | DENTI FI ER :: = {decHashAl gorithm 2}
Short Posi xTi ne ::= | NTEGER -- nunber of seconds since base tine
LongPosi xTi me :: = SEQUENCE ({
| NTEGER, -- nunber of seconds since base tine
| NTEGER -- nunber of nanoseconds since second
}
Short Posi xValidity ::= SEQUENCE {
not Bef ore Shor t Posi xTi ne,
not Af t er Short Posi xTi ne }

Not e:

Annex C of X. 509 prescribes the followng format for the
representation of a public key,

but does not give the structure

-- a nane.
DASSPubl i cKey ::= SEQUENCE {
nmodul us | NTEGER
exponent | NTEGER
}
DASSPri vat eKey :: = SEQUENCE {
p | NTEGER -- prime p
q [0] IMPLICIT INTEGER OPTI ONAL , -- prine q
mod[1] | MPLICI T | NTEGER OPTI ONAL, -- nodul us
exp [2] IMPLICIT | NTEGER OPTI ONAL, -- public exponent
dp [3] |IMPLICIT | NTEGER OPTI ONAL |, -- exponent nod p
dg [4] |IMPLICIT | NTEGER OPTI ONAL |, -- exponent nod q
cr [5] IMPLICIT | NTEGER OPTI ONAL |, -- Chinese
--remrai nder coefficient
uid[6] IMPLICIT U D OPTI ONAL,
more[7] IMPLICIT BIT STRI NG OPTI ONAL --Reserved for
--future use
}
Local User Nane = OCTET STRI NG

Channel | d - :
Ver si onNunber :

Ver si onNumber

ver si onZer o
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Aut henti cator ::= SI GNED SEQUENCE {
type BI T STRI NG
-- first bit ‘delegation required
-- second bit ‘Mitual Authentication Requested
whenSi gned LongPosi xTi ne ,
channelld [3] IMPLICIT Channelld OPTI ONAL
-- channel bindings are included when doing the
-- signature, but excluded when transmtting the
-- Aut henti cator

-- uses decDEAMAC (1.3.12.2.1011.7.3.3)

Encrypt edKey ::= SEQUENCE {
al gorithm Al gorithmdentifier,
-- uses rsa (2.5.8.1.1)

encr ypt edAut hKey BI T STRI NG
-- as defined in section 4.4.5
}

Si gnat ur eOnEncrypt edKey ::= SI GNATURE Encrypt edKey
-- uses oi WwD2wi t hRSA (1.3.14.7.2.3.1)
-- Signature bits conputed over EncryptedKey structure

Logi nTi cket ::= SI GNED SEQUENCE {
version [0] | MPLI CI T Versi onNunber DEFAULT ver si onZer o,

validity Short Posi xValidity ,

subj ect U D unb,
del egati ngPubl i cKey Subj ect Publ i cKeyl nfo

-- uses oi WWD2wi t hRSA (1.3.14.7.2.3.1)

Del egator ::= SEQUENCE ({
al gorithm Al gorithm dentifier
-- decDEA encryption (1.3.12.1001.7.1.2)
encrypt edPri vKey ENCRYPTED DASSPri vat eKey,
-- (only p is included)
}
Userd ai mant ::= SEQUENCE ({

userTicket [0] [IMPLICIT LoginTicket,
evi dence CHA CE {
del egator [1] | MPLICI T Del egator |,
-- encrypted del egation private key
-- under DES authenticating key
-- present if del egating
shar edKeyTi cket Si gnature [ 2]
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| MPLICI T Si gnat ureOnEncr ypt edKey
-- present if not del egating

user Nane [ 3] | MPLI CI T Nane OPTI ONAL
-- nane of user principal
}
Encrypt edKeyandUser Nane :: = SEQUENCE ({
encr ypt edKey Encrypt edKey ,
user name Local User Nane
}

Si gnat ur eOnEncr ypt edKeyandUser Nane : : =
SI GNATURE Encr ypt edKeyandUser Nane
-- uses oi WWD2wi t hRSA (1.3.14.7.2.3.1)
-- Signature bits conputed over
-- Encrypt edKeyandUser Nanme structure
-- using node private key

Noded ai mant ::= SEQUENCE {
nodeTi cket Signature[0] IMPLICIT
Si gnat ur eOnEncr ypt edKeyandUser Nane,
nodeNanme [1] | MPLI CI' T Nane OPTI ONAL,

username [2] | MPLI CI T Local User Name OPTI ONAL
}
Aut henti cati onToken ::= SEQUENCE ({
version [0] | MPLI CI' T Versi onNunber DEFAULT ver si onZer o,
aut henticator [1] | MPLICI T Aut henti cat or
encrypt edkey [ 2] | MPLICI T Encrypt edkey OPTI ONAL
-- required if initiating token
userclai mant [ 3] | MPLICI T Userd ai mant OPTI ONAL

-- missing if only doing node authentication

-- required if not doing node authentication
nodecl ai mant [ 4] | MPLI CI' T Noded ai mant OPTI ONAL

-- missing if only doing principal authentication

-- required if not doing principal authentication

}

Mut ual Aut henti cati onToken ::= CHO CE {
vlResponse [0] IMPLICIT OCTET STRI NG (Sl ZE(6))
-- Constructed as follows: A single DES bl ock
-- of eight octets is constructed fromthe two
-- integers in the tinmestanp. First four bytes
-- are the high order integer encoded MSB
-- first; Last four bytes are the | ow order
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-- integer encoded MSB first. The block is
-- encrypted using the shared DES key, and
-- the first six bytes are the OCTET STRI NG
-- Wth the [0] type and 6-byte length, the
-- Mitual Aut henti cati onToken has a fi xed

-- length of eight bytes.

END
4.2 Encodi ng Rul es

Whenever a structure is to be signed it nust always be const
the same way. This is particularly inportant where a signed
has to be reconstructed by the recipient before the signatur
verified. The rules listed bel ow are taken from X. 5009.

- the definite formof |ength encoding shall be used, encod
t he m ni mrum nunber of octets;

- for string types, the constructed form of encodi ng shal
be used;

- if the value of a type is its default value, it shall be
absent;

- the conponents of a Set type shall be encoded in ascendin
order of their tag val ue;

- the conponents of a Set-of type shall be encoded in ascen
order of their octet val ue;

- if the value of a Boolean type is true, the encodi ng sha
have its contents octet set to ‘FF 16;

- each unused bits in the final octet of the encoding of a
BitString value, if there are any, shall be set to zero;

- the encoding of a Real type shall be such that bases 8, 1
16 shall not be used, and the binary scaling factor sha
zero.

4.3 Version nunbers and forward conpatibility

The Logi nTi cket and Aut henticati onToken structures contain a

three octet version identifier which is intended to ease

ruct ed
structure
eis

ed in

not

g

di ng

0 and
| be

transition to future revisions of this architecture. The default

val ue, and the val ue which shoul d al ways be supplied by
i npl enentations of this version of the architecture is 0.0.0
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(three zero octets). The first octet is the mgjor version. An

i npl enentation of this version of the architecture should refuse
to process data structures where it is other than zero, because
changing it indicates that the interpretation of sone subsidiary
data structure has changed. The second octet is the minor
version. An inplenentation of this version of the architecture
shoul d ignore the value of this octet. Sonme future version of
the architecture may set a value other than zero and may specify
some different processing of the renainder of the structure based
on that different value. Such a change woul d be backward conpati bl e
and interoperable. The third octet is the ECO revision. No

i npl ement ati on shoul d make any processi ng deci si ons based on the
val ue of that octet. It may be | ogged, however, to help in
debuggi ng i nteroperability problens.

In the CDC protocol, there is also a three octet version
nunberi ng schene, where versions 1.0.0 and 2.0.0 have been
defined. Inplenentations should follow the same rul es above and
rej ect major version nunbers greater than 2.

ASN. 1 is inherently extensible because it allows new fields to be
added "onto the end" of existing data structures in an

unanbi guous way. | nplenentations of DASS are encouraged to

i gnore any such additional fields in order to enhance backwards
conmpatibility with future versions of the architecture.
Unfortunately, conmonly available ASN. 1 conpilers lack this
capability, so this behavior cannot reasonably be required and
may linmit options for future extensions.

4.4 Cryptographi c Encodi ng

Sone of the substructures listed in the previous sections are
speci fi ed as ENCRYPTED OCTET STRI NGs contai ni ng encrypted

i nformati on. DASS uses the DES, RSA, and MD2 cryptosystens Each
of those cryptosystens specifies a function fromoctet string
into another in the presence of a key (except MD2, which is

keyl ess). This section describes howto formthe octet strings
on which the DES and RSA operations are perforned.

4.4.1 Al gorithmIndependence vs. Key Parity

Al'l of the defined encodings for DASS for secret key encryption
are based on DES. It is intended, however, that other
cryptosystens could be substituted wi thout any ot her changes for
formats or algorithms. The required "formfactor” for such a
cryptosystemis that it have a 64 bit key and operate on 64 bit
bl ocks (this appears to be a comon formfactor for a
cryptosystemy. For this reason, DES keys are in all places
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treated as though they were 64 bits long rather than 56. Only in
the operation of the algorithmitself are eight bits of the key
dropped and key parity bits substituted. Choosing a key always

i nvol ves picking a 64 bit random nunber.

4.4.2 Password Hashing

Encrypted credentials are encrypted using DES as described in the
next section. The key for that encryption is derived fromthe
user’s password and nanme by the follow ng al gorithm

a)

b)

d)

Kauf man

Put the rightnost RDN of the user’s nane in canonical form
according to BER and the X 509 encoding rules. For any string
types that are case insensitive, map to upper case, and where
mat chi ng i s i ndependent of nunber of spaces collapse al
mul ti pl e spaces to a single space and del ete | eadi ng and
trailing spaces.

Note: the RDN is used to add "salt" to the hash cal cul ati on
so that soneone can't preconpute the hash of all the words in
a dictionary and then apply them agai nst all nanmes. Deriving

the salt fromthe |ast RDN of the nane is a conpromise. |If it
were derived fromthe whole nane, all encrypted keys woul d be
obsol eted when a branch of the nanespace was renamed. |If it

wer e i ndependent of name, interaction with a | ogin agent woul d
take two extra nessages to retrieve the salt. Wth this
scheme, encrypted keys are obsol eted by a change in the |ast
RDN and if a final RDN is conmon to a | arge nunber of users,
dictionary attacks against themare easier; but the conmon
case works as desired.

Conpute TEMP as the MD2 nessage di gest of the concatenation of
the password and the RDN conputed above.

Repeat the following 40 tinmes: Use the first 64 bits of TEMP
as a DES key to encrypt the second 64 bits; XOR the result
with the first 64 bits of TEMP, and conpute a new TEMP as MD2
of the 128 bit result.

Use the final 64 bits of the result (called hashl) as the key
to decrypt the encrypted credentials. Use the first 64 bits
(call ed hash2) as the proof of know edge of the password for
presentation to a login agent (if any).
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4.4.3 Digital DEA encryption
DES encryption is used in the follow ng pl aces:
- In the encryption of the encrypted credentials structure
- To encrypt the delegator in authentication tokens
- To encrypt the time in the nutual authenticator

In the first two cases, a varying |length block of information
coded in ASN.1 is encrypted. This is done by dividing the bl ock
of information into 8 octet blocks, padding the last block with
zero bytes if necessary, and encrypting the result using the CBC
node of DES. A zero IV is used.

In the third case, a fixed length (8 byte) quantity (a tinmestanp)
is encrypted. The tinestanp is mapped to a byte string using
"bi g endian" order and the block is encrypted using the ECB node
of DES.

4.4.4 Digital MAC Signing

DES signing is used in the Authenticator. Here, the signature is
computed over an ASN. 1 structure. The signature is the CBC residue
of the structure padded to a nultiple of eight bytes with zeros. The
CBC is conmputed with an IV of zero

4.4.5 RSA Encryption

RSA encryption is used in the Encrypted Shared Key. RSA encryption

i s best thought of as operating on bl ocks which are integers rather
than octet strings and the results are also integers. Because an RSA
encryption pernutes the integers between zero and (nodulus-1), it is
general ly thought of as acting on a block of size (keysizeinbits-1)
and producing a bl ock of size (keysizeinbits) where keysizeinbits is
the snmall est nunber of bits in which the nodul us can be represented.

DASS only supports key sizes which are a multiple of eight bits (This
restriction is only required to support interoperation with certain
existing inplenentations. |If the key size is not a nultiple of eight
bits, the high order byte may not be able to hold values as |large as
the mandated '64°. This is not a problemso Iong as the two high
order bytes together are non-zero, but certain early inplenmentations
check for the value '64" and will not interoperate with

i npl erent ati ons that use sone other value.).

The encrypted shared key structure is laid out as foll ows:
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- The DES key to be shared is placed in the |ast eight bytes

- The POSI X format creation tinme encoded in four bytes using big
endi an byte order is placed in the next four (fromthe end)
byt es

- The POSI X format expiration time encoded in four bytes using
bi g endian byte order is placed in the next four (fromthe
end) bytes

- Four zero bytes are placed in the next four (fromthe end)
byt es

- The first byte contains the constant ' 64’ (decimal)

- Al remaining bytes are filled with random bytes (the security
of the system does not depend on the cryptographic randomess
of these bytes, but they should not be a frequently repeating
or predictable value. Repeating the DES key fromthe | ast
byt es woul d be good).

The RSA algorithmis applied to the integer forned by treating the
byt es above as an integer in big endian order and the resulting
integer is converted to a BIT STRING by laying out the integer in
"bi g endian’ order.

On decryption, the process is reversed; the decryptor should verify
the four explicitly zero bytes but should not verify the contents of
the high order byte or the random bytes.

4.4.6 oi WwWD2wi t hRSA Si gnat ur es

RSA- MD2 signatures are used on certificates, login tickets, shared

key tickets, and node tickets. |In all cases, a signature is conputed
on an ASN. 1 encoded string using an RSA private key. This is done as
foll ows:

- The MD2 algorithmis applied to the ASN. 1 encoded string to
produce a 128 bit nessage di gest

- The message digest is placed in the |ow order bytes of the RSA
bl ock (bi g endi an)

- The next two | owest order bytes are the ASN.1 'T" and 'L’ for
an OCTET STRI NG

- The renmmi nder of the RSA block is filled with zeros
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- The RSA operation is perfornmed, and the resulting integer is
converted to an octet string by laying out the bytes in big
endi an order.

On verification, a value like the above or one where the nessage
digest is present but the 'T and 'L’ are nissing (zero) should be
accepted for backwards conmpatibility with an earlier definition of
this crypto algorithm

4.4.7 decMD2wi t hRSA Si gnat ur es

This algorithmis the sane as the oi wWD2wi t hRSA al gorithm as defi ned
above. W allocated an algorithm object identifier fromthe Digital
space in case the definition of that O D should change. It will not
be used unl ess the neani ng of oi wD2wi t hRSA becones unst abl e.

Annex A
Typi cal Usage

Thi s annex describes one way a system coul d use DASS services (as
described in section 3) to provide security services. Wiile this
exanpl e provided notivation for sonme of the properties of DASS, it is
not intended to represent the only way that DASS may be used. This
goes through the steps that would be needed to install DASS "from
scratch".

A1l Creating a CA

A CAis created by initializing its state. Each CA can sign
certificates that will be placed in sone directory in the nanme
service. Before these certificates will be believed in a w der
context than the sub-tree of the nanme space which is headed by that
directory, the CA nust be certified by a CA for the parent directory.
The procedure bel ow acconplishes this. For nbst secure operation, the
CA should run on an off-line systemand conmunicate with the rest of
the network by interchanging files using a sinple specialized
mechani sm such as an RS232 |line or a floppy disk. It is assuned that
access to the CAis controlled and that the CA will accept

i nstructions froman operator.

- Call Install _CA to create the CA State.
This state is saved within the CA systemand i s never
di scl osed.

- If this is the first CAin the nanespace and the CAis

intended to certify only nenbers of a single directory, we are
done. O herwise, the new CA nust be linked into the CA
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hi erarchy by cross-certifying the parent and children of this
CA. There is no requirenent that CA hierarchies be created
fromthe root down, but to sinplify exposition, only this case
will be described. The newly created CA nust learn its nane,
its UD, the UDof its parent directory, and the public key
of the parent directory CA by sonme out of band reliable neans.
Most likely, this would be done by |ooking up the information
in the naming service and asking the CA operator to verify it.
The CA then forms this information into a parent certificate
and signs it using the Create_certificate function. It

conmuni cates the certificate to the network and posts it in
the nam ng service.

- This name, U D, and public key of the new CA are taken to the
CA of the parent directory, which verifies it (again by sone
unspeci fi ed out-of-band nmechani sn) and calls
Create_Certificate to create a child certificate using its own
Name and U D in the issuer fields. This certificate is also
pl aced in the nam ng service.

A CA can sign certificates for nore than one directory. In this case
it is possible that a single CAwll take the role of both CAs in the
exanpl e above. The above procedure can be sinplified in this case, as
no interchange of information is required.

A.2 Creating a User Principal

A system nanager may create a new user principal by invoking the
Create_principal function supplying the principal’s name, U D, and
the public key/U D of the parent CA. The public key and U D nust be
obtained in a reliable out of band manner. This is probably by
havi ng know edge of that information "wired into" the utility which
creates new principals. At account creation tinme, the system manager
must supply what will beconme the user’s password. This might be done
by having the user present and directly enter a password or by having
the password sel ected by some random gener at or

The trusted authority certificate and correspondi ng user public key
generated by the Create_principal function are sent to the CA which
verifies its contents (again by an out-of-band nechanism and signs a
corresponding certificate. The encrypted credentials, CA signed
certificate, and trusted authority certificates are all placed in the
nam ng service. The process by which the password i s nade known to
the user nust be protected by sone out-of-band nechani sm

In sone cases the principal nay wish to generate its own key, and not

use the Encrypted Credentials. (e.g., if the Principal is represented
by a Smart Card). This nay be done using a procedure sinmlar to the
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one for creating a new CA
A.3 Creating a Server Principal

A server also has a public/private key pair. Conceptually, the same
procedure used to create a user principal can be used to create a
server. |In practice, the nost inportant difference is likely to be
how t he password is protected when installing it on a server conpared
to giving it to a user

A server may wish to retrieve (and store) its Encrypted Credentials
directly and never have them placed in the naming service. In this
case sone ot her nechani smcan be used (e.g., passing the floppy disk
containing the encrypted credentials to the server). This would
require a variant of the Initialize_Server routine which does not
fetch the Encrypted Credentials fromthe naning service.

A. 4 Booting a Server Principal

Wien the server first boots it needs its nane (unreliably) and
password (reliably). It then calls Initialize_Server to obtain its

credentials and trusted authority certificates (which it will later
need in order to authenticate users). These credentials never tine
out, and are expected to be saved for a long tinme. |In particular the

associ ated I ncoming Tinestanp List nust be preserved while there are
any tinmestanps on it. It is desirable to preserve the Cached | ncom ng
Contexts as long as there are any contexts likely to be reused.

If a server wants to initiate associations on its own behalf then it
must call Generate_Server Ticket. It nust repeat this at intervals
if the expiration period expires.

A node that w shes to do node authentication (or which acts as a
server under its own name) nust be created as a server

A.5 A user logs on to the network

The systemthat the user logs onto finds the user’s nane and
password. It then calls Network _Login to obtain credentials for the
user. These credentials are saved until the user wants to nmake a
network connection. The credentials have a tinme linmt, so the user
will have to obtain new credentials in order to make connecti ons
after the tinme limt. The credentials are then checked by calling
Verify Principal _Name, in order to check that the key specified in
the encrypted credentials has been certified by the CA

If the system does source node authentication it will cal
Conbi ne_credentials, once the |ocal usernanme has been found. (This
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can either be found by | ooking the principal’s global name up in a
file, or the user can be asked to give the |Iocal nane directly.
Alternatively the user can be asked to give his | ocal usernane, which
the system | ooks up to find the gl obal nane).

A.6 An Rlogin (TCP/1P) connection is nmade

When the user calls a nodified version of the rlogin utility, it
calls Create_token in order to create the Initial Authentication
Token, which is passed to the other systemas part of the rlogin
protocol. The rlogind utility at the destination node calls

Accept _token to verify it. It then looks up in a local rhosts-like
dat abase to deternine whether this global user is allowed access to

t he requested destination account. It calls Verify_principal _nane
and/or Verify node_name to confirmthe identity of the requester. |If
access is allowed, the connection is accepted and the Mitual

Aut hentication Token is returned in the response nessage.

The source receives the returned Mutual Authentication Token and uses
it toconfirmit communicating with the correct destination node.

R ogind then calls Conbine_credentials to conbine its node/ account
information with the global user identification in the received
credentials in case the user accesses any network resources fromthe
destination system

A.7 A Transport-I|ndependent Connection

As an alternative to the description in A 6, an application w shing
to be portable between different underlying transports nay cal
create_token to create an authentication token which it then sends to
its peer. The peer can then call accept_token and
verify_principal _name and learn the identity of the requester.

Annex B
Support of the GSSAPI

In order to support applications which need to be portable across a
variety of underlying security mechanisns, a "Generic Security
Service API" (or GSSAPlI) was designed which gives access to a common
core of security services expected to be provided by several

nmechani sns. The GSSAPI was desi gned with DASS, Kerberos V4, and
Kerberos V5 in nind, and could be witten as a front end to any or
all of those systens. It is hoped that it could serve as an
interface to other security systens as well.

Application portability requires that the security services supported
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be conparable. Applications using the GSSAPI will not be able to
access all of the features of the underlying security nechanisns.
For exampl e, the GSSAPI does not allow access to the "node

aut henti cation" features of DASS. To the extent the underlying
security mechanisnms do not support all the features of GSSAPI,

applications using those features will not be portable to those
security nmechani sms. For exanple, Kerberos V4 does not support
del egation, so applications using that feature of the GSSAPI will not

be portable to Kerberos V4.

Thi s annex expl ai ns how t he GSSAPI can be inpl enented using the
primtive services provided by DASS

B.1 Sunmmary of GSSAPI

The latest draft of the GSSAPI specification is avail able as an
internet draft. The following is a brief summary of that evol ving

docunment and should not be taken as definitive. Included here are
only those aspects of GSSAPI whose inplenmentati on woul d be DASS
specific.

The GSSAPI provides four classes of functions: Credential Mnagenent,
Cont ext-Level Calls, Per-nessage calls, and Support Calls; two types
of objects: Credentials and Contexts; and two kinds of data
structures to be transmtted as opaque byte strings: Tokens and
Messages. Credentials hold keys and support information used in
creating tokens. Contexts hold keys and support information used in
signi ng and encrypting nmessages.

The Credential Managenent functions of GSSAPI are "inconplete" in the
sense that one could not build a useful security inplenentation using
only GSSAPI. Functions which create credentials based on passwords

or smart cards are needed but not provided by GSSAPI. It is
envi si oned that such functions would be invoked by security nmechani sm
specific functions at user login or via sonme separate utility rather
than fromw thin applications intended to be portable. The

Credential Managenent functions available to portable applications
are:

- GSS Acquire_cred: get a handle to an existing credential
structure based on a nanme or process default.

- GSS Rel ease_cred: release credentials after use.
The Context-Level Calls use credentials to establish contexts.
Contexts are |like connections: they are created in pairs and are

generally used at the two ends of a connection to process nessages
associated with that connection. The Context-Level Calls of interest
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ar e:

- GSS Init_sec_context: given credentials and the nanme of a
destination, create a new context and a token which w ||
permit the destination to create a correspondi ng context.

- GSS_Accept _sec_context: given credentials and an incom ng
token, create a context corresponding to the one at the
initiating end and provide information identifying the
initiator.

- GSS Delete_sec_context: delete a context after use.

The Per-Message Calls use contexts to sign, verify, encrypt, and
decrypt nessages between the hol ders of matching contexts. The Per-
Message Calls are:

- GSS Sign: Gven a context and a nessage, produces a string of
byt es which constitute a signature on a provi ded nessage.

- GSS Verify: Gven a context, a nessage, and the bytes
returned by GSS _Sign, verifies the nessage to be authentic
(unaltered since it was signed by the correspondi ng context).

- GSS Seal: Gven a context and a nessage, produces a string of
byt es which include the nmessage and a signature; the nessage
may optionally be encrypted.

- GSS_Unseal: Gven a context and the string of bytes from
GSS Seal, returns the original nessage and a status indicating
its authenticity.

The Support Calls provide utilities |ike translating names and status
codes into printable strings.

B.2 I npl enentation of GSSAPI over DASS
B.2.1 Data Structures

The objects and data structures of the GSSAPI do not map neatly into
the objects and data structures of the DASS architecture.

This section describes how those data structures can be inpl enmented
using the DASS data structures and primtives

Credential handles correspond to the credentials structures in DASS,

where the portable APl assunes that the credential structures
t hensel ves are kept from applications and handl es are passed to and
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fromthe various subroutines.

Context initialization tokens correspond to the tokens of DASS. The
GSSAPI prescribes a particular ASN. 1 encoded formfor tokens which

i ncl udes a nechanismspecific bit string withinit. An

i npl emrent ati on of GSSAPI shoul d encl ose the DASS token within the
GSSAPI  "wr apper ™.

Cont ext handl es have no corresponding structure in DASS. The

Creat e_token and Accept _token calls of DASS return a shared key and

instance identifier. An inplenentation of the GSSAPI nust take those
val ues along with sone other status information and package it as a

"context" opaque structure. These data structures nust be all ocated
and freed with the appropriate calls.

Per - nessage tokens and seal ed nessages have no correspondi ng data
structure within DASS. To fully support the GSSAPI functionality,
DASS nmust be extended to include this functionality. These data
structures are created by cryptographic routines given the keys and
status information in context structures and the nmessages passed to
them Wiile not properly part of the DASS architecture, the fornmats
of these data structures are included in section C. 3.

B. 2.2 Procedures

Thi s section explains how the functions of the GSSAPI can be provided
in terns of the Services Provided by DASS. Not all of the DASS
features are accessible through the GSSAPI

B.2.2.1 GSS_Acquire_cred

The GSSAPI does not provide a nechanismfor |ogging in users or
establ i shing server credentials. It assunmes that some system specific
nmechani sm created those credentials and that applications need sone
mechani smfor getting at them A nodel inplenmentation m ght save al
credentials in a node-gl obal pool indexed by sonme sort of credenti al
nane. The credentials in the pool would be access controlled by some
| ocal policy which is not concern of portable applications. Those
applications would sinply call GSS Acquire_cred and if they passed
the access control check, they would get a handle to the credentials
whi ch coul d be used in subsequent calls.

B.2.2.2 GSS_Rel ease_cred

This call corresponds to the "delete_credential s" call of DASS.
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B.2.2.3 GSS_Init_sec_cont ext

In the course of a normal nutual authentication, this routine will be
called twice. The procedure can deternine whether this is the first
or second call by seeing whether the "input_context_handle" is zero
(it will be on the first call). On the first call, it will use the
DASS Create_token service to create a token and it will also allocate
and popul ate a "context" structure. That structure will hold the key,
i nstance identifier, and nutual authentication token returned by
Create_token and will in addition hold the flags which were passed
into the Init_sec_context call. The token returned by
Init_sec_context will be the DASS token included in the GSSAPI token
"wrapper". The DASS token will include the optional principal nane.

I f mutual authentication is not requested in the GSSAPI call, the
mut ual aut henticati on token returned by DASS will be ignored and the
initial call will return a COWLETE status. |f mutual authentication
is requested, the nutual authentication token will be stored in the
context information and a CONTI NUE_NEEDED st at us returned.

On the second call to GSS Init_sec_context (with input_context_handl e
non-zero), the returned token will be conpared to the one in the
context information using the Conpare_mutual token procedure and a
COWPLETE status will be returned if they match

B.2.2.4 GSS_Accept _sec_cont ext
This routine in GSSAPI accepts an incomng token and creates a
context. It conbines the effects of a series of DASS functions. It
could be inplenented as foll ows:

- Renove the GSSAPI "w apper” fromthe incom ng token and pass

the rest and the credentials to "Accept_token". Accept_token
produces a nmutual authentication token and a new credentials
structure. |If delegation was requested, the new credentials
structure will be an output of GSS Accept_sec_context. In any
case, it will be used in the subsequent steps of this
procedur e.

- Use the DASS Get _principal _nane function to extract the
principal nanme fromthe credentials produced by Accept _token
This nane is one of the outputs of "GSS _Accept_sec_context.

- Apply the DASS Verify principal_name to the new credentials
and the retrieved nanme to authenticate the token as having
cone fromthe naned princi pal

- Create and popul ate a context structure with the key and
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ti mestanp returned by Accept_token and a status of COVPLETE
Return a handle to that context.

- If delegation was requested, return the new credentials from
GSS _Accept _sec_context. Oherwise, call Delete_credentials.

- If mutual authentication was requested, wap the mutua
aut hentication token from Accept _token in a GSSAPI "wrapper"”
and return it. Oherwise return a null string.

B.2.2.5 GSS _Del ete_sec_cont ext

This routine sinply deletes the context state. No calls to DASS are
required.

B.2.2.6 GSS_Sign

This routine takes as input a context handle and a nessage. It
creates a per_nsg_token by conputing a digital signature on the
nmessage using the key and tinmestanp in the context block. No DASS
services are required. |If additional cryptographic services were
requested (replay detection or sequencing), a tinestanp or sequence
nunber nust be prepended to the nessage and sent with the signature.
The syntax for this nessage is listed in section C 3.

B.2.2.7 GSS Verify

This routine repeats the calculation of the sign routine and verifies
the signature provided. If replay detection or sequencing services
are provided, the context nust maintain as part of its state

i nformati on contai ning the sequence nunbers or tinestanps of nessages
al ready received and this one nust be checked for acceptability.

B.2.2.8 GSS_Seal
This routine performs the sane functions as Sign but also optionally
encrypts the nessage for privacy using the shared key and
encapsul ates the whole thing in a GSSAPI specified ASN. 1 wr apper.
B.2.2.9 GSS_Unseal
This routine performs the sane functions as GSS Verify but al so

parses the data structure including the signature and nessage and
decrypts the nessage if necessary.
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B. 3 Synt ax

The GSSAPI specification recommends the follow ng ASN. 1 encodi ng for
the tokens and nessages generated through the GSSAPI

--optional top-level token definitions to frame
-- different mechani sns

GSSAPI DEFINITIONS :: =
BEG N

MechType ::= OBJECT | DENTI FI ER
-- data structure definitions
Cont ext Token :: =
-- option indication (delegation, etc.) indicated
-- within nmechani smspecific token
[ APPLI CATION 0] | MPLICI T SEQUENCE {
t hi sMech MechType,
responsekExpect ed BOOLEAN
i nner Cont ext Token ANY DEFI NED BY MechType
-- contents mechani smspecific
}

Per MsgToken :: =
-- as emtted by GSS _Sign and processed by
-- GSS Verify
[ APPLI CATION 1] | MPLI CI' T SEQUENCE {
t hi sMech MechType,
i nner MsgToken ANY DEFI NED BY MechType
-- contents mechani smspecific
}

Seal edMessage :: =
-- as emtted by GSS Seal and processed by
-- GSS_Unsea
[ APPLI CATION 2] | MPLI CI' T SEQUENCE {
seal i ngToken PERMSGTOKEN
conf Fl ag BOOLEAN
userData OCTET STRI NG
-- encrypted if confFlag TRUE
}

The object identifier for the DASS MechType is 1.3.12.2.1011.7.5.

The i nner Cont ext Token of a token is a DASS token or nutual
aut henti cati on token.

The innerMsgToken is a null string in the case where the nessage is
encrypted and the token is included as part of a Seal edMessage.
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O herwise, it is an eight octet sequence conputed as the CBC residue
computed using a key and string of bytes defined as follows:

Pad the nmessage provided by the application with 1-8 bytes of
pad to produce a string whose length is a nultiple of 8
octets. Each pad byte has a value equal to the nunber of pad
byt es.

Compute the key by taking the tinmestanp of the association
(two four byte integers laid out in big endian order with the
nost significant integer first), conplenmenting the high order
bit (to avoid aliasing with mutual authenticators), and
encrypting the block in ECB node with the shared key of the
associ ati on.

The userData field of a Seal edMessage is exactly the application
provided byte string if confFlag=FALSE. Qherwise, it is the
application supplied nmessage encrypted as foll ows:

Pad the nmessage provided by the application with 1-8 bytes of
pad to produce a string whose length = 4 (nod 8). Each pad
byte has a value equal to the nunber of pad bytes.

Append a four byte CRC32 conputed over the nessage + pad.

Conpute a key by taking the tinmestanp of the association (two
four byte integers laid out in big endian order with the nost
significant integer first), conplenmenting the high order bit
(to avoid aliasing with mutual authenticators), and encrypting
the block in ECB node with the shared key of the association

Encrypt the nmessage + pad + CRC32 using CBC and the key
computed in the previous step.

A note of the | ogic behind the above:

Because the shared key of an association may be reused by many
associ ati ons between the sanme pair of principals, it is
necessary to bind the association tinestanp into the nessages
sonmehow to prevent nessages from a previous association being
repl ayed into a new sequence. The techni que above of
generating an associ ati on key acconplishes this and has a side
benefit. An inplenentation may with to keep the Iong term
keys out of the hands of applications for purposes of

confi nement but may wish to put the encryption associated with
an association in process context for reasons of performance.
Defi ni ng an associ ati on key nakes that possible.
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- The reason that the association specific key is not specified
as the output of Create_token and Accept_token is that the DCE
RPC security inplenmentation requires that a series of
associ ati ons between two principals always have the sane key
and we did not want to have to support a different interface
in that application.

- The CRC32 after pad constitutes a cheap integrity check when
data is encrypted.

- The fact that padding is done differently for encrypted and
si gned nessages neans that there are no threats related to
sendi ng the sane nmessage encrypted and unencrypted and using
the last block of the encrypted nessage as a signature on the
unencrypted one.

Annex C
I mported ASN. 1 definitions

Thi s annex contains extracts fromthe ASN. 1 description of X 509 and
X. 500 definitions referenced by the DASS ASN. 1 definitions.

CCTT DEFINITIONS :: =

BEG N joint-iso-ccitt OBJECT IDENTIFIER ::= {2} ds

OBJECT IDENTIFIER ::= {joint-iso-ccitt 5} algorithm

OBJECT | DENTI FIER ::= {ds 8}

i so OBJECT IDENTIFIER ::= {1} identified-
organi zation OBJECT IDENTIFIER ::= {iso 3} ecnm OBJECT
| DENTI FI ER :: = {identified-organization 12} digital

OBJECT IDENTIFIER ::= { ecna 1011 }

-- X.501 definitions

AttributeType ::= OBJECT | DENTIFIER AttributeValue ::= ANY
-- useful ones are
- - OCTET STRI NG ,
- - Printabl eString ,
-- NunericString
-- T61String
-- Vi si bl eString

AttributeVal ueAssertion ::= SEQUENCE {AttributeType,
Attri but eval ue}
Name ::= CHO CE {-- only one possibility for now --
RDNSequence}
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RDNSequence ::= SEQUENCE OF Rel ativeDi sti ngui shedNane
Di stingui shedNane ::= RDNSequence
Rel ati veDi stingui shedNane ::= SET OF Attri buteVal ueAssertion

-- X.509 definitions

Certificate ::= SI GNED SEQUENCE ({
version [0] Ver si on DEFAULT 1988 ,
seri al Nunmber Seri al Nunber
si ghature Al gorithm dentifier ,
i ssuer Narme,
valid Validity,
subj ect Nane,
subj ect Publ i cKey Subj ect Publ i cKeyl nfo }
Version ::= I NTEGER { 1988(0)} Serial Nunber ::= INTECER Validity
S SEQUENCE{
not Bef or e UTCTi e,
not Af t er UTCTi e}
Subj ect Publ i cKeylnfo ::= SEQUENCE ({
al gorithm Al gorithm dentifier ,
subj ect Publ i cKey BI T STRI NG
}
Al gorithmdentifier ::= SEQUENCE {
al gorithm OBJECT | DENTI FI ER
par anmet ers ANY DEFI NED BY al gorithm OPTI ONAL}
ALGORI THM MACRO BEGA N TYPE NOTATION  ::= "PARAMETER' type VALUE
NOTATI ON ::= value (VALUE OBJECT | DENTIFIER) END -- of ALGORI THM
ENCRYPTED MACRO BEG N TYPE NOTATION  ::=type(ToBeEnci phered) VALUE
NOTATI ON ::= val ue(VALUE BI T STRI NG

-- the value of the bit string is generated by

-- taking the octets which formthe conplete

-- encoding (using the ASN. 1 Basi c Encodi ng Rul es)

-- of the value of the ToBeEnci phered type and

-- applying an enci phernment procedure to those octets-- END

SI GNED MACRO ::= BEG N TYPE NOTATION ::= type (ToBeSi gned) VALUE
NOTATI ON  :: = val ue( VALUE SEQUENCE{

ToBeSi ghed,

Al gorithldentifier, -- of the algorithmused to generate

-- the signature
ENCRYPTED OCTET STRI NG
-- where the octet string is the result
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-- of the hashing of the value of "ToBeSi gned" END -- of

S| GNED
S| GNATURE MACRO ::= BEG N TYPE NOTATION ::= type(O Signature) VALUE
NOTATI ON :: = val ue( VALUE

SEQUENCE{

Al gorithm dentifier,
-- of the algorithmused to conpute the signature
ENCRYPTED OCTET STRI NG
-- where the octet string is a function (e.g., a
-- conpressed or hashed version) of the val ue
-- "OFSignature", which may include the identifier
-- of the algorithmused to conpute
-- the signature--}

) END -- of S| GNATURE

-- X. 509 Annex H (not part of the standard)

encrypti onAl gorithm OBJECT | DENTIFIER ::= {algorithm1} rsa ALGORI THM
PARAMETER KeySi ze
.= {encryptionAl gorithm 1}

KeySi ze ::= | NTEGCER

END

d ossary

aut hentication
The process of deternmining the identity
(usually the nane) of the other party in some comrunication
exchange.

aut henti cati on cont ext
Cached information used during a particular instance of
aut hentication and including a shared symmetric (DES) key as
wel | as conmponents of the authentication token conveyed
during establishment of this context.

aut henti cati on token
Informati on conveyed during a strong authentication exchange
that can be used to authenticate its sender. An
aut hentication token can, but is not necessarily limted to,
include the claimant identity and ticket, as well as signed
and encrypted secret key exchange nmessages conveying a
secret key to be used in future cryptographic operations. An
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aut hentication token nanes a particul ar protocol data
structure conponent.

aut hori zati on
The process of deternining the rights
associated with a particular principal.

certificate
The public key of a particular principal, together
with sone other information relating to the names of the
principal and the certifying authority, rendered unforgeable
by enci pherment with the private key of the certification
authority that issued it.

certification authority
An authority trusted by one or nore principals to create and
assign certificates.

cl ai mant
The party that initiates the authentication process.
In the DASS architecture, clainants possess credentials
which include their identity, authenticating private key and
a ticket certifying their authenticating public key.

credential s
Information "state" required by principals in order
to for themto authenticate. Credentials nay contain
information used to initiate the authentication process
(claimant information), information used to respond to an
aut hentication request (verifier information), and cached
i nformati on useful in inproving perfornance.

crypt ographi ¢ checksum
Information which is derived by perform ng a cryptographic
transformation on the data unit. This infornmation can be
used by the receiver to verify the authenticity of data
passed i n cl eartext

deci pher
To reverse the effects of enciphernment and render a
nmessage conprehensi bl e by use of a cryptographic key.

del egati on

The granting of tenporary credentials that allow a
process to act on behalf of a principal.
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del egati on key
A short termpublic/private key pair used by a clai mant
to act on behalf of a principal for a bounded period. The
del egation public key appears in the ticket, whereas the
del egation private key is used to sign secret key exchange

nmessages.

DES
Data Encryption Standard: a synmetric (secret key)
encryption algorithmused by DASS. An alternate encryption
algorithmcould be substituted with little or no disruption
to the architecture

DES key

A 56-bit secret quantity used as a paraneter to the
DES encryption al gorithm

digital signature
A val ue conputed froma block of data
and a key which could only be conputed by soneone know ng
the key. A digital signature conputed with a secret key can
only be verified by soneone knowi ng that secret key. A
digital signature conputed with a private key can be
verified by anyone know ng the correspondi ng public key.

enci pher
To render inconprehensible except to the holder of a
particul ar key. If you encipher with a secret key, only the
hol der of the same secret can deci pher the nmessage. |If you
enci pher with a public key, only the hol der of the
correspondi ng private key can decipher it.

initial trust certificate
A certificate signed by a principal for its own use which
states the nane and public key of a trusted authority.

gl obal user nane
A hierarchical name for a user which is
unique within the entire domain of discussion (typically the
net wor k) .

| ocal user nane
A sinple (non-hierarchical) nanme by
which a user is known within a limted context such as on a
si ngl e conputer.
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princi pal
Abstract entity which can be authenticated by name.
In DASS there are user principals and server principals.

private key
Crypt ographi c key used in asynmetric (public key)
cryptography to decrypt and/or sign nessages. In asymetric
crypt ography, know ng the encryption key is independent of
knowi ng the decryption key. The decryption (or signing)
private key cannot be derived fromthe encrypting (or
verifying) public key.

pr oxy
A mapping froman external nanme to a | ocal account
name for purposes of establishing a set of |ocal access
rights. Note that this differs fromthe definition in ECVA
TR/ 46.

public key
Crypt ographi c key used in asynmetric cryptography to
encrypt nessages and/or verify signatures.

RSA
The Ri vest-Shanir-Adel man public key cryptosystem
based on nodul ar exponenti ati on where the nodulus is the
product of two large prinmes. Wen the term RSA key is used,
it should be clear fromcontext whether the public key, the
private key, or the public/private pair is intended.

secret key
Crypt ographic key used in symmetric cryptography to
encrypt, sign, decrypt and verify nmessages. In symetric
crypt ography, know edge of the decryption key inplies
know edge of the encryption key, and vice-versa.

sign
A process which takes a piece of data and a key and
produces a digital signature which can only be cal cul ated by
soneone with the key. The holder of a corresponding key can
verify the signature

source
The initiator of an authentication exchange.

strong aut henti cation
Aut henti cati on by neans of cryptographically derived
aut hentication tokens and credentials. The actual worKking
definition is closer to that of "zero know edge" proof:
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aut hentication so as to not reveal any infornmation usable by
either the verifier, or by an eavesdropping third party, to
further their potential ability to inpersonate the clai mant.

t ar get
The intended second party (other than the source) to
an aut henti cati on exchange.

ticket
A data structure certifying an authenticating
(public) key by virtue of being signed by a user principa
using their (long term private key. The ticket also
includes the U D of the principal.

trusted authority
The public key, nane and U D of a
certification authority trusted in sone context to certify
the public keys of other principals.

u D
A 128 bit unique identifier produced according to OSF
standard specifications.

user key
A "long term RSA key whose private portion
authenticates its holder as having the access rights of a
particul ar person.

verify
To cryptographically process a piece of data and a
digital signature to determ ne that the holder of a
particul ar key signed the data.

verifier

The party who will performthe operations necessary
to verify the clained identity of a claimnt.
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Security Considerations

Security issues are discussed throughout this neno.
Aut hor’ s Address

Char |l es Kauf nan

Di gi tal Equi prent Corporation

ZK®3- 3/ U14

110 Spit Brook Road

Nashua, NH 03062

Phone: (603) 881-1495
Emai | : kauf man@k3. dec. com

Ceneral comments on this docunent should be sent to cat-ietf@rit. edu.
M nor corrections should be sent to the author.
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