Net wor k Wor ki ng Group J. Linn
Request for Comments: 2743 RSA Laboratori es
Qbsol etes: 2078 January 2000
Cat egory: Standards Track

Generic Security Service Application ProgramInterface
Version 2, Update 1

Status of this Meno

Thi s docunment specifies an Internet standards track protocol for the
Internet conmunity, and requests di scussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this meno is unlimnited.

Copyright Notice
Copyright (C) The Internet Society (2000). Al Rights Reserved.
Abstract

The Generic Security Service Application ProgramlInterface (GSS-API),
Version 2, as defined in [RFC-2078], provides security services to
callers in a generic fashion, supportable with a range of underlying
mechani sns and technol ogi es and hence al | owi ng source-| evel
portability of applications to different environnents. This

speci fication defines GSS-APlI services and primtives at a | evel

i ndependent of underlying nmechani sm and progranm ng | anguage
environnent, and is to be conplenented by other, related

speci fications:

docunent s defining specific parameter bindings for particular
| anguage environnents

docunents defining token formats, protocols, and procedures to be
i mpl emented in order to realize GSS-API services atop particul ar
security nechani snms

Thi s nenp obsol etes [RFC-2078], naking specific, increnmental changes
in response to inplenentation experience and |iaison requests. It is
i ntended, therefore, that this nenop or a successor version thereto
will becone the basis for subsequent progression of the GSS-API

speci fication on the standards track.

Li nn St andar ds Track [Page 1]

RFC 2743 GSS- API January 2000

TABLE OF CONTENTS

1. GSS- APl Characteristics and Concepts . 4
1.1: GSS-APlI Constructs . e 6
1.1.1: Credentials . Ce e e e 6
1.1.1.1: Credential Constructs and Concepts . 6
1.1.1.2: Credential Managenent . 7
1.1.1.3: Default Credenti al Resolutlon 8
1.1.2: Tokens . . 9
1.1.3: Security Cbntexts . 11
1.1.4: Mechani sm Types . 24
1.1.5: Naming . . P R
1.1.6: Channel Blndlngs . . 16
1.2: GSS-API Features and Issues . e 17
1.2.1: Status Reporting and Optional Service Support 17
1.2.1.1: Status Reporting . . e e 17
1.2.1.2: Optional Service Support 19
1.2.2: Per-Message Security Service Avallablllty 20
1.2.3: Per-Message Replay Detection and Sequencrng e 21
1.2.4: Qality of Protection e e e e e 24
1.2.5: Anonymity Support 25
1.2.6: Initialization 25
1.2.7: Per-Message Protectron Durlng CDntext Establlshnent . . 26
1.2.8: Inplenentation Robustness 27
1.2.9: Delegation . . . e e e e e ..., . 28
1.2.10: Interprocess Cbntext Transfer e e e e e ..., . 28
2: Interface Descriptions . . C e e e e e 029
2.1: Credential nanagenent caIIs T X
2.1.1: GSS_Acquire credcall3
2.1.2: GSS_Release credcall 34
2.1.3: GSS_Inquirecredcall 35
2.1.4: GSS_Add_cred call . . e ¥
2.1.5. GSS_ Ian|re cred_by_ nech caII e {0
2.2: Context-level calls < ¥
2.2.1: GSS_lnit_sec_context caII P 24
2.2.2: GSS_Accept_sec_context call49
2.2.3: GSS_Del ete_sec_context call b3
2.2.4: GSS_Process_context_token call 54
2.2.5: GSS_ Context_time call b5
2.2.6: GSS_Inquire_context call 56
2.2.7. GSS Wap_size_ limt call b7
2.2.8: GSS_Export_sec_context call 59
2.2.9: GSS_lInport_sec_context call 61
2.3 Per-nessage calls6862
2.3.1: GSS GtMCecall 63
2.3.2: GSS_ VerifymcCceceall 64
2.3.3: GsS Wapcal6®65
2.3.4: GSS Umwapcall 66

Li nn St andar ds Track [Page 2]

RFC 2743 GSS- API

Support calls . . .
GSS Display_status caI I
GSS_I ndi cat e_nechs cal |
GSS_Conpar e_nane cal l
GSS Di splay_nane call
GSS I nport _name call
GSS_Rel ease_nane cal |l .
GSS _Rel ease_buffer call
GSS Rel ease_ O D set call . .
GSS Create_enpty_O D set call
10: GSS_Add_QO D _set _nenber call
11: GSS _Test_O D _set _nenber call
12: GSS_I nquire_nanmes_for_nech call
13: GSS_Inquire_mechs_for_name call
14: GSS_Canoni cal i ze_nane cal |
15: GSS_Export_nane call .
.16: GSS Duplicate_nane call

CcoNoaRONR

PRARAAADDEAAEAARRAAAD

. 1: Mechani sm | ndependent Token For mat

Nams Type Definitions

Host - Based Servi ce Nane Form

User Name Form . .

Machine U D Form .

String U D Form

Anonynous Nanetype .

GSS CNOOD. . .

Exported Nane bj ect

GSS_C _NO NAME . . .
Mechani sm Speci fic Exarrpl e Scenarl 0s
Ker beros V5, single-TGT

Ker ber os V5, doubl e-TGT .o

X. 509 Aut hentication Fr arrevvork
Security Considerations .
Rel ated Activities
Ref erenced Docunents . . .
Appendi x A: Mechani sm Desi gn Const r ai nts
Appendi x B: Conpatibility with GSS-V1 . .
Appendi x C. Changes Rel ative to RFC-2078
Aut hor’s Address . .
Ful I Copyright St aterrent

ONoaRwONR

DNOANNANEEEBEEEBERVWONNNNNNNNNNNNNNNONN
WN PP

Li nn St andards Track

Data Structure Definitions for GSS VZ. Ursaoe.

.2: Mechanisml ndependent Exported Narre. Opj ect For rrat .

January 2000

68
68
69
70
71
72
73
74
74
75
76
76
77
77
78
79
80
81
81
84
85
85
86
87
87
87
88
88
88
88
89
89
90
91
92
93
94
94
96
lOO
. 101

[Page 3]

RFC 2743 GSS- API January 2000

1. GSS-APlI Characteristics and Concepts

GSS- APl operates in the follow ng paradigm A typical GSS-API caller
is itself a communications protocol, calling on GSS-API in order to
protect its conmunications with authentication, integrity, and/or
confidentiality security services. A GSS-APlI caller accepts tokens
provided to it by its local GSS-API inplenentation and transfers the
tokens to a peer on a renbte system that peer passes the received
tokens to its | ocal GSS-API inplenentation for processing. The
security services available through GSS-API in this fashion are

i npl enent abl e (and have been inpl enmented) over a range of underlying
mechani sns based on secret-key and public-key cryptographic

t echnol ogi es.

The GSS- APl separates the operations of initializing a security

cont ext between peers, achieving peer entity authentication
(GSS_Init_sec_context() and GSS Accept_sec_context() calls), fromthe
operations of providing per-nmessage data origin authentication and
data integrity protection (GSS GetM C() and GSS VerifyM C() calls)
for messages subsequently transferred in conjunction with that
context. (The definition for the peer entity authentication service,
and other definitions used in this docunent, corresponds to that
provided in [I SO 7498-2].) Wuen establishing a security context, the
GSS- APl enabl es a context initiator to optionally permt its
credentials to be del egated, neaning that the context acceptor may
initiate further security contexts on behalf of the initiating
caller. Per-nessage GSS Wap() and GSS Unwap() calls provide the
data origin authentication and data integrity services which

GSS GetM C() and GSS VerifyM C() offer, and al so support sel ection of
confidentiality services as a caller option. Additional calls provide
supportive functions to the GSS-API’'s users.

The foll owi ng paragraphs provide an exanple illustrating the

datafl ows involved in use of the GSS-API by a client and server in a
nmechani sm i ndependent fashion, establishing a security context and
transferring a protected nmessage. The exanpl e assunes that credenti al
acqui sition has already been conpleted. The exanple al so assunes
that the underlying authentication technology is capabl e of
authenticating a client to a server using elenents carried within a
singl e token, and of authenticating the server to the client (nutua
authentication) with a single returned token; this assunption hol ds
for some presently-docunmented CAT nmechani sms but is not necessarily
true for other cryptographic technol ogi es and associ ated protocol s.

The client calls GSS Init_sec_context() to establish a security
context to the server identified by targ _nanme, and elects to set the
mut ual _req_flag so that nutual authentication is perfornmed in the
course of context establishnment. GSS Init_sec_context() returns an

Li nn St andar ds Track [Page 4]

RFC 2743 GSS- API January 2000

out put _token to be passed to the server, and indicates

GSS_S _CONTI NUE_NEEDED st at us pendi ng conpl eti on of the nutual
aut henti cati on sequence. Had nutual _reqg_flag not been set, the
initial call to GSS_Init_sec_context() would have returned
GSS_S COWPLETE status. The client sends the output_token to the
server.

The server passes the received token as the input_token paraneter to
GSS_Accept _sec_context (). GSS_Accept_sec_context indicates

GSS_S COWPLETE status, provides the client’s authenticated identity
in the src_name result, and provides an output_token to be passed to
the client. The server sends the output_token to the client.

The client passes the received token as the input_token paraneter to
a successor call to GSS Init_sec_context(), which processes data
included in the token in order to achieve nutual authentication from
the client’s viewpoint. This call to GSS Init_sec_context() returns
GSS_S COWPLETE status, indicating successful mutual authentication
and the conpletion of context establishnent for this exanple.

The client generates a data nessage and passes it to GSS Wap().
GSS Wap() perfornms data origin authentication, data integrity, and
(optionally) confidentiality processing on the nmessage and

encapsul ates the result into output_nessage, indicating

GSS_S COWPLETE status. The client sends the output_mnessage to the
server.

The server passes the received message to GSS Unwrap(). GSS_Unwr ap()
inverts the encapsul ation perfornmed by GSS Wap(), deciphers the
nmessage if the optional confidentiality feature was applied, and
validates the data origin authentication and data integrity checking
quantities. GSS Unwrap() indicates successful validation by returning
GSS_S_COWPLETE status along with the resultant output_nessage.

For purposes of this exanple, we assunme that the server knows by

out - of - band neans that this context will have no further use after
one protected nessage is transferred fromclient to server. Gven
this premise, the server now calls GSS Del ete_sec_context() to flush
context-level information. Optionally, the server-side application
may provide a token buffer to GSS Del ete_sec_context(), to receive a
context_token to be transferred to the client in order to request
that client-side context-level information be del eted.

If a context_token is transferred, the client passes the

context _token to GSS_Process_context _token(), which returns

GSS_S COWPLETE status after deleting context-level information at the
client system

Li nn St andar ds Track [Page 5]

RFC 2743 GSS- API January 2000

The GSS- APl design assunmes and addresses several basic goals,
i ncl udi ng:

Mechani sm i ndependence: The GSS- APl defines an interface to
cryptographically inplemented strong authentication and ot her
security services at a generic |evel which is independent of
particul ar underlying nmechani snms. For exanpl e, GSS-API-provided
servi ces have been inpl enented using secret-key technol ogi es
(e.g., Kerberos, per [RFC-1964]) and with public-key approaches
(e.g., SPKM per [RFC 2025]).

Prot ocol environnment independence: The GSS- APl is independent of
the comuni cations protocol suites with which it is enployed,
permitting use in a broad range of protocol environnments. In
appropriate environnments, an intermnmedi ate inplenmentation "veneer"
which is oriented to a particular comruni cation protocol may be

i nt erposed between applications which call that protocol and the
GSS- APl (e.g., as defined in [RFC-2203] for Open Network Conputing
Renote Procedure Call (RPC)), thereby invoking GSS-API facilities
in conjunction with that protocol’s conmunications invocations.

Prot ocol association independence: The GSS-APl’'s security context
construct is independent of communi cations protocol association
constructs. This characteristic allows a single GSS-API

i mpl ementation to be utilized by a variety of invoking protocol
nodul es on behal f of those nodul es’ calling applications. GSS-API
services can also be invoked directly by applications, wholly

i ndependent of protocol associations.

Suitability to a range of inplenentation placenents: GSS-API
clients are not constrained to reside within any Trusted Conputing
Base (TCB) perineter defined on a systemwhere the GSS-API is

i mpl emented; security services are specified in a manner suitable
to both intra-TCB and extra-TCB call ers.

1.1: GSS-APlI Constructs
This section describes the basic el enents conprising the GSS-API.
1.1.1: Credentials
1.1.1.1: Credential Constructs and Concepts
Credentials provide the prerequisites which pernit GSS- APl peers to
establish security contexts with each other. A caller may designate
that the credential elenents which are to be applied for context

initiation or acceptance be selected by default. Alternately, those
GSS- APl cal l ers which need to make explicit selection of particular

Li nn St andar ds Track [Page 6]

RFC 2743 GSS- API January 2000

credentials structures may nake references to those credentials

t hr ough GSS- API - provi ded credential handles ("cred_handles"). In al
cases, callers’ credential references are indirect, nediated by GSS-
APl inplenentations and not requiring callers to access the sel ected
credential el enents.

A single credential structure may be used to initiate outbound
contexts and to accept inbound contexts. Callers needing to operate
in only one of these nbdes nay designate this fact when credentials
are acquired for use, allow ng underlying nmechanisns to optim ze
their processing and storage requirenents. The credential elenents
defined by a particular mechanismmy contain nultiple cryptographic
keys, e.g., to enable authentication and nmessage encryption to be
performed with different algorithms.

A GSS- APl credential structure may contain nultiple credential

el ements, each contai ning nmechani smspecific information for a
particul ar underlying mechani sm (nmech_type), but the set of elenents
within a given credential structure represent a compn entity. A
credential structure’'s contents will vary depending on the set of
mech_types supported by a particular GSS-API inplenentation. Each
credential element identifies the data needed by its nechanismin
order to establish contexts on behalf of a particular principal, and
may contain separate credential references for use in context
initiation and context acceptance. Miltiple credential elenents
within a given credential having overl appi ng conbi nati ons of
mechani sm usage node, and validity period are not permtted.

Commonly, a single mech_type will be used for all security contexts
established by a particular initiator to a particular target. A major
notivation for supporting credential sets representing nultiple
mech_types is to allow initiators on systens which are equipped to
handle nmultiple types to initiate contexts to targets on other
systens whi ch can acconmpdate only a subset of the set supported at
the initiator’s system

1.1.1.2: Credential Managenent

It is the responsibility of underlying systemspecific mechani snms and
CS functions below the GSS-APlI to ensure that the ability to acquire
and use credentials associated with a given identity is constrained
to appropriate processes within a system This responsibility should
be taken seriously by inplenentors, as the ability for an entity to
utilize a principal’s credentials is equivalent to the entity’s
ability to successfully assert that principal’s identity.

Li nn St andar ds Track [Page 7]

RFC 2743 GSS- API January 2000

Once a set of GSS-APlI credentials is established, the transferability
of that credentials set to other processes or anal ogous constructs
within a systemis a local matter, not defined by the GSS-API. An
exanpl e | ocal policy would be one in which any credentials received
as aresult of login to a given user account, or of del egation of
rights to that account, are accessible by, or transferable to,
processes running under that account.

The credential establishnent process (particularly when perforned on
behal f of users rather than server processes) is likely to require
access to passwords or other quantities which should be protected

| ocally and exposed for the shortest tinme possible. As a result, it
will often be appropriate for prelimnary credential establishment to
be performed through [ocal neans at user login tinme, with the
result(s) cached for subsequent reference. These prelimnary
credentials would be set aside (in a systemspecific fashion) for
subsequent use, either

to be accessed by an invocation of the GSS-API GSS_Acquire_cred()
call, returning an explicit handle to reference that credenti al

to conprise default credential elenents to be installed, and to be
used when default credential behavior is requested on behalf of a
process

1.1.1.3: Default Credential Resol ution

The GSS I nit_sec_context() and GSS Accept_sec_context() routines
all ow the value GSS_C NO CREDENTI AL to be specified as their
credential handl e paraneter. This special credential handle
indicates a desire by the application to act as a default principal.
I n support of application portability, support for the default

resol uti on behavi or described below for initiator credentials
(GSS_Init_sec_context() usage) is mandated; support for the default
resol uti on behavi or described bel ow for acceptor credentials
(GSS_Accept _sec_context () usage) is reconmended. |f default
credential resolution fails, GSS S NO CRED status is to be returned.

GSS I nit_sec_context:
(i) If there is only a single principal capable of initiating

security contexts that the application is authorized to act on
behal f of, then that principal shall be used, otherw se

Li nn St andar ds Track [Page 8]

RFC 2743 GSS- API January 2000

(ii) I'f the platform maintains a concept of a default networKk-
identity, and if the application is authorized to act on behal f
of that identity for the purpose of initiating security
contexts, then the principal corresponding to that identity
shall be used, otherw se

(iii) If the platformmaintains a concept of a default |oca
identity, and provides a neans to map local identities into
network-identities, and if the application is authorized to act
on behal f of the network-identity inmage of the default |oca
identity for the purpose of initiating security contexts, then
the principal corresponding to that identity shall be used,

ot herw se

(iv) A user-configurable default identity should be used.
GSS_Accept _sec_cont ext:

(i) If there is only a single authorized principal identity
capabl e of accepting security contexts, then that principal
shall be used, otherw se

(ii) I'f the mechani smcan determne the identity of the target
princi pal by exam ning the context-establishment token, and if
the accepting application is authorized to act as that
principal for the purpose of accepting security contexts, then
that principal identity shall be used, otherw se

(iii) 1If the mechani sm supports context acceptance by any
principal, and nutual authentication was not requested, any
principal that the application is authorized to accept security
contexts under may be used, otherw se

(iv) A user-configurable default identity shall be used.

The purpose of the above rules is to allow security contexts to be
establ i shed by both initiator and acceptor using the default behavior
wher ever possible. Applications requesting default behavior are
likely to be nore portable across nechanisns and platfornms than those
that use GSS _Acquire_cred() to request a specific identity.

1.1.2: Tokens
Tokens are data elenents transferred between GSS-APlI callers, and are
divided into two classes. Context-level tokens are exchanged in order

to establish and manage a security context between peers. Per-nessage
tokens relate to an established context and are exchanged to provide

Li nn St andar ds Track [Page 9]

RFC 2743 GSS- API January 2000

protective security services (i.e., data origin authentication
integrity, and optional confidentiality) for corresponding data
nessages.

The first context-level token obtained from GSS Init_sec_context() is
required to indicate at its very beginning a globally-interpretable
mechanismidentifier, i.e., an Cbject ldentifier (OD) of the
security mechanism The remaining part of this token as well as the
whol e content of all other tokens are specific to the particul ar
under | yi ng mechani smused to support the GSS-API. Section 3.1 of this
docunent provides, for designers of GSS- APl nechanisns, the
description of the header of the first context-1level token which is
then foll owed by nmechani smspecific information

Tokens’ contents are opaque fromthe viewpoint of GSS- APl callers.
They are generated within the GSS-API inplenentation at an end
system provided to a GSS-API caller to be transferred to the peer
GSS- APl caller at a renmpte end system and processed by the GSS- API
i mpl enentation at that renpte end system

Cont ext -l evel tokens may be output by GSS-API calls (and shoul d be
transferred to GSS-APlI peers) whether or not the calls’ status

i ndi cators indicate successful conpletion. Per-nessage tokens, in
contrast, are to be returned only upon successful conpletion of per-
nmessage calls. Zero-length tokens are never returned by GSS routines
for transfer to a peer. Token transfer nay take place in an in-band
manner, integrated into the same protocol stream used by the GSS- AP
callers for other data transfers, or in an out-of-band manner across
a logically separate channel

Different GSS-APlI tokens are used for different purposes (e.g.,
context initiation, context acceptance, protected nessage data on an
established context), and it is the responsibility of a GSS-API
caller receiving tokens to distinguish their types, associate them
with correspondi ng security contexts, and pass themto appropriate
GSS- APl processing routines. Depending on the caller protocol
environnent, this distinction may be acconplished in several ways.

The followi ng exanples illustrate neans through which tokens’ types
may be di stingui shed:

- inplicit tagging based on state information (e.g., all tokens on
a new associ ation are considered to be context establishnment
tokens until context establishnment is conpleted, at which point

all tokens are considered to be wapped data objects for that

cont ext),

Li nn St andar ds Track [Page 10]

RFC 2743 GSS- API January 2000

- explicit tagging at the caller protocol |evel,
- a hybrid of these approaches.

Conmmonly, the encapsul ated data within a token includes internal
nmechani sm speci fic tagging i nformati on, enabling mechani sml evel
processi ng nodul es to distinguish tokens used within the nechani sm
for different purposes. Such internal nechanismlevel tagging is
reconmended to mechani sm desi gners, and enabl es nechani snms to
determ ne whether a caller has passed a particul ar token for
processi ng by an i nappropriate GSS-API routine.

Devel opment of GSS- APl nechani sms based on a particul ar underlying
cryptographi c technique and protocol (i.e., confornant to a specific
GSS- APl nechani sm definition) does not necessarily inply that GSS-API
callers using that GSS-API nmechanismw ||l be able to interoperate
with peers invoking the sane techni que and protocol outside the GSS-
APl paradigm or with peers inplenenting a different GSS-API
nmechani sm based on the sane underlying technol ogy. The fornmat of
GSS- APl tokens defined in conjunction with a particular mechani sm
and the techniques used to integrate those tokens into callers’
protocols, may not be interoperable with the tokens used by non-GSS-
APl callers of the same underlying technique.

1.1.3: Security Contexts

Security contexts are established between peers, using credentials
established locally in conjunction with each peer or received by
peers via delegation. Miltiple contexts nay exist simultaneously
between a pair of peers, using the sane or different sets of
credentials. Coexistence of nultiple contexts using different
credentials allows graceful rollover when credentials expire.

Di stinction anmong nultiple contexts based on the sanme credentials
serves applications by distinguishing different nessage streans in a
security sense.

The GSS-API is independent of underlying protocols and addressing
structure, and depends on its callers to transport GSS-API-provided
data elements. As a result of these factors, it is a caller
responsibility to parse comuni cat ed nessages, separating GSS- APl -
related data el enents fromcaller-provided data. The GSS-API is

i ndependent of connection vs. connectionless orientation of the
under | yi ng communi cati ons servi ce.

No correl ation between security context and communi cati ons protocol
association is dictated. (The optional channel binding facility,

di scussed in Section 1.1.6 of this docunent, represents an

i ntentional exception to this rule, supporting additional protection

Li nn St andar ds Track [Page 11]

RFC 2743 GSS- API January 2000

features within GSS- APl supporting nmechanisns.) This separation
allows the GSS-API to be used in a wi de range of communi cations
environnents, and also sinplifies the calling sequences of the

i ndi vidual calls. In many cases (dependi ng on underlying security
protocol, associated nmechanism and availability of cached
information), the state information required for context setup can be
sent concurrently with initial signed user data, wi thout interposing
addi ti onal nmessage exchanges. Messages nmay be protected and
transferred in both directions on an established GSS-API security
context concurrently; protection of nmessages in one direction does
not interfere with protection of nessages in the reverse direction.

GSS- APl i npl enmentations are expected to retain inquirable context
data on a context until the context is released by a caller, even
after the context has expired, although underlying cryptographic data
el enents may be deleted after expiration in order to limt their
exposure.

1.1.4: Mechani sm Types

In order to successfully establish a security context with a target
peer, it is necessary to identify an appropriate underlying mechani sm
type (mech_type) which both initiator and target peers support. The
definition of a nechani sm enbodies not only the use of a particul ar
cryptographi c technology (or a hybrid or choice anong alternative
cryptographi c technol ogi es), but also definition of the syntax and
semantics of data el ement exchanges which that nmechanismw || enpl oy
in order to support security services.

It is recormended that callers initiating contexts specify the
"default" mech_type value, allow ng systemspecific functions within
or invoked by the GSS-API inplenentation to select the appropriate
mech_type, but callers nmay direct that a particular nmech_type be
enpl oyed when necessary.

For GSS- APl purposes, the phrase "negotiating nechanism refers to a
mechani sm which itself perfornms negotiation in order to select a
concrete nmechani smwhich is shared between peers and is then used for
context establishment. Only those nechani sns which are defined in
their specifications as negotiating nechanisns are to yield selected
mechani sns with different identifier values than the value which is

i nput by a GSS-API caller, except for the case of a caller requesting
the "default" mech_type.

The nmeans for identifying a shared nech_type to establish a security

context with a peer will vary in different environnments and
ci rcunstances; exanples include (but are not limted to):

Li nn St andar ds Track [Page 12]

RFC 2743 GSS- API January 2000

use of a fixed nmech_type, defined by configuration, within an
envi r onnment

syntactic convention on a target-specific basis, through

exam nation of a target’s nanme | ookup of a target’s nane in a
nani ng service or other database in order to identify mech_types
supported by that target

explicit negotiation between GSS-APlI callers in advance of
security context setup

use of a negotiating nmechani sm

When transferred between GSS- APl peers, nmech_type specifiers (per
Section 3 of this docunment, represented as Cbject Identifiers (A Ds))
serve to qualify the interpretation of associated tokens. (The
structure and encoding of Cbject Identifiers is defined in [ISO EC
8824] and [1 SO EC-8825].) Use of hierarchically structured O Ds
serves to preclude ambiguous interpretation of mech_type specifiers.
The O D representing the DASS ([RFC-1507]) MechType, for exanple, is
1.3.12.2.1011. 7.5, and that of the Kerberos V5 nechani sm ([RFC
1964]), having been advanced to the | evel of Proposed Standard, is
1.2.840.113554.1. 2. 2.

1.1.5: Namng

The GSS- APl avoi ds prescribing naming structures, treating the nanes
which are transferred across the interface in order to initiate and
accept security contexts as opaque objects. This approach supports
the GSS-API’'s goal of inplenentability atop a range of underlying
security mechani snms, recogni zing the fact that different mechani sns
process and authenticate nanes which are presented in different
fornms. Generalized services offering translation functions anong
arbitrary sets of nanming environments are outside the scope of the
GSS- APl ; availability and use of |ocal conversion functions to
transl ate anong the naning formats supported within a given end
systemis antici pated.

Different classes of nane representations are used in conjunction
with different GSS-API paraneters:

- Internal form (denoted in this docunent by | NTERNAL NAME)
opaque to callers and defined by individual GSS-API

i mpl ementati ons. GSS-API inplenentations supporting nmultiple
nanespace types nmust naintain internal tags to di sanbiguate the
interpretation of particular names. A Mechanism Name (MN) is a
speci al case of | NTERNAL NAME, guaranteed to contain el enents

Li nn St andar ds Track [Page 13]

RFC 2743 GSS- API January 2000

correspondi ng to one and only one mechanism calls which are
guaranteed to enit MNs or which require MNs as input are so
identified within this specification

- Contiguous string ("flat") form (denoted in this docunent by
OCTET STRING ; acconpanied by O D tags identifying the nanmespace
to which they correspond. Depending on tag value, flat names nay
or may not be printable strings for direct acceptance from and
presentation to users. Tagging of flat names all ows GSS-API

call ers and underlyi ng GSS- APl nechani snms to di sanbi guate nane
types and to determ ne whether an associated nane’s type is one
whi ch they are capabl e of processing, avoiding aliasing problens
which could result frommnisinterpreting a name of one type as a
name of another type.

- The GSS- APl Exported Nane Cbject, a special case of flat nane
desi gnated by a reserved O D value, carries a canonicalized form
of a nanme suitable for binary conparisons.

In addition to providing nmeans for nanmes to be tagged with types,
this specification defines primtives to support a |evel of nami ng
envi ronnent i ndependence for certain calling applications. To provide
basic services oriented towards the requirenments of callers which
need not thenselves interpret the internal syntax and semantics of
nanes, GSS-APlI calls for nane conpari son (GSS_Conpare_nane()),
human- r eadabl e di splay (GSS_Di splay_nane()), input conversion

(GSS_I nport_nane()), internal name deall ocation (GSS_Rel ease_nane()),
and i nternal nanme duplication (GSS Duplicate_nanme()) functions are
defined. (It is anticipated that these proposed GSS-APlI calls will be
i npl erented in many end systens based on systemspecific nane
mani pul ation primtives already extant within those end systerns;
inclusion within the GSS-APlI is intended to offer GSS-API callers a
portabl e means to perform specific operations, supportive of

aut hori zation and audit requirenents, on authenticated nanes.)

GSS_| nport_nane() inplenentations can, where appropriate, support
nmore than one printable syntax corresponding to a gi ven namespace
(e.g., alternative printable representations for X 500 Distinguished
Nanmes), allowing flexibility for their callers to select anobng
alternative representations. GSS Display_nanme() inplenmentations
output a printable syntax selected as appropriate to their
operational environnents; this selection is a local matter. Callers
desiring portability across alternative printable syntaxes shoul d
refrain frominplenmenting conpari sons based on printable nane forns
and shoul d instead use the GSS Conpare_nane() call to determ ne
whet her or not one internal -format nanme matches anot her.

Li nn St andar ds Track [Page 14]

RFC 2743 GSS- API January 2000

When used in large access control lists, the overhead of invoking
GSS I nport _name() and GSS_Conpare_nane() on each name fromthe ACL
may be prohibitive. As an alternative way of supporting this case,
GSS- APl defines a special formof the contiguous string name which
may be conpared directly (e.g., with nmencnp()). Contiguous nanes
suitabl e for conparison are generated by the GSS_Export _nanme()
routine, which requires an MN as input. Exported nanes may be re-

i nported by the GSS_ | nport_nane() routine, and the resulting internal
nane will also be an MN\. The synbolic constant GSS_C NT_EXPORT_NAME
identifies the "export nane" type. Structurally, an exported nane
obj ect consists of a header containing an O D identifying the
nmechani sm t hat aut henticated the name, and a trailer containing the
nane itself, where the syntax of the trailer is defined by the

i ndi vi dual nechani sm specification. The precise format of an
exported nanme is defined in Section 3.2 of this specification.

Note that the results obtained by using GSS Conpare_name() will in
general be different fromthose obtained by invoking
GSS_Canoni cal i ze_nane() and GSS _Export_name(), and then conparing the
exported nanmes. The first series of operations deterni nes whether
two (unauthenticated) nanes identify the sane principal; the second
whet her a particul ar nmechani smwoul d aut henticate them as the sane
principal. These two operations will in general give the sane
results only for MN\s.

The followi ng diagramillustrates the intended datafl ow anong nane-
rel ated GSS- APl processing routines.

Li nn St andar ds Track [Page 15]

RFC 2743 GSS- API January 2000
GSS-API library defaults

I
I
V text, for
a

text -------------- > internal_name (IN ----------- > display only
i nport _name() / di spl ay_nane()
/
/
/
accept _sec_context() /
| /
| /
| / canoni cal i ze_nane()
| /
| /
| /
| /
| /
I I
\Y; \Y; T
si ngl e nechani sm i mport_nanme() exported nane: flat
i nternal _nane (M) bi nary "bl ob" usabl e

---------------------- > for access contro
export _name()

1.1.6: Channel Bindings

The GSS- APl acconmpdates the concept of caller-provided channel

bi nding ("chan_binding") information. Channel bindings are used to
strengthen the quality with which peer entity authentication is
provi ded during context establishnment, by limting the scope within
whi ch an intercepted context establishnent token can be reused by an
attacker. Specifically, they enable GSS-APlI callers to bind the
establi shment of a security context to relevant characteristics
(e.g., addresses, transforned representations of encryption keys) of
t he underlyi ng communi cati ons channel, of protection nechani sns
applied to that communications channel, and to application-specific
dat a.

The caller initiating a security context nust determ ne the
appropriate channel binding values to provide as input to the

GSS Init_sec_context() call, and consistent val ues must be provided
to GSS_Accept_sec_context() by the context’s target, in order for
both peers’ GSS-API nechanisns to validate that received tokens
possess correct channel-related characteristics. Use or non-use of
the GSS- APl channel binding facility is a caller option. GSS-API
mechani sns can operate in an environment where NULL channel bindings
are presented; mechani sminplenmentors are encouraged, but not

Li nn St andar ds Track [Page 16]

RFC 2743 GSS- API January 2000

required, to make use of caller-provided channel binding data w thin
their mechani snms. Callers should not assune that underlying

mechani sns provi de confidentiality protection for channel binding

i nformati on.

When non- NULL channel bindings are provided by callers, certain
mechani sns can of fer enhanced security value by interpreting the

bi ndi ngs’ content (rather than sinply representing those bindings, or
integrity check val ues conputed on them wi thin tokens) and will

t heref ore depend on presentation of specific data in a defined
format. To this end, agreenents anong nmechani sminpl enmentors are
defining conventional interpretations for the contents of channe

bi ndi ng argunents, including address specifiers (with content
dependent on comuni cati ons protocol environnent) for context
initiators and acceptors. (These conventions are being incorporated
in GSS- APl mechani sm specifications and into the GSS-APlI C | anguage
bi ndi ngs specification.) In order for GSS-APlI callers to be portable
across nultiple nechanisnms and achieve the full security
functionality which each mechani smcan provide, it is strongly
recommended that GSS-API callers provide channel bindings consistent
with these conventions and those of the networking environnent in
whi ch they operate.

1.2: GSS- APl Features and | ssues

This section describes aspects of GSS-APlI operations, of the security
servi ces which the GSS-API provides, and provides commentary on
desi gn i ssues.

1.2.1: Status Reporting and Optional Service Support
1.2.1.1: Status Reporting

Each GSS- APl call provides two status return val ues. Mjor_status
val ues provi de a nmechani smindependent indication of call status
(e.g., GSS_S COWPLETE, GSS S FAILURE, GSS_S CONTI NUE_NEEDED),
sufficient to drive normal control flowwithin the caller in a
generic fashion. Table 1 summarizes the defined nmajor_status return
codes in tabular fashion.

Sequencing-rel ated i nformatory naj or _status codes
(GSS_S DUPLI CATE_TOKEN, GSS_ S OLD TOKEN, GSS_S UNSEQ TOKEN, and

GSS S GAP_TOKEN) can be indicated in conjunction with either

GSS_S COWPLETE or GSS_S FAI LURE status for GSS-API per-nessage calls.
For context establishment calls, these sequencing-related codes wll
be indicated only in conjunction with GSS_S FAILURE status (never in

Li nn St andar ds Track [Page 17]

Li nn

RFC 2743

conjunction with GSS_S COVWPLETE or GSS_S CONTI NUE_NEEDED) ,
al ways correspond to fata

therefore

GSS- API January 2000

and,
failures if encountered during

t he context establishnent phase.

Tabl e 1: GSS- API
FATAL ERROR CODES

GSS_S_BAD_BI NDI NGS
GSS_S_BAD_MECH
GSS_S_BAD_NAME
GSS_S_BAD_NANMETYPE
GSS_S_BAD_STATUS

GSS_S BAD SI G

GSS_S BAD M C
GSS_S_CONTEXT_EXPI RED
GSS_S_CREDENTI ALS_EXPI RED
GSS_S_DEFECTI VE_CREDENTI AL
GSS_S_DEFECTI VE_TOKEN
GSS_S_FAI LURE

GSS_S_NO_CONTEXT
GSS_S_NO_CRED
GSS_S_BAD QOP
GSS_S_UNAUTHORI ZED
GSS_S_UNAVAI LABLE
GSS_S_DUPLI CATE_ELEMENT
GSS_S_NAME_NOT_MN

| NFORMATORY STATUS CODES

GSS_S_COWPLETE
GSS_S_CONTI NUE_NEEDED

GSS_S DUPLI CATE_TOKEN
GSS_S_OLD_TOKEN
GSS_S_UNSEQ TOKEN

GSS_S_GAP_TOKEN

Maj or St atus Codes

channel bindi ng ni smatch
unsupported mechani smrequest ed
i nvalid name provided
nane of unsupported type provided
invalid input status sel ector
token had invalid integrity check
preferred alias for GSS_S BAD SIG
specified security context expired
expired credentials detected
defective credential detected
defective token detected
failure, unspecified at GSS-API
| evel
no valid security context specified
no valid credentials provided
unsupported QOP val ue
operati on unaut hori zed
operation unavail abl e
duplicate credential elenment requested
name contains nulti-nmechani smel ements

normal conpl eti on
continuation cal
required
dupl i cate per-nessage token
det ect ed
ti med-out per-nessage token
det ect ed
reordered (early) per-nmessage token
det ect ed
ski pped predecessor token(s)
det ect ed

to routine

M nor _status provides nore detailed status information which may
i nclude status codes specific to the underlying security nechani sm
M nor _status values are not specified in this docunent.

St andards Track

[Page 18]

RFC 2743 GSS- API January 2000

GSS_S CONTI NUE_NEEDED maj or _status returns, and optional nessage
outputs, are provided in GSS Init_sec_context() and

GSS_Accept _sec_context() calls so that different mechani sns’

enpl oynment of different nunbers of nessages within their

aut henti cati on sequences need not be reflected in separate code paths
within calling applications. Instead, such cases are accommodat ed

wi th sequences of continuation calls to GSS_ Init_sec_context() and
GSS_Accept _sec_context(). The sane facility is used to encapsul ate
nmut ual authentication within the GSS-API’'s context initiation calls.

For nech_types which require interactions with third-party servers in
order to establish a security context, GSS-APlI context establishnment
calls may bl ock pendi ng conpletion of such third-party interactions.
On the other hand, no GSS-APlI calls pend on serialized interactions
with GSS-API peer entities. As a result, |ocal GSS-APlI status
returns cannot reflect unpredictable or asynchronous exceptions
occurring at renote peers, and reflection of such status informtion
is a caller responsibility outside the GSS-API.

1.2.1.2: Optional Service Support

A context initiator nay request various optional services at context
establishment tine. Each of these services is requested by setting a
flag in the reqg_flags input paraneter to GSS Init_sec_context ().

The optional services currently defined are:

- Delegation - The (usually tenporary) transfer of rights from
initiator to acceptor, enabling the acceptor to authenticate
itself as an agent of the initiator.

- Mutual Authentication - In addition to the initiator
authenticating its identity to the context acceptor, the context
acceptor should also authenticate itself to the initiator

- Replay detection - In addition to providing nessage integrity
services, GSS GetM C() and GSS Wap() should include nmessage
nunbering information to enable GSS VerifyM C() and GSS_Unw ap()
to detect if a nessage has been dupli cat ed.

- Qut-of-sequence detection - In addition to providing nmessage
integrity services, GSS GetM C() and GSS Wap() shoul d include
nmessage sequencing information to enable GSS VerifyM C() and
GSS Unwrap() to detect if a nmessage has been received out of
sequence.

Li nn St andar ds Track [Page 19]

RFC 2743 GSS- API January 2000

- Anonynous aut hentication - The establishnent of the security
context should not reveal the initiator’s identity to the context
acceptor.

- Avail abl e per-nessage confidentiality - requests that per-
nmessage confidentiality services be available on the context.

- Avail abl e per-nessage integrity - requests that per-nessage
integrity services be available on the context.

Any currently undefined bits within such flag argunents shoul d be

i gnored by GSS- APl inplenentations when presented by an application,
and shoul d be set to zero when returned to the application by the
GSS- APl i npl enment ati on.

Sone mechani sms may not support all optional services, and sone
mechani sns may only support some services in conjunction with others.
Both GSS Init_sec_context() and GSS _Accept_sec_context() informthe

applications which services will be available fromthe context when
the establishnent phase is conplete, via the ret_flags output
paranmeter. In general, if the security nechanismis capabl e of

providing a requested service, it should do so, even if additional
servi ces nust be enabled in order to provide the requested service.
If the nmechanismis incapable of providing a requested service, it
shoul d proceed without the service, |leaving the application to abort
the context establishnment process if it considers the requested
service to be mandatory.

Sone nmechani sms may specify that support for some services is
optional, and that inplenentors of the nechani smneed not provide it.
This is nost comonly true of the confidentiality service, often
because of legal restrictions on the use of data-encryption, but may
apply to any of the services. Such mechanisns are required to send
at | east one token fromacceptor to initiator during context
establ i shnment when the initiator indicates a desire to use such a
service, so that the initiating GSS-API can correctly indicate

whet her the service is supported by the acceptor’s GSS-API.

1.2.2: Per-Message Security Service Availability
When a context is established, two flags are returned to indicate the
set of per-nmessage protection security services which will be
avail abl e on the context:

the integ_avail flag indicates whether per-nessage integrity and
data origin authentication services are avail abl e

Li nn St andar ds Track [Page 20]

RFC 2743 GSS- API January 2000

the conf_avail flag indicates whether per-nmessage confidentiality
services are available, and will never be returned TRUE unl ess the
integ avail flag is also returned TRUE

GSS- APl cal l ers desiring per-nessage security services should check
the values of these flags at context establishnment tinme, and nmust be
aware that a returned FALSE value for integ_avail neans that

i nvocation of GSS GetM C() or GSS Wap() prinmtives on the associated
context will apply no cryptographic protection to user data nessages.

The GSS- APl per-nessage integrity and data origin authentication
services provide assurance to a receiving caller that protection was
applied to a nessage by the caller’s peer on the security context,
corresponding to the entity named at context initiation. The GSS-API
per - nessage confidentiality service provides assurance to a sending
caller that the nessage’'s content is protected from access by
entities other than the context’s named peer

The GSS- APl per-nessage protection service primtives, as the
category nane inplies, are oriented to operation at the granularity
of protocol data units. They perform cryptographic operations on the
data units, transfer cryptographic control information in tokens,
and, in the case of GSS Wap(), encapsul ate the protected data unit.
As such, these prinmitives are not oriented to efficient data
protection for stream paradigmprotocols (e.g., Telnet) if
cryptography nust be applied on an octet-by-octet basis.

1.2.3: Per-Message Replay Detection and Sequenci ng

Certain underlying nmech_types offer support for replay detection
and/ or sequenci ng of messages transferred on the contexts they
support. These optionally-selectable protection features are distinct
fromreplay detection and sequencing features applied to the context
establ i shnment operation itself; the presence or absence of context-

| evel replay or sequencing features is wholly a function of the
under|ying nech_type's capabilities, and is not selected or omtted
as a caller option.

The caller initiating a context provides flags (replay_det_req_flag
and sequence_req_flag) to specify whether the use of per-nessage
replay detection and sequencing features is desired on the context
bei ng established. The GSS-API inplenentation at the initiator system
can determ ne whether these features are supported (and whet her they
are optionally selectable) as a function of the sel ected nmechani sm

wi thout need for bilateral negotiation with the target. Wen enabl ed,
these features provide recipients with indicators as a result of

GSS- APl processing of incom ng nessages, identifying whether those
nmessages were detected as duplicates or out-of-sequence. Detection of

Li nn St andar ds Track [Page 21]

RFC 2743 GSS- API January 2000

such events does not prevent a suspect nessage from being provided to
a recipient; the appropriate course of action on a suspect message is
a matter of caller policy.

The semantics of the replay detection and sequenci ng services applied
to received nessages, as visible across the interface which the GSS-
APl provides to its clients, are as foll ows:

When replay_det _state is TRUE, the possible major_status returns for
wel | -formed and correctly signed nmessages are as foll ows:

1. GSS_S COWPLETE, w thout concurrent indication of

GSS_S DUPLI CATE_TOKEN or GSS S OLD TOKEN, indicates that the
nmessage was within the wi ndow (of tinme or sequence space) allow ng
replay events to be detected, and that the nmessage was not a
replay of a previously-processed nessage within that w ndow.

2. GSS_S DUPLI CATE _TOKEN i ndi cates that the cryptographic
checkval ue on the received nessage was correct, but that the
nmessage was recogni zed as a duplicate of a previously-processed
nessage. In addition to identifying duplicated tokens originated
by a context’s peer, this status may al so be used to identify
reflected copies of locally-generated tokens; it is recomended
that mechani sm designers include within their protocols facilities
to detect and report such tokens.

3. GSS_S OLD TOKEN i ndi cates that the cryptographi c checkval ue on
the received nessage was correct, but that the nessage is too old
to be checked for duplication

When sequence_state is TRUE, the possible major_status returns for
wel | -formed and correctly signed nessages are as foll ows:

1. GSS_S COWPLETE, without concurrent indication of

GSS_S DUPLI CATE_TOKEN, GSS_S OLD TOKEN, GSS_S UNSEQ TOKEN, or

GSS_ S GAP_TCKEN, indicates that the nmessage was within the w ndow
(of tinme or sequence space) allowing replay events to be detected,
that the nessage was not a replay of a previously-processed
nmessage within that w ndow, and that no predecessor sequenced
nmessages are missing relative to the |ast received nessage (if
any) processed on the context with a correct cryptographic
checkval ue.

2. GSS_S DUPLI CATE_TOKEN indicates that the integrity check val ue
on the received nessage was correct, but that the nessage was
recogni zed as a duplicate of a previously-processed nessage. In
addition to identifying duplicated tokens originated by a
context’s peer, this status may al so be used to identify reflected

Li nn St andar ds Track [Page 22]

RFC 2743 GSS- API January 2000

copi es of locally-generated tokens; it is reconmended that
mechani sm desi gners include within their protocols facilities to
detect and report such tokens.

3. GSS_S OLD TOKEN indicates that the integrity check value on the
recei ved nmessage was correct, but that the token is too old to be
checked for duplication

4. GSS_S UNSEQ TOKEN i ndicates that the cryptographi c checkval ue
on the received nessage was correct, but that it is earlier in a
sequenced streamthan a nessage al ready processed on the context.
[Note: Mechani sns can be architected to provide a stricter form of
sequenci ng service, delivering particular nmessages to recipients
only after all predecessor nessages in an ordered stream have been
delivered. This type of support is inconpatible with the GSS-API
paradi gmin which recipients receive all nmessages, whether in
order or not, and provide them (one at a tinme, wthout intra-GSS-
APl nmessage buffering) to GSS-API routines for validation. GSS-
APl facilities provide supportive functions, aiding clients to
achi eve strict nmessage streamintegrity in an efficient manner in
conjunction w th sequencing provisions in conmunications
protocols, but the GSS-API does not offer this | evel of nessage
streamintegrity service by itself.]

5. GSS_S GAP_TOKEN i ndi cates that the cryptographi ¢ checkval ue on
the received nessage was correct, but that one or nore predecessor
sequenced messages have not been successfully processed relative
to the last received nessage (if any) processed on the context
with a correct cryptographic checkval ue.

As the nessage streamintegrity features (especially sequencing) nay
interfere with certain applications’ intended conmunications

par adi gns, and since support for such features is likely to be
resource intensive, it is highly recomended that nech_types
supporting these features allow themto be activated selectively on
initiator request when a context is established. A context initiator
and target are provided with corresponding indicators

(replay_det _state and sequence_state), signifying whether these
features are active on a given context.

An exanpl e nech_type supporting per-nessage replay detection could
(when replay_det_state is TRUE) inplenent the feature as follows: The
under | yi ng nechanismwould insert tinmestanps in data el ements out put
by GSS GetM C() and GSS Wap(), and would naintain (within a tine-
limted window) a cache (qualified by originator-recipient pair)

i dentifying received data el enents processed by GSS VerifyMC() and
GSS Unwrap(). Wen this feature is active, exception status returns
(GSS_S DUPLI CATE_TOKEN, GSS S OLD TOKEN) will be provi ded when

Li nn St andar ds Track [Page 23]

RFC 2743 GSS- API January 2000

GSS VerifyM C() or GSS Unwrap() is presented with a nmessage which is
either a detected duplicate of a prior nessage or which is too old to
val i date agai nst a cache of recently received nessages.

1.2.4: Quality of Protection

Sone nmech_types provide their users with fine granularity contro

over the neans used to provi de per-nessage protection, allow ng
callers to trade off security processing overhead dynani cal |y agai nst
the protection requirenents of particular nmessages. A per-nessage
qual ity-of -protection paraneter (anal ogous to quality-of-service, or
QS) selects anobng different QOP options supported by that nechani sm
On context establishment for a nulti-QOP nmech_type, context-|evel
data provides the prerequisite data for a range of protection

qualiti es.

It is expected that the najority of callers will not wi sh to exert
explicit mechani smspecific QOP control and will therefore request
selection of a default QOP. Definitions of, and choi ces anbng, non-
default QOP val ues are mechani smspecific, and no ordered sequences
of QOP val ues can be assumed equi val ent across different mechani sns.
Meani ngful use of non-default QOP val ues demands that callers be
famliar with the QOP definitions of an underlying mechani sm or
nmechani sns, and is therefore a non-portable construct. The

GSS S BAD QOP nmjor_status value is defined in order to indicate that
a provided QOP value is unsupported for a security context, nost

i kely because that value is unrecogni zed by the underlying
mechani sm

In the interests of interoperability, nechanisnms which allow optional
support of particular QOP values shall satisfy one of the foll ow ng
conditions. Either:

(i) Al inplenmentations of the nechanismare required to be
capabl e of processing nessages protected using any QOP val ue,
regardl ess of whether they can apply protection corresponding to

that QOP, or

(ii) The set of nutually-supported receiver QOP val ues nust be
determ ned during context establishment, and nessages may be
protected by either peer using only QOP values fromthis

nmut ual | y- supported set.

NOTE: (i) is just a special-case of (ii), where inplementations are
required to support all QOP val ues on receipt.

Li nn St andar ds Track [Page 24]

RFC 2743 GSS- API January 2000

1.2.5: Anonymty Support

In certain situations or environnents, an application nay wish to
aut henti cate a peer and/or protect conmunications using GSS- APl per-
nmessage services without revealing its own identity. For exanple,
consi der an application which provides read access to a research

dat abase, and which pernmits queries by arbitrary requestors. A
client of such a service might wish to authenticate the service, to
establish trust in the information received fromit, but m ght not
wish to disclose its identity to the service for privacy reasons.

In ordinary GSS- APl usage, a context initiator's identity is nmade
avail able to the context acceptor as part of the context
establ i shnment process. To provide for anonynmity support, a facility
(input anon_req flag to GSS I nit_sec_context()) is provided through
which context initiators may request that their identity not be
provided to the context acceptor. Mechanisns are not required to
honor this request, but a caller will be inforned (via returned
anon_state indicator from GSS I nit_sec_context()) whether or not the
request is honored. Note that authentication as the anonynous
princi pal does not necessarily inply that credentials are not
required in order to establish a context.

Section 4.5 of this docunment defines the Cbject Identifier value used
to identify an anonynous principal .

Four possi bl e conbi nati ons of anon_state and nutual _state are
possible, with the follow ng results:

anon_state == FALSE, nutual state == FALSE: initiator
authenticated to target.

anon_state == FALSE, nutual _state == TRUE: initiator authenticated
to target, target authenticated to initiator.

anon_state == TRUE, nutual _state == FALSE: initiator authenticated
as anonynous principal to target.

anon_state == TRUE, nutual _state == TRUE: initiator authenticated
as anonynous principal to target, target authenticated to
initiator.

1.2.6: Initialization

No initialization calls (i.e., calls which nust be invoked prior to
i nvocation of other facilities in the interface) are defined in GSS-
API. As an inplication of this fact, GSS-API inplenmentations nust

t hensel ves be self-initializing.

Li nn St andar ds Track [Page 25]

RFC 2743 GSS- API January 2000

1.2.7: Per-Message Protection During Context Establishment

A facility is defined in GSS-V2 to enable protection and buffering of
data nessages for later transfer while a security context’'s
establishnment is in GSS_S CONTI NUE_NEEDED status, to be used in cases
where the caller side already possesses the necessary session key to
enabl e this processing. Specifically, a new state Bool ean, called
prot_ready_state, is added to the set of information returned by

GSS I nit_sec_context(), GSS_Accept_sec_context(), and

GSS_I nquire_context ().

For context establishnent calls, this state Boolean is valid and

i nterpretable when the associated najor_status is either

GSS_S_CONTI NUE_NEEDED, or GSS_S COWPLETE. Callers of GSS-API (both
initiators and acceptors) can assunme that per-nessage protection (via
GSS Wap(), GSS Unwap(), GSS GetM C() and GSS VerifyM(C()) is
avai l able and ready for use if either: prot_ready_state == TRUE, or
maj or _status == GSS_S COWPLETE, though nutual authentication (if
request ed) cannot be guaranteed until GSS S COVPLETE is returned.

Call ers naki ng use of per-nessage protection services in advance of
GSS_S COWPLETE status should be aware of the possibility that a

subsequent context establishment step may fail, and that certain
context data (e.g., nech_type) as returned for subsequent calls my
change.

Thi s approach achieves full, transparent backward conpatibility for
GSS- APl V1 callers, who need not even know of the existence of

prot _ready_state, and who will get the expected behavior from

GSS_S COWPLETE, but who will not be able to use per-nmessage
protection before GSS_S COWLETE is returned.

It is not a requirenent that GSS-V2 nechani snms ever return TRUE

prot _ready_state before conpletion of context establishnent (indeed,
some nechanisms will not evol ve usabl e nessage protection keys,
especially at the context acceptor, before context establishnment is
conplete). It is expected but not required that GSS-V2 nechani snms
will return TRUE prot_ready_state upon conpletion of context
establishment if they support per-nmessage protection at all (however
GSS- V2 applications should not assunme that TRUE prot_ready_state will
al ways be returned together with the GSS_S COVWLETE nwaj or _st at us,
since GSS-V2 inplenentations nmay continue to support GSS-V1 nechani sm
code, which will never return TRUE prot_ready_state).

When prot_ready_state is returned TRUE, mechani sns shall al so set
those context service indicator flags (deleg _state, nutual _state,
replay_det _state, sequence_state, anon_state, trans_state,

conf_avail, integ_avail) which represent facilities confirned, at
that tine, to be available on the context being established. 1In

Li nn St andar ds Track [Page 26]

RFC 2743 GSS- API January 2000

situations where prot_ready_state is returned before GSS_S COWPLETE
it is possible that additional facilities may be confirnmed and
subsequent |y indi cated when GSS_S COWPLETE is returned.

1.2.8: Inplementati on Robustness

This section recomends aspects of GSS-API inpl enentation behavior in
the interests of overall robustness.

| nvocati on of GSS-API calls is to incur no undocunented side effects
visible at the GSS-API | evel.

If a token is presented for processing on a GSS-APlI security context
and that token generates a fatal error in processing or is otherw se
determ ned to be invalid for that context, the context’s state should
not be disrupted for purposes of processing subsequent valid tokens.

Certain local conditions at a GSS-API inplenentation (e.g.
unavailability of menory) may preclude, tenporarily or permanently,
t he successful processing of tokens on a GSS-API security context,
typically generating GSS_S FAILURE mmj or_status returns along with
| ocal l y-significant minor_status. For robust operation under such
conditions, the follow ng recommendati ons are nade:

Failing calls should free any nenory they allocate, so that
callers may retry w thout causing further |oss of resources.

Failure of an individual call on an established context should not
precl ude subsequent calls from succeedi ng on the sanme context.

Whenever possible, it should be possible for

GSS Del ete_sec_context() calls to be successfully processed even
if other calls cannot succeed, thereby enabling context-related
resources to be rel eased.

A failure of GSS GetM C() or GSS Wap() due to an attenpt to use an
unsupported QOP will not interfere with context validity, nor shal
such a failure inpact the ability of the application to subsequently
i nvoke GSS GetM C() or GSS Wap() using a supported QOP. Any state

i nformati on concerni ng sequenci ng of outgoing nessages shall be
unchanged by an unsuccessful call of GSS GetM C() or GSS Wap().

Li nn St andar ds Track [Page 27]

RFC 2743 GSS- API January 2000

1.2.9: Delegation

The GSS-API all ows del egation to be controlled by the initiating
application via a Boolean paraneter to GSS Init_sec_context(), the
routine that establishes a security context. Sone nmechani sns do not
support del egation, and for such nechani sns attenpts by an
application to enabl e del egati on are ignored.

The acceptor of a security context for which the initiator enabled
del egation will receive (via the del egated_cred_handl e paraneter of
GSS_Accept _sec_context()) a credential handle that contains the

del egated identity, and this credential handle may be used to
initiate subsequent GSS-APlI security contexts as an agent or del egate
of the initiator. |If the original initiator’s identity is "A" and
the delegate’s identity is "B", then, depending on the underlying
nmechani sm the identity enbodi ed by the del egated credential nay be
either "A" or "B acting for A".

For many mechani sns that support del egation, a sinple Bool ean does
not provide enough control. Exanples of additional aspects of

del egation control that a mechani sm m ght provide to an application
are duration of delegation, network addresses from which del egation
is valid, and constraints on the tasks that nay be perforned by a
del egate. Such controls are presently outside the scope of the GSS-
APl . GSS-API inplenmentations supporting nechani snms offering
addi ti onal controls should provide extension routines that all ow
these controls to be exercised (perhaps by nodifying the initiator’s
GSS- APl credential prior toits use in establishing a context).
However, the sinple del egation control provided by GSS-APlI shoul d

al ways be able to over-ride other nechani smspecific del egation
controls; if the application instructs GSS_Init_sec_context() that
del egation is not desired, then the inplenentation nmust not pernit
del egation to occur. This is an exception to the general rule that a
mechani sm nay enabl e services even if they are not requested;

del egation may only be provided at the explicit request of the
appl i cati on.

1.2.10: Interprocess Context Transfer

GSS- APl V2 provides routines (GSS Export_sec_context() and

GSS I nport_sec_context()) which allow a security context to be
transferred between processes on a single machi ne. The nbst common
use for such a feature is a client-server design where the server is
i npl emrented as a single process that accepts incomning security
contexts, which then |launches child processes to deal with the data
on these contexts. In such a design, the child processes nmust have
access to the security context data structure created within the

Li nn St andar ds Track [Page 28]

RFC 2743 GSS- API January 2000

parent by its call to GSS_Accept _sec_context() so that they can use
per - nessage protection services and delete the security context when
the comuni cati on sessi on ends.

Since the security context data structure is expected to contain
sequencing information, it is inpractical in general to share a

cont ext between processes. Thus GSS- APl provides a cal
(GSS_Export_sec_context()) that the process which currently owns the
context can call to declare that it has no intention to use the
context subsequently, and to create an inter-process token containing
i nformati on needed by the adopting process to successfully inport the
context. After successful conpletion of this call, the origina
security context is nade inaccessible to the calling process by GSS-
APl , and any context handles referring to this context are no | onger
valid. The originating process transfers the inter-process token to
t he adopting process, which passes it to GSS |Inport_sec_context (),
and a fresh context handle is created such that it is functionally
identical to the original context.

The inter-process token nay contain sensitive data fromthe origina
security context (including cryptographic keys). Applications using
i nter-process tokens to transfer security contexts nust take
appropriate steps to protect these tokens in transit.

| mpl enent ati ons are not required to support the inter-process
transfer of security contexts. The ability to transfer a security
context is indicated when the context is created, by

GSS I nit_sec_context() or GSS Accept_sec_context() indicating a TRUE
trans_state return val ue.

2: Interface Descriptions

This section describes the GSS-API's service interface, dividing the
set of calls offered into four groups. Credential nanagenent calls
are related to the acquisition and rel ease of credentials by
principals. Context-level calls are related to the managenent of
security contexts between principals. Per-nmessage calls are rel ated
to the protection of individual nessages on established security
contexts. Support calls provide ancillary functions useful to GSS-API
callers. Table 2 groups and sumrarizes the calls in tabular fashion.

Tabl e 2: GSS- APl Cal |'s

CREDENTI AL MANAGEMENT

GSS_Acquire_cred acquire credentials for use
GSS_Rel ease_cred rel ease credentials after use
GSS I nquire_cred di spl ay i nformation about

credential s

Li nn St andar ds Track [Page 29]

RFC 2743

GSS_Add_cred

GSS_| nqui re_cred_by_nech

CONTEXT- LEVEL CALLS

GSS I nit_sec_cont ext
GSS_Accept _sec_cont ext
GSS Del et e_sec_cont ext

GSS _Process_cont ext _t oken

GSS_Context _tine

GSS_I nqui re_cont ext
GSS Wap_size limt
GSS_Export _sec_cont ext
GSS_| mport _sec_cont ext
PER- MESSAGE CALLS

GSS _GetM C

GSS VerifyMC
GSS_Wap

GSS_Unwr ap

SUPPORT CALLS
GSS Display_status
GSS I ndi cat e_mechs
GSS_Conpar e_nane
GSS _Di spl ay_nane
GSS_| mport _nane
GSS_Rel ease_nane

GSS_Rel ease_buf fer

GSS_Rel ease_Q D _set

GSS Create_enpty_Q D _set

GSS_Add_Q D_set _nenber
GSS Test _O D_set _nenber

GSS_ I nqui re_nanes_for_nmech

Li nn

St andards Track

GSS- API January 2000

construct credentials increnentally
di spl ay per-nechani sm credenti al
i nformation

initiate outbound security context

accept inbound security context

flush context when no | onger needed

process received control token on
cont ext

indicate validity tine remai ning on

cont ext

di spl ay informati on about context

determ ne GSS Wap token size limt

transfer context to other process

i mport transferred context

apply integrity check, receive as
token separate from nessage

validate integrity check token
along wi th nessage

sign, optionally encrypt,
encapsul ate

decapsul ate, decrypt if needed,
validate integrity check

transl ate status codes to printable
form

i ndi cate nmech_types supported on
| ocal system

conpare two nanes for equality

translate nane to printable form

convert printable nanme to
normal i zed form

free storage of normalized-form
name

free storage of general GSS-all ocated
obj ect

free storage of O D set object

create enpty A D set

add nmenmber to A D set

test if ODis nenber of AOD set

i ndi cate name types supported by

[Page 30]

RFC 2743 GSS- API January 2000

2.

2.

1

1.

mechani sm

GSS_I nqui re_nechs_for_name i ndi cat es nechani sms supporting name
type
GSS_Canoni cal i ze_nane transl ate name to per-nechani smform
GSS_Export _name external i ze per-nechani sm nane
GSS _Dupl i cate_nane dupl i cate nane obj ect
Credential managenent calls

These GSS-API calls provide functions related to the managenent of
credentials. Their characterization with regard to whether or not
they nmay bl ock pendi ng exchanges with other network entities (e.g.,
directories or authentication servers) depends in part on OS-specific
(extra-GSS-APl) issues, so is not specified in this docunent.

The GSS _Acquire cred() call is defined within the GSS-API in support
of application portability, with a particular orientation towards
support of portable server applications. It is recognized that (for
certain systenms and nechani sms) credentials for interactive users may
be managed differently fromcredentials for server processes; in such
environnents, it is the GSS-APlI inplenentation’s responsibility to

di stingui sh these cases and the procedures for making this
distinction are a local matter. The GSS Rel ease_cred() call provides
a means for callers to indicate to the GSS-API that use of a
credentials structure is no |onger required. The GSS_Inquire_cred()
call allows callers to determne information about a credentials
structure. The GSS_Add _cred() call enables callers to append
elements to an existing credential structure, allowing iterative
construction of a nulti-nmechanismcredential. The

GSS Inquire_cred_by nmech() call enables callers to extract per-
mechani sminformati on describing a credentials structure.

1: GSS_Acquire_cred cal
| nputs:
0 desired_nanme | NTERNAL NAME, -- NULL requests |ocally-determn ned
-- default
o lifetime_req INTEGER, -- in seconds; O requests default
0 desired_nmechs SET OF OBJECT | DENTI FI ER, -- NULL requests

-- systemsel ected default

0 cred_usage |INTEGER -- O=I N TI ATE- AND- ACCEPT, 1=I NI TI ATE- O\LY,
-- 2=ACCEPT- ONLY

Li nn St andar ds Track [Page 31]

RFC 2743 GSS- API January 2000

Qut put s:
0 nmjor_status | NTEGER,

0 mnor_status | NTEGER,

0 output_cred_handl e CREDENTI AL HANDLE, -- if returned non-NULL,
-- caller nmust release with GSS_Rel ease_cred()

o actual _nechs SET OF OBJECT IDENTIFIER, -- if returned non-NULL,
-- caller nmust release with GSS_Rel ease_oi d_set ()

o lifetime_rec INTEGER -- in seconds, or reserved val ue for

-- | NDEFI NI TE

Return mmj or _status codes:

o0 GSS_S COWLETE indicates that requested credentials were
successfully established, for the duration indicated in |ifetine_rec,
suitabl e for the usage requested in cred_usage, for the set of
mech_types indicated in actual _nechs, and that those credentials can
be referenced for subsequent use with the handle returned in

out put _cred_handl e.

0 GSS_S BAD MECH indicates that a nech_type unsupported by the GSS-
APl inplenentation type was requested, causing the credenti al
establ i shnment operation to fail.

0 GSS_S BAD NAMETYPE indicates that the provided desired_nane is

uni nterpretable or of a type unsupported by the applicable underlying
GSS- APl nechani sn(s), so no credentials could be established for the
acconpanyi ng desired_narne.

0 GSS_S BAD NAME indicates that the provided desired _nane is
inconsistent in terns of internally-incorporated type specifier
i nformation, so no credentials could be established for the
acconpanyi ng desired_narne.

0 GSS_S CREDENTI ALS EXPI RED i ndi cates that underlying credenti al
el enents corresponding to the requested desired_nane have expired, so
requested credentials could not be established.

0 GSS_ S NO CRED indicates that no credential el enents correspondi ng
to the requested desired_name and usage could be accessed, so
requested credentials could not be established. In particular, this
status shoul d be returned upon tenporary user-fixable conditions

Li nn St andar ds Track [Page 32]

RFC 2743 GSS- API January 2000

preventing successful credential establishment and upon | ack of
aut hori zation to establish and use credentials associated with the
identity named in the input desired_nanme argunent.

0 GSS S FAILURE indicates that credential establishnent failed for
reasons unspecified at the GSS-API |evel.

GSS Acquire_cred() is used to acquire credentials so that a principa
can (as a function of the input cred_usage paraneter) initiate and/or
accept security contexts under the identity represented by the
desired_nanme input argunment. On successful conpletion, the returned
out put _cred_handl e result provides a handl e for subsequent references
to the acquired credentials. Typically, single-user client processes
requesting that default credential behavior be applied for context
establ i shnment purposes will have no need to invoke this call

A caller may provide the value NULL (GSS_C NO NAME) for desired_nane,
which will be interpreted as a request for a credential handl e that
will invoke default behavior when passed to GSS | nit_sec_context(),
if cred_usage is GSS C IN TIATE or GSS_C BOTH, or

GSS_Accept _sec_context(), if cred_usage is GSS_C ACCEPT or
GSS C BOTH. It is possible that nultiple pre-established credentials
may exist for the same principal identity (for exanple, as a result
of multiple user |ogin sessions) when GSS Acquire_cred() is called;
the means used in such cases to select a specific credential are
local matters. The input lifetime_req argunment to GSS _Acquire_cred()
may provide useful information for |ocal GSS-API inplenentations to
enpl oy in making this disanbiguation in a manner which will best
satisfy a caller’s intent.

This routine is expected to be used prinmarily by context acceptors,
since inplenmentations are likely to provide nechani smspecific ways
of obtaining GSS-API initiator credentials fromthe system|ogin
process. Sone inplenmentations may therefore not support the

acqui sition of GSS C IN TIATE or GSS_C BOTH credentials via

GSS _Acquire_cred() for any nane other than GSS_C NO NAME, or a nane
resulting from applying GSS_Inquire_context() to an active context,
or a nane resulting fromapplying GSS I nquire_cred() against a
credential handl e corresponding to default behavior. It is inportant
to recognize that the explicit nane which is yielded by resolving a
default reference nay change over tine, e.g., as a result of [ocal
credential el enent managenent operations outside GSS-API; once
resol ved, however, the value of such an explicit nane will remain
const ant .

The lifetinme_rec result indicates the length of tine for which the

acquired credentials will be valid, as an offset fromthe present. A
mechani smmay return a reserved value indicating INDEFINITE if no

Li nn St andar ds Track [Page 33]

RFC 2743 GSS- API January 2000

constraints on credential lifetinme are inposed. A caller of

GSS _Acquire_cred() can request a length of time for which acquired
credentials are to be valid (lifetinme_req argunent), beginning at the
present, or can request credentials with a default validity interval.
(Requests for postdated credentials are not supported within the

GSS- APl .) Certain nmechanisnms and inpl enentations may bind in
credential validity period specifiers at a point prelimnary to

i nvocation of the GSS_Acquire_cred() call (e.g., in conjunction with
user login procedures). As a result, callers requesting non-default
values for lifetinme_req nust recogni ze that such requests cannot

al ways be honored and nust be prepared to acconmpdate the use of
returned credentials with different lifetinmes as indicated in
lifetine_rec.

The caller of GSS Acquire_cred() can explicitly specify a set of
mech_types which are to be accompdated in the returned credentials
(desired_mechs argunent), or can request credentials for a system
defined default set of mech_types. Sel ection of the systemspecified
default set is reconmended in the interests of application
portability. The actual _mechs return value nmay be interrogated by the
caller to determine the set of nechanisns with which the returned
credentials may be used.

2.1.2: GSS_Rel ease_cred cal

| nput :

o cred_handl e CREDENTI AL HANDLE -- if GSS_C _NO CREDENTI AL
-- is specified, the call will conplete successfully, but
-- will have no effect; no credential elenents will be

-- rel eased.

Qut put s:

0 nmjor_status | NTEGER,

0 mnor_status | NTEGER

Return mmj or _status codes:

0 GSS_S COVWLETE indicates that the credentials referenced by the

i nput cred_handl e were rel eased for purposes of subsequent access by

the caller. The effect on other processes which may be authorized
shared access to such credentials is a local matter.

Li nn St andar ds Track [Page 34]

RFC 2743 GSS- API January 2000

0 GSS_ S NO CRED indicates that no rel ease operati on was perforned,
ei ther because the input cred_handle was invalid or because the
caller lacks authorization to access the referenced credenti al s.

0 GSS S FAILURE indicates that the rel ease operation failed for
reasons unspecified at the GSS-API |evel.

Provides a neans for a caller to explicitly request that credentials
be rel eased when their use is no longer required. Note that system
specific credential nanagenent functions are also likely to exist,
for exanple to assure that credentials shared anbng processes are
properly deleted when all affected processes term nate, even if no
explicit release requests are issued by those processes. Gven the
fact that nultiple callers are not precluded from gai ni ng authorized
access to the sane credentials, invocation of GSS Rel ease_cred()
cannot be assuned to delete a particular set of credentials on a
system wi de basi s.

2.1.3: GSS_Inquire_cred cal
| nput :

o cred_handl e CREDENTI AL HANDLE -- if GSS_C _NO CREDENTI AL
-- is specified, default initiator credentials are queried

Qut put s:
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER,

0 cred_nanme | NTERNAL NAME, -- caller nust release with
-- GSS_Rel ease_nane()

o lifetime_rec INTEGER -- in seconds, or reserved val ue for
-- | NDEFI NI TE
0 cred_usage | NTEGER, -- O=IN Tl ATE- AND- ACCEPT, 1=I NI TI ATE- O\LY,

-- 2=ACCEPT- ONLY

0 nech_set SET OF OBJECT IDENTIFIER -- caller nust rel ease
-- With GSS _Rel ease_oi d_set ()

Li nn St andar ds Track [Page 35]

RFC 2743 GSS- API January 2000

Return mgj or _status codes:

0 GSS_S COWLETE indicates that the credentials referenced by the

i nput cred_handl e argunment were valid, and that the output cred_naneg,
lifetinme_rec, and cred_usage val ues represent, respectively, the
credential s’ associated principal name, renmaining lifetinme, suitable
usage nodes, and supported nechani smtypes.

0 GSS S NO CRED indicates that no information could be returned
about the referenced credentials, either because the input
cred_handl e was invalid or because the caller |acks authorization to
access the referenced credenti al s.

0 GSS_S DEFECTI VE_CREDENTI AL i ndicates that the referenced
credentials are invalid.

0 GSS_S CREDENTI ALS EXPI RED i ndi cates that the referenced
credenti als have expired.

0 GSS S FAILURE indicates that the operation failed for reasons
unspecified at the GSS-API |evel.

The GSS_Inquire_cred() call is defined primarily for the use of those
call ers which request use of default credential behavior rather than
acquiring credentials explicitly with GSS_Acquire_cred(). It enables

callers to determne a credential structure’ s associated principa
name, remaining validity period, usability for security context
initiation and/or acceptance, and supported nechani sms.

For a nulti-nmechanismcredential, the returned "lifetinme" specifier

i ndicates the shortest lifetine of any of the nechanisns’ elenents in
the credential (for either context initiation or acceptance

pur poses).

GSS I nquire_cred() should indicate | N Tl ATE- AND- ACCEPT f or
"cred_usage" if both of the follow ng conditions hold:

(1) there exists in the credential an el enment which allows context
initiation using sone mechani sm

(2) there exists in the credential an el enment which allows context
acceptance using sone nechani sm (all owably, but not necessarily,
one of the sane nechanisn(s) qualifying for (1)).

If condition (1) holds but not condition (2), GSS _|nquire_cred()
shoul d indicate I NI TIATE-ONLY for "cred_usage". |If condition (2)
hol ds but not condition (1), GSS_Inquire_cred() should indicate
ACCEPT- ONLY for "cred_usage"

Li nn St andar ds Track [Page 36]

RFC 2743 GSS- API January 2000

Callers requiring finer disanbiguation anong avail abl e conbi nati ons
of lifetimes, usage nodes, and nechani sns should call the

GSS I nquire_cred_by nmech() routine, passing that routine one of the
mech O Ds returned by GSS | nquire_cred().

2.1.4: GSS_Add_cred cal
| nput s:
0 input_cred_handl e CREDENTI AL HANDLE -- handle to credenti al
-- structure created with prior GSS_Acquire_cred() or
-- GSS_Add _cred() call; see text for definition of behavior
-- when GSS_C_NO CREDENTI AL provi ded.
0 desired_name | NTERNAL NAME
o initiator_time_req INTEGER -- in seconds; O requests default
0 acceptor_tinme_req INTEGER -- in seconds; 0 requests default

0 desired_mech OBJECT | DENTI FI ER

0 cred_usage |INTEGER -- O=I N TI ATE- AND- ACCEPT, 1=I NI TI ATE- O\LY,
-- 2=ACCEPT- ONLY

Qut put s:
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER,

0 output_cred_handl e CREDENTI AL HANDLE, -- NULL to request that
-- credential elements be added "in place" to the credenti al

-- structure identified by input_cred_handl e,

-- non-NULL pointer to request that

-- a new credential structure and handl e be created.

-- if credential handle returned, caller nust release wth

-- GSS_Rel ease_cred()

0 actual _nechs SET OF OBJECT IDENTIFIER, -- if returned, caller nust
-- release with GSS_Rel ease_oi d_set ()

o initiator_time_rec INTEGER -- in seconds, or reserved value for

-- | NDEFI NI TE

0 acceptor_tine_rec INTEGER -- in seconds, or reserved val ue for

-- | NDEFI NI TE

Li nn St andar ds Track [Page 37]

RFC 2743 GSS- API January 2000

0 cred_usage | NTECER, -- 0= N Tl ATE- AND- ACCEPT, 1=I NI Tl ATE- O\LY,
-- 2=ACCEPT- ONLY

0 nech_set SET OF OBJECT IDENTIFIER -- full set of nechanisns
-- supported by resulting credential .

Return mmj or _status codes:

0 GSS_S COWLETE indicates that the credentials referenced by the
i nput _cred_handl e argunment were valid, and that the resulting
credential from GSS_Add_cred() is valid for the durations indicated
ininitiator_time_rec and acceptor_tine_rec, suitable for the usage
requested in cred_usage, and for the nmechanisnms indicated in

act ual _nechs.

0 GSS_S DUPLI CATE_ELEMENT i ndicates that the input desired_nech
speci fied a nechanismfor which the referenced credential already
contained a credential elenment with overl appi ng cred_usage and
validity time specifiers.

0 GSS_S BAD MECH indicates that the input desired_mech specified a
mechani sm unsupported by the GSS-API inplenentation, causing the
GSS _Add_cred() operation to fail.

0 GSS_S BAD NAMETYPE indicates that the provided desired_nanme is

uni nterpretable or of a type unsupported by the applicable underlying
GSS- APl nechani snm(s), so the GSS_Add_cred() operation could not be
performed for that name.

0 GSS_S BAD NAME indicates that the provided desired _nane is

i nconsistent in terns of internally-incorporated type specifier

i nformation, so the GSS_Add_cred() operation could not be perforned
for that nane.

0 GSS_ S NO CRED indicates that the input_cred_handl e referenced
invalid or inaccessible credentials. In particular, this status
shoul d be returned upon tenporary user-fixable conditions preventing
successful credential establishnment or upon |ack of authorization to
establish or use credentials representing the requested identity.

0 GSS_S CREDENTI ALS EXPI RED i ndi cates that referenced credenti al
el enents have expired, so the GSS_Add_cred() operation could not be
per f or ned.

0 GSS S FAILURE indicates that the operation failed for reasons
unspecified at the GSS-API |evel.

Li nn St andar ds Track [Page 38]

RFC 2743 GSS- API January 2000

GSS_Add_cred() enables callers to construct credentials iteratively
by addi ng credential elenments in successive operations, correspondi ng
to different nechanisns. This offers particular value in nulti-
nmechani sm envi ronnents, as the major_status and m nor_status val ues
returned on each iteration are individually visible and can therefore
be interpreted unanbi guously on a per-nechani smbasis. A credenti al
element is identified by the nane of the principal to which it

refers. GSS-API inplenentations nust inpose a |ocal access contro
policy on callers of this routine to prevent unauthorized callers
fromacquiring credential elenments to which they are not entitled.
This routine is not intended to provide a "login to the network"
function, as such a function would involve the creation of new
mechani sm speci fic authentication data, rather than nerely acquiring
a GSS-API handle to existing data. Such functions, if required,
shoul d be defined in inplenmentation-specific extension routines.

If credential acquisition is time-consunmng for a nechanism the
nmechani sm nay choose to delay the actual acquisition until the
credential is required (e.g. by GSS Init_sec_context() or

GSS_Accept _sec_context()). Such nechani smspecific inplenentation
deci sions should be invisible to the calling application; thus a cal
of GSS Inquire_cred() immediately followi ng the call of

GSS Acquire_cred() must return valid credential data, and may
therefore incur the overhead of a deferred credential acquisition

I f GSS_C NO CREDENTI AL is specified as input_cred_handl e, a non-NULL
out put _cred_handl e nmust be supplied. For the case of
GSS_C NO CREDENTI AL as input_cred_handle, GSS Add cred() will create
the credential referenced by its output_cred _handl e based on default
behavior. That is, the call will have the sane effect as if the
caller had previously called GSS Acquire_cred(), specifying the same
usage and passing GSS_C NO NAME as the desired_nanme paraneter
(thereby obtaining an explicit credential handle corresponding to
default behavior), had passed that credential handle to

GSS _Add_cred(), and had finally called GSS_Rel ease _cred() on the
credential handl e received from GSS_Acquire_cred().

This routine is expected to be used prinmarily by context acceptors,
since inplenmentations are likely to provide nechani smspecific ways
of obtaining GSS-API initiator credentials fromthe system|ogin
process. Sone inplenmentations may therefore not support the

acqui sition of GSS_C I N TIATE or GSS_C BOTH credentials via
GSS_Acquire_cred() for any name other than GSS_C_NO NAME, or a nane
resulting from applying GSS_Inquire_context() to an active context,
or a nane resulting fromapplying GSS |Inquire_cred() against a
credential handl e corresponding to default behavior. It is inportant
to recognize that the explicit nane which is yielded by resolving a
default reference nay change over tine, e.g., as a result of [ocal

Li nn St andar ds Track [Page 39]

RFC 2743 GSS- API January 2000

credential el enent managenent operations outside GSS-API; once
resol ved, however, the value of such an explicit nane will remain
const ant .

A caller may provide the value NULL (GSS_C NO NAME) for desired_nane,
which will be interpreted as a request for a credential handl e that
will invoke default behavior when passed to GSS | nit_sec_context(),
if cred_usage is GSS C IN TIATE or GSS_C BOTH, or

GSS_Accept _sec_context (), if cred_usage is GSS_C ACCEPT or

GSS_C BOTH.

The sane input desired_name, or default reference, should be used on
all GSS Acquire_cred() and GSS _Add cred() calls corresponding to a
particul ar credential .

2.1.5: GSS_Inquire_cred_by_nech cal

| nput s:

o cred_handl e CREDENTI AL HANDLE -- if GSS_C _NO CREDENTI AL
-- specified, default initiator credentials are queried

0 nech_type OBJECT IDENTIFIER -- specific nmechanismfor
-- which credentials are being queried

Qut put s:
0 nmjor_status | NTEGER,

0 mnor_status | NTEGER,

0 cred_nane | NTERNAL NAME, -- guaranteed to be M\; caller nust

-- release with GSS_Rel ease_nane()

o lifetime_rec_initiate INTEGER -- in seconds, or reserved val ue for
-- | NDEFI NI TE

o lifetime_rec_accept INTEGER -- in seconds, or reserved val ue for
-- | NDEFI NI TE

0 cred_usage | NTEGER, -- O=IN Tl ATE- AND- ACCEPT, 1=I NI TI ATE- O\LY,

-- 2=ACCEPT- ONLY
Return mmj or _status codes:
0 GSS_S COVWLETE indicates that the credentials referenced by the

i nput cred_handl e argunent were valid, that the nechani smindicated
by the input mech_type was represented with elenments within those

Li nn St andar ds Track [Page 40]

RFC 2743 GSS- API January 2000

credentials, and that the output cred_name, lifetine_rec_initiate,
lifetinme_rec_accept, and cred_usage val ues represent, respectively,
the credential s’ associated principal name, remaining |lifetines, and
sui t abl e usage nodes.

0 GSS S NO CRED indicates that no information could be returned
about the referenced credentials, either because the input
cred_handl e was invalid or because the caller |acks authorization to
access the referenced credenti al s.

0 GSS_S DEFECTI VE_CREDENTI AL i ndicates that the referenced
credentials are invalid.

0 GSS_S CREDENTI ALS EXPI RED i ndi cates that the referenced
credenti al s have expired.

0 GSS_S BAD MECH indicates that the referenced credentials do not
contain elenents for the requested nechani sm

0 GSS S FAILURE indicates that the operation failed for reasons
unspecified at the GSS-API |evel.

The GSS I nquire_cred_by nech() call enables callers in nmulti-
mechani sm environnments to acquire specific data about avail abl e

conbi nations of |ifetines, usage nodes, and nechanisns within a
credential structure. The lifetine_rec_initiate result indicates the
available lifetine for context initiation purposes; the
lifetime_rec_accept result indicates the available lifetine for

cont ext acceptance purposes.

2.2: Context-level calls

This group of calls is devoted to the establishment and managenent of
security contexts between peers. A context’s initiator calls

GSS Init_sec_context(), resulting in generation of a token which the
caller passes to the target. At the target, that token is passed to
GSS_Accept _sec_context (). Depending on the underlying mech_type and
specified options, additional token exchanges nay be perfornmed in the
course of context establishment; such exchanges are acconmobdat ed by
GSS_S_CONTI NUE_NEEDED status returns from GSS_Init_sec_context() and
GSS_Accept _sec_context ().

Ei ther party to an established context may invoke

GSS Del ete_sec_context() to flush context information when a cont ext
is no longer required. GSS Process_context_token() is used to process
recei ved tokens carrying context-level control informtion.

GSS Context _tine() allows a caller to determine the length of tinme
for which an established context will remain valid.

Li nn St andar ds Track [Page 41]

RFC 2743 GSS- API January 2000

GSS I nquire_context() returns status infornmation describing context
characteristics. GSS Wap_size |limt() allows a caller to deternine
the size of a token which will be generated by a GSS_Wap()
operation. GSS Export_sec_context() and GSS_ | nport_sec_context ()
enabl e transfer of active contexts between processes on an end
system

2.2.1: GSS Init_sec_context call

| nput s:

o claimnt_cred_handl e CREDENTI AL HANDLE, -- NULL specifies "use
-- default”

0 input_context_handl e CONTEXT HANDLE, -- O

-- (GSS_C _NO CONTEXT) specifies "none assigned yet"
0 targ_nane | NTERNAL NAME,

0 nech_type OBJECT | DENTIFIER, -- NULL paraneter specifies "use
-- default™

o deleg req_flag BOOLEAN,

o nutual _reqg_flag BOOLEAN,

o replay_det _reqg_flag BOOLEAN,

0 sequence_reqg_flag BOOLEAN,

o anon_req_flag BOOLEAN,

o conf_req_flag BOOLEAN,

0 integ_req_flag BOOLEAN,

o lifetinme_req INTEGER, -- O specifies default lifetine
0 chan_bi ndi ngs OCTET STRI NG

o input_token OCTET STRING -- NULL or token received fromtarget
Qut put s:

0 nmjor_status | NTEGER,

0 mnor_status | NTEGER,

Li nn St andar ds Track [Page 42]

RFC 2743 GSS- API January 2000
0 output_context _handl e CONTEXT HANDLE, -- once returned non- NULL,
-- caller nmust release with GSS Del ete_sec_context ()
o nech_type OBJECT I DENTI FI ER, -- actual nechani sm al ways
-- indicated, never NULL; caller should treat as read-only

-- and should not attenpt to rel ease

0 output_token OCTET STRING -- NULL or token to pass to context
-- target; caller nust release with GSS_Rel ease_buffer()

0 del eg_state BOCLEAN,

0 nutual _state BOOLEAN,

0 replay_det_state BOOLEAN,

0 sequence_state BOOLEAN,

0 anon_state BOOLEAN,

0 trans_state BOOLEAN,

0 prot_ready_state BOOLEAN, -- see Section 1.2.7
o conf_avail BOOLEAN,

0 integ_avail BOCLEAN,

o lifetime_rec INTEGER -- in seconds, or reserved val ue for
-- | NDEFI NI TE

This call may bl ock pending network interactions for those nech_types
in which an authentication server or other network entity nust be
consulted on behalf of a context initiator in order to generate an
out put _token suitable for presentation to a specified target.

Return mmj or _status codes:

0 GSS_S COWLETE indicates that context-level infornmation was
successfully initialized, and that the returned output_token w ||
provide sufficient information for the target to perform per-nessage
processi ng on the new y-established context.

0 GSS_S CONTI NUE_NEEDED i ndi cates that control information in the

returned output _token nmust be sent to the target, and that a reply
nmust be received and passed as the input_token argunent

Li nn St andar ds Track [Page 43]

RFC 2743 GSS- API January 2000

to a continuation call to GSS Init_sec_context(), before per-nmessage
processing can be performed in conjunction with this context (unless
the prot _ready_state value is concurrently returned TRUE)

0 GSS_S DEFECTI VE_TOKEN i ndi cat es that consi stency checks perforned
on the input_token failed, preventing further processing from being
perforned based on that token

0 GSS_S DEFECTI VE_CREDENTI AL i ndi cates that consistency checks
perforned on the credential structure referenced by

clai mant _cred_handl e failed, preventing further processing from being
perfornmed using that credential structure.

0 GSS S BAD SIG (GSS_S BAD M Q) indicates that the received
i nput _token contains an incorrect integrity check, so context setup
cannot be acconpli shed.

0 GSS_S NO CRED indicates that no context was established, either
because the input cred_handl e was invalid, because the referenced
credentials are valid for context acceptor use only, because the
caller lacks authorization to access the referenced credentials, or
because the resolution of default credentials fail ed.

0 GSS_S CREDENTI ALS EXPI RED i ndicates that the credentials provided
t hrough the input claimnt_cred_handl e argunment are no |onger valid,
so context establishment cannot be conpl et ed.

0 GSS_S BAD BINDI NGS indicates that a m snmatch between the caller-
provi ded chan_bi ndi ngs and those extracted fromthe input_token was
detected, signifying a security-relevant event and preventing context
establishnment. (This result will be returned by

GSS Init_sec_context() only for contexts where nmutual _state is TRUE.)

0 GSS S OLD TOKEN indicates that the input_token is too old to be
checked for integrity. This is a fatal error during context
est abl i shnent.

0 GSS_S DUPLI CATE_TOKEN i ndicates that the input token has a correct
integrity check, but is a duplicate of a token already processed.
This is a fatal error during context establishment.

0 GSS_S NO CONTEXT indicates that no valid context was recogni zed
for the input context_handl e provided; this major status will be
returned only for successor calls follow ng GSS_S CONTI NUE_ NEEDED
status returns.

Li nn St andar ds Track [Page 44]

RFC 2743 GSS- API January 2000

0 GSS_S BAD NAMETYPE indicates that the provided targ_name is of a
type uninterpretable or unsupported by the applicable underlying
GSS- APl nechani sn(s), so context establishnent cannot be conpl et ed.

0 GSS_S BAD NAME indicates that the provided targ_nane is
i nconsistent in terns of internally-incorporated type specifier
i nformation, so context establishnment cannot be acconpli shed.

0 GSS_S BAD MECH indicates receipt of a context establishnent token
or of a caller request specifying a nmechani sm unsupported by the
| ocal systemor with the caller’s active credentials

0 GSS_ S FAILURE indicates that context setup could not be
acconpl i shed for reasons unspecified at the GSS-APl |evel, and that
no interface-defined recovery action is avail abl e.

This routine is used by a context initiator, and ordinarily enmts an
out put _token suitable for use by the target within the sel ected

mech_type's protocol. For the case of a multi-step exchange, this
output _token will be one in a series, each generated by a successive
call. Using information in the credentials structure referenced by

claimant _cred_handle, GSS Init_sec_context() initializes the data
structures required to establish a security context with target
targ_nane.

The targ _nane nmay be any valid I NTERNAL NAME; it need not be an M\
In addition to support for other nanme types, it is recommended (newly
as of GSS-V2, Update 1) that nechani sns be able to accept
GSS_C NO NAME as an input type for targ _nane. Wile reconmended,
such support is not required, and it is recognized that not al

nmechani sns can construct tokens wi thout explicitly nam ng the context
target, even when nutual authentication of the target is not

obtained. Callers wishing to make use of this facility and concerned
with portability should be aware that support for GSS_C NO NAME as
input targ_nanme type is unlikely to be provided w thin nechani sm
definitions specified prior to GSS-V2, Update 1.

The cl ai mant _cred_handl e nmust correspond to the sane valid
credentials structure on the initial call to GSS_ Init_sec_context()
and on any successor calls resulting from GSS_S CONTI NUE_NEEDED
status returns; different protocol sequences nodel ed by the

GSS_S CONTI NUE_NEEDED facility will require access to credential s at
different points in the context establishment sequence.

The cal |l er-provided i nput_context _handl e argunent is to be 0
(GSS_C_NO _CONTEXT), specifying "not yet assigned", on the first
GSS Init_sec_context() call relating to a given context. If
successful (i.e., if acconpanied by major_status GSS_S COWPLETE or

Li nn St andar ds Track [Page 45]

RFC 2743 GSS- API January 2000

GSS_S _CONTI NUE_NEEDED), and only if successful, the initial

GSS Init_sec_context() call returns a non-zero output_context _handl e
for use in future references to this context. Once a non-zero

out put _cont ext _handl e has been returned, GSS-API callers should cal
GSS Del ete_sec_context() to rel ease context-related resources if
errors occur in |ater phases of context establishnment, or when an
established context is no longer required. If GSS_Init_sec_context()
is passed the handl e of a context which is already fully established,
GSS S FAILURE status is returned.

When continuation attenpts to GSS Init_sec_context() are needed to
perform context establishnent, the previously-returned non-zero
handl e value is entered into the input_context_handl e argunment and
will be echoed in the returned output_context_handl e argunment. On
such continuation attenpts (and only on continuation attenpts) the
i nput _token value is used, to provide the token returned fromthe
context’s target.

The chan_bi ndi ngs argunment is used by the caller to provide

i nformati on binding the security context to security-rel ated
characteristics (e.g., addresses, cryptographic keys) of the
under | yi ng comuni cati ons channel. See Section 1.1.6 of this docunent
for nmore discussion of this argunment’s usage.

The input_token argunment contains a nessage received fromthe target,
and is significant only on a call to GSS_Init_sec_context() which
follows a previous return indicating GSS_S CONTI NUE_NEEDED

maj or _stat us.

It is the caller’s responsibility to establish a comrunications path
to the target, and to transnmit any returned output_token (independent
of the acconpanying returned najor_status value) to the target over
that path. The output _token can, however, be transnitted along with
the first application-provided i nput nessage to be processed by

GSS GetM C() or GSS Wap() in conjunction with a successfully-

establi shed context. (Note: when the GSS-V2 prot_ready_state
indicator is returned TRUE, it can be possible to transfer a
protected nessage before context establishnent is conplete: see also
Section 1.2.7)

The initiator may request various context-level functions through

i nput flags: the deleg req_flag requests del egation of access rights,
the mutual req_flag requests mutual authentication, the

replay_det _req_flag requests that replay detection features be
applied to nessages transferred on the established context, and the
sequence_req_flag requests that sequencing be enforced. (See Section

Li nn St andar ds Track [Page 46]

RFC 2743 GSS- API January 2000

1.2.3 for nore information on replay detection and sequenci ng
features.) The anon_req_flag requests that the initiator’'s identity
not be transferred within tokens to be sent to the acceptor.

The conf_req_flag and integ_req_flag provide informatory inputs to
the GSS-API inplenentation as to whether, respectively, per-nessage

confidentiality and per-nessage integrity services will be required
on the context. This information is inportant as an input to
negoti ati ng mechanisns. It is inportant to recognize, however, that

the inclusion of these flags (which are newly defined for GSS-V2)

i ntroduces a backward inconpatibility with callers inplenmented to
GSS- V1, where the flags were not defined. Since no GSS-V1 callers
woul d set these flags, even if per-nmessage services are desired,

GSS- V2 mechani sm i npl ement ati ons whi ch enabl e such services

sel ectively based on the flags’ values nmay fail to provide themto
contexts established for GSS-V1 callers. It nmay be appropriate under
certain circunstances, therefore, for such mechani sminpl enmentations
to infer these service request flags to be set if a caller is known
to be inplenented to GSS-V1.

Not all of the optionally-requestable features will be available in
all underlying nmech_types. The corresponding return state val ues
del eg_state, nutual state, replay_det_state, and sequence_state

i ndicate, as a function of nech_type processing capabilities and
initiator-provided input flags, the set of features which will be
active on the context. The returned trans_state val ue indicates
whet her the context is transferable to other processes through use of
GSS _Export_sec_context(). These state indicators’ values are
undefined unless either the routine’s najor_status indicates
GSS_ S COWPLETE, or TRUE prot_ready state is returned along with
GSS_S CONTI NUE_NEEDED maj or _status; for the latter case, it is
possi bl e that additional features, not confirmed or indicated al ong
with TRUE prot_ready_state, will be confirnmed and indi cated when
GSS_S COVPLETE is subsequently returned.

The returned anon_state and prot_ready_state values are significant
for both GSS_S COVWLETE and GSS_S CONTI NUE_NEEDED nmj or _st at us
returns fromGSS Init_sec_context(). Wien anon_state is returned
TRUE, this indicates that neither the current token nor its
predecessors delivers or has delivered the initiator’s identity.
Callers wishing to performcontext establishnent only if anonymity
support is provided should transfer a returned token from

GSS Init_sec_context() to the peer only if it is acconpanied by a
TRUE anon_state indicator. Wen prot_ready_state is returned TRUE in
conjunction with GSS_S CONTI NUE_NEEDED mmj or _status, this indicates
that per-nessage protection operations nay be applied on the context:
see Section 1.2.7 for further discussion of this facility.

Li nn St andar ds Track [Page 47]

RFC 2743 GSS- API January 2000

Failure to provide the precise set of features requested by the
cal l er does not cause context establishnent to fail; it is the
caller’s prerogative to delete the context if the feature set
provided is unsuitable for the caller’s use.

The returned nech_type val ue indicates the specific nmechanism

enpl oyed on the context; it will never indicate the value for
"default". A valid nech_type result nust be returned along with a
GSS_S COWPLETE status return; GSS- APl inplenmentations may (but are
not required to) also return nech_type along with predecessor calls
i ndi cati ng GSS_S CONTI NUE_NEEDED status or (if a mechanismis
determ nable) in conjunction with fatal error cases. For the case of
nmechani sns whi ch thensel ves perform negotiation, the returned
mech_type result may indicate selection of a mechanismidentified by
an ODdifferent than that passed in the input nmech_type argunent,
and the returned val ue may change between successive calls returning
GSS_S_CONTI NUE_NEEDED and the final call returning GSS_S COWLETE.

The conf _avail return val ue indi cates whet her the context supports
per - nessage confidentiality services, and so inforns the caller

whet her or not a request for encryption through the conf_req_flag

i nput to GSS_ Wap() can be honored. In sinmilar fashion, the
integ_avail return value indicates whet her per-nmessage integrity
services are available (through either GSS_GetM C() or GSS Wap()) on
the established context. These state indicators’ values are undefined
unl ess either the routine’s major_status indicates GSS_ S COWLETE, or
TRUE prot _ready_state is returned along with GSS_S CONTI NUE_NEEDED
maj or _stat us.

The lifetine_req i nput specifies a desired upper bound for the
lifetime of the context to be established, with a value of 0 used to
request a default lifetime. The lifetime_rec return val ue indicates

the length of time for which the context will be valid, expressed as
an offset fromthe present; depending on nechani smcapabilities,
credential lifetimes, and local policy, it may not correspond to the
val ue requested in lifetime_req. |If no constraints on context

lifetinme are inposed, this nay be indicated by returning a reserved
val ue representing INDEFINITE |ifetine_req. The value of lifetinme_rec
i s undefined unless the routine’s nmajor_status indicates
GSS_S_COWPLETE.

If the nutual _state is TRUE, this fact will be reflected within the
out put _token. A call to GSS_Accept_sec_context() at the target in
conjunction with such a context will return a token, to be processed

by a continuation call to GSS Init_sec_context(), in order to achieve
mut ual aut hentication

Li nn St andar ds Track [Page 48]

RFC 2743 GSS- API January 2000

2.2.2: GSS _Accept_sec_context call
| nput s:

0 acceptor_cred_handl e CREDENTI AL HANDLE, -- NULL specifies
-- "use default"

0 input_context_handl e CONTEXT HANDLE, -- O
-- (GSS_C _NO _CONTEXT) specifies "not yet assigned"

0 chan_bi ndi ngs OCTET STRI NG
0 input_token OCTET STRI NG
Qut put s:

0 nmjor_status | NTEGER,

0 mnor_status | NTEGER,

0 src_nanme | NTERNAL NAME, -- guaranteed to be M
-- once returned, caller must release with GSS_Rel ease_nane()

0 nech_type OBJECT IDENTIFIER, -- caller should treat as
-- read-only; does not need to be rel eased

0 output_context _handl e CONTEXT HANDLE, -- once returned

-- non-NULL in context establishnment sequence, caller

-- nmust release with GSS Del ete_sec_context ()

0 del eg_state BOCLEAN,

0 nutual _state BOOLEAN,

0 replay_det_state BOOLEAN,

0 sequence_state BOOLEAN,

0 anon_state BOOLEAN,

0 trans_state BOOLEAN,

0 prot_ready_state BOOLEAN, -- see Section 1.2.7 for discussion

o conf_avail BOOLEAN,

0 integ_avail BOCLEAN,

Li nn St andar ds Track [Page 49]

RFC 2743 GSS- API January 2000

o lifetinme_rec INTEGER, -- in seconds, or reserved val ue for
-- | NDEFI NI TE
0 del egated_cred_handl e CREDENTI AL HANDLE, -- if returned non- NULL,

-- caller must release with GSS_Rel ease_cred()

0 output_token OCTET STRING -- NULL or token to pass to context
-- initiator; if returned non-NULL, caller nust release with
-- GSS_Rel ease_buffer()

This call may bl ock pending network interactions for those nmech_types
in which a directory service or other network entity nust be
consulted on behalf of a context acceptor in order to validate a
recei ved i nput_t oken

Return mmj or _status codes:

0 GSS_S COWLETE indicates that context-level data structures were
successfully initialized, and that per-nessage processing can now be
performed in conjunction with this context.

0 GSS_S CONTI NUE_NEEDED i ndi cates that control information in the
returned output_token nmust be sent to the initiator, and that a
response nust be received and passed as the input_token argunent to a
continuation call to GSS_Accept_sec_context(), before per-nessage
processing can be performed in conjunction with this context.

0 GSS_S DEFECTI VE_TOKEN i ndi cat es that consi stency checks perforned
on the input_token failed, preventing further processing from being
perforned based on that token

0 GSS_S DEFECTI VE_CREDENTI AL i ndi cates that consistency checks
perforned on the credential structure referenced by
acceptor_cred_handl e failed, preventing further processing from being
perfornmed using that credential structure.

0 GSS S BAD SIG (GSS_S BAD M Q) indicates that the received
i nput _token contains an incorrect integrity check, so context setup
cannot be acconpli shed.

0 GSS_S DUPLI CATE_TOKEN i ndicates that the integrity check on the
recei ved i nput_token was correct, but that the input_token was

recogni zed as a duplicate of an input_token already processed. No new
context is established.

Li nn St andar ds Track [Page 50]

RFC 2743 GSS- API January 2000

0 GSS S OLD TOKEN indicates that the integrity check on the received
i nput _token was correct, but that the input_token is too old to be
checked for duplication against previously-processed input_tokens. No
new context is established.

0 GSS_S NO CRED indicates that no context was established, either
because the input cred_handl e was invalid, because the referenced
credentials are valid for context initiator use only, because the
caller lacks authorization to access the referenced credentials, or
because the procedure for default credential resolution fail ed.

0 GSS_S CREDENTI ALS EXPI RED i ndicates that the credentials provided
through the input acceptor_cred _handl e argunent are no | onger valid,
so context establishment cannot be conpl et ed.

0 GSS_S BAD BINDI NGS indicates that a m snmatch between the caller-
provi ded chan_bi ndi ngs and those extracted fromthe input_token was
detected, signifying a security-relevant event and preventing context
est abl i shrent .

0 GSS_S NO CONTEXT indicates that no valid context was recogni zed
for the input context_handl e provided; this major status will be
returned only for successor calls follow ng GSS_ S CONTI NUE_ NEEDED
status returns.

0 GSS_S BAD MECH indicates receipt of a context establishnent token
speci fying a mechani sm unsupported by the | ocal systemor with the
caller’s active credentials.

0 GSS_ S FAILURE indicates that context setup could not be
acconpl i shed for reasons unspecified at the GSS-APl |evel, and that
no interface-defined recovery action is avail able.

The GSS_Accept _sec_context() routine is used by a context target.
Using information in the credentials structure referenced by the

i nput acceptor_cred_handle, it verifies the incom ng input_token and
(following the successful conpletion of a context establishnent
sequence) returns the authenticated src_nane and the nech_type used.
The returned src_nanme is guaranteed to be an M\, processed by the
mechani sm under whi ch the context was established. The
acceptor_cred_handl e must correspond to the sane valid credentials
structure on the initial call to GSS_Accept_sec_context() and on any
successor calls resulting from GSS_S_CONTI NUE_NEEDED st at us returns;
di fferent protocol sequences nodel ed by the GSS_S CONTI NUE_NEEDED
mechanismw || require access to credentials at different points in
the context establishment sequence.

Li nn St andar ds Track [Page 51]

RFC 2743 GSS- API January 2000

The cal |l er-provided i nput_context _handle argunent is to be 0
(GSS_C_NO _CONTEXT), specifying "not yet assigned", on the first
GSS_Accept _sec_context() call relating to a given context. If
successful (i.e., if acconpanied by major_status GSS_S COWPLETE or
GSS_S _CONTI NUE_NEEDED), and only if successful, the initial
GSS_Accept _sec_context() call returns a non-zero

out put _context _handle for use in future references to this context.
Once a non-zero out put_context _handl e has been returned, GSS-API
callers should call GSS Del ete_sec_context() to rel ease context-
related resources if errors occur in |ater phases of context
establ i shnment, or when an established context is no | onger required.
| f GSS_Accept_sec_context() is passed the handle of a context which
is already fully established, GSS S FAILURE status is returned.

The chan_bi ndi ngs argunment is used by the caller to provide

i nformati on binding the security context to security-rel ated
characteristics (e.g., addresses, cryptographic keys) of the
under | yi ng comuni cati ons channel. See Section 1.1.6 of this docunent
for nmore discussion of this argunment’s usage.

The returned state results (del eg_state, nutual _state,

repl ay_det _state, sequence_state, anon_state, trans_state, and
prot _ready_state) reflect the sanme infornmation as described for
GSS Init_sec_context(), and their val ues are significant under the
same return state conditions.

The conf _avail return val ue indi cates whet her the context supports
per - nessage confidentiality services, and so inforns the caller
whet her or not a request for encryption through the conf_req_flag

i nput to GSS_ Wap() can be honored. In sinmilar fashion, the
integ_avail return value indicates whether per-nmessage integrity
services are available (through either GSS GetM C() or GSS Wap())
on the established context. These values are significant under the
sane return state conditions as described under

GSS I nit_sec_context().

The lifetime_rec return value is significant only in conjunction with
GSS_S COWVPLETE mmj or _status, and indicates the length of tinme for
which the context will be valid, expressed as an offset fromthe
present.

The returned nech_type value indicates the specific nechanism

enpl oyed on the context; it will never indicate the value for
"default". A valid nech_type result nust be returned whenever

GSS_S COWPLETE status is indicated; GSS-API inplenmentations may (but
are not required to) also return nech_type along with predecessor
calls indicating GSS_S CONTI NUE_NEEDED status or (if a mechanismis
determ nable) in conjunction with fatal error cases. For the case of

Li nn St andar ds Track [Page 52]

RFC 2743 GSS- API January 2000

nmechani sns whi ch thensel ves perform negotiation, the returned
mech_type result may indicate selection of a nechanismidentified by
an ODdifferent than that passed in the input nmech_type argunent,
and the returned val ue may change between successive calls returning
GSS_S_CONTI NUE_NEEDED and the final call returning GSS_S COWLETE.

The del egated_cred_handle result is significant only when deleg state
is TRUE, and provides a nmeans for the target to reference the

del egated credentials. The out put_token result, when non- NULL,

provi des a context-level token to be returned to the context
initiator to continue a nmulti-step context establishnment sequence. As
noted with GSS Init_sec_context(), any returned token should be
transferred to the context’s peer (in this case, the context
initiator), independent of the value of the acconpanying returned

maj or _stat us.

Note: A target nust be able to distinguish a context-I|eve
i nput _token, which is passed to GSS Accept_sec_context(), fromthe
per - nessage data el enments passed to GSS VerifyM C() or GSS_Unw ap().
These data el enments nay arrive in a single application nmessage, and
GSS_Accept _sec_context () nust be performed before per-nmessage
processi ng can be performed successfully.

2.2.3: GSS Delete_sec_context call
| nput :
0 context _handl e CONTEXT HANDLE
Qut put s:
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER,
0 output_context token OCTET STRI NG
Return mmj or _status codes:
0 GSS_S COWLETE indicates that the context was recogni zed, and that
rel evant context-specific information was flushed. |f the caller
provides a non-null buffer to receive an output_context_token, and
the mechani smreturns a non-NULL token into that buffer, the returned
out put _context _token is ready for transfer to the context’'s peer.

0 GSS_S NO CONTEXT indicates that no valid context was recogni zed
for the input context_handl e provided, so no del etion was perforned.

Li nn St andar ds Track [Page 53]

RFC 2743 GSS- API January 2000

0 GSS S FAILURE indicates that the context is recognized, but that
the GSS Del ete_sec_context() operation could not be perforned for
reasons unspecified at the GSS-API |evel.

This call can be made by either peer in a security context, to flush
context-specific information. Once a non-zero output_context_handl e
has been returned by context establishnent calls, GSS-APlI callers
shoul d call GSS Del ete_sec_context() to rel ease context-rel ated
resources if errors occur in |ater phases of context establishment,
or when an established context is no longer required. This call may
bl ock pending network interactions for mech_types in which active
notification nmust be made to a central server when a security context
is to be del eted.

If a non-null output_context_token paraneter is provided by the
caller, an output_context_token may be returned to the caller. [If an
out put _context _token is provided to the caller, it can be passed to
the context’s peer to informthe peer’s GSS-API inplenentation that
the peer’s correspondi ng context information can al so be flushed.
(Once a context is established, the peers involved are expected to
retain cached credential and context-related information until the
information’s expiration time is reached or until a

GSS Del ete_sec_context() call is made.)

The facility for context_token usage to signal context deletion is
retained for conmpatibility with GSS-APlI Version 1. For current
usage, it is recomended that both peers to a context invoke

GSS Del ete_sec_context () independently, passing a nul

out put _cont ext _token buffer to indicate that no context_token is
required. Inplenentations of GSS Del ete_sec_context() should delete
rel evant locally-stored context information.

Attenpts to perform per-nessage processing on a deleted context will
result in error returns.

2.2.4: GSS Process_context_token call
| nput s:
0 context _handl e CONTEXT HANDLE
0 input_context_token OCTET STRI NG
Qut put s:
0 nmjor_status | NTEGER,

0 mnor_status | NTEGER,

Li nn St andar ds Track [Page 54]

RFC 2743 GSS- API January 2000

Return mgj or _status codes:

0 GSS_S COWLETE indicates that the input_context_token was
successfully processed in conjunction with the context referenced by
cont ext _handl e.

0 GSS_S DEFECTI VE_TOKEN i ndi cat es that consi stency checks perforned
on the received context_token failed, preventing further processing
from being performed with that token.

0 GSS_S NO CONTEXT indicates that no valid context was recogni zed
for the input context_handl e provided.

0 GSS S FAILURE indicates that the context is recognized, but that
the GSS_Process_context _token() operation could not be performed for
reasons unspecified at the GSS-API |evel.

This call is used to process context_tokens received froma peer once
a context has been established, with correspondi ng i npact on
context-level state information. One use for this facility is
processi ng of the context_tokens generated by
GSS Del ete_sec_context(); GSS Process_context _token() will not bl ock
pendi ng network interactions for that purpose. Another use is to
process tokens indicating renote-peer context establishnent failures
after the point where the local GSS-API inplenentation has already
i ndi cated GSS_S COVPLETE st at us.

2.2.5: GSS_ Context_tine call
| nput :
0 context _handl e CONTEXT HANDLE,
Qut put s:
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER,

o lifetime_rec INTEGER -- in seconds, or reserved val ue for
-- | NDEFI NI TE

Return mmj or _status codes:

0 GSS_S COWLETE indicates that the referenced context is valid, and
will remain valid for the amount of tine indicated in lifetine_rec.

Li nn St andar ds Track [Page 55]

RFC 2743 GSS- API January 2000
0 GSS_S CONTEXT_EXPI RED i ndicates that data itens related to the
ref erenced context have expired.

0 GSS_S NO CONTEXT indicates that no valid context was recogni zed
for the input context_handl e provided.

0 GSS S FAILURE indicates that the requested operation failed for
reasons unspecified at the GSS-API |evel.

This call is used to determ ne the ambunt of tine for which a
currently established context will renain valid.

2.2.6: GSS_Inquire_context call
| nput :
0 context _handl e CONTEXT HANDLE,
Qut put s:
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER,
0 src_nane |INTERNAL NAME, -- nane of context initiator,
-- guaranteed to be M\
-- caller nust release with GSS_Rel ease_nane() if returned
0 targ_name | NTERNAL NAME, -- nanme of context target,
-- guaranteed to be M\

-- caller nust release with GSS_Rel ease_nane() if returned

o lifetime_rec INTEGER -- in seconds, or reserved val ue for
-- I NDEFI NI TE or EXPI RED

o mech_type OBJECT | DENTIFIER, -- the nmechani sm supporting this
-- security context; caller should treat as read-only and not

-- attenpt to rel ease

0 del eg_state BOCLEAN,

0 nutual _state BOOLEAN,

0 replay_det_state BOOLEAN,

0 sequence_state BOOLEAN,

0 anon_state BOOLEAN,

Li nn St andar ds Track [Page 56]

RFC 2743 GSS- API January 2000

0 trans_state BOOLEAN

0 prot_ready_state BOOLEAN
o conf_avail BOOLEAN

0 integ_avail BOCLEAN

0 locally_ initiated BOOLEAN, -- TRUE if initiator, FALSE if acceptor

(@]

open BOOLEAN, -- TRUE if context fully established, FALSE
-- if partly established (in CONTI NUE_NEEDED st at e)

Return mmj or _status codes:

0 GSS_S COWLETE indicates that the referenced context is valid and
that deleg state, nmutual state, replay_det_state, sequence_state,

anon_state, trans_state, prot_ready_state, conf_avail, integ_avail
locally_ initiated, and open return val ues describe the correspondi ng
characteristics of the context. |If openis TRUE, lifetine_rec is

also returned: if open is TRUE and the context peer’s nane is known,
src_name and targ nane are valid in addition to the values |isted
above. The nech_type value nust be returned for contexts where open
is TRUE and may be returned for contexts where open is FALSE.

0 GSS_S NO CONTEXT indicates that no valid context was recogni zed
for the input context_handl e provided. Return val ues other than
maj or _status and minor_status are undefi ned.

0 GSS S FAILURE indicates that the requested operation failed for
reasons unspecified at the GSS-API |evel. Return val ues other than
maj or _status and minor_status are undefi ned.
This call is used to extract information describing characteristics
of a security context. Note that GSS-API inplenentations are
expected to retain inquirable context data on a context until the
context is released by a caller, even after the context has expired,
al t hough underlying cryptographic data el enents nmay be del eted after
expiration in order to limt their exposure.

2.2.7: GSS Wap_size_ |imt cal
| nput s:
0 context _handl e CONTEXT HANDLE

o conf_req_flag BOOLEAN

Li nn St andar ds Track [Page 57]

RFC 2743 GSS- API January 2000

0 gop | NTEGER

0 output_size | NTEGER
Qut put s:

0 nmjor_status | NTEGER,

0 mnor_status | NTEGER,

0 nmax_input _size | NTEGER
Return mmj or _status codes:

0 GSS_S COWLETE indicates a successful token size determination
an input nessage with a length in octets equal to the returned
max_i nput _size value will, when passed to GSS Wap() for processing
on the context identified by the context_handl e paraneter with the
confidentiality request state as provided in conf_req_flag and with
the quality of protection specifier provided in the gop paraneter,
yield an output token no larger than the val ue of the provided

out put _si ze paraneter.

0 GSS_S CONTEXT_EXPI RED i ndicates that the provided input
context_handl e is recogni zed, but that the referenced context has
expired. Return values other than nmajor_status and m nor_status are
undefi ned.

0 GSS_S NO CONTEXT indicates that no valid context was recogni zed
for the input context_handl e provided. Return val ues other than
maj or _status and minor_status are undefi ned.

0 GSS S BAD QOP indicates that the provided QOP value is not
recogni zed or supported for the context.

0 GSS S FAILURE indicates that the requested operation failed for
reasons unspecified at the GSS-API |evel. Return val ues other than
maj or _status and minor_status are undefi ned.

This call is used to deternine the largest input datum which may be

passed to GSS Wap() without yielding an output token larger than a
cal |l er-speci fied val ue.

Li nn St andar ds Track [Page 58]

RFC 2743 GSS- API January 2000

2.2.8: GSS_Export _sec_context cal
| nput s:
0 context _handl e CONTEXT HANDLE
Qut put s:
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER,

0 interprocess_token OCTET STRING -- caller nust rel ease
-- With GSS_Rel ease_buffer()

Return mmj or _status codes:

0 GSS_S COWLETE indicates that the referenced context has been
successfully exported to a representation in the interprocess_token
and is no longer available for use by the caller.

0 GSS_S UNAVAI LABLE indicates that the context export facility is
not available for use on the referenced context. (This status should
occur only for contexts for which the trans_state value is FALSE.)
Return val ues other than major_status and m nor_status are undefi ned.

0 GSS_S CONTEXT_EXPI RED i ndicates that the provided input
context_handl e is recogni zed, but that the referenced context has
expired. Return values other than nmajor_status and m nor_status are
undefi ned.

0 GSS_S NO CONTEXT indicates that no valid context was recogni zed
for the input context_handl e provided. Return val ues other than
maj or _status and minor_status are undefi ned.

0 GSS S FAILURE indicates that the requested operation failed for
reasons unspecified at the GSS-API |evel. Return val ues other than
maj or _status and minor_status are undefi ned.

This call generates an interprocess token for transfer to another
process within an end system in order to transfer control of a
security context to that process. The recipient of the interprocess
token will call GSS Inport_sec_context() to accept the transfer. The
GSS_Export_sec_context() operation is defined for use only with
security contexts which are fully and successfully established (i.e.,
those for which GSS Init_sec_context() and GSS_Accept _sec_context ()
have returned GSS_S COVPLETE mmj or _status).

Li nn St andar ds Track [Page 59]

RFC 2743 GSS- API January 2000

A successful GSS _Export_sec_context() operation deactivates the
security context for the calling process; for this case, the GSS-API

i npl enentation shall deallocate all process-w de resources associ ated
with the security context and shall set the context_handle to
GSS_C NO CONTEXT. In the event of an error that makes it inpossible
to conplete export of the security context, the GSS-API

i npl erentation must not return an interprocess token and shoul d
strive to |l eave the security context referenced by the context_handle
untouched. If this is inpossible, it is permssible for the

i npl emrentation to delete the security context, provided that it also
sets the context_handl e paranmeter to GSS_C _NO CONTEXT.

Portabl e callers nust not assune that a given interprocess token can
be inported by GSS Inport_sec_context() nore than once, thereby
creating nmultiple instantiations of a single context. GSS-API

i npl erentations may detect and reject attenpted nultiple inports, but
are not required to do so.

The internal representation contained within the interprocess token
is an inplenentation-defined |ocal matter. |Interprocess tokens
cannot be assunmed to be transferable across different GSS-API

i npl enent ati ons.

It is recomended that GSS-API inplenentations adopt policies suited
to their operational environnents in order to define the set of
processes eligible to inport a context, but specific constraints in
this area are local matters. Candi date exanples include transfers
bet ween processes operating on behal f of the same user identity, or
processes conprising a comon job. However, it may be inpossible to
enforce such policies in sonme inplenentations.

In support of the above goals, inplenentations nay protect the
transferred context data by using cryptography to protect data within
the interprocess token, or by using interprocess tokens as a nmeans to
reference | ocal interprocess communication facilities (protected by
ot her means) rather than storing the context data directly within the
t okens.

Transfer of an open context may, for certain nechani sms and

i npl enent ati ons, reveal data about the credential which was used to
establish the context. Callers should, therefore, be cautious about
the trustworthi ness of processes to which they transfer contexts.

Al t hough the GSS-API inplenentation may provide its own set of
protections over the exported context, the caller is responsible for
protecting the interprocess token fromdisclosure, and for taking
care that the context is transferred to an appropriate destination
process.

Li nn St andar ds Track [Page 60]

RFC 2743 GSS- API January 2000

2.2.9: GSS I nport _sec_cont ext cal
| nput s:
0 interprocess_token OCTET STRI NG
Qut put s:
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER,

0 context_handl e CONTEXT HANDLE -- if successfully returned,
-- caller nmust release with GSS Del ete_sec_context ()

Return mmj or _status codes:

0 GSS_S COWLETE indicates that the context represented by the input
i nterprocess_token has been successfully transferred to the caller,
and is available for future use via the output context_handle.

0 GSS_S NO CONTEXT indicates that the context represented by the
i nput interprocess_token was invalid. Return values other than
maj or _status and minor_status are undefi ned.

0 GSS_S DEFECTI VE_TOKEN i ndi cates that the input interprocess_token
was defective. Return values other than major_status and
m nor _status are undefi ned.

0 GSS_S UNAVAI LABLE indicates that the context inmport facility is
not available for use on the referenced context. Return val ues other
than nmaj or_status and ni nor_status are undefi ned.

0 GSS_S UNAUTHCORI ZED i ndi cates that the context represented by the
i nput interprocess_token is unauthorized for transfer to the caller.
Return val ues other than major_status and m nor_status are undefi ned.

0 GSS S FAILURE indicates that the requested operation failed for
reasons unspecified at the GSS-API |evel. Return val ues other than
maj or _status and minor_status are undefi ned.

This call processes an interprocess token generated by
GSS_Export_sec_context (), making the transferred context avail able
for use by the caller. After a successful GSS_|Inport_sec_context()
operation, the inported context is available for use by the inporting
process. In particular, the inported context is usable for all per-
nmessage operations and nay be del eted or exported by its inporter.
The inability to receive del egated credentials through

Li nn St andar ds Track [Page 61]

RFC 2743 GSS- API January 2000

gss_i nport _sec_context() precludes establishnent of new contexts
based on information delegated to the inporter’s end systemw thin
the context which is being inported, unless those del egated
credentials are obtained through separate routines (e.g., XGSS-API
calls) outside the GSS-V2 definition

For further discussion of the security and authorization issues
regarding this call, please see the discussion in Section 2.2.8.

2.3: Per-nessage calls

This group of calls is used to perform per-nessage protection
processing on an established security context. None of these calls
bl ock pending network interactions. These calls may be invoked by a
context’s initiator or by the context’s target. The four nenbers of
this group should be considered as two pairs; the output from

GSS GetM C() is properly input to GSS VerifyM C(), and the out put
fromGSS Wap() is properly input to GSS_Unw ap().

GSS GetM C() and GSS VerifyM C() support data origin authentication
and data integrity services. Wien GSS GetM C() is invoked on an input
nmessage, it yields a per-nessage token containing data itens which

al | ow underlyi ng mechani sns to provide the specified security
services. The original nmessage, along with the generated per-nessage
token, is passed to the renote peer; these two data elenents are
processed by GSS VerifyM C(), which validates the nessage in
conjunction with the separate token

GSS Wap() and GSS Unwrap() support caller-requested confidentiality
in addition to the data origin authentication and data integrity
services offered by GSS GetM C() and GSS VerifyMC(). GSS Wap()
outputs a single data el enent, encapsul ating optionally enci phered
user data as well as associated token data itens. The data el enent
output fromGSS Wap() is passed to the renpte peer and processed by
GSS Unwrap() at that system GSS _Unw ap() conbines deci phernent (as
required) with validation of data itens related to authentication and
integrity.

Al t hough zero-length tokens are never returned by GSS calls for
transfer to a context’s peer, a zero-length object may be passed by a
caller into GSS_ Wap(), in which case the correspondi ng peer calling
GSS Unwrap() on the transferred token will receive a zero-length

obj ect as output fromGSS Unwap(). Simlarly, GSS GetM C() can be
called on an enpty object, yielding a MC which GSS VerifyMC() will
successfully verify against the active security context in
conjunction with a zero-Ilength object.

Li nn St andar ds Track [Page 62]

RFC 2743 GSS- API January 2000

2.3.1: GSS _GetMC cal

Note: This call is functionally equivalent to the GSS _Sign call as
defined in previous versions of this specification. In the interests
of backward conpatibility, it is recomended that inplenmentations
support this function under both nanes for the present; future
references to this function as GSS_Si gn are deprecat ed.

| nput s:

0 context _handl e CONTEXT HANDLE

0 qop_req INTECER, -- O specifies default QOP

0 nessage OCTET STRI NG

Qut put s:

0 nmjor_status | NTEGER,

0 mnor_status | NTEGER,

0 per_nsg_token OCTET STRING -- caller nust rel ease
-- With GSS_Rel ease_buffer()

Return mmj or _status codes:

0 GSS_S COWLETE indicates that an integrity check, suitable for an
establ i shed security context, was successfully applied and that the
nmessage and correspondi ng per_nsg_t oken are ready for transni ssion

0 GSS_S CONTEXT_EXPI RED i ndicates that context-related data itens
have expired, so that the requested operation cannot be perforned.

0 GSS_S NO CONTEXT indicates that no context was recogni zed for the
i nput cont ext _handl e provi ded.

0 GSS S BAD QOP indicates that the provided QOP value is not
recogni zed or supported for the context.

0 GSS S FAILURE indicates that the context is recognized, but that
the requested operation could not be perforned for reasons
unspecified at the GSS-API |evel.

Using the security context referenced by context_handle, apply an
integrity check to the input nessage (along with timestanps and/ or
ot her data included in support of mech_type-specific mechani snms) and
(if GSS_S COWPLETE status is indicated) return the result in

Li nn St andar ds Track [Page 63]

RFC 2743 GSS- API January 2000

per_nsg_token. The qop_req paraneter, interpretation of which is

di scussed in Section 1.2.4, allows quality-of-protection control. The
call er passes the nessage and the per_nsg _token to the target.

The GSS_GetM C() function conpl etes before the nessage and

per_nsg token is sent to the peer; successful application of

GSS Get M C() does not guarantee that a correspondi ng GSS VerifyM C()
has been (or can necessarily be) performed successfully when the
nmessage arrives at the destination.

Mechani sns whi ch do not support per-nessage protection services
should return GSS S FAILURE if this routine is called.

2.3.2: GSS VerifyMC call
Note: This call is functionally equivalent to the GSS Verify call as
defined in previous versions of this specification. In the interests
of backward conpatibility, it is recomended that inplenmentations
support this function under both nanes for the present; future
references to this function as GSS Verify are deprecat ed.
| nput s:
0 context _handl e CONTEXT HANDLE,
0 nmessage OCTET STRI NG
0 per_nsg_token OCTET STRI NG
Qut put s:
0 gop_state | NTEGER
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER,

Return mmj or _status codes:

0 GSS_S COWLETE indicates that the nessage was successfully
veri fi ed.

0 GSS_S DEFECTI VE_TOKEN i ndi cates that consi stency checks perforned

on the received per_nsg _token failed, preventing further processing
from being performed with that token.

0 GSS S BAD SIG (GSS_S BAD M Q) indicates that the received
per _nsg_token contains an incorrect integrity check for the nessage.

Li nn St andar ds Track [Page 64]

RFC 2743 GSS- API January 2000

0 GSS S DUPLI CATE_TOKEN, GSS S OLD TOKEN, GSS S UNSEQ TOKEN, and
GSS_S GAP_TCOKEN val ues appear in conjunction with the optional per-
nmessage replay detection features described in Section 1.2.3; their
semanti cs are described in that section.

0 GSS_S CONTEXT_EXPI RED i ndicates that context-related data itens
have expired, so that the requested operation cannot be perforned.

0 GSS_S NO CONTEXT indicates that no context was recogni zed for the
i nput cont ext _handl e provi ded.

0 GSS S FAILURE indicates that the context is recognized, but that
the GSS VerifyM C() operation could not be perforned for reasons
unspecified at the GSS-API | evel.

Usi ng the security context referenced by context_handl e, verify that
the input per_nsg_token contains an appropriate integrity check for
the i nput nmessage, and apply any active replay detection or
sequenci ng features. Returns an indication of the quality-of-
protection applied to the processed nessage in the qop_state result.

Mechani snms whi ch do not support per-nessage protection services
should return GSS S FAILURE if this routine is called.

2.3.3: GSS Wap call
Note: This call is functionally equivalent to the GSS _Seal call as
defined in previous versions of this specification. In the interests
of backward conpatibility, it is recomended that inplenmentations
support this function under both nanes for the present; future
references to this function as GSS_Seal are deprecat ed.
| nput s:
0 context _handl e CONTEXT HANDLE
o conf_req_flag BOOLEAN
0 qop_req INTECER, -- O specifies default QOP
0 input_nessage OCTET STRI NG
Qut put s:
0 nmjor_status | NTEGER,

0 mnor_status | NTEGER,

Li nn St andar ds Track [Page 65]

RFC 2743 GSS- API January 2000

o conf_state BOOLEAN,

0 output_nessage OCTET STRING -- caller nust release with
-- GSS_Rel ease_buffer()

Return mmj or _status codes:

0 GSS_S COWLETE indicates that the input_nessage was successfully
processed and that the output_nessage is ready for transm ssion.

0 GSS_S CONTEXT_EXPI RED i ndicates that context-related data itens
have expired, so that the requested operation cannot be perforned.

0 GSS_S NO CONTEXT indicates that no context was recogni zed for the
i nput cont ext _handl e provi ded.

0 GSS S BAD QOP indicates that the provided QOP value is not
recogni zed or supported for the context.

0 GSS S FAILURE indicates that the context is recognized, but that
the GSS_ Wap() operation could not be performed for reasons
unspecified at the GSS-API |evel.

Perforns the data origin authentication and data integrity functions
of GSS GetM (). |If the input conf_req_flag is TRUE, requests that
confidentiality be applied to the input_nessage. Confidentiality may
not be supported in all mech_types or by all inplenentations; the
returned conf_state flag indicates whether confidentiality was

provi ded for the input_nessage. The qop_req paraneter, interpretation
of which is discussed in Section 1.2.4, allows quality-of-protection
contr ol

When GSS S COWPLETE status is returned, the GSS Wap() call yields a
singl e output_nessage data el ement containing (optionally enciphered)
user data as well as control infornmation

Mechani snms whi ch do not support per-nessage protection services
should return GSS S FAILURE if this routine is called.

2.3.4: GSS_Unw ap cal

Note: This call is functionally equivalent to the GSS Unseal call as
defined in previous versions of this specification. In the interests
of backward conpatibility, it is recomended that inplenmentations
support this function under both nanes for the present; future
references to this function as GSS _Unseal are deprecat ed.

Li nn St andar ds Track [Page 66]

RFC 2743 GSS- API January 2000

| nput s:

0 context _handl e CONTEXT HANDLE,
0 input_nessage OCTET STRI NG
Qut put s:

o conf_state BOOLEAN,

0 gop_state | NTEGER

0 nmjor_status | NTEGER,

0 mnor_status | NTEGER,

0 output_nessage OCTET STRING -- caller nust release with
-- GSS_Rel ease_buffer()

Return mmj or _status codes:

0 GSS_S COWLETE indicates that the input_nessage was successfully
processed and that the resulting output_nessage is avail able.

0 GSS_S DEFECTI VE_TOKEN i ndi cat es that consi stency checks perforned
on the per_nsg_token extracted fromthe input_nessage fail ed,
preventing further processing from being perforned.

0 GSS S BAD SIG (GSS_S BAD M Q) indicates that an incorrect
integrity check was detected for the nessage.

0 GSS S DUPLI CATE_TOKEN, GSS S OLD TOKEN, GSS S UNSEQ TOKEN, and
GSS_S GAP_TCOKEN val ues appear in conjunction with the optional per-
nmessage replay detection features described in Section 1.2.3; their
semanti cs are described in that section.

0 GSS_S CONTEXT_EXPI RED i ndicates that context-related data itens
have expired, so that the requested operation cannot be perforned.

0 GSS_S NO CONTEXT indicates that no context was recogni zed for the
i nput cont ext _handl e provi ded.

0 GSS S FAILURE indicates that the context is recognized, but that

the GSS_Unw ap() operation could not be performed for reasons
unspecified at the GSS-API |evel.

Li nn St andar ds Track [Page 67]

RFC 2743 GSS- API January 2000

Processes a data el ement generated (and optionally enci phered) by
GSS Wap(), provided as input_mnessage. The returned conf_state val ue
i ndi cates whether confidentiality was applied to the input_nessage.
If conf_state is TRUE, GSS _Unw ap() has deci phered the input_nessage.
Returns an indication of the quality-of-protection applied to the
processed nessage in the qop_state result. GSS Unwap() performs the
data integrity and data origin authentication checking functions of
GSS VerifyM C() on the plaintext data. Plaintext data is returned in
out put _nessage.

Mechani sns whi ch do not support per-nessage protection services
should return GSS S FAILURE if this routine is called.

2.4: Support calls
This group of calls provides support functions useful to GSS-API
callers, independent of the state of established contexts. Their
characterization with regard to bl ocki ng or non-bl ocking status in
ternms of network interactions is unspecified.

2.4.1: GSS Display_status cal

| nput s:

0 status_value I NTEGER, -- GSS-APlI nmjor_status or m nor_status
-- return val ue

0 status_type INTEGER, -- 1 if mmjor_status, 2 if minor_status

o mech_type OBJECT | DENTIFIER -- nech_type to be used for
-- mnor_status translation

Qut put s:
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER,

0 status_string_set SET OF OCTET STRING -- required calls for
-- release by caller are specific to | anguage bi ndi ngs

Return mmj or _status codes:
0o GSS S COWPLETE indicates that a valid printable status
representation (possibly representing nore than one status event

encoded within the status_value) is available in the returned
status_string_set.

Li nn St andar ds Track [Page 68]

RFC 2743 GSS- API January 2000

0 GSS_S BAD MECH indicates that translation in accordance with an
unsupported nech_type was requested, so translation could not be
per f or ned.

0 GSS_S BAD STATUS indicates that the input status_val ue was
invalid, or that the input status_type carried a value other than 1
or 2, so translation could not be perforned.

0 GSS S FAILURE indicates that the requested operation could not be
perfornmed for reasons unspecified at the GSS-API | evel.

Provides a neans for callers to translate GSS-API-returned major and
m nor status codes into printable string representations. Note: sone
| anguage bi ndi ngs may enploy an iterative approach in order to emt
successi ve status conponents; this approach is acceptable but not
required for conformance with the current specification.

Al t hough not contenplated in [RFC-2078], it has been observed that
sone existing GSS-API inmplenmentations return GSS_S CONTI NUE_NEEDED
status when iterating through successive nessages returned from
GSS Display_status(). This behavior is deprecated;
GSS_S CONTI NUE_NEEDED shoul d be returned only by
GSS I nit_sec_context() and GSS_Accept _sec_context(). For maxi mal
portability, however, it is recommended that defensive callers be
abl e to accept and ignore GSS_S CONTI NUE_NEEDED status if indicated
by GSS Display_status() or any other call other than
GSS I nit_sec_context() or GSS Accept_sec_context().

2.4.2: GSS_|Indicate_mechs call
| nput :
o (none)
Qut put s:
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER,

0 nech_set SET OF OBJECT IDENTIFIER -- caller nust rel ease
-- With GSS _Rel ease_oi d_set ()

Return mmj or _status codes:

0 GSS_S COWLETE indicates that a set of avail able nechani sms has
been returned in nech_set.

Li nn St andar ds Track [Page 69]

RFC 2743 GSS- API January 2000

0 GSS S FAILURE indicates that the requested operation could not be
perfornmed for reasons unspecified at the GSS-API | evel.

Allows callers to determine the set of nechanismtypes avail able on
the local system This call is intended for support of specialized
callers who need to request non-default mech_type sets from GSS- API
call s which accept input nmechani smtype specifiers.

2.4.3: GSS_Conpare_nane call
| nput s:
0 nanmel | NTERNAL NAME,
0 nane2 | NTERNAL NAME
Qut put s:
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER,
0 nhane_equal BOOLEAN
Return mmj or _status codes:
0 GSS_S COWLETE indicates that nanel and nanme2 were conparable, and
that the nane_equal result indicates whether nanel and nane2
represent the sanme entity.
0 GSS_S BAD NAMETYPE indicates that the two i nput names’ types are
di fferent and inconparable, so that the conpari son operation could
not be conpl et ed.
0 GSS_S BAD NAME indicates that one or both of the input nanmes was
ill-formed in ternms of its internal type specifier, so the conparison

operation could not be conpl et ed.

0 GSS S FAILURE indicates that the call’s operation could not be
perforned for reasons unspecified at the GSS-API | evel.

Allows callers to conpare two internal name representations to
determ ne whether they refer to the sane entity. |If either nane
presented to GSS Conpare_nhane() denotes an anonynous principal,
GSS _Conpare_nane() shall indicate FALSE. It is not required that
either or both inputs nanmel and nane2 be M\s; for sone

Li nn St andar ds Track [Page 70]

RFC 2743 GSS- API January 2000

i npl erent ati ons and cases, GSS_S BAD NAMETYPE nay be returned,
i ndi cating name inconparability, for the case where neither input
name is an M\.
2.4.4: GSS_Display_nane call
| nput s:
0 name | NTERNAL NAME
Qut put s:
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER,

o nane_string OCTET STRING -- caller nust rel ease
-- With GSS_Rel ease_buffer()

o nane_type OBJECT IDENTIFIER -- caller should treat
-- as read-only; does not need to be rel eased

Return mmj or _status codes:

0 GSS_S COWLETE indicates that a valid printable name
representation is available in the returned nane_string.

0 GSS_S BAD NAME indicates that the contents of the provided nane
were inconsistent with the internally-indicated nanme type, so no
printable representation could be generated.

0 GSS S FAILURE indicates that the requested operation could not be
perforned for reasons unspecified at the GSS-API | evel.

Allows callers to translate an internal name representation into a
printable formw th associ ated nanespace type descriptor. The syntax
of the printable formis a |ocal matter.

If the input nane represents an anonynous identity, a reserved val ue
(GSS_C_NT_ANONYMOUS) shall be returned for name_type.

The GSS_C NO O D nane type is to be returned only when the
correspondi ng i nternal nane was created through inmport with

GSS CNOOD. It is acceptable for nechanisnms to normalize nanes
inmported with GSS_ C NO O D into other supported types and, therefore,
to display themwith types other than GSS_C NO QO D.

Li nn St andar ds Track [Page 71]

RFC 2743 GSS- API January 2000

2.4.5: GSS_|Inport_nane cal
| nput s:
0 input_nanme_string OCTET STRI NG
0 input_nanme_type OBJECT | DENTI FI ER
Qut put s:
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER,

0 output_nane | NTERNAL NAME -- caller must release with
-- GSS_Rel ease_nane()

Return mmj or _status codes:

0 GSS_S COWLETE indicates that a valid nanme representation is
out put in output_name and described by the type value in
out put _nane_t ype.

0 GSS_S BAD NAMETYPE indicates that the input_name_type is
unsupported by the applicabl e underlying GSS-APlI nechanisn(s), so the
i mport operation could not be conpl et ed.

0 GSS_S BAD NAME indicates that the provided input_name_string is
ill-formed in ternms of the input_nane_type, so the inport operation
coul d not be conpl eted.

0 GSS_S BAD MECH indicates that the input presented for inport was
an exported nane object and that its encl osed nechani smtype was not
recogni zed or was unsupported by the GSS-API inplenentation.

0 GSS S FAILURE indicates that the requested operation could not be
perforned for reasons unspecified at the GSS-API | evel.

Allows callers to provide a nane representati on as a contiguous octet
string, designate the type of namespace in conjunction with which it
shoul d be parsed, and convert that representation to an internal form
suitable for input to other GSS-API routines. The syntax of the

i nput _nane_string is defined in conjunction with its associ ated nane
type; depending on the input_name_type, the associated

i nput _nane_string may or may not be a printable string. |If the

i nput _nane_type’'s value is GSS_C NO O D, a nechani smspecific default
printable syntax (which shall be specified in the correspondi ng GSS-
V2 mechani sm specification) is assuned for the input_nane_string;

Li nn St andar ds Track [Page 72]

RFC 2743 GSS- API January 2000

ot her input_nanme_type values as registered by GSS-API inplenentations
can be used to indicate specific non-default name syntaxes. Note: The
i nput _nane_type argunment serves to describe and qualify the
interpretation of the associated input_name_string; it does not
specify the data type of the returned output_narne.

If a nmechani smclainms support for a particular nane type, its
GSS I nport _name() operation shall be able to accept all possible
val ues conformant to the external name syntax as defined for that
nane type. These inported val ues nmay correspond to:

(1) locally registered entities (for which credentials may be
acqui red),

(2) non-local entities (for which |ocal credentials cannot be
acqui red, but which may be referenced as targets of initiated
security contexts or initiators of accepted security contexts), or
to
(3) neither of the above.
Determ nati on of whether a particular nane belongs to class (1), (2),
or (3) as described above is not guaranteed to be perforned by the
GSS I nport _name() functi on.
The internal nane generated by a GSS | nport_name() operation nmay be a
singl e-mechanism M\, and is likely to be an MN within a single-
nmechani smi npl ement ati on, but portable callers nmust not depend on
this property (and nust not, therefore, assunme that the output from
GSS I nport _name() can be passed directly to GSS _Export_nanme() w thout
first being processed through GSS_Canoni calize_nane()).
2.4.6: GSS_Rel ease_nane cal
| nput s:
0 name | NTERNAL NAME
Qut put s:
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER
Return mmj or _status codes:

0 GSS_S COWLETE indicates that the storage associated with the
i nput nane was successfully rel eased.

Li nn St andar ds Track [Page 73]

RFC 2743 GSS- API January 2000

0 GSS_S BAD NAME indicates that the input name argunent did not
contain a valid nane.

0 GSS S FAILURE indicates that the requested operation could not be
perfornmed for reasons unspecified at the GSS-API | evel.

Allows callers to release the storage associated with an internal
nane representation. This call’s specific behavior depends on the

| anguage and progranmm ng environnment within which a GSS-API

i npl enentation operates, and is therefore detailed within applicable
bi ndi ngs specifications; in particular, inplenmentation and invocation
of this call may be superfluous (and nmay be omitted) w thin bindings
where nenory managenent is autonatic.

2.4.7: GSS_Rel ease_buffer call
| nput s:
0 buffer OCTET STRI NG
Qut put s:
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER
Return mmj or _status codes:

0 GSS_S COWLETE indicates that the storage associated with the
i nput buffer was successfully rel eased.

0 GSS S FAILURE indicates that the requested operation could not be
perforned for reasons unspecified at the GSS-API | evel.

Allows callers to release the storage associated with an OCTET STRI NG
buffer allocated by another GSS-API call. This call’'s specific

behavi or depends on the | anguage and progranm ng environment within
whi ch a GSS- APl inplenentation operates, and is therefore detail ed

wi t hi n applicabl e bindings specifications; in particular,

i npl erentation and invocation of this call may be superfluous (and
may be omitted) within bindings where nmenory managenent is autonatic.

2.4.8: GSS_Rel ease_O D set call
| nput s:

o buffer SET OF OBJECT | DENTI FI ER

Li nn St andar ds Track [Page 74]

RFC 2743 GSS- API January 2000

Qut put s:

0 nmjor_status | NTEGER,

0 mnor_status | NTEGER
Return mmj or _status codes:

0 GSS_S COWLETE indicates that the storage associated with the
i nput object identifier set was successfully rel eased.

0 GSS S FAILURE indicates that the requested operation could not be
perfornmed for reasons unspecified at the GSS-API | evel.

Allows callers to release the storage associated with an object

identifier set object allocated by another GSS-APlI call. This call’s

speci fi ¢ behavi or depends on the | anguage and progranm ng environnent

wi thin which a GSS-API inplenmentation operates, and is therefore

detail ed within applicable bindings specifications; in particular,

i npl erentation and invocation of this call may be superfluous (and

may be onitted) within bindings where nenory managenent is autonatic.
2.4.9: GSS Create_enpty_QO D set call

| nput s:

o (none)

Qut put s:

0 nmjor_status | NTEGER,

0 mnor_status | NTEGER,

o oid_set SET OF OBJECT IDENTIFIER -- caller nust rel ease
-- With GSS _Rel ease_oi d_set ()

Return mmj or _status codes:

0 GSS_S COWLETE i ndi cates successful conpletion

0 GSS S FAILURE indicates that the operation failed

Creates an object identifier set containing no object identifiers, to
whi ch nenbers may be subsequently added using the

GSS _Add_QO D _set _nenber() routine. These routines are intended to be

used to construct sets of mechani smobject identifiers, for input to
GSS_Acquire_cred().

Li nn St andar ds Track [Page 75]

RFC 2743 GSS- API January 2000

2.4.10: GSS_Add_Q D_set _nenber call
| nput s:
0 nenber_oid OBJECT | DENTI FlI ER,
0 oid_set SET OF OBJECT | DENTI FI ER
Qut put s:
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER,
Return mmj or _status codes:
0 GSS_S COWLETE i ndi cates successful conpletion
0 GSS S FAILURE indicates that the operation failed
Adds an (bject Identifier to an Object Identifier set. This routine
is intended for use in conjunction with GSS Create_enpty_Q D set ()
when constructing a set of mechanism O Ds for input to
GSS_Acquire_cred().

2.4.11: GSS Test_O D set_nenber call
| nputs:
o nenber OBJECT | DENTI Fl ER,
0 set SET OF OBJECT I DENTI FI ER
Qut put s:
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER,
0 present BOOLEAN
Return mmj or _status codes:

0 GSS_S COWLETE i ndi cates successful conpletion

0 GSS S FAILURE indicates that the operation failed

Li nn St andar ds Track [Page 76]

RFC 2743 GSS- API January 2000

Interrogates an bject ldentifier set to deternine whether a
specified Qoject ldentifier is a nenber. This routine is intended to
be used with O D sets returned by GSS_I ndi cate_nechs(),
GSS Acquire_cred(), and GSS_ | nquire_cred().
2.4.12: GSS_Inquire_names_for_nech call
| nput :
o input_nech_type OBJECT | DENTI FI ER, -- mechani smtype
Qut put s:
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER,

o nane_type_set SET OF OBJECT I DENTIFIER -- caller nust rel ease
-- With GSS _Rel ease_oi d_set ()

Return mmj or _status codes:

0 GSS_S COWLETE indicates that the output nane_type_set contains a
list of nane types which are supported by the locally avail able
mechani smidentified by input_mech_type.

0 GSS_S BAD MECH indicates that the nechanismidentified by

i nput _mech_type was unsupported within the [ocal inplenentation,
causing the query to fail.

0 GSS S FAILURE indicates that the requested operation could not be
perforned for reasons unspecified at the GSS-API | evel.

Allows callers to determine the set of nane types which are
supportabl e by a specific locally-avail able nechani sm

2.4.13: GSS_Inquire_nechs_for_nane call
| nput s:
0 input_name | NTERNAL NANME,
Qut put s:
0 nmjor_status | NTEGER,

0 mnor_status | NTEGER,

Li nn St andar ds Track [Page 77]

RFC 2743 GSS- API January 2000

0 nech_types SET OF OBJECT IDENTIFIER -- caller nust rel ease
-- With GSS _Rel ease_oi d_set ()

Return mmj or _status codes:

0 GSS_S COWLETE indicates that a set of object identifiers,
corresponding to the set of nmechanisns suitable for processing the
i nput_nane, is available in mech_types.

0 GSS_S BAD NAME indicates that the input_name was ill-formed and
coul d not be processed.

0 GSS_S BAD NAMETYPE indi cates that the input_nanme paraneter
contained an invalid name type or a nanme type unsupported by the
GSS- APl i npl enment ati on.

0 GSS S FAILURE indicates that the requested operation could not be
perfornmed for reasons unspecified at the GSS-API | evel.

This routine returns the mechani smset with which the input_nane may
be processed.

Each nmechanismreturned will recognize at |east one el enent wthin
the name. It is permssible for this routine to be inplenented within
a nmechani smindependent GSS- APl |ayer, using the type information
contained within the presented nane, and based on registration

i nformati on provided by individual mechanisminplenmentations. This
nmeans that the returned nmech_types result nmay indicate that a
particul ar mechanismw Il understand a particular name when in fact
it would refuse to accept that name as input to
GSS_Canoni cal i ze_nanme(), GSS Init_sec_context (), GSS Acquire_cred(),
or GSS_Add _cred(), due to sone property of the particular nane rather
than a property of the nanme type. Thus, this routine should be used
only as a pre-filter for a call to a subsequent nechani smspecific
routine.

2.4.14: GSS_Canonicalize_nane call
| nput s:
0 input_nanme | NTERNAL NAVE

0 nech_type OBJECT IDENTIFIER -- nust be explicit nechani sm
-- not "default" specifier or identifier of negotiating mechani sm

Qut put s:

0 nmjor_status | NTEGER,

Li nn St andar ds Track [Page 78]

RFC 2743 GSS- API January 2000

0 mnor_status | NTEGER,

0 output_nane | NTERNAL NAME -- caller must release with
-- GSS_Rel ease_nane()

Return mmj or _status codes:

0 GSS_S COWLETE indicates that a nechani smspecific reduction of
the input_name, as processed by the mechanismidentified by
mech_type, is available in output_name.

0 GSS_ S BAD MECH indicates that the identified nechanismis
unsupported for this operation; this may correspond either to a
mechani sm whol | y unsupported by the | ocal GSS-API inplenentation or
to a negotiating mechanismw th which the canonicalization operation
cannot be perforned.

0 GSS_S BAD NAMETYPE indicates that the input name does not contain
an element with suitable type for processing by the identified
nmechani sm

0 GSS_S BAD NAME indicates that the input nane contains an el enent
with suitable type for processing by the identified mechani sm but
that this elenment could not be processed successfully.

0 GSS S FAILURE indicates that the requested operation could not be
perfornmed for reasons unspecified at the GSS-API | evel.

This routine reduces a GSS-API internal name input_nanme, which may in
general contain elenments corresponding to nmultiple mechanisns, to a
nmechani sm speci fi ¢ Mechani sm Nane (MN) out put _nane by applying the
transl ations corresponding to the nechanismidentified by nech_type.
The contents of input_nane are unaffected by the
GSS_Canoni cal i ze_nane() operation. References to output_nane will
remain valid until output_name is rel eased, independent of whether or
not input_nane is subsequently rel eased.

2.4.15: GSS _Export_nanme cal
| nput s:
0 input_name | NTERNAL NAME, -- required to be MN
Qut put s:
0 nmjor_status | NTEGER,

0 mnor_status | NTEGER,

Li nn St andar ds Track [Page 79]

RFC 2743 GSS- API January 2000

0 output_nane OCTET STRING -- caller nust rel ease
-- With GSS_Rel ease_buffer()

Return mmj or _status codes:

0 GSS_S COWLETE indicates that a flat representation of the input
nane is avail abl e in output_nane.

0 GSS_S NAME NOT_MWN indicates that the i nput nane contained el enents
corresponding to multiple nmechani snms, so cannot be exported into a
si ngl e-mechanismflat form

0 GSS_S BAD NAME indicates that the input name was an MN, but could
not be processed.

0 GSS_S BAD NAMETYPE indicates that the input name was an M\, but
that its type is unsupported by the GSS-API inplenentation.

0 GSS S FAILURE indicates that the requested operation could not be
perfornmed for reasons unspecified at the GSS-API | evel.

This routine creates a flat nane representation, suitable for

byt ewi se conparison or for input to GSS Inport_name() in conjunction
with the reserved GSS- APl Exported Nane Cbject O D, froma internal-
form Mechani sm Nane (MN) as enmitted, e.g., by GSS _Canonicalize_nane()
or GSS_Accept _sec_context ().

The enitted GSS- APl Exported Name Cbject is self-describing; no
associ ated paraneter-level O D need be emtted by this call. This
flat representation consists of a mechani smindependent wrapper

| ayer, defined in Section 3.2 of this docunent, enclosing a
mechani sm def i ned nanme representati on.

In all cases, the flat name output by GSS Export_nanme() to correspond
to a particular input MN nust be invariant over tinme within a
particular installation.
The GSS_S NAME NOT_MN status code is provided to enable
i npl erentations to reject input nanmes which are not MNs. It is not,
however, required for purposes of conformance to this specification
that all non-M input nanes nust necessarily be rejected.

2.4.16: GSS Duplicate_nane call
| nput s:

0 src_name | NTERNAL NAME

Li nn St andar ds Track [Page 80]

RFC 2743 GSS- API January 2000

Qut put s:
0 nmjor_status | NTEGER,
0 mnor_status | NTEGER,

0 dest_nanme | NTERNAL NAME -- caller must rel ease
-- With GSS_Rel ease_nane()

Return mmj or _status codes:

0 GSS_S COWLETE indicates that dest_name references an interna
nanme object containing the sanme nane as passed to src_nane.

0 GSS_S BAD NAME indicates that the input nane was invalid.

0 GSS S FAILURE indicates that the requested operation could not be
perfornmed for reasons unspecified at the GSS-API | evel.

This routine takes input internal nane src_nane, and returns another
reference (dest_nane) to that name which can be used even if src_nane
is later freed. (Note: This may be inplenmented by copying or through
use of reference counts.)

3: Data Structure Definitions for GSS-V2 Usage

Subsections of this section define, for interoperability and
portability purposes, certain data structures for use with GSS-V2.

3.1: Mechani sm | ndependent Token For mat

This section specifies a mechani smindependent |evel of encapsul ating
representation for the initial token of a GSS-API context
establ i shment sequence, incorporating an identifier of the mechanism
type to be used on that context and enabling tokens to be interpreted
unanbi guously at GSS- APl peers. Use of this format is required for
initial context establishnment tokens of Internet standards-track

GSS- APl nechani snms; use in non-initial tokens is optional

The encoding format for the token tag is derived fromASN. 1 and DER
(per illustrative ASN.1 syntax included later within this
subsection), but its concrete representation is defined directly in
terms of octets rather than at the ASN.1 level in order to facilitate
i nteroperabl e inplenentation without use of general ASN. 1 processing
code. The token tag consists of the followi ng elenents, in order:

1. 0x60 -- Tag for [APPLI CATI ON 0] SEQUENCE; indicates that
-- constructed form definite |l ength encoding foll ows.

Li nn St andar ds Track [Page 81]

RFC 2743 GSS- API January 2000

2. Token length octets, specifying | ength of subsequent data
(i.e., the sutmmed | engths of elenents 3-5 in this list, and of the
nmechani sm defi ned token object following the tag). This el ement
conprises a variable nunber of octets:

2a. If the indicated value is less than 128, it shall be
represented in a single octet with bit 8 (high order) set to
"0" and the renmining bits representing the val ue.

2b. If the indicated value is 128 or nore, it shall be
represented in two or nore octets, with bit 8 of the first
octet set to "1" and the remaining bits of the first octet
speci fying the nunber of additional octets. The subsequent
octets carry the value, 8 bits per octet, npst significant
digit first. The mninum nunber of octets shall be used to
encode the length (i.e., no octets representing |eading zeros
shall be included within the | ength encoding).

3. 0x06 -- Tag for OBJECT | DENTIFI ER

4. bject identifier length -- Iength (nunber of octets) of
-- the encoded object identifier contained in elenment 5,
-- encoded per rules as described in 2a. and 2b. above.

5. oject identifier octets -- variable nunber of octets,
-- encoded per ASN. 1 BER rul es:

5a. The first octet contains the sumof two values: (1) the
top-1evel object identifier conponent, nultiplied by 40
(decimal), and (2) the second-level object identifier
conponent. This special case is the only point within an
object identifier encoding where a single octet represents
contents of nore than one conponent.

5b. Subsequent octets, if required, encode successively-I| ower
conmponents in the represented object identifier. A conponent’s
encodi ng may span multiple octets, encoding 7 bits per octet
(most significant bits first) and with bit 8 set to "1" on al
but the final octet in the conmponent’s encoding. The m nimum
nunber of octets shall be used to encode each conponent (i.e.,
no octets representing | eading zeros shall be included within a
conponent’ s encodi ng) .

(Note: In many inplenentations, elenments 3-5 may be stored and
ref erenced as a contiguous string constant.)

Li nn St andar ds Track [Page 82]

RFC 2743 GSS- API January 2000

The token tag is imediately followed by a nechani smdefined token
object. Note that no independent size specifier intervenes follow ng
the object identifier value to indicate the size of the nechanism
defined token object. Wile ASN. 1 usage wi thin nechani sm defi ned
tokens is permtted, there is no requirenment that the nechani sm
speci fi ¢ innerCont ext Token, innerMsgToken, and seal edUser Data data

el enents nust enpl oy ASN. 1 BER/ DER encodi ng conventi ons.

The following ASN. 1 syntax is included for descriptive purposes only,
to illustrate structural relationships anong token and tag objects.
For interoperability purposes, token and tag encodi ng shall be
perfornmed using the concrete encodi ng procedures described earlier in
thi s subsecti on.

GSS- APl DEFINITIONS :: =
BEG N

MechType ::= OBJECT | DENTI FI ER

-- data structure definitions

-- callers nust be able to distinguish anong

-- Initial Context Token, Subsequent Cont ext Token,
-- Per MsgToken, and Seal edMessage data el ements
-- based on the usage in which they occur

I nitial Context Token ::=
-- option indication (delegation, etc.) indicated within
-- mechani smspecific token
[APPLI CATION O] I MPLI T SEQUENCE {
t hi sMech MechType,
i nner Cont ext Token ANY DEFI NED BY t hi sMech
-- contents mechani smspecific
-- ASN. 1 structure not required

}

Subsequent Cont ext Token :: = i nner Cont ext Token ANY
-- interpretation based on predecessor Initial ContextToken
-- ASN. 1 structure not required

Per MsgToken :: =
-- as emtted by GSS GetM C and processed by GSS VerifyMC
-- ASN. 1 structure not required

i nner MsgToken ANY

Seal edMessage :: =

-- as emtted by GSS Wap and processed by GSS_Unw ap
-- includes internal, nmechani smdefined indicator

-- of whether or not encrypted

Li nn St andar ds Track [Page 83]

RFC 2743 GSS- API January 2000

-- ASN. 1 structure not required
seal edUser Dat a ANY

END
3.2: Mechani sm | ndependent Exported Nanme Object Format

This section specifies a mechani smindependent |evel of encapsul ating
representation for names exported via the GSS_Export_nanme() call,

i ncludi ng an object identifier representing the exporting mechani sm
The format of names encapsul ated via this representation shall be
defined within individual mechanismdrafts. The Cbject Identifier
value to indicate nanes of this type is defined in Section 4.7 of

thi s docunent.

No nanme type O D is included in this mechani smindependent |evel of
format definition, since (depending on individual nechanism

speci fications) the enclosed nane may be inplicitly typed or may be
explicitly typed using a nmeans other than O D encodi ng.

The bytes within MECH O D _LEN and NAVE_LEN el ements are represented
nmost significant byte first (equivalently, in IP network byte order).

Lengt h Name Description
2 TOK I D Token ldentifier

For exported nane objects, this
nmust be hex 04 01.

2 MECH O D _LEN Length of the Mechanism A D
MECH O D_LEN VMECH O D Mechani sm O D, in DER

4 NAME_LEN Length of nane

NAMVE_LEN NANVE Exported nane; format defined in

appl i cabl e mechani smdraft.

A concrete exanple of the contents of an exported nane object,
derived fromthe Kerberos Version 5 nmechanism is as foll ows:

04 01 00 OB 06 09 2A 86 48 86 F7 12 01 02 02 hx xx xx x|l pp qq ... zz
04 01 mandat ory token identifier
00 OB 2-byte length of the inmmedi ately foll ow ng DER-encoded

ASN. 1 value of type O D, nost significant octet first

Li nn St andar ds Track [Page 84]

RFC 2743 GSS- API January 2000

06 09 2A 86 48 86 F7 12 01 02 02 DER- encoded ASN. 1 val ue
of type O D, Kerberos V5
nmechani sm O D i ndi cat es
Ker beros V5 exported nane

in Detail: 06 Identifier octet (6=0D)
09 Length octet(s)
2A 86 48 86 F7 12 01 02 02 Content octet(s)

hx xx xx xI 4-byte length of the inmediately followi ng exported
nane bl ob, nost significant octet first

pp qq ... zz exported nane bl ob of specified |ength,
bits and bytes specified in the
(Kerberos 5) GSS-API v2 mechani sm spec

4: Name Type Definitions
This section includes definitions for name types and associ at ed
synt axes which are defined in a nmechani smindependent fashion at the
GSS- APl | evel rather than being defined in individual nechanism
speci fications.

4.1: Host-Based Service Name Form

This nane formshall be represented by the Cbject ldentifier:

{iso(1l) nenber-body(2) United States(840) mit(113554) infosys(1l)
"gssapi (2) generic(1l) service_nanme(4)}.

The recommended synbolic name for this type is
" GSS_C_NT_HOSTBASED_ SERVI CE".

For reasons of conpatibility with existing inplementations, it is
recommended that this O D be used rather than the alternate val ue as
i ncluded in [RFC 2078]:

{1(iso), 3(org), 6(dod), 1(internet), 5(security), 6(nanetypes),
2(gss- host - based- servi ces) }

Wiile it is not recormended that this alternate value be emtted on

output by GSS inplenmentations, it is recomended that it be accepted
on input as equivalent to the recommended val ue.

Li nn St andar ds Track [Page 85]

RFC 2743 GSS- API January 2000

This nane type is used to represent services associated wi th host
computers. Support for this nane formis reconmended to mechani sm
designers in the interests of portability, but is not nandated by
this specification. This nane formis constructed using two el enents,
"service" and "hostnanme", as follows:

servi ce@ost nane

When a reference to a nane of this type is resolved, the "hostnane"
may (as an exanple inplenmentation strategy) be canonicalized by
attenpting a DNS | ookup and using the fully-qualified donain name
which is returned, or by using the "hostname" as provided if the DNS
| ookup fails. The canonicalization operation also nmaps the host’s
nane into | ower-case characters.

The "hostnane" elenent may be onmitted. If no "@ separator is
included, the entire nane is interpreted as the service specifier,
with the "hostnane" defaulted to the canonicalized nane of the |oca
host .

Docunents specifying neans for GSS integration into a particul ar
protocol should state either

(a) that a specific | ANA-regi stered nane associ ated with that
protocol shall be used for the "service" element (this admts, if
needed, the possibility that a single nane can be registered and
shared anong a rel ated set of protocols), or

(b) that the generic nane "host" shall be used for the "service"
el enent, or

(c) that, for that protocol, fallback in specified order (a, then
b) or (b, then a) shall be applied.

| ANA registration of specific nanes per (a) should be handled in
accordance with the "Specification Required" assignnent policy,
defined by BCP 26, RFC 2434 as follows: "Values and their mneaning
nmust be docunmented in an RFC or other available reference, in
sufficient detail so that interoperability between independent

i npl enentations is possible.”

4.2: User Nane Form
This nane formshall be represented by the Cbject ldentifier {iso(l)
menber - body(2) United States(840) mit(113554) infosys(1l) gssapi(2)

generic(1l) user_nane(1l)}. The recommended nechani sm i ndependent
synbolic name for this type is "GSS_C NT_USER NAME'. (Note: the same

Li nn St andar ds Track [Page 86]

RFC 2743 GSS- API January 2000

nanme formand O D is defined within the Kerberos V5 GSS-AP
mechani sm but the synbolic name reconmended there begins with a
"GSS_KRB5_NT_" prefix.)

This nane type is used to indicate a naned user on a |ocal system
Its syntax and interpretation nay be OS-specific. This name formis
constructed as:

user nane
4.3: Machine U D Form

This nane formshall be represented by the Object ldentifier {iso(1l)
menber - body(2) United States(840) mit(113554) infosys(1l) gssapi(2)
generic(1l) machine_uid_name(2)}. The recommended nechani sm

i ndependent synbolic nane for this type is

"GSS_C NT_MACHI NE U D NAME'. (Note: the sanme nane formand ODis
defined within the Kerberos V5 GSS-API nechanism but the synbolic
nanme recomended there begins with a "GSS_KRB5_NT_" prefix.)

This nane type is used to indicate a nuneric user identifier
corresponding to a user on a local system |Its interpretation is
CS-specific. The gss_buffer_desc representing a nane of this type
shoul d contain a locally-significant user ID, represented in host
byte order. The GSS I nport_name() operation resolves this uid into a
username, which is then treated as the User Nane Form

4.4: String U D Form

This nane formshall be represented by the Object Identifier {iso(1)
menber - body(2) United States(840) m t(113554) infosys(1l) gssapi(2)
generic(1l) string uid name(3)}. The recomended synbolic name for
this type is "GSS_C NT_STRING U D NAME". (Note: the same nane form
and O Dis defined within the Kerberos V5 GSS-API nechani sm but the
synbol i c name recomended there begins with a "GSS_KRB5_NT_" prefix.)

This nane type is used to indicate a string of digits representing
the nuneric user identifier of a user on a |local system |Its
interpretation is OS-specific. This nanme type is simlar to the
Machi ne U D Form except that the buffer contains a string
representing the user |D

4.5: Anonynous Nanetype
The following Object Identifier value is provided as a neans to
i dentify anonynobus nanes, and can be conpared against in order to

determ ne, in a nechani smindependent fashion, whether a nanme refers
to an anonynous principal :

Li nn St andar ds Track [Page 87]

RFC 2743 GSS- API January 2000

{1(iso), 3(org), 6(dod), 1(internet), 5(security), 6(nanetypes),
3(gss- anonynous- nhane) }

The recommended synbolic name corresponding to this definition is
GSS_C_NT_ANONYMOUS.

4.6: GSS_C_NO O D

The recommended synbolic name GSS_C NO O D corresponds to a nul

i nput val ue instead of an actual object identifier. Were specified,
it indicates interpretation of an associ ated nanme based on a
nmechani sm speci fic default printable syntax.

4.7: Exported Nane bject

Nane objects of the Mechani sm | ndependent Exported Nane Object type,
as defined in Section 3.2 of this docunment, will be identified with
the followi ng Object Identifier:

{1(iso), 3(org), 6(dod), 1(internet), 5(security), 6(nanetypes),
4(gss-api - export ed- nane) }

The recommended synbolic name corresponding to this definition is
GSS_C_NT_EXPORT_NAME.

4.8: GSS_C_NO_NAMVE

The recommended synbolic name GSS_C NO NAME i ndicates that no nane is
bei ng passed within a particular value of a paraneter used for the
purpose of transferring names. Note: GSS_C NO NAME is not an actua
nane type, and is not represented by an O D, its acceptability in
lieu of an actual nanme is confined to specific calls
(GSS_Acquire_cred(), GSS Add cred(), and GSS I nit_sec_context()) with
usages as identified within this specification.

5: Mechani sm Speci fi c Exanpl e Scenari os

This section provides illustrative overviews of the use of various
candi date nmechani smtypes to support the GSS-API. These di scussions
are intended primarily for readers famliar with specific security
t echnol ogi es, denonstrating how GSS-API functions can be used and

i npl emrent ed by candi date underlyi ng nechani sns. They should not be
regarded as constrictive to inplenentations or as defining the only
means t hrough which GSS-API functions can be realized with a
particul ar underlying technol ogy, and do not denpbnstrate all GSS-API
features with each technol ogy.

Li nn St andar ds Track [Page 88]

RFC 2743 GSS- API January 2000

5.1: Kerberos V5, single-TGI

CS-specific login functions yield a TGT to the | ocal real m Kerberos
server; TGI is placed in a credentials structure for the client.
Client calls GSS Acquire_cred() to acquire a cred_handle in order to
reference the credentials for use in establishing security contexts.

Client calls GSS Init_sec_context(). |If the requested service is
located in a different realm GSS_ Init_sec_context() gets the
necessary TGI/ key pairs needed to traverse the path fromlocal to
target realm these data are placed in the owner’s TGI cache. After
any needed renmpte real mresolution, GSS Init_sec_context() yields a
service ticket to the requested service with a correspondi ng session
key; these data are stored in conjunction with the context. GSS-API
code sends KRB_TGS REQ request(s) and receives KRB_TGS REP
response(s) (in the successful case) or KRB _ERROR

Assum ng success, GSS Init_sec_context() builds a Kerberos-formatted
KRB_AP_REQ nessage, and returns it in output_token. The client sends
the output _token to the service.

The service passes the received token as the input_token argunment to
GSS_Accept _sec_context(), which verifies the authenticator, provides
the service with the client’s authenticated name, and returns an

out put _cont ext _handl e.

Both parties now hold the session key associated with the service
ticket, and can use this key in subsequent GSS GetM (),
GSS VerifyM C(), GSS Wap(), and GSS _Unwrap() operations.

5.2: Kerberos V5, double-TGr
TGTI acqui sition as above.

Note: To avoid unnecessary frequent invocations of error paths when
i npl ementing the GSS- APl atop Kerberos V5, it seens appropriate to
represent "single-TGlI K-V5" and "doubl e- TGl K-V5" with separate
mech_types, and this discussion nmakes that assunption

Based on the (specified or defaulted) nech_type,
GSS_Init_sec_context() determ nes that the doubl e-TGI protocol
shoul d be enpl oyed for the specified target. GSS Init_sec_context()
returns GSS_S CONTI NUE_NEEDED maj or _status, and its returned

out put _token contains a request to the service for the service' s TGI.
(I'f a service TGT with suitably long remaining lifetine already
exists in a cache, it my be usable, obviating the need for this
step.) The client passes the output_token to the service. Note: this
scenario illustrates a different use for the GSS_S CONTI NUE_NEEDED

Li nn St andar ds Track [Page 89]

RFC 2743 GSS- API January 2000

status return facility than for support of nutual authentication
note that both uses can coexi st as successive operations within a
singl e context establishnment operation.

The service passes the received token as the input_token argunment to
GSS_Accept _sec_context(), which recognizes it as a request for TGI.
(Note that current Kerberos V5 defines no intra-protocol nechanismto
represent such a request.) GSS_Accept_sec_context() returns

GSS_S CONTI NUE_NEEDED rmaj or _status and provides the service's TGT in
its output_token. The service sends the output_token to the client.

The client passes the received token as the input_token argunent to a
continuation of GSS Init_sec_context(). GSS Init_sec_context() caches
the received service TGI and uses it as part of a service ticket
request to the Kerberos authentication server, storing the returned
service ticket and session key in conjunction with the context.

GSS I nit_sec_context() builds a Kerberos-fornatted authenticator, and
returns it in output_token along with GSS S COVWPLETE return

maj or _status. The client sends the output _token to the service.

Servi ce passes the received token as the input_token argunent to a
continuation call to GSS_Accept_sec_context().

GSS_Accept _sec_context() verifies the authenticator, provides the
service with the client’s authenticated nanme, and returns

maj or _status GSS_S COWPLETE.

GSS GetMC(), GSS VerifyMC(), GSS Wap(), and GSS _Unw ap() as
above.

5.3: X. 509 Authentication Franmework

This exanmple illustrates use of the GSS-API in conjunction with
publ i c-key mechani sns, consistent with the X 509 Directory
Aut henti cati on Franmewor k.

The GSS_Acquire_cred() call establishes a credentials structure,
maki ng the client’s private key accessible for use on behalf of the
client.

The client calls GSS_ Init_sec_context(), which interrogates the
Directory to acquire (and validate) a chain of public-key
certificates, thereby collecting the public key of the service. The
certificate validation operation determines that suitable integrity
checks were applied by trusted authorities and that those
certificates have not expired. GSS Init_sec_context() generates a
secret key for use in per-nessage protection operations on the
context, and enci phers that secret key under the service's public
key.

Li nn St andar ds Track [Page 90]

RFC 2743 GSS- API January 2000

The enci phered secret key, along with an authenticator quantity
signed with the client’s private key, is included in the output_token
fromGSS Init_sec_context(). The output_token also carries a
certification path, consisting of a certificate chain | eading from
the service to the client; a variant approach would defer this path
resolution to be perforned by the service instead of being asserted
by the client. The client application sends the output_token to the
servi ce.

The service passes the received token as the input_token argunment to
GSS_Accept _sec_context (). GSS_Accept _sec_context() validates the
certification path, and as a result deternmnes a certified binding
between the client’s distinguished nane and the client’s public key.
G ven that public key, GSS Accept_sec_context() can process the

i nput _token's authenticator quantity and verify that the client’s
private key was used to sign the input_token. At this point, the
client is authenticated to the service. The service uses its private
key to deci pher the enci phered secret key provided to it for per-
nmessage protection operations on the context.

The client calls GSS GetM C() or GSS Wap() on a data nessage, which
causes per-nessage authentication, integrity, and (optional)
confidentiality facilities to be applied to that nmessage. The service
uses the context’s shared secret key to perform correspondi ng

GSS VerifyM C() and GSS Unwrap() calls.

6: Security Considerations

Thi s docunent specifies a service interface for security facilities
and services; as such, security considerations are consi dered

t hroughout the specification. Nonetheless, it is appropriate to
sunmari ze certain specific points relevant to GSS-API inplenentors
and calling applications. Usage of the GSS-APlI interface does not in
itself provide security services or assurance; instead, these

attri butes are dependent on the underlying mechani sn(s) which support
a GSS-API inmplenmentation. Callers nust be attentive to the requests
made to GSS-API calls and to the status indicators returned by GSS-
APl , as these specify the security service characteristics which
GSS-API will provide. Wen the interprocess context transfer
facility is used, appropriate |ocal controls should be applied to
constrain access to interprocess tokens and to the sensitive data

whi ch they contain.

Li nn St andar ds Track [Page 91]

RFC 2743 GSS- API January 2000

7:

Rel ated Activities

In order to inplenent the GSS-API atop existing, emerging, and future
security mechani smns:

obj ect identifiers nmust be assigned to candi date GSS- API
mechani sns and the name types which they support

concrete data el enment formats and processi ng procedures nust be
defined for candi date nmechani sns

Calling applications nust inplenent formatti ng conventions which will
enabl e themto distinguish GSS-API tokens fromother data carried in
their application protocols.

Concrete | anguage bindings are required for the progranm ng
environnents in which the GSS-API is to be enployed, as [RFC 1509]
defines for the C progranm ng | anguage and GSS-V1. C Language

bi ndings for GSS-V2 are defined in [RFC 2744].

Li nn St andar ds Track [Page 92]

RFC 2743

GSS- API January 2000

8: Referenced Docunents

[1 SO 7498- 2]

[1 SO EC- 8824]

[1 SO EC- 8825]

[REC- 1507] :

[RFC- 1508] :

[RFC- 15009] :

[REC- 1964] :

[RFC- 2025] :

[RFC- 2078] :

[RFC- 2203] :

[RFC- 2744] :

Li nn

International Standard | SO 7498-2-1988(E), Security
Architecture.

| SO | EC 8824, "Specification of Abstract Syntax
Notation One (ASN. 1)".

| SO | EC 8825, "Specification of Basic Encoding Rul es
for Abstract Syntax Notation One (ASN.1)".)

Kauf man, C., "DASS:. Distributed Authentication Security
Service", RFC 1507, Septenber 1993.

Linn, J., "Generic Security Service Application Program
Interface", RFC 1508, Septenber 1993.

Way, J., "Generic Security Service APlI: C- bindings",
RFC 1509, Septenber 1993.

Linn, J., "The Kerberos Version 5 GSS-API Mechani sni',
RFC 1964, June 1996.

Adanms, C., "The Sinple Public-Key GSS-API Mechani sm
(SPKM ", RFC 2025, Cctober 1996.

Linn, J., "Generic Security Service Application Program
Interface, Version 2", RFC 2078, January 1997.

Eisler, M, Chiu, A and L. Ling, "RPCSEC GSS Prot ocol
Specification", RFC 2203, Septenber 1997.

Way, J., "Generic Security Service APl Version 2 :
C- bi ndi ngs", RFC 2744, January 2000.

St andar ds Track [Page 93]

RFC 2743 GSS- API January 2000

APPENDI X A
MECHANI SM DESI GN CONSTRAI NTS

The followi ng constraints on GSS-API mechani sm designs are adopted in
response to observed caller protocol requirenents, and adherence
thereto is anticipated in subsequent descriptions of GSS-API
nmechani sns to be docunented in standards-track |nternet

speci fications.

It is strongly recomended that nechani sms of fering per-nessage
protection services also offer at | east one of the replay detection
and sequenci ng services, as nmechanisns offering neither of the latter
will fail to satisfy recognized requirenments of certain candidate
call er protocols.

APPENDI X B
COVMPATI BI LITY WTH GSS- V1

It is the intent of this docunment to define an interface and
procedures whi ch preserve conpatibility between GSS-V1 [RFC 1508]
callers and GSS-V2 providers. All calls defined in GSS-V1 are
preserved, and it has been a goal that GSS-V1 callers should be able
to operate atop GSS-V2 provider inplenentations. Certain detailed
changes, summarized in this section, have been made in order to
resolve omissions identified in GSS V1.

The followi ng GSS-V1 constructs, while supported within GSS-V2, are
depr ecat ed:

Nanmes for per-message processing routines: GSS Seal () deprecated
in favor of GSS Wap(); GSS _Sign() deprecated in favor of

GSS GetM C(); GSS Unseal () deprecated in favor of GSS_Unw ap();
GSS Verify() deprecated in favor of GSS VerifyM C().

GSS Del ete_sec_context() facility for context_token usage,

al | owi ng nmechani sns to signal context deletion, is retained for
conmpatibility with GSS-V1. For current usage, it is reconmended
that both peers to a context invoke GSS Del ete_sec_context ()

i ndependently, passing a null output_context_token buffer to

i ndicate that no context _token is required. |Inplenentations of
GSS Del ete_sec_context() should delete relevant |ocally-stored
context information.

This GSS-V2 specification adds the follow ng calls which are not
present in GSS-V1:

Li nn St andar ds Track [Page 94]

RFC 2743 GSS- API January 2000

Credenti al managenent calls: GSS_Add_cred(),
GSS_I nqui re_cred_by_mech().

Context-level calls: GSS Inquire_context(), GSS Wap_size_limt(),
GSS_Export_sec_context (), GSS_Inport_sec_context().

Per-nmessage calls: No new calls. Existing calls have been
renamed.

Support calls: GSS Create_enpty O D set(),

GSS_Add_QO D _set _nenber (), GSS Test O D set _rnenber (),

GSS_I nqui re_nanes_for_nech(), GSS_Inquire_nechs_for_nane(),
GSS_Canoni cal i ze_name(), GSS _Export_nanme(), GSS Duplicate_namne().

This GSS-V2 specification introduces three new facilities applicable
to security contexts, indicated using the follow ng context state
val ues which are not present in GSS-V1:

anon_state, set TRUE to indicate that a context’s initiator is
anonymous from the vi ewpoint of the target; Section 1.2.5 of this
specification provides a summary description of the GSS-V2
anonymty support facility, support and use of which is optional.

prot _ready_state, set TRUE to indicate that a context nmay be used
for per-nmessage protection before final conpletion of context
establishment; Section 1.2.7 of this specification provides a
sumary description of the GSS-V2 facility enabling nmechanisns to
selectively permt per-nmessage protection during context
establ i shment, support and use of which is optional.

trans_state, set TRUE to indicate that a context is transferable
to anot her process using the GSS-V2 GSS_Export_sec_context()
facility.

These state values are represented (at the C bindings level) in
positions within a bit vector which are unused in GSS-V1, and may be
safely ignored by GSS-V1 callers.

New conf_req_flag and integ req_flag inputs are defined for

GSS Init_sec_context(), primarily to provide information to

negoti ati ng mechani sns. This introduces a conpatibility issue with
GSS-V1 callers, discussed in section 2.2.1 of this specification.

Li nn St andar ds Track [Page 95]

RFC 2743 GSS- API January 2000

Rel ative to GSS-V1, GSS-V2 provides additional guidance to GSS-API
i npl ementors in the followi ng areas: inplenentation robustness,
credenti al managenment, behavior in multi-mechani smconfigurations,
nam ng support, and inclusion of optional sequencing services. The
token tagging facility as defined in GSS-V2, Section 3.1, is now
described directly in terns of octets to facilitate interoperable
i npl erentation without general ASN. 1 processing code; the
correspondi ng ASN. 1 syntax, included for descriptive purposes, is
unchanged fromthat in GSS-V1. For use in conjunction with added
nam ng support facilities, a new Exported Name Object construct is
added. Additional name types are introduced in Section 4.

This GSS-V2 specification adds the followi ng nmaj or_status val ues
whi ch are not defined in GSS-V1:

GSS_S BAD _QCP unsupported QOP val ue

GSS_S UNAUTHORI ZED operati on unaut hori zed

GSS_S UNAVAI LABLE operation unavail abl e

GSS_S DUPLI CATE_ELEMENT duplicate credential elenent
request ed

GSS_S NAME_NOT_MWN nane contains nulti-mechani sm
el enent s

GSS_ S GAP_TCKEN ski pped predecessor token(s)
det ect ed

O these added status codes, only two values are defined to be
returnable by calls existing in GSS-V1: GSS S BAD QOP (returnable by
GSS GetM C() and GSS Wap()), and GSS S GAP_TOKEN (returnabl e by
GSS VerifyM C() and GSS_Unw ap()).

Additional ly, GSS-V2 descriptions of certain calls present in GSS-V1
have been updated to allow return of additional major_status val ues
fromthe set as defined in GSS-V1:. GSS Inquire_cred() has
GSS_S_DEFECTI VE_CREDENTI AL and GSS_S_CREDENTI ALS_EXPI RED defined as
returnable, GSS Init_sec_context() has GSS_S OLD TOKEN,

GSS_S DUPLI CATE_TOKEN, and GSS_S BAD MECH defined as returnable, and
GSS_Accept _sec_context () has GSS_S BAD MECH defi ned as returnable.

APPENDI X C

CHANGES RELATI VE TO RFC- 2078
Thi s docunent incorporates a nunmber of changes relative to RFC 2078,
made primarily in response to inplenentation experience, for purposes
of alignment with the GSS-V2 C | anguage bi ndi ngs docunent, and to add

informative clarification. This section sumarizes technical changes
i ncor por at ed.

Li nn St andar ds Track [Page 96]

RFC 2743 GSS- API January 2000

Gener al :

Clarified usage of object release routines, and incorporated
statenment that some may be omitted within certain operating
envi ronnments.

Renoved GSS Release O D, GSS ODto_str(), and GSS Str_to O IX)
routines.

Clarified circunstances under which zero-length tokens may validly
exi st as inputs and outputs to/from GSS- APl calls.

Added GSS_S BAD M C status code as alias for GSS_S BAD SI G

For GSS Display_status(), deferred to | anguage bindings the choice
of whether to return nmultiple status values in parallel or via
iteration, and added conmentary deprecating return of

GSS_S_CONTI NUE_NEEDED.

Adapted and incorporated clarifying material on optional service
support, delegation, and interprocess context transfer fromcC
bi ndi ngs docunent .

Added and updated references to related docunents, and to current
status of cited Kerberos mechani sm A D.

Added general statement about GSS-API calls having no side effects
vi si bl e at the GSS-API |evel

Context-related (including per-nessage protection issues):

Li nn

Clarified GSS Del ete_sec_context() usage for partially-established
cont exts.

Added clarification on GSS_Export_sec_context() and
GSS I nport_sec_context () behavior and context usage foll owi ng an
export-inport sequence.

Added infornmatory conf _req_flag, integ req_flag inputs to

GSS Init_sec_context(). (Note: this facility introduces a
backward i nconpatibility with GSS-V1 callers, discussed in Section
2.2.1; this inplication was recogni zed and accepted in worKking
group di scussion.)

Stated that GSS S FAILURE is to be returned if

GSS I nit_sec_context() or GSS_Accept _sec_context() is passed the
handl e of a context which is already fully established.

St andar ds Track [Page 97]

RFC 2743 GSS- API January 2000

Re GSS I nquire_sec_context(), stated that src_name and targ_nane
are not returned until GSS S COVWPLETE status is reached; renoved
use of GSS_S CONTEXT_EXPI RED status code (replacing with EXPI RED
lifetinme return value); stated requirenent to retain inquirable
data until context rel eased by caller; added result val ue

i ndi cati ng whet her or not context is fully open.

Added di scussion of interoperability conditions for mechani sns
permitting optional support of QOPs. Renoved reference to
structured QOP elenments in GSS Verify MC().

Added di scussion of use of GSS_S DUPLI CATE TOKEN status to
i ndi cate refl ected per-nessage tokens.

Clarified use of informational sequencing codes from per-nessage
protection calls in conjunction with GSS_S COWLETE and

GSS_S FAI LURE nmj or _status returns, adjusting status code

descri ptions accordingly.

Added specific statenments about inpact of GSS GetM C() and

GSS Wap() failures on context state information, and generali zed
exi sting statenents about inpact of processing failures on

recei ved per-nessage tokens.

For GSS Init_sec_context() and GSS Accept _sec_context(), pernitted
returned nmech_type to be valid before GSS_S _COWLETE, recognizing
that the val ue may change on successive continuation calls in the
negoti at ed nmechani sm case.

Del eted GSS_S CONTEXT_EXPI RED status from
GSS I nport_sec_context ().

Added conf_req_flag input to GSS Wap_size linit().
Stated requirenent for mechani sns’ support of per-nessage

protection services to be usable concurrently in both directions
on a context.

Credential -rel at ed:

Li nn

For GSS_Acquire_cred() and GSS_Add_cred(), aligned with C bindings
statenent of likely non-support for |IN TIATE or BOTH credential s
if input nane is neither enpty nor a name resulting from applying
GSS I nquire_cred() against the default credential. Further,
stated that an explicit nanme returned by GSS_Inquire_context()
shoul d al so be accepted. Added commentary about potentially
time-variant results of default resolution and attendant
implications. Aligned with C bindings re behavi or when

St andar ds Track [Page 98]

RFC 2743 GSS- API January 2000

GSS_C NO _NAME provided for desired_nanme. In GSS_Acquire_cred(),
stated that NULL, rather than enpty O D set, should be used for
desired_nechs in order to request default nmechani sm set.

Added GSS_S CREDENTI ALS EXPI RED as returnable major_status for

GSS Acquire_cred(), GSS _Add_cred(), also specifying GSS_S NO CRED
as appropriate return for tenporary, user-fixable credenti al
unavailability. GSS Acquire_cred() and GSS_Add _cred() are also to
return GSS_S NO CRED if an authorization failure is encountered
upon credential acquisition.

Renmoved GSS_S CREDENTI ALS EXPI RED status return from per-nmessage
protection, GSS Context_time(), and GSS_Inquire_context() calls.

For GSS_Add_cred(), aligned with C bindings’ description of
behavi or when addition of elenments to the default credential is
request ed.

Upgr aded recommended default credential resolution algorithmto
status of requirenment for initiator credentials.

For GSS_Rel ease_cred(), GSS Inquire_cred(), and
GSS I nquire_cred_by nech(), clarified behavior for input
GSS_C_NO_CREDENTI AL.

Nane- r el at ed:

Li nn

Al'i gned GSS_ I nquire_nmechs_for_nane() description with C bindings.

Renoved GSS_S BAD NAMETYPE status return from
GSS Duplicate_nane(), GSS Display_name(); constrained its
applicability for GSS_Conpare_name().

Aligned with C bindings statement re GSS I nport_name() behavi or
with GSS C NO O D input nane type, and stated that GSS-V2

nmechani sm speci fications are to define processing procedures
applicable to their nmechanisnms. Also clarified GSS_ C NO O D usage
with GSS Display_nane().

Downgr aded reference to nane canonicalization via DNS | ookup to an
exanpl e.

For GSS_Canonicalize_nanme(), stated that neither negoti ated
nmechani sns nor the default nechani sm are supported input
mech_types for this operation, and specified GSS_S BAD MECH st at us
to be returned in this case. Carified that the

GSS_Canoni cal i ze_nane() operation is non-destructive to its input
name.

St andar ds Track [Page 99]

RFC 2743 GSS- API January 2000

Clarified semantics of GSS _C NT_USER NAME nane type.

Added descriptions of additional name types. Also added
di scussion of GSS_C NO NAME and its constrained usage with
specific GSS calls.

Adapt ed and i ncorporated C bindi ngs di scussi on about nane
compari sons with exported name objects.

Added recomendati on to nechani sm desi gners for support of host-
based service nane type, deferring any requirenent statement to
i ndi vi dual nmechani sm specifications. Added discussion of host-

based service's service nane el enent and proposed approach for

| ANA registration policy therefor.

Clarified byte ordering within exported nane object. Stated that
GSS S BAD MECH is to be returned if, in the course of attenpted

i mport of an exported name object, the name object’s encl osed
nmechani smtype i s unrecogni zed or unsupported.

Stated that nechanisns nmay optionally accept GSS_C NO NAME as an
i nput target nane to GSS Init_sec_context(), with coment that
such support is unlikely within nmechani snms predating GSS- V2,
Updat e 1.

AUTHOR S ADDRESS
John Linn
RSA Laboratories
20 Croshy Drive
Bedf ord, MA 01730 USA

Phone: +1 781.687. 7817
EMail: jlinn@sasecurity.com

Li nn St andar ds Track [Page 100]

RFC 2743 GSS- API January 2000

Ful I Copyright Statenent
Copyright (C) The Internet Society (2000). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
ot hers, and derivative works that comment on or otherw se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng I nternet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into |Ianguages other than
Engli sh.

The limted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknow edgenent

Fundi ng for the RFC Editor function is currently provided by the
I nternet Society.

Li nn St andar ds Track [Page 101]

