Net

wor k Wor ki ng Group Edwin E. Meyer, Jr.

Request for Comments: 46 Massachusetts Institute of Technol ogy

17 April 1970

ARPA Net wor k Pr ot ocol Notes

The attached docunment contains conments and suggestions of the
Net work Working Group at Project MAC. It is based upon the protoco
outlined in NW& RFC 33, 36, and | ater docunents.

This proposal is intended as a contribution to the dialog |eading to
a protocol specification to be accepted by the entire Network Wrking
G oup.

We solicit your conments.
I NTRODUCTI ON

In this docurment the Network Working Goup at MT Project MAC suggest
nodi fi cati ons and extensions to the protocol specified by Carr,
Crocker, and Cerf in a preprint of their 1970 SJCC paper and extended
by Crocker in NWG RFC 36. This docunent broadly outlines our

proposal but does not attenpt to be a conplete specification. It is
intended to be an indication of the type and extent of the protocol
we think should be initially inplenented.

We agree with the basic concept of sinplex conmunication between
sockets having unique identifiers. W propose the inplenentation of
a slightly nodified subset of the network commands specified in

NWGE RFC36 plus the ERR command as specified by Harsl em and Heafner in
NWE RFC 40.

G ven the basic objective of getting all ARPA contractors onto the
network and tal king to each other at the earliest possible date, we
think that it is inportant to inplenent an initial protocol that is
reasonably sinple yet extendable while providing for the nmajor

initial uses of the network. It should be a sinple protocol so as to
elicit the broadest possible support and to be easily inplenentable
at all installations with a mninmum of added software.

Wil e the protocol will evolve, the fundanentals of a protoco
accepted and inplenented by all installations are likely to prove
very resistant to change. Thus it is very inportant to nake the
initial protocol open-ended and flexible. A sinple basic protocol is
nmore likely to succeed in this respect than a conplicated one. This

[Page 1]

RFC 46 ARPA Net wor k Protocol Notes April 1970

does not preclude the existence of additional |ayers of protoco
bet ween several installations so |long as the basic protocol remains
support ed.

W feel that three facilities nust be provided for in the initial
prot ocol :

1. Multi-path comunication between two existing processes which know
how to connect to each other.

2. A standard way for a process to connect to the |ogger (Ilogging
process at a HOST) at a foreign HOST and request the creation of a
user process. (The login ritual may or may not be standardi zed.)

3. A standard way for a newy created process to initiate pseudo-
typewiter conmunication with the foreign process which requested
its creation.

The maj or differences between the protocol as proposed by Carr,
Crocker, and Cerf and this proposal are the foll ow ng:

1. The dynani c reconnection strategy specified in Crocker’s
NWE RFC 36 is reserved for future inplenmentation. W feel that
its inclusion would unduly conplicate the initial inplenentation
of the protocol. W outline a strategy for foreign process
creation that does not require dynam c reconnection. Nothing in
this proposal precludes the inplenentation of dynam c reconnection
at a later date.

2. W propose that an "instance tag" be added to the socket
identifier so as to separate sockets belonging to different
processes of the sanme user coexisting at one HOST.

3. The follow ng NCP commands have been added:
a. The ERR command specified in NW& RFC 40 is included.

b. BLK and RSM conmands are presented as possible alternatives to
the "cease on link" I MP conmand and SPD and RSM conmands set
forth in NWG RFC 36. Because these comands operate on socket
connections rather than |link nunbers, they do not inpede the
i npl enentati on of socket connection multiplexing over a single
i nk nunber, should that |ater prove desirable.

c. An INT conmand that interrupts a process is specified. W feel
that it is highly inportant to be able to interrupt a process
that nay be engaged in unwanted conputation or output. To
i npl ement the interrupt as a special fornmat within a nornal

[Page 2]

RFC 46 ARPA Net wor k Protocol Notes April 1970

nmessage raises severe difficulties: the connection may be
bl ocked when the interrupt is needed, and the NCP nust scan
each incom ng nessage for an interrupt signal

d. An ECO echoing command to test conmmuni cations between NCPs is
i ncl uded.

4. Sockets are conceptualized as having several states, and these are
related to conditions under which network requests may be queued.
This differs fromthe unlimted queuing feature, which presents
certain inplenmentation difficulties.

5. The protocol regarding creation of a foreign process and
comuni cation with it is renoved to a separate User Control and
Communi cation (UCC) protocol level and is nore fully specified.

- A H ERARCHY OF PROTOCOLS

It seens convenient and useful to view the network as consisting of a
hi erarchy of protocol and inplenentation levels. |In addition to

ai di ng i ndependent software and hardware devel opnent, provisions for
a layered protocol allow additions and substitution of certain |evels
in experinmental or special purpose systens.

W view the initial network comruni cations system as a hierarchy of
three systens of increasing generality and decreasing privilege
| evel. These are:

1. IMP Network - The network of | MPs and physical comuni cation |ines
is the basic resource which higher |level systens convert into nore
general i zed conmuni cation facilities. The IMP network acts as a
"whol esal er" of nessage transnission facilities to a highly
privileged nodule within each HOST.

2. Network Control Program - Each HOST contains a nodule called the
Net wor k Control Program (NCP) which has sole control over
communi cations between its HOST and the | MP network. It acts as a
"retailer" of the whol esal e cormuni cations facilities provided by
the I MP network. The network of NCPs can be viewed as a higher
| evel communi cations system surrounding the I MP network which
factors raw nmessage transmi ssion capabilities between HOSTs into
conmuni cation facilities between ordinary unprivil eged processes.

[Page 3]

RFC 46 ARPA Net wor k Protocol Notes April 1970

HOST A HOST C
I I I I
I I I I
	Proc		Proc		Proc					Proc		Proc			
	A		B		C	JucC]				D		E	[ucC]		
							(.								
I I I I I I I I I I I															
S e T il e e el I [
I I I I	NCP NETWORK	I I I													
I I I I I I I I I I I															
_l I I	_ I	I l_													
	I I														
	NCP A				NCP C										
	I I														
I [I I		I												
I [I I		I												
[
I MP NETWORK []															
N) R															
I I I I															
I \MP [------------	I \MP														
I A I I C I
[I [I
I I
[l I
I I I I
S N, | IMP | ----- +
I B I

FIG 1. Mdul ar View O Network

3. User Control and Communi cation Mdule - The preceding two
comuni cation systens are sufficient to pernmit communication
bet ween unprivil eged processes that already exist. However, one
of the primary initial uses of the network is thought to involve
the creation of a foreign user process through interaction with
the foreign HOST' s | ogger. The User Control and Conmuni cation
Modul e (UCC) i npl enents protocol sufficient for a process to
conmmuni cate with a foreign HOST's | ogger and to nake initial
control conmunication with a created process. Such a process is
to have the sanme privileges (subject to adm nistrative control) as
a local (to the foreign HOST) user process. The UCC nodul e
conmmuni cates through the NCP in a manner similar to an ordinary
process. Except for the ability to close connections to a dead

[Page 4]

RFC 46 ARPA Net wor k Protocol Notes April 1970

process, the UCC nodul e has no special network privileges. The
UCC protocol is only one of several third-1evel protocols that
coul d be inplenented. For exanple, a set of batch processing
systens connected through the NCP system m ght inplenent a | oad-
sharing protocol, but not a UCC

- NETWORK CONTRCL PROGRAM

Each HOST inplenents a nodule called the Network Control Program
(NCP) which controls all network comruni cations involving that HOST.
The network of NCPs forms a distributed comuni cati on system t hat

i npl emrents communi cati on pat hs between individual processes. The NCP
protocol issues involve: (i) the definition of these comrunication
paths, and (ii) a systemfor coordinating the distributed NCP system
i n maintai ning these conmuni cati on paths. These are di scussed bel ow.

Socket s

Conmuni cati on between two processes is made through a sinpl ex
connecti on between two sockets: a send socket attached to one
process and a receive socket attached to another process. Sockets
have the followi ng characteristics:

Socket ldentifier - A socket identifier is used throughout the
network to uniquely identify a socket. It consists of 48 bits,
havi ng the foll owi ng conponents:

a. User Nunber (24 bits) - A socket attached to a process is
identified as belonging to that process by a user numnber
consisting of 8 bits of "home" HOST code plus 16 bits of user
code assigned by the home HOST. This user nunber is the same
for all sockets attached to any of his processes in any HOST.

b. Instance Tag (8 bits) - Mre than one process belonging to a
user may simultaneously exist within a single HOST. The
i nstance tag identifies the particular process to which a
socket belongs. A user’'s first process at a HOST to use the
network receives instance tag = 0 by conventi on.

c. HOST Nunber (8 bits) - This is the code of the HOST on which
the attached process exists.

d. Socket Code (8 bits) - This code provides for 128 send and 128

recei ve sockets in each process. The |ow order bit deterni nes
whether this is a "send" (= 1) or "receive" (= 0) socket.

[Page 5]

RFC 46 ARPA Net wor k Protocol Notes April 1970

States of Sockets - Each socket has an associated state. The NCP may
i npl erent nore transitory states of a socket, but the three foll ow ng
are of conceptual inportance.

a. Inactive - there is no currently existing process which has
told the NCP that it wishes to listen to this socket. No other
process can successfully conmunicate with an inactive socket.

b. Open - Sone process has agreed to listen to events concerning
this socket but it is not yet connected.

c. Connected - This socket is currently connected to another
socket .

Socket Event Queue - A queue of events to be disclosed to the owning
process is maintained for each open or connected socket. It consists
of a chronologically ordered list of certain events generated by the
action of one or nore foreign processes trying to connect or

di sconnect this socket. An entry in the event queue consists of the
event type plus the identifier of the foreign socket concerned. The
foll owi ng event types are defined:

a. "request" - a foreign socket requests connection. (not queued
if local socket is already connected)

b. "accept” - a foreign socket accepts requested connection

c. "reject" - a foreign socket rejects requested connection

d. "close" - a foreign socket disconnects an existing connection.

A "request" event is renoved fromthe queue when it is accepted or
rejected. The other events are renoved fromthe queue as they are
di scl osed to the owning process.

Sone events are intended to be transparent to the process owning the
socket, and they do not generate entries in the event queue.

Al t hough an event queue is conceptually unlimted, it seenms necessary
to place sone practical linmit onits length. Wen an event queue for
a socket is full, any incom ng event that would add to the queue
shoul d be di scarded and the sending NCP notified (via ERR comrand
descri bed bel ow).

[Page 6]

RFC 46 ARPA Net wor k Protocol Notes April 1970

NCP Control Comruni cati ons

The NCP network coordinates its activities through control comands
passed between its individual conponents. These conmands generally
concern the creation and mani pul ati on of socket connections
controlled by the NCP receiving the coommand. A control comrand is
directed to a particular NCP by being sent to its HOST as a nmessage
over link nunber 1 (designated as the control link), which is
reserved for that purpose. The |IMP network does not distinguish
bet ween t hese nessages and regul ar data nessages i npl enmenting
comuni cati on through a socket connection

The followi ng NCP control conmands are defined:
a. Request for Connection
RFC <l ocal socket> <foreign socket> [<link no.>]

An NCP directs this command to a foreign NCP to attenpt to
initiate a connection between a | ocal socket and a foreign socket.
If the foreign socket is open, the foreign NCP places a "request"
event into the socket’s event queue for disclosure to the process
that owns it. |If the foreign process accepts, the foreign NCP
returns a positive acknow edgenent in the formof another RFC. It
rejects connection by issuing the CLS conmand (see below). An RFC
is automatically rejected without consulting the owning process if
the foreign socket is not open (inactive or connected). Miltiple
RFCs to the sanme socket are placed into its event queue in order

of receipt. Any queued RFCs are automatically rejected by the NCP
once the owning process decides to accept a connection. The NCP
whi ch has control of the "receive" socket of the potentially
connected pair designates a |link nunber over which nessages are to
flow.

b. C ose a Connection
CLS <l ocal socket> <foreign socket>

An NCP issues this network command to di sconnect an existing
connection or to negatively acknowl edge an RFC. There is a
potential race problemif an NCP closes a | ocal send socket in
that the CLS command may reach the foreign NCP prior to the | ast
nmessage over that socket connection. This race is prevented by
adhering to two standards: (i) A CLS command for a | ocal send
socket is not transmitted until the RFNM for the |last nessage to
the foreign socket conmes back, and (ii) the foreign NCP processes
all inconm ng nessages in the order received.

[Page 7]

RFC 46 ARPA Net wor k Protocol Notes April 1970

c. Block Qutput over a Connection

BLK <foreign send socket>
A process may read data through a receive socket slower than
nmessages are comng in and thus the NCP s buffers may tend to cl og
up. The NCP issues this conmand to a foreign NCP to block further
transm ssion over the socket pair until the receiving process
cat ches up.
d. Resunme Qutput over a Bl ocked Connection

RSM <f or ei gn send socket >

An NCP issues this command to unbl ock a previously bl ocked
connecti on.

e. Interrupt the Process Attached to a Connection
| NT <foreign socket>
Recei pt of this message causes the foreign NCP to i nmedi ately

interrupt the foreign process attached to <foreign socket> if it
is connected to a | ocal socket. Data already in transit within

the NCP network over the interrupted connection will be
transmtted to the destination socket. The neaning of "interrupt"”
is that the process will inmediately break off its current

execution and execute sone standard procedure. That procedure is
not defined at this protocol |evel

f. Report an Erroneous Command to a Foreign NCP
ERR <code> <command | engt h> <comand in error>

This conmand is used to report spurious network commands or
nmessages, or overload conditions that prevent processing of the
command. <code> specifies the error type. |If <code> specifies an
erroneous network comrand, <command in error> is that comrand (not
i ncluding | MP header) and <conmand | ength> is an integer
specifying its length in bits. |f <code> specifies an erroneous
nmessage, <command in error> contains only the |ink nunber over

whi ch the erroneous nmessage was transnmitted. (This is slightly
nodi fied fromthe specification in N RFC 40.)

[Page 8]

RFC 46 ARPA Net wor k Protocol Notes April 1970

g. Network Test Command
ECO <48 bit code> <echo sw tch>

An NCP may test the quality of comuni cati ons between it and a
foreign NCP by directing to it an ECO command with an arbitrary
<48 bit code> (of the same |length as a socket identifier) and
<echo switch> "on’. An NCP receiving such a ECO command shoul d

i medi ately send an acknowl edgi ng ECO with the sanme <48 bit code>
and <echo switch> "off’ to the originating NCP. An NCP does not
acknowl edge an ECO with <echo switch> "off’. W feel that this
command will be of considerable aid in the initial shakedown of
the entire network.

h. No Operation Conmmand
NOP
An NCP di scards this comrand upon receipt.
User Interface to the NCP
The NCP at each HOST has an interface through which a | ocal process

can exerci se the network, subject to the control of the NCP. The
exact specification of this interface is not a network protocol

i ssue, since each installation will have its own interface keyed to
its particular requirenments. The protocol requirements for the user
interface to an NCP are that it provide all intended network
functions and no illegal privileges. Exanples of such illegal

privileges include the ability to nmasquerade as anot her process,
eavesdrop on communications not intended for it, or to induce the NCP
to send out spurious network commands or nessages.

We outline here an interface based on the Carr, Crocker, and Cerf
proposal that is sufficient to fully utilize the network. Wile this
particular set of calls is intended mainly for illustrative purposes,
it indicates the types of functions necessary.

The following calls to the NCP are avail abl e:

a. LISTEN <ny 8 bit socket code>

A user opens this socket, creating an enpty event queue for it.

This LI STEN call may block waiting for the first "request" event,
or it may return i mediately.

[Page 9]

RFC 46 ARPA Net wor k Protocol Notes April 1970

b. INIT <ny socket code> <foreign socket>

A user attenpts to connect <ny socket> to <foreign socket> The

I ocal NCP sends an RFC to the foreign NCP requesting that the
connection be created. The returned acknow edgemmet is either an
RFC (request accepted) or CLS (request rejected). At the caller’s
option, the INIT call blocks on the expected "accept" or "reject"
event, or it can return inmediately without waiting. |In this case
the user nust call STATUS (see below) at a later tine to deternine
the action by the foreign NCP. Wen a blocked INIT call returns,
the "accept" or "reject" event is renoved fromthe event queue.

c. STATUS <ny socket code>

This call reports out the earliest previously unreported event in
the queue of <ny socket>. The STATUS call deletes the event from
the queue if that type of event is del eteable by disclosure.

d. ACCEPT <ny socket code>

The user accepts connection with the foreign socket whose
"request" event is earliest in the event queue for <ny socket>.
An acknow edging RFC is sent to the accepted forei gn socket, and
the "request” event is deleted fromthe event queue. Should any
other "request" event exist in the queue, the NCP automatically
deni es connection by sending out a CLS command and del eting the
event .

e. REJECT <ny socket code>

The user rejects connection with the foreign socket whose
"request" event is earliest in the event queue for <ny socket>.
The NCP sends out a CLS command and del etes the "request" event
fromthe queue.

f. CLOSE <ny socket code>

The user directs the NCP to di sconnect any active connection to
this socket and to deactivate the socket. The NCP sends out a CLS
command to the foreign socket if a connection has existed. The
status of the foreign socket al so beconmes cl osed once the "cl ose"
event is disclosed to the foreign process.

g. | NTERRUPT <ny socket code>

The user directs the NCP to send out an INT command to the foreign
socket connected to <ny socket>.

[Page 10]

RFC 46 ARPA Net wor k Protocol Notes April 1970

h. TRANSM T <ny socket code> <pointer> <nbits>

The user wishes to read (<ny socket> is receive) or wite (<ny
socket> is send) <nbits> of data into or out of an area pointed to
by <pointer>. A call to wite returns inmediately after the NCP
has queued the data to send a nessage over the connection. The
call to wite blocks only if the connection is blocked or if the
local NCP is too | oaded to process the request imediately. Data
to be transnitted over a connection is formatted into one or nore
| MP messages of maxi mum |l ength 8095 bits and transmitted to the
foreign HOST over the Iink nunber specified in the RFC sent by the
NCP controlling the receiving connection. A "close" event in the
event queue for <my socket> is disclosed through the action of
TRANSM T. A call to wite discloses the "close" event

imediately. A read call discloses it when all data has been
read.

The History of a Connection Froma User View

An Illustrative Exanple
Assume that process 'a’ on HOST A wishes to establish connection with
process 'b’ on HOST B. Before communication can take place, two

conditions nust be fulfill ed:

a. process 'a rmnust be able to specify to its NCP a socket in 'b's
socket space to which it wants to connect.

b. process 'b’ nust already be LISTENing to this socket.

1. Establishing the Connection
a. process 'b’ LISTENs to socket 'Bb9’'.
b. process "a’ INITs 'Bb9 to its 'Aal2’. The NCP at A generates
an RFC specifying |link nunber = 47, which it chooses fromits
avail able set of links. This is the link over which it will
recei ve nessages if the connection is ACCEPTed by process 'b’.
c. process 'b’ is informed of A's INIT request. He may REJECT
connection (NCP B sends back a CLS) or ACCEPT (NCP B sends back an
RFO) .

d. If process 'b’ ACCEPTs, the confirm ng RFC establishes the
connection, and nessages can now fl ow.

[Page 11]

RFC 46 ARPA Net wor k Protocol Notes April 1970

HOST A HOST B
I NI TI ATOR ACCEPTOR
PRCCESS '’ a’ PROCESS ' b’

a. LISTEN ' socket code 9

b. INIT 'socket code 12’ 'Bb9’
RFC ' AA12' '"Bb9' 'link 47 ==========>

c. ACCEPT 'socket code 9’
RFC ' Bb9' ' Aal2’

d. TRANSM T 'send buffer’ 'len’
"socket 9’
<============== | MP nessage 'link 47 ’send buffer’

e. TRANSMT ’'rec buffer’ 'length’
"socket 12' ============>

I
| f. CLOSE ’'socket code 9’

| ast RFNM ===>
<z============== CLS 'Bb9’ ’ Aal2’
cl oses socket 'Aal2’ |

FIG 2. Establishing and Communi cating over a Socket Connection
2. Sendi ng Messages over a Connecti on.

a. Process 'b’ issues a TRANSM T call to send data through the
connection. NCP B formats this into an | MP nessage and sends it
to NCP Awith link nunber = 47 as specified by A's RFC

b. NCP A receives the raw nmessage from NCP B with |ink nunber =
47. NCP A uses this link nunber in deciding who the intended
recipient is, and stores the nessage in a buffer for the recipient
pr ocess.

c. Process "a' may issue a read (TRANSM T) call for socket code 12
at any arbitrary tine. The read call blocks if there is no data
pendi ng for the socket. The read call picks up the specified
nunber of bits transmitted over socket code 12, perhaps across an
| MP nessage boundary. The boundaries of the | MP nessages are
invisible to the read call

[Page 12]

RFC 46 ARPA Net wor k Protocol Notes April 1970

d. Should process 'b’ send data over the connection at a faster
rate than process 'a picks it up, NCP A can issue a BLK comrmand

to NCP Bif A's buffers start filling. Later, when process 'a
catches up NCP A can tell B to resune transm ssion via an RSM
conmmand.

3. Process 'b’ Closes the Connection

a. Process 'b’ decides to close the connection, and it issues the
CLCSE call to NCP B. To avoid race problens B waits for the RFNM
fromthe previous nessage over this connection, then sends the CLS
command to NCP A. Wien the RFNM from the CLS command nessage
returns, NCP B flushes socket 'Bb9 fromits tables, effecting the
close at its end and deactivating ' Bb9’ .

b. Because of sequential processing within NCP A the |ast nessage
to socket 'Aal2’ is guaranteed to have been directed to a process
before the CLS from NCP B cones through. Upon receipt of the CLS
fromB, NCP A marks socket 'Aal2’ as "cl ose pending" and places a
"close" event into the event queue of 'Aal2’

c. Process "a can still issue read calls for socket 'Aal2' while
there is buffered data pending. Wen 'a issues a read call after
the buffer has been enptied, the "close" event is disclosed to
inform’'a of the closure, and socket 'Aal2’ is flushed fromthe
tabl es of NCP A

4. Process 'a’ C oses the Connection

a. Let us return to step 2. and assune that process 'a’ wants to
cl ose the connection fromits end. There is no race problem
because we assunme that once 'a issues a CLOSE call, it no |onger
wants to read nmessages over that socket.

b. Assume that process 'a' issues a CLOSE call on socket 'Aal2’
NCP A inmediately sends out a CLS command to NCP B and marks
socket 'Aal2’ as "close pending". Any data buffered for read on
"Aal2’ is discarded. To allow remaining nessages already in
transit fromprocess 'b’ to percolate through the I MP network to
NCP A and be discarded without error comrents, NCP A retains
"Aal2’ in its tables for a suitable period of tinme after receiving
the RFNM from the CLS conmmand. During this period NCP A discards
all messages received over the closing connection. After allow ng
a reasonabl e anount of tine for these dead nessages to cone in,
NCP A flushes "Aal2’ fromits tables, effectively closing the
connection and deactivating 'Aal2’. Further nmessages to socket
"Aal2’ result in NCP A sending an ERR "erroneous comuand” to the
origi nati ng NCP.

[Page 13]

RFC 46 ARPA Net wor k Protocol Notes April 1970

c. When NCP B receives the CLS command, socket 'Bb9’ is narked as
"cl ose pending", and the CLS event is placed into the event queue
of 'Bb9’. The next time process 'b’ wishes to wite over that
socket, the CLS event is disclosed to informhimof the closure,
and socket 'Bb9 is renoved from NCP B' s tables.

'V - USER CONTROL AND COVMUNI CATI ON PROTOCCL

Sone process nust exist which agrees to listen to anybody in the
network and create a process for himupon proper identification
This process is called the I ogger and interacts through the NCP via
the network-related User Control and Conmunication (UCC) nodul e,

whi ch inmpl enents the necessary protocol. Except for one instance
(CLOSEi ng connections of dead processes), the process operating the
UCC nodul e does not have special network privil eges.

Under the UCC protocol a "requestor" process which has directed the
creation of a "foreign" process maintains two full-duplex pseudo-
typewiter connections: one to the foreign |ogger, and one to the
created process. The duplex connection to the foreign |ogger is used
to identify the requestor process to the |logger, and after login to
return to the requestor process basic information concerning the
health of the created process. The duplex connection to the created
process is used for control comunication to it.

Mai ntaining two full-duplex connections avoi ds reconnection probl ens
bot h when the | ogger transfers comrunication to the created process
and when it needs to regain control. This is at the nodest expense
of requiring the requestor process to switch typewiter
conmuni cati ons between two sets of connections.

The way that comunication is established is essentially as foll ows:
the requestor process first reserves four of its sockets having

conti guous socket codes. Then it "signals" the UCC, specifying one
of these sockets. Fromthe "signal" the UCC knows which process is
calling, and by protocol, on which requestor socket pair the UCCis
to conmunicate with the requestor process, and which requestor socket
pair the created process is to use for its comunications. This is
specified belowin nore detail.

Establ i shing and Operating a Renote Process

The UCC at each HOST al ways keeps a send socket with user nunber = 0,
i nstance tag = 0 open (active and unconnected) as a "signal" socket,

and periodically checks for INNTs to this socket. Processes w shing
to create a process at this HOST nust first signal the UCC by issuing
an INIT to this socket.

[Page 14]

RFC 46 ARPA Net wor k Protocol Notes April 1970

The requesting process nust have four free sockets with contiguous
socket codes: <base_socket> (receive) through <base_socket +3>
(send). The high nunbered send/receive set of sockets is used for
typewiter comrunication with the foreign UCC, the | ow nunbered set
for typewiter communication with the created process.

1. The "requestor" process calls LISTEN twice to open the
<base_socket +2> and <base_socket +3> recei ve/ send pair over which it
will talk to the foreign UCC. Then it sends out a "signalling” INIT
call on <base_socket> to the UCC "signal" socket. The only thing
that the UCC does with this "signalling” INT call is to note down

t he socket nunber <base_socket> fromwhich it originated. The UCC

i medi ately rejects this request so as to keep its "signal" socket
open for other signals.

2. After receiving the expected REJECT on its initial INIT call to
the UCC s signal socket, the requestor process issues LISTENs for
<base_socket > and <base_socket+1>. (The created process will INIT
t hese sockets to establish control comunication with the requestor
process.) The requestor process then blocks by calling STATUS
<base_socket +2> .

3. The UCC INITs a free send/receive socket pair to the requestor’s
<base_socket +2> and <base_socket +3> on whi ch the requestor process is
presumably LI STENing. The requestor process has called STATUS
<base_socket +2> with bl ock option after LISTEN ng for the two
sockets, so that when the INIT fromthe foreign UCC reaches the
requestor process, STATUS returns with the INIT indication. The
requestor process verifies that the UCCis the process that is

calling, then it ACCEPTs the call. The requestor process then calls
STATUS <base_socket +3> and returns when the INIT for that socket
reaches it. It does a simlar verify and ACCEPT. (There is an

arbitrary choice as for which socket the requestor process first
calls STATUS.) Two way comrunication is established when the
request or process has ACCEPTed both INITs fromthe UCC. This
connection is naintained during the login ritual and throughout the
life of the created process. Should the requestor process fail to
respond properly within a limted anount of tine to the INITs of the
UCC, the UCC abandons the connection attenpt.

4. The requestor process must then performthe login ritual with the
UCC. (The initial protocol might standardize the login ritual.) |If
the logger is not satisfied and wishes to cut off the requestor, the
UCC nodul e CLOSEs both <base_socket +2> and <base_socket +3>, perhaps

after the | ogger has sent a suitable nessage.

[Page 15]

RFC 46 ARPA Net wor k Protocol Notes April 1970

5. If satisfied, the |logger creates a process for the user. The UCC
mai ntai ns direct conmmunication with the requestor, but this
connection is now used only to report basic information concerning
the created process.

6. The first task of a created process is to establish a dual
pseudo-typewiter control connection with its requestor process. The
created process INITs one of its send/receive socket pairs to the
requestor’s <base_socket > and <base_socket+1>. If both requests are
ACCEPTed, the created process sends an initial nessage over this
connection. Then it goes to conmand level, in which it awaits a
typewiter command nessage over the connection. |If the created
process is unable to establish duplex conmunication with the
requestor process, it should destroy itself. The UCC will either
CLOSE its own connections with the requestor or make arrangenents for
anot her process to be created.

7. When a created process is |ogged-out, the UCC uses a privil eged
entry to the NCP to CLOSE all connections between the dead process
and ot her processes, and to deactivate all open sockets of the dead
process. The UCC transnits a nmessage back to the requestor process,
then CLOSEs the dual connections between it and the requestor
process.

8. The INTERRUPT call has a standard "quit" meani ng when sent froma
requestor process to a created process over the requestor’s receive
socket <base_socket>. Al pending output fromthe created process is
aborted, and the it enters "comuand | evel"” where it awaits a conmand
over the typewiter connection to the requestor process. The
interrupted processing is resumable by issuing a "start" conmand to
the created process. (Note that the rule about pending output is
nore restrictive than that inplenmented by the INT NCP command.)

Thi s docunent was prepared through the use of the MILTICS "runoff"
command. A source file consisting of interm xed text and "runoff"
requests was created using the "ged" text editor. This file was
then conpiled by the "runoff" conmand to produce a finished copy.
The latest version of this docunent exists online in MILTICS in
the segnent

>udd>Mul ti cs>Meyer >net wor k_pr ot ocol . runof f

(END)

[Page 16]

RFC 46 ARPA Net wor k Protocol Notes April 1970

REQUESTOR FOREI GN
PRCCESS LOGGER

a. LISTEN to sockets
<base_socket +2> and
<base_socket +3> to be
connected to foreign | ogger

b. INIT <base_socket >
to "signal" socket of
foreign | ogger.

c. renenber <base_socket >
and REJECT connection
to signal socket.

d. LISTEN to sockets e. INIT a I ogger socket
<base_socket > and pair to the requestor’s
<base_socket 1> to be <base_socket +2> and
connected to the created process. <base_socket +3>.
/
<==::::::::::::::::::::::::/

f. ACCEPT connection
wi th sockets from
foreign | ogger.

PERFORM LOG N RI TUAL
CREATED
PROCESS
g. INIT any socket pair
to requestor’s
<base_socket > and
<base_socket +1>

h. ACCEPT connecti on
wi th sockets from created
pr ocess.

FIG 4 Establishing a Process at a Forei gn HOST

[This RFC was put into machi ne readable formfor entry]
[into the online RFC archives by Mles McCredie 11/99]

[Page 17]

