Net wor k Wor ki ng Group J. Mogul
Request for Comments: 2783 Compagq VRL
Cat egory: I nfornmational D MIls
Uni versity of Del aware

J. Brittenson

Sun

J. Stone

St anf ord

U Wndl

Uni ver si t aet Regensburg

March 2000

Pul se- Per-Second APl for UNI X-1ike Operating Systenms, Version 1.0
Status of this Meno

This meno provides information for the Internet conmmunity. |t does
not specify an Internet standard of any kind. Distribution of this
meno is unlimted.

Copyright Notice
Copyright (C) The Internet Society (2000). Al Rights Reserved.
Abstract

RFC 1589 descri bes a UNI X kernel inplenentation nodel for high-
precision time-keeping. This nodel is nmeant for use in conjunction
with the Network Tine Protocol (NTP, RFC 1305), or simlar tine
synchroni zati on protocols. One aspect of this nodel is an accurate
interface to the high-accuracy, one pul se-per-second (PPS) out put
typically available fromprecise tinme sources (such as a GPS or GOES
receiver). RFC 1589 did not define an APl for managi ng the PPS
facility, leaving inplenmentors wthout a portable neans for using PPS
sources. This docunent specifies such an API.

Mogul , et al. | nf or mat i onal [Page 1]

RFC 2783 Pul se- Per - Second API March 2000

Tabl e of Contents

=

Mogul , et al. | nf or mat i onal [Page 2]

LoIntroducti ON. 2
2 Data types for representing tinmestanps......................... 4
2.1 Resol UtioN. 4
2.2 Time scal e...... . 5
B AP 5
3.1 PPS abstracti On. 6
3.2 New data StrUCTUIES.t e e 7
3.3 Mude bit definitions. e 10
3.4 New fUNCLI ONS. e e e 12
3.4.1 New functions: obtaining PPS sources....................... 13
3.4.2 New functions: setting PPS parameters...................... 14
3.4.3 New functions: access to PPS timestanps.................... 16
3.4.4 New functions: disciplining the kernel tinmebase............ 18
3.5 Compliance rul es. 20
3.5, 1 FUNCLI ONS. .. e e e e 20
3.5.2 Mode Dbits. ... 20
3.6 EXaNpl @S, . . 21
4 Security Considerati ONS. 24
5 ACKNOW €dgemBNnt S.o 24
B Ref erenCes. 25
7 AUt hOrs’ AddreSSeS. . . oo 26
A. Extensions and related APIS. 27
A. 1 Extension: Parameters for the "echo" nechanism.............. 27
A. 2 Extension: Cbtaining information about external clocks....... 27
A. 3 Extension: Finding a PPS source.............uuiiinnnenn.. 28
B. Exanple inplenmentation: PPSDI SC Line discipline............... 29
B. 1 EXanpl e. .. 29
C Available inplementations. 30
Ful | Copyright Statement...... 31

nt roducti on

RFC 1589 [4] describes a nodel and programm ng interface for generic
operating system software that nanages the systemclock and timer
functions. The nodel provides inproved accuracy and stability for
nost workstations and servers using the Network Tinme Protocol (NTP)
[3] or simlar tine synchronization protocol. The nodel supports the

use of external timng sources, such as the precision pul se-per-
second (PPS) signals typically available fromprecise tine sources
(such as a GPS or GCES receiver).

However, RFC 1589 did not define an application programing interface

(APl') for the PPS facility. This docunent specifies such an
interface, for use with UNIX (or UNI X-I1ike) operating systens. Such
systens often conformto the "Single UN X Specification" [5],
someti mes known as POSI X

RFC 2783 Pul se- Per - Second API March 2000

One conveni ent nmeans to provide a PPS signal to a conmputer systemis
to connect that signal to a nodemcontrol pin on a serial-Iline
interface to the conputer. The Data Carrier Detect (DCD) pin is
frequently used for this purpose. Typically, the tine-code output of
the time source is transnitted to the conmputer over the sane serial
line. The conmputer detects a signal transition on the DCD pin,
usually by receiving an interrupt, and records a tinestanp as soon as
possi bl e.

Al t hough existing practice has focussed on the use of serial lines
and DCD transitions, PPS signals nmight also be delivered by other

ki nds of devices. The APl specified in this docunent does not
require the use of a serial line, although it nay be sonewhat biased
in that direction

The typical use of this facility is for the operating systemto
record ("capture") a high-resolution tinmestanp as soon as possible
after it detects a PPS signal transition (usually indicated by an
interrupt). This tinestanp can then be nade available, with |ess
stringent delay constraints, to tine-related software. The software
can conpare the captured tinmestanp to the received tinme-code to
accurately discover the offset between the systemclock and the
precise time source

The operating system may al so deliver the PPS event to a kernel
procedure, called the "in-kernel PPS consuner.” One exanple would be
the "hardpps()" procedure, described in RFC 1589, which is used to

di sci pline the kernel’s internal tinebase.

The APl specified in this docunent allows for one or nore signa
sources attached to a conputer systemto provide PPS inputs, at the
option of user-level software. User-level software may obtain
sighal -transition tinestanps for any of these PPS sources. User-

| evel software may optionally specify at nobst one of these PPS
sources to be used to discipline the systenis internal tinebase.

Al t hough the primary purpose of this APl is for capturing true

pul se- per-second events, the APl may al so be used for accurately

ti mestanpi ng events of other periods, or even aperiodic events, when
these can be expressed as signal transitions.

Thi s docunent does not define internal details of how the APl nust be
i npl erent ed, and does not specify constraints on the accuracy,
resolution, or latency of the PPS feature. However, the utility of
this feature is inversely proportional to the delay (and variance of
delay), and inplenmentors are encouraged to take this seriously.

Mogul , et al. I nf or mat i onal [Page 3]

RFC 2783 Pul se- Per - Second API March 2000

In principle, the rate of events to be captured, or the frequency of
the signals, can range fromonce per day (or less often) to severa

t housand per second. However, since in nost inplenentations the

ti mestanping function will be inplenented as a processor interrupt at
arelatively high priority, it is prudent to limt the rate of such
events. This may be done either by nechanisns in the hardware that
generates the signals, or by the operating system

2 Data types for representing timnestanps

Conput er systens use various representations of tinme. Because this
APl is concerned with the provision of high-accuracy, high-resolution
time information, the choice of representation is significant. (Here
we consider only binary representations, not hunman-format
representations.)

The two interesting questions are:
1. what is the resolution of the representation?
2. what tine scale is represented?

These questions often lead to contentious argunments. Since this API
is intended for use with NTP and POSI X-conpliant systens, however, we
can limt the choices to representations conpatible with existing NTP
and PCSI X practice, even if that practice is considered "wong" in
sone quarters.

2.1 Resol ution

In the NTP protocol, "tinestanps are represented as a 64-bit unsigned
fixed-poi nt nunmber, in seconds relative to Oh on 1 January 1900. The
integer part is in the first 32 bits and the fraction part in the
last 32 bits [...] The precision of this representation is about 200
pi coseconds" [3].

However, nost conputer systens cannot neasure time to this resolution
(this represents a clock rate of 5 GHz). The POSI X getti neof day()
function returns a "struct timeval" value, with a resolution of 1

m crosecond. The POSI X clock_gettinme() function returns a "struct

ti mespec" value, with a resolution of 1 nanosecond.

This APl uses an extensible representation, but defaults to the
"struct tinespec" representation.

Mogul , et al. I nf or mat i onal [Page 4]

RFC 2783 Pul se- Per - Second API March 2000

2.2 Tine scal e

Several different time scal es have been proposed for use in conputer
systens. UTC and TAlI are the two obvi ous candi dates.

Sone people would prefer the use of TAl, which is identical to UTC
except that it does not correct for |eap seconds. Their preference
for TAlI stens fromthe difficulty of conputing precise tine

di fferences when | eap seconds are invol ved, especially when using
times in the future (for which the exact nunber of |eap seconds is,
in general, unknowabl e).

However, POSI X and NTP both use UTC, albeit with different base
dates. G ven that support for TAI would, in general, require other
changes to the POSI X specification, this APl uses the POSI X base date
of 00:00 January 1, 1970 UTC, and confornms to the POSI X use of the
UTC tine scale.

3 APl
A PPS facility can be used in two different ways:

1. An application can obtain a tinmestanp, using the systenis
i nternal tinmebase, for the nbst recent PPS event.

2. The kernel may directly utilize PPS events to discipline its
i nternal tinmebase, thereby providing highly accurate tine to
all applications.

This APl supports both uses, individually or in conbination. The
timestanping feature may be used on any nunber of PPS sources

si mul taneously; the tinebase-disciplining feature nay be used with at
nost one PPS source.

Al t hough the proper inplenmentation of this APl requires support from
the kernel of a UNI X system this docunent defines the APl in terns
of a set of library routines. This gives the inplenmentor sone
freedomto divide the effort between kernel code and library code
(different divisions night be appropriate on nicrokernels and
nmonol i thic kernels, for exanple).

Mogul , et al. I nf or mat i onal [Page 5]

RFC 2783 Pul se- Per - Second API March 2000

3.1 PPS abstraction

A PPS signal consists of a series of pulses, each with an "asserted"
(logical true) phase, and a "clear" (logical false) phase. The two
phases may be of different |engths. The APl may capture an "assert

timestanp” at the nonment of the transition into the asserted phase,

and a "clear tinmestanp" at the nonent of the transition into the

cl ear phase.

The specific assignment of the | ogical values "true" and "fal se" with

specific voltages of a PPS signal, if applicable, is outside the
scope of this specification. However, these assignnments SHOULD be
consistent with applicable standards. |Inplenentors of PPS sources

SHOULD docunent these assignnents.

Rem nder to inplenentors of DCD based PPS support: TTL and RS-
232C (V. 24/V.28) interfaces both define the "true" state as the
one having the highest positive voltage. TTL defines a nom nal

absence of voltage as the "fal se" state, but RS-232C (V. 24/V.28)
defines the "false" state by the presence of a negative voltage.

The APl supports the direct provision of PPS events (and tinmestanps)
to an in-kernel PPS consumer. This could be the function called
"hardpps()", as described in RFC 1589 [4], but the API does not
require the kernel inplenmentation to use that function nane
internally. The current version of the APl supports at nost one in-
kernel PPS consuner, and does not provide a way to explicitly name
it. The inplenentation SHOULD i npose access controls on the use of
this feature.

The APl optionally supports an "echo" feature, in which events on the
i ncom ng PPS signal may be reflected through software, after the
capture of the corresponding tinestanp, to an output signal pin.

This feature may be used to di scover an upper bound on the actual
del ay between the edges of the PPS signal and the capture of the

ti mestanps; such information may be useful in precise calibration of
the system

The designhation of an output pin for the echo signal, and sense and
shape of the output transition, is outside the scope of this

speci fication, but SHOULD be docunented for each inplenentation. The
out put pin MAY al so undergo transitions at other tinmes besides those
caused by PPS input events.

Note: this allows an inplenentation of the echo feature to
generate an out put pul se per input pulse, or an output edge per

i nput pul se, or an output pul se per input edge. It also allows the
same signal pin to be used for several purposes sinultaneously.

Mogul , et al. I nf or mat i onal [Page 6]

RFC 2783 Pul se- Per - Second API March 2000

Al so, the API optionally provides an application with the ability to
specify an offset value to be applied to captured tinestanps. This
can be used to correct for cable and/or radi o-wave propagation

del ays, or to conpensate for systematic jitter in the externa
signal. The inplenmentati on SHOULD i npose access controls on the use
of this feature

3.2 New data structures
The data structure declarations and synbol definitions for this AP
will appear in the header file <sys/tinepps.h> The header file MJST
define all constants described in this specification, even if they
are not supported by the inplenmentation
The APl includes several inplenentation-specific types:
typedef ... pps_handle_t; /* represents a PPS source */

typedef unsigned ... pps_seq_t; /* sequence nunber */

The "pps_handle_t" type is an opaque scalar type used to represent a
PPS source within the API.

The "pps_seq_t" type is an unsigned integer data type of at |east 32
bits.

The precise declaration of the pps_handle_t and pps_seq_t types is
syst em dependent .

The APl inports the standard POSI X definition for this data type:

struct tinmespec {
time_t tv_sec; /* seconds */
| ong tv_nsec; /* nanoseconds */
1
The APl defines this structure as an internal (not "on the wire")
representation of the NTP "64-bit unsigned fixed-point" timestanp
format [3]:

typedef struct ntp_fp {

unsi gned i nt i nt egral
unsi gned i nt fractional
} ontp_fp_t;

The two fields in this structure may be declared as any unsigned
integral type, each of at least 32 bits.

Mogul , et al. I nf or mat i onal [Page 7]

RFC 2783 Pul se- Per - Second API March 2000

The APl defines this new union as an extensible type for representing
times:

typedef union pps_tinmeu {
struct tinmespec tspec;
ntp_fp_t nt pf p;
unsi gned | ong | ongpad] 3] ;
} pps_timeu_t;

Future revisions of this specification may add nore fields to this
uni on.

Note: adding a field to this union that is larger than
3*si zeof (1 ong) will break binary compatibility.

The APl defines these new data structures:

typedef struct {
pps_seq_t assert_sequence; /* assert event seq # */
pps_seq_t cl ear _sequence; /* clear event seq # */
pps_tineu_t assert _tu;
pps_tinmeu_t clear_tu;

i nt current _node; /* current node bits */
} pps_info_t;
#define assert _tinestanp assert _tu.tspec
#define clear_timestanp clear_tu.tspec

#define assert _tinestanp_ntpfp assert_tu.ntpfp
#define cl ear_tinmestanp_ntpfp clear_tu.ntpfp

typedef struct {
i nt api _version; /* APl version # */
i nt node; /* nmode bits */
pps_tineu_t assert_off _tu;
pps_tineu_t clear_off_tu;

} pps_parans_t;

#define assert _offset assert_off_tu.tspec

#define cl ear_of fset clear_off_tu.tspec
#define assert_offset_ntpfp assert_off_tu.ntpfp
#define clear_offset_ntpfp clear_off_tu.ntpfp
The "pps_info_t" type is returned on an inquiry to PPS source. It

contains the tinmestanps for the nost recent assert event, and the
nost recent clear event. The order in which these events were
actually received is defined by the tinetanps, not by any ot her

Mogul , et al. I nf or mat i onal [Page 8]

RFC 2783 Pul se- Per - Second API March 2000

aspect of the specification. Each tinestanp field represents the

val ue of the operating systenis internal tinebase when the

ti mest anped event occurred, or as close as possible to that tine
(with the optional addition of a specified offset). The current_node
field contains the value of the node bits (see section 3.3) at the
time of the nost recent transition was captured for this PPS source.
An application can use current_node to discover the format of the

ti mestanps returned.

The assert_sequence nunber increases once per captured assert
timestanp. |Its initial value is undefined. |If increnented past the
| argest value for the type, the next value is zero. The

cl ear _sequence nunber increases once per captured clear tinestanp.
Its initial value is undefined, and may be different fromthe initial
val ue of assert_sequence. |f increnmented past the |argest value for
the type, the next value is zero. Due to possible signal |oss or
excessi ve signal noise, the assert-sequence nunber and the clear-
sequence nunber night not always increase in step with each other.

Note that these sequence nunbers are nost useful in applications
where events other than PPS transitions are to be captured, which
nm ght be involved in a precision stopwatch application, for
exanple. In such cases, the sequence nunbers may be used to detect
overruns, where the application has m ssed one or nore events.
They may al so be used to detect an excessive event rate, or to
detect that an event has failed to occur between two calls to the
time_pps_fetch() function (defined later).

In order to obtain an uninterrupted series of sequence nunbers
(and hence of event timestanps), it nay be necessary to sanple the
pps_info_t values at a rate somewhat faster than the underlying
event rate. For exanple, an application interested in both assert
and clear tinestanps may need to sanple at |east tw ce per second.
Proper use of the sequence nunbers allows an application to

di scover if it has nissed any event tinestanps due to an

i nsufficient sanpling rate.

The pps_parans_t data type is used to discover and nodify paraneters
of a PPS source. The data type includes a node field, described in

section 3.3. It also includes an api _version field, a read-only
val ue giving the version of the API. Currently, the only defined
val ue is:

#define PPS APl _VERS 1 1

This field is present to enable binary conpatibility with future
versions of the API

Mogul , et al. I nf or mat i onal [Page 9]

RFC 2783 Pul se- Per - Second API March 2000

Note: the term"read-only" in this specification neans that an
application cannot nodify the relevant data item only the

i mpl ementation can nodify the value. The inplenentati on MJUST
ignore attenpts by the application to nodify a read-only field.

As an OPTIONAL feature of the API, the inplenmentati on MAY support
addi ng offsets to the tinestanps that are captured. (Values of type
"struct tinespec" can represent negative offsets.) The assert_offset
field of a pps_parans_t value specifies a value to be added to
generate a captured assert_tinestanp. The clear_offset of a
pps_parans_t value field specifies a value to be added to generate a
captured clear_timestanp. Since the offsets, if any, apply to al
users of a given PPS source, the inplenentati on SHOULD i npose access
controls on the use of this feature; for exanple, allowi ng only the
super-user to set the offset values. The default value for both

of fsets is zero.

3.3 Mode bit definitions
A set of npbde bits is associated with each PPS source.
The bits in the node field of the pps_paranms_t type are:

/* Devicel/inplenentation paraneters */

#defi ne PPS_CAPTUREASSERT 0x01
#defi ne PPS_CAPTURECLEAR 0x02
#defi ne PPS_CAPTUREBOTH 0x03
#defi ne PPS_OFFSETASSERT 0x10
#defi ne PPS_OFFSETCLEAR 0x20
#defi ne PPS_CANWAI T 0x100
#defi ne PPS_CANPOLL 0x200
/* Kernel actions */

#defi ne PPS_ECHOASSERT 0x40
#defi ne PPS_ECHOCLEAR 0x80
/[* Tinmestanp formats */

#define PPS_TSFMI_TSPEC 0x1000
#defi ne PPS_TSFMI_NTPFP 0x2000

These node bits are divided into three categories:

1. Devicel/inplenentation paraneters: These are paraneters either
of the device or of the inplementation. |If the inplenentation
all ows these to be changed, then these bits are read/wite for
users with sufficient privilege (such as the super-user), and

Mogul , et al. | nf or mat i onal [Page 10]

RFC 2783 Pul se- Per - Second API March 2000

read-only for other users. |If the inplenentation does not
all ow these bits to be changed, they are read-only.

2. Kernel actions: These bits specify certain kernel actions to
be taken on arrival of a signal. |[If the inplenentation
supports one of these actions, then the corresponding bit is
read/wite for users with sufficient privilege (such as the
super-user), and read-only for other users. |[If the
i npl eent ati on does not support the action, the correspondi ng
bit is always zero.

3. Tinestanp formats: These bits indicate the set of tinestanp
formats avail able for the device. They are always read-only.

In nore detail, the neanings of the Devicel/inplenmentation paraneter
node bits are:

PPS_CAPTUREASSERT
If this bit is set, the assert timestanp for the
associ ated PPS source will be captured.

PPS_CAPTURECLEAR
If this bit is set, the clear tinestanp for the
associ ated PPS source will be captured.

PPS_CAPTUREBOTH Defi ned as the uni on of PPS_CAPTUREASSERT and
PPS _CAPTURECLEAR, for conveni ence.

PPS_OFFSETASSERT
If set, the assert_offset value is added to the
current value of the operating system s interna
ti mebase in order to generate the captured
assert _timestanp.

PPS OFFSETCLEAR I f set, the clear_offset value is added to the
current value of the operating system s interna
ti mebase in order to generate the captured
cl ear _ti mest anp.

PPS CANVAI T If set, the application nay request that the
time_pps_fetch() function (see section 3.4.3) should
bl ock until the next tinmestanp arrives. Note: this
node bit is read-only.

PPS_CANPOLL This bit is reserved for future use. An application
SHOULD NOT depend on any functionality inplied either
by its presence or by its absence.

Mogul , et al. | nf or mat i onal [Page 11]

RFC 2783 Pul se- Per - Second API March 2000

I f neither PPS_CAPTUREASSERT nor PPS CAPTURECLEAR is set, no valid
timestanp will be available via the API

The neani ngs of the Kernel action node bits are:

PPS ECHOASSERT If set, after the capture of an assert tinestanp,
the inplenentation generates a signal transition as
rapi dly as possible on an output signal pin. This
MUST NOT affect the del ay between the PPS source’s
transition to the asserted phase and the capture of
the assert tinestanp.

PPS_ECHOCLEAR If set, after the capture of a clear tinestanp, the
i npl ementati on generates a signal transition as
rapi dly as possible on an output signal pin. This
MUST NOT affect the del ay between the PPS source’s
transition to the clear phase and the capture of the
cl ear tinestanp.

The tinmestanp formats are

PPS TSFMI_TSPEC Ti nestanps and offsets are represented as val ues of
type "struct tinespec". Al inplenentations MJST
support this fornmat, and this fornmat is the default
unl ess an application specifies otherw se.

PPS TSFMI_NTPFP Ti nestanps and offsets are represented as val ues of
type "ntp_fp_t", which corresponds to the NTP
"64-bit unsigned fixed-point" timestanp format [3].
Support for this format is OPTI ONAL.

OQther tinmestanp format bits may be defined as fields are added to the
"pps_tinmeu_t" union.

The operating systemmay inplenent all of these node bits, or just a
subset of them |If an attenpt is made to set an unsupported node
bit, the APl will return an error. |If an attenpt is nmade to nodify a
read-only node bit, the APl will return an error

3.4 New functions

In the description of functions that follows, we use the follow ng
function paraneters:

fil edes A file descriptor (type: int), for a serial line or
ot her source of PPS events.

Mogul , et al. | nf or mat i onal [Page 12]

RFC 2783 Pul se- Per - Second API March 2000

ppshandl e A variable of type "pps_handle_t", as defined in
section 3. 2.

ppsi nf obuf A record of type "

section 3. 2.

pps_info_t", as defined in

ppspar ans A record of type "pps_parans_t", as defined in
section 3. 2.

t sf or mat An integer with exactly one of the tinestanp format
bits set.

3.4.1 New functions: obtaining PPS sources

The APl includes functions to create and destroy PPS source
"handl es".

SYNOPSI S

int tine_pps_create(int filedes, pps_handle_t *handl e);
int tine_pps_destroy(pps_handl e_t handl e);

DESCRI PTI ON

Al'l of the other functions in the PPS APl operate on PPS handl es
(type: pps_handle_t). The tine_pps_create() is used to convert an
al ready-open UNI X file descriptor, for an appropriate special file,
into a PPS handl e.

The definition of what special files are appropriate for use with the
PPS APl is outside the scope of this specification, and may vary
based on both operating systeminpl enentation, and | ocal system
configuration. One typical case is a serial line, whose DCD pin is
connected to a source of PPS events.

The nmode in which the UNI X file descriptor was originally opened
af fects what operations are allowed on the PPS handle. The

ti me_pps_setparans() and tinme_pps_kchind() functions (see sections
3.4.2 and 3.4.4) SHOULD be prohibited by the inplenentation if the
descriptor is open only for reading (O _RDONLY)

Not e: operations on a descriptor opened with an inappropriate node
m ght fail with EBADF

The time_pps_destroy() function nakes the PPS handl e unusabl e, and
frees any storage that m ght have been allocated for it. |t does not
close the associated file descriptor, nor does it change any of the
paraneter settings for the PPS source.

Mogul , et al. | nf or mat i onal [Page 13]

RFC 2783 Pul se- Per - Second API March 2000

Note: If this APl is adapted to an operating systemthat does not
foll ow UNI X conventions for representing an accessi bl e PPS source
as an integer file descriptor, the tinme_pps_create() function may
take different paraneters fromthose shown here.

RETURN VALUES

On successful conpletion, the time_pps_create() function returns O.
QO herwise, a value of -1 is returned and errno is set to indicate the
error.

If called with a valid handl e paraneter, the tine_pps_destroy()
function returns 0. Qherwise, it returns -1

ERRORS

If the tinme_pps_create() function fails, errno may be set to one of
the foll ow ng val ues:

[EBADF] The filedes paraneter is not a valid file descriptor

[EOPNOTSUPP] The use of the PPS APl is not supported for the file
descri ptor.

[EPERM The process’s effective user |ID does not have the
required privileges to use the PPS AP

3.4.2 New functions: setting PPS paraneters

The APl includes several functions use to set or obtain the
paraneters of a PPS source.

SYNOPSI S

int tinme_pps_setparans(pps_handl e_t handl e,
const pps_parans_t *ppsparans);
int tine_pps_getparans(pps_handl e_t handl e,
pps_parans_t *ppsparans);
int tinme_pps_getcap(pps_handle_t handle, int *node);

DESCRI PTI ON

A suitably privileged application my use time_pps_setparans() to set
the paraneters (node bits and tinestanp offsets) for a PPS source.
The pps_parans_t type is defined in section 3.2; node bits are
defined in section 3.3. An application nmay use tine_pps_get parans()
to discover the current settings of the PPS paranmeters. An
application that needs to change only a subset of the existing

Mogul , et al. | nf or mat i onal [Page 14]

RFC 2783 Pul se- Per - Second API March 2000

paraneters nmust first call tine_pps_getparans() to obtain the current
par aneter val ues, then set the new val ues using time_pps_setparans().

Note: a call to time_pps_setparans() replaces the current val ues
of all nmode bits with those specified via the ppsparans argunent,
except those bits whose state cannot be changed. Bits night be
read-only due to access controls, or because they are fixed by the
i mpl emrent ati on.

The tinmestanp format of the assert_offset and clear_offset fields is
defined by the node field. That is, on a call to

ti me_pps_setparans(), the kernel interprets the supplied offset

val ues using the tinmestanp format given in the node field of the
ppsparanms argunent. |If the requested tinestanp format is not
supported, the time_pps_setparans() function has no effect and
returns an error value. On a call to tine_pps_getparans(), the
kernel provides the timestanp format of the offsets by setting one of
the timestanp format bits in the node field.

Note: an application that uses tinme_pps_getparans() to read the
current offset val ues cannot specify which fornmat is used. The

i mpl ementati on SHOULD return the offsets using the sane tinmestanp
format as was used when the offsets were set.

An application wishing to discover which node bits it may set, wth
its current effective user ID, may call tinme_pps_getcap(). This
function returns the set of node bits that nay be set by the
application, wi thout generating an El NVAL or EPERM error, for the
specified PPS source. It does not return the current values for the
node bits. A call to time_pps_getcap() returns the node bits
corresponding to all supported tinestanp fornats.

The time_pps_getcap() function MAY ignore the node in which the
associated UNI X fil e descriptor was opened, so the application mn ght
still receive an EBADF error on a call to time_pps_setparans(), even
if tinme_pps_getcap() says that the chosen node bits are all owed.

The node bits returned by tine_pps_getcap() for distinct PPS handl es
may differ, reflecting the specific capabilities of the underlying
har dwar e connection to the PPS source, or of the source itself.

RETURN VALUES
On successful conpletion, the tinme_pps_setparans(),
tine_pps_getparans(), and tinme_pps_getcap() functions return O.

O herwise, a value of -1 is returned and errno is set to indicate the
error.

Mogul , et al. | nf or mat i onal [Page 15]

RFC 2783 Pul se- Per - Second API March 2000

ERRORS

If the tine_pps_setparans(), time_pps_getparans(), or
time_pps_getcap() function fails, errno may be set to one of the
foll ow ng val ues:

[EBADF] The handl e paraneter is not associated with a valid
file descriptor, or the descriptor is not open for
writing.

[EFAULT] A paraneter points to an invalid address.

[EOPNOT SUPP] The use of the PPS APl is not supported for the

associated file descriptor.

[EI NVAL] The operating system does not support all of the
requested node bits.

[EPERM The process’s effective user |ID does not have the
required privileges to use the PPS API, or to set the
gi ven node bits.

3.4.3 New functions: access to PPS tinestanps

The APl includes one function that gives applications access to PPS
timestanps. As an inplenentation option, the application nay request
the APl to block until the next timestanp is captured. (The APl does
not directly support the use of the select() or poll() systemcalls
to wait for PPS events.)

SYNOPSI S

int tinme_pps_fetch(pps_handl e_t handl e,
const int tsformat,
pps_i nfo_t *ppsi nfobuf,
const struct timespec *tineout);

DESCRI PTI ON

An application may use tinme_pps_fetch() to obtain the nost recent
ti mestanps captured for the PPS source specified by the handl e
paraneter. The tsformat paraneter specifies the desired tinestanp
format; if the requested tinmestanp format is not supported, the cal
fails and returns an error value. The application MJST specify
exactly one tinestanp fornat.

Mogul , et al. | nf or mat i onal [Page 16]

RFC 2783 Pul se- Per - Second API March 2000

This function blocks until either a tinmestanp is captured fromthe
PPS source, or until the specified tinmeout duration has expired. |If
the tinmeout parameter is a NULL pointer, the function sinply bl ocks
until a tinestanmp is captured. |If the timeout paraneter specifies a
del ay of zero, the function returns inmedi ately.

Support for bl ocking behavior is an inplenentation option. |If the
PPS CANVAI T node bit is clear, and the timeout paraneter is either
NULL or points to a non-zero value, the function returns an
EOPNOTSUPP error. An application can discover whether the feature is
i npl emrented by using tine_pps_getcap() to see if the PPS_CANVAI T node
bit is set.

The result is stored in the ppsinfobuf paraneter, whose fields are
defined in section 3.2. If the function returns as the result of a
timeout or error, the contents of the ppsinfobuf are undefined.

If this function is invoked before the system has captured a
timestanp for the signal source, the ppsinfobuf returned will have
its timestanp fields set to the tine format’s base date (e.g., for
PPS TSFMI_TSPEC, both the tv_sec and tv_nsec fields will be zero).
RETURN VALUES

On successful conpletion, the time_pps_fetch() function returns O.

O herwise, a value of -1 is returned and errno is set to indicate the
error.

ERRCRS

If the tinme_pps_fetch() function fails, errno may be set to one of
the follow ng val ues:

[EBADF] The handl e paraneter is not associated with a valid
file descriptor.

[EFAULT] A paraneter points to an invalid address.

[EI NTR] A signal was delivered before the tine [imt
specified by the timeout paraneter expired and before
a tinmestanp has been captured.

[EI NVAL] The requested tinmestanp format is not supported.

[EOPNOT SUPP] The use of the PPS APl is not supported for the
associated file descriptor.

[ETI MEDOUT] The timeout duration has expired.

Mogul , et al. | nf or mat i onal [Page 17]

RFC 2783 Pul se- Per - Second API March 2000

3.4.4 New functions: disciplining the kernel tinebase

The APl includes one OPTIONAL function to specify if and how a PPS
source is provided to a kernel consuner of PPS events, such as the
code used to discipline the operating systemis internal tinebase.

SYNOPSI S

int tinme_pps_kcbi nd(pps_handl e_t handl e,
const int kernel _consuner,
const int edge,
const int tsformat);
DESCRI PTI ON

An application with appropriate privileges may use tinme_pps_kchi nd()
to bind a kernel consunmer to the PPS source specified by the handl e.

The kernel consuner is identified by the kernel _consunmer paraneter
In the current version of the API, the possible values for this
paraneter are:

#def i ne PPS_KC_HARDPPS
#defi ne PPS_KC_HARDPPS PLL
#defi ne PPS_KC_HARDPPS FLL

N, O

with these neanings:
PPS_KC_HARDPPS The kernel’s hardpps() function (or equivalent).
PPS_KC_HARDPPS_PLL
A variant of hardpps() constrained to use a
phase-| ocked | oop.
PPS_KC_HARDPPS_FLL
A variant of hardpps() constrained to use a
frequency-1 ocked | oop
| mpl enentati on of any or all of these values is OPTI ONAL.

The edge paraneter indicates which edge of the PPS signal causes a

timestanp to be delivered to the kernel consumer. It may have the
val ue PPS_CAPTUREASSERT, PPS_ CAPTURECLEAR, or PPS_ CAPTUREBOTH,
dependi ng on particular characteristics of the PPS source. It may

al so be zero, which renobves any bindi ng between the PPS source and
t he kernel consunmer.

Mogul , et al. | nf or mat i onal [Page 18]

RFC 2783 Pul se- Per - Second API March 2000

The tsformat paraneter specifies the format for the tinestanps
delivered to the kernel consuner. |If this value is zero, the

i npl emrent ati on MAY choose the appropriate format, or return EI NVAL.
The i npl enentation MAY ignore a non-zero value for this paraneter.

The binding created by this call persists until it is changed by a
subsequent call specifying the sane kernel _consuner. In particular,
a subsequent call to time_pps_destroy() for the specified handl e does
not affect the binding.

The binding is independent of any prior or subsequent changes to the
PPS CAPTUREASSERT and PPS_CAPTURECLEAR node bits for the device.
However, if either the edge or the tsformat paraneter val ues are

i nconsistent with the capabilities of the PPS source, an error is
returned. The inplenmentation MAY also return an error if the
tsformat value is unsupported for time_pps_kcbind(), even if it is
supported for other uses of the API.

The operating system may enforce two restrictions on the bindings
created by tinme_pps_kcbind():

1. the kernel MAY return an error if an attenpt is nmade to bind a
kernel consuner to nore than one PPS source a tine.

2. the kernel MAY restrict the ability to set bindings to
processes with sufficient privileges to nodify the system s
internal tinmebase. (On UNI X systens, such nodification is
normal |y done using settineofday() and/or adjtime(), and is
restricted to users with superuser privilege.)

Warning: If this feature is configured for a PPS source that does
not have an accurate 1-pul se-per-second signal, or is otherw se

i nappropriately configured, use of this feature may result in
seriously incorrect tinekeeping for the entire system For best
results, the 1-PPS signal shoul d have nuch better frequency
stability than the systenis internal clock source (usually a
crystal -controlled oscillator), and should have jitter (variation
ininterarrival time) nmuch |l ess than the systenis clock-tick

i nterval

See RFC 1589 [4] for nore information about how the systenis tinebase
may be disciplined using a PPS signal.

RETURN VALUES
On successful conpletion, the time_pps_kcbind() function returns O.

O herwise, a value of -1 is returned and errno is set to indicate the
error.

Mogul , et al. | nf or mat i onal [Page 19]

RFC 2783 Pul se- Per - Second API March 2000

ERRORS

If the tinme_pps_kcbind() function fails, errno may be set to one of
the foll ow ng val ues:

[EBADF] The handl e paraneter is not associated with a valid
file descriptor, or the descriptor is not open for
writing.

[EFAULT] A paraneter points to an invalid address.

[EI NVAL] The requested tinmestanp format is not supported.

[EOPNOT SUPP] The use of the PPS APl is not supported for the

associated file descriptor, or this OPTI ONAL
function is not supported.

[EPERM The process’s effective user |ID does not have the
required privileges to set the binding.

3.5 Conmpliance rules

The key words "MJST", "MJST NOT", "REQU RED',"SHOULD', SHOULD NOT",
"MAY", and "OPTIONAL" in this docunment are to be interpreted as
described in RFC 2119 [1].

Sone features of this specification are OPTI ONAL, but others are
REQUI RED.

3.5.1 Functions
An inplementati on MIST provi de these functions:

- time_pps_create()

- time_pps_destroy()

- time_pps_setparans()
- time_pps_getparans()
- time_pps_getcap()

- time_pps_fetch()

An i nmplenmentati on MJST provide this function, but it may be
i npl emrented as a function that always return an EOPNOTSUPP error
possi bly on a per-source basis:

- time_pps_kchind()

Mogul , et al. | nf or mat i onal [Page 20]

RFC 2783 Pul se- Per - Second API March 2000

3.5.2 Mode bits

An i npl ementati on MJST support at |east one of these node bits for
each PPS source:

- PPS_CAPTUREASSERT
- PPS_CAPTURECLEAR

and MAY support both of them If an inplenentation supports both of
these bits for a PPS source, it SHOULD all ow themto be set
si mul t aneousl y.

An i nmpl enmentati on MJST support this tinmestanp fornmat:
- PPS_TSFMI_TSPEC
An i npl ementati on MAY support these node bits:

- PPS_ECHOASSERT
- PPS_ECHOCLEAR

- PPS_OFFSETASSERT
- PPS_OFFSETCLEAR

An i nmpl enmentati on MAY support this tinmestanp fornmat:
- PPS_TSFMI_NTPFP
3.6 Exanpl es
A very sinple use of this APl m ght be:

int fd;

pps_handl e_t handl e;
pps_parans_t parans;
pps_i nfo_t infobuf;
struct tinmespec tineout;

/* QOpen a file descriptor and enable PPS on rising edges */
fd = open(PPSfil ename, O RDWR, 0);
ti me_pps_create(fd, &handle);
ti me_pps_get parans(handl e, ¶ns);
if ((params. nbde & PPS_CAPTUREASSERT) == 0)
fprintf(stderr, "% cannot currently CAPTUREASSERT\ n",
PPSfi | enane) ;
exit(1);

/* create a zero-val ued tinmeout */

Mogul , et al. | nf or mat i onal [Page 21]

RFC 2783 Pul se- Per - Second API March 2000

ti meout.tv_sec = O;
timeout.tv_nsec =

/* loop, printing the nobst recent tinestanp every second or so */
while (1) {
sl eep(1);
ti me_pps_fetch(handl e, PPS_TSFMI_TSPEC, &i nfobuf, &tineout);
printf("Assert tinestanp: %l.%99d, sequence: % d\n"
i nf obuf . assert _tinestanp.tv_sec,
i nf obuf . assert _tinestanp.tv_nsec,
i nf obuf . assert_sequence);

}

Note that this exanple onmits nost of the error-checking that woul d be
expected in a reliable program

Also note that, on a systemthat supports PPS CANWAI T, the function
of these lines:

sl eep(1);
ti me_pps_fetch(handl e, PPS TSFMI_TSPEC, & nfobuf, &timeout);

m ght be nore reliably acconplished using:

timeout.tv_sec = 100;
timeout.tv_nsec = O;
ti me_pps_fetch(handl e, PPS TSFMI_TSPEC, & nfobuf, &tinmeout);

The (arbitrary) tinmeout value is used to protect against the
possibility that another application mght disable PPS tinestanps, or
that the hardware generating the tinestanps might fail

A slightly nore el aborate use of this APl nmight be:

int fd;

pps_handl e_t handl e;
pps_parans_t par ans;
pps_i nfo_t infobuf;

i nt avail _node;

struct tinmespec tineout;

/* Open a file descriptor */
fd = open(PPSfil ename, O RDWR, 0);
time_pps_create(fd, &handle);

/*
* Find out what features are supported
*/

Mogul , et al. | nf or mat i onal [Page 22]

RFC 2783 Pul se- Per - Second API

ti me_pps_getcap(handl e, &avail _node);
if ((avail _node & PPS_CAPTUREASSERT) == 0) {

March 2000

fprintf(stderr, "% cannot CAPTUREASSERT\n", PPSfil enane);

exit(1);

}
if ((avail_node & PPS_OFFSETASSERT) == 0)

fprintf(stderr, "% cannot OFFSETASSERT\ n", PPSfilenane);

exit(1);

/*
* Capture assert tinestanps, and
* conpensate for a 675 nsec propagation del ay
*/

ti me_pps_get parans(handl e, ¶ns);

parans. assert_offset.tv_sec = 0;

parans. assert_offset.tv_nsec = 675;

par ans. node | = PPS_CAPTUREASSERT | PPS_OFFSETASSERT,;
ti me_pps_set parans(handl e, ¶ns);

/* create a zero-val ued tineout */
ti meout.tv_sec = O;
timeout.tv_nsec = O;

/* loop, printing the nobst recent tinestanp every second or so */

while (1) {
if (avail _node & PPS_CANVAIT) {

ti me_pps_fetch(handl e, PPS_TSFMI_TSPEC, &i nfobuf, NULL);

/* waits for the next event */
} else {
sl eep(1);

ti me_pps_fetch(handl e, PPS_TSFMI_TSPEC, &i nfobuf,

ti meout);

}

printf("Assert tinestanp: %l.%99d, sequence: % d\n"
i nf obuf . assert _tinestanp.tv_sec,
i nf obuf . assert _tinestanp.tv_nsec,
i nf obuf . assert_sequence);

}

Agai n, nost of the necessary error-checking has been onitted from

thi s exanpl e.

Mogul , et al. I nf or mat i onal

[Page 23]

RFC 2783 Pul se- Per - Second API March 2000

4 Security Considerations
This APl gives applications three capabilities:
- Causing the systemto capture tinmestanps on certain events.
- ntaining tinestanps for certain events.
- Affecting the systenmis internal tinebase.

The first capability should not affect security directly, but m ght
cause a slight increase in interrupt |atency and interrupt-handling
over head.

The second capability night be useful in inplenmenting certain kinds
of covert conmunication channel s.

I n nost cases, neither of these first two issues is a significant
security threat, because the traditional UNIX file protection
facility nmay be used to to limt access to the rel evant special
files. Provision of the PPS APl adds m nimal additional risk.

The final capability is reserved to highly privileged users. In UN X
systens, this neans those with superuser privilege. Such users can
evade protections based on file pernissions; however, such users can
i n general cause unbounded havoc, and can set the internal tinebase
(and its rate of change), so this APl creates no new vul nerabilities.

5 Acknow edgenent s

The APl in this docunent draws sone of its inspiration fromthe LBL
"ppscl ock” distribution [2], originally inplenmented in 1993 by Steve
McCanne, Craig Leres, and Van Jacobson. W also thank Poul - Henni ng
Kanp, Craig Leres, Judah Levine, and Harlan Stenn for hel pful
comments they contributed during the drafting of this docunent.

Mogul , et al. | nf or mat i onal [Page 24]

RFC 2783 Pul se- Per - Second API March 2000

6 Ref erences

1

Mogul ,

Bradner, S., "Key words for use in RFCs to Indicate Requirement
Level s", BCP 14, RFC 2119, March 1997

Steve McCanne, Craig Leres, and Van Jacobson. PPSCLOCK.
ftp://ftp.ee.lbl.gov/ppsclock.tar. Z.

MIls, D, "Network Tinme Protocol (Version 3): Specification
| mpl enent ati on and Anal ysis", RFC 1305, March 1992.

MIlls, D., "A Kernel Mdel for Precision Tinmekeeping", RFC 1589,
Mar ch, 1994.

The Open Group. The Single UNI X Specification, Version 2 - 6 Vol

Set for UNI X 98. Docunent nunber T912, The Open G oup, February,
1997.

et al. | nf or mat i onal [Page 25]

RFC 2783 Pul se- Per - Second API March 2000

7 Aut hors’ Addresses

Jeffrey C. Mogul

Western Research Laboratory

Conpaq Conputer Corporation

250 University Avenue

Palo Alto, California, 94305, U S A

Phone: 1 650 617 3304 (enmil preferred)
EMai | : nmogul @w | . dec. com

David L. MIls

El ectrical and Conputer Engi neering Departnent
Uni versity of Del aware

Newar k, DE 19716

Phone: (302) 831-8247
EMail: m |l s@idel . edu

Jan Brittenson

Sun M crosystens, Inc.

901 San Antonio Rd M S MPK17-202
Pal o Alto, CA 94303

Emai | : Jan. Brittenson@ng. Sun. COM

Jonat han St one

Stanford Distributed Systems G oup
St anford, CA 94305

Phone: (650) 723-2513

EMai | : j onat han@lsg. st anf ord. edu
Urich Wndl

Uni versi taet Regensburg, Klinikum

EMail: ulrich.windl @z.uni-regenshburg. de

Mogul , et al. | nf or mat i onal [Page 26]

RFC 2783 Pul se- Per - Second API March 2000

A. Extensions and rel ated APl s

The APl specified in the main body of this docunent could be nore
useful with the provision of several extensions or conpani on APIs.

At present, the interfaces listed in this appendi x are not part of
the formal specification in this docunent.

A.1 Extension: Paraneters for the "echo" nechani sm

The "echo" mechani sm described in the body of this specification
| eaves nost of the details to the inplenentor, especially the
desi gnati on of one or nore output pins.

It might be useful to extend this APl to provide either or both of
t hese features:

- A neans by which the application can discover which out put
pin is echoing the input pin.

- A nmeans by which the application can sel ect which out put
pin is echoing the input pin.

A. 2 Extension: Obtaining information about external clocks

The PPS APl may be useful with a wide variety of reference cl ocks,
connected via several different interface technol ogies (including
serial lines, parallel interfaces, and bus-level interfaces). These
reference cl ocks can have many features and paraneters, some of which
m ght not even have been invented yet.

W believe that it would be useful to have a mechani sm by which an
application can discover arbitrary features and paraneters of a
reference clock. These m ght include:

- O ock manufacturer, nodel nunber, and revision |eve
- Whether the clock is synchronized to an absol ute standard
- For synchronlzed cl ocks,
The specific standard
* The accuracy of the standard
* The path used (direct connection, shortwave, |ongwave,
satellite, etc.)
* The distance (offset) and variability of this path

Mogul , et al. | nf or mat i onal [Page 27]

RFC 2783 Pul se- Per - Second API March 2000

- For PPS sources,
* The pul se rate
* The pul se shape
* Which edge of the pulse corresponds to the epoch

- The tine representation format

This information m ght best be provided by an APl anal ogous to the
standard "curses" API, with a database anal ogous to the standard
"term nfo" database. That is, a "clockinfo" database would contain a
set of (attribute, value) pairs for each type of clock, and the API
woul d provide a nmeans to query this database.

Addi tional nechani sms would allow an application to discover the
clock or clocks connected to the Iocal system and to discover the
clockinfo type of a specific clock device.

A. 3 Extension: Finding a PPS source

Al t hough the cl ocki nfo database described in section A 2, together
with the discover mechani sns described there, would all ow an
application to discover the PPS source (or sources) connected to a
system it mght be nore conpl ex than necessary.

A sinpler approach would be to support a single function that
provides the identity of one or nore PPS sources.

For example, the function m ght be declared as

int time_pps_findsource(int index,
char *path, int pathlen
char *idstring, int idlen);

The index argument inplicitly sets up an ordering on the PPS sources
attached to the system An application would use this function to

i nqui re about the Nth source. The function would return -1 if no
such source exists; otherwise, it would return 0, and woul d pl ace the
pat hname of the associated special file in the path argunment. It
woul d al so place an identification string in the idstring argunent.
The identification string could include the clock nake, nodel,
version, etc., which could then be used by the application to contro
its behavior.

This function mght sinply read the Nth line froma sinple database,
containing lines such as:

/dev/tty00 "TrueTi me 468-DC'
/ dev/ ppsl "Honmebr ew rubi di um frequency standard"”

Mogul , et al. | nf or mat i onal [Page 28]

RFC 2783 Pul se- Per - Second API March 2000

all owi ng the system adm ni strator to describe the configuration of
PPS sour ces.

B. Exanpl e inplenmentation: PPSDI SC Line discipline

One possible inplenentation of the PPS API m ght be to define a new
"l'ine discipline” and then map the APl onto a set of ioctl()
commands. Here we sketch such an inplenentation; note that this is
not part of the specification of the API, and applications shoul d not
expect this lowlevel interface to be avail abl e.

In this approach, the set of line disciplines is augnmented wi th one
new | ine discipline, PPSDISC. This discipline will act exactly the
same as the TTYDI SC di scipline, except for its handling of nodem DCD

interrupts.
Once the TIOCSETD ioctl () has been used to select this line
di sci pline, PPS-related operations on the serial |ine may be invoked
using new ioctl () commands. For exanple (val ues used only for
illustration):
#def i ne PPSFETCH ITOR("t’, 75, pps_info_t)
#defi ne PPSSETPARAM TON't’, 76, pps_paranms_t)
#defi ne PPSGETPARAM TOR('t’, 77, pps_paranms_t)
#defi ne PPSGETCAP ITOR('t', 78, int)
B.1 Exanpl e
A typical use mght be:
int |disc = PPSDI SC;
pps_parans_t parans;
pps_info_t infobuf;
ioctl (fd, TIOCSETD, &l disc); /* set discipline */

/*
* Check the capabilities of this PPS source to see
* if it supports what we need.
*/
ioctl (fd, PPSGETCAP, ¶ns);
if ((params.node & PPS _CAPTUREASSERT) == 0) {
fprintf(stderr, "PPS source is not suitable\n");
exit(1);

/*
* Set this line to timestanp on a rising-edge interrupt

Mogul , et al. | nf or mat i onal [Page 29]

RFC 2783 Pul se- Per - Second API March 2000

*/

ioctl (fd, PPSGETPARAMS, ¶ns);
par ans. node | = PPS_CAPTUREASSERT;
ioctl (fd, PPSSETPARAMS, ¶ns);

sl eep(2); [* allowtine for the PPS pul se to happen */

/* obtain nobst recent tinestanp and sequence # for this line */
ioctl (fd, PPSFETCH, & nfobuf);

Again, this exanple inprudently onmits any error-checking.

C. Avail abl e inplenentations
Several avail able inplenmentations of this APl are listed at
<http://ww. ntp.org/ ppsapi/PPSI npList.htnl > Note that not all of

these i npl enentations correspond to the current version of the
speci ficati on.

Mogul , et al. I nf or mat i onal [Page 30]

RFC 2783 Pul se- Per - Second API March 2000

Ful I Copyright Statenent
Copyright (C) The Internet Society (2000). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
ot hers, and derivative works that comment on or otherw se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng I nternet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into |Ianguages other than
Engli sh.

The limted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknow edgenent

Fundi ng for the RFC Editor function is currently provided by the
I nternet Society.

Mogul , et al. | nf or mat i onal [Page 31]

