Net wor k Wor ki ng Group Bob Anderson

Request for Coments: 138 Rand
Nl C 6715 Vint Cerf
UCLA

Eric Harslem
John Heaf ner
Rand

Ji m Madden

U of Illinois
Bob Metcal fe
MT

Ari e Shoshani
SDC

JimWite
UCSB

Davi d Wod
Mtre

28 April 1971

STATUS REPORT ON PROPOSED DATA RECONFI GURATI ON SERVI CE

CONTENTS
I INTRODUCTI ON . ..o e e e 2
Purpose of this RFC 2
Motivation 2
1. OVERVI EW OF DATA RECONFI GURATI ON SERVICE 3
El enents of Data Reconfiguration Service 3
Conceptual Network Connections 3
Connection Protocols and Message Formats 4
Exanpl e Connection Configurations 6
1. THE FORM MACHINE i 7
| nput/ Qut put Streamand Fornms 7
Form Machine BNF Syntax 7
Alternate Specification of Form Machi ne Syntax 8
FOrmB .. e e 9
RUl €S .. 10
T M B e 10
TermFormat 1 11
TermFormat 2 11
TermFormat 3 13
TermFormat 4 13
Application of a Term...................... 14

Ander son, et al. [Page 1]

RFC 138 Dat a Reconfiguration Service April 1971

Restrictions and Interpretations of

Term Functions 14

Termand Rule Sequencing 16

V. EXANMPLES 16
Remarks 16
Field Insertion 17
Deletion e 17
Variable Length Records 17
String Length Conputation 18
Transposition 18

Char acter Packing and Unpacking 18

V. PROPCSED USES OF DATA RECONFI GURATI ON SERVI CE 19

VI. I MPLEMENTATION PLANS i 20
Appendi X A ... 21
Note 1 to the DRS Working Goup 21
Note 2 to the DRS Working Goup 22

. | NTRODUCTI ON

PURPOSE OF THI S RFC

The purpose of this RFCis to describe, in part, a proposed Network
experinment and to solicit coments on any aspect of the experinent.
The experinent involves a software nmechanismto reformat Network data
streans. The nechani sm can be adapted to numerous NetworKk
application prograns. W hope that the results of the experinent

will lead to a further standard service that enbodi es the principles
described in this RFC W would |ike comments on the
appropriateness of this work as a Network experinent and al so
comments on particular Network data reformatti ng needs that coul d not
easily be acconplished using these techniques.

MOT| VATI ON

Application prograns require specific data I/O formats yet the
formats are different fromprogramto program W take the position
that the Network shoul d adapt to the individual programrequiremnments
rat her than changi ng each programto conply with a standard. This
position doesn’t preclude the use of standards that describe the
formats of regul ar nessage contents; it is nmerely an interpretation
of a standard as being a desirable node of operation but not a
necessary one.

Ander son, et al. [Page 2]

RFC 138 Dat a Reconfiguration Service April 1971

In addition to differing programrequirenments, a format m smatch
probl em occurs where users wish to enploy many different Kkinds of
consoles to attach to a single service program It is desirable to
have the Network adapt to individual console configurations rather
than requiring uni que software packages for each consol e
transformation.

One approach to providing adaptation is for those sites with
substantial conputing power to offer a data reconfiguration service;
a proposed exanple of such a service is described here.

The envi si oned nodus operandi of the service is that an applications
progranmer defines forns_ that describe data reconfigurations. The
service stores the forns by nanme. At a later tine, a user (perhaps a
non- progranmer) enpl oys the service to acconplish a particul ar
transformati on of a Network data stream sinply by calling the form
by nane.

W have attenpted to provide a notation tailored to sone specifically
needed i nstances of data reformatting while keeping the notation and
its underlying inplenentation within sonme utility range that is
bounded on the | ower end by a notation expressive enough to make the
experinmental service useful, and that is bounded on the upper end by
a notation short of a general purpose programm ng | anguage.

1. OVERVI EW OF THE DATA RECONFI GURATI ON SERVI CE
ELEMENTS OF THE DATA RECONFI GURATI ON SERVI CE

An inplenmentation of the Data Reconfiguration Service (DRS) includes
nodul es for connection protocols, a handler of sone requests that can
be made of the service, a conpiler and/or interpreter (called the
Form Machi ne) to act on those requests, and a file storage nodule for
saving and retrieving definitions of data reconfigurations (forns).
Thi s section highlights connection protocols and requests. The next
section covers the Form Machi ne | anguage in sonme detail. File
storage is not described in this docunment because it is transparent
to the use of the service and its inplenentation is different at each
DRS host .

CONCEPTUAL NETWORK CONNECTI ONS

There are three conceptual Network connections to the DRS, see Fig.
1

1) The control connection (CC) is between an originating user
and the DRS. A form specifying data reconfiguration is

Ander son, et al. [Page 3]

RFC 138 Dat a Reconfiguration Service April 1971

defined over this connection and is applied to data passing
over the two connections described bel ow

2) The user connection (UC) is between a user process and the
DRS.

3) The server connection (SC) is between the DRS and the
servi ng process.

Since the goal is to adapt the Network to user and server processes,
a mnimum of requirenents are inposed on the UC and SC

SRS + CC SRS + SC B S +
| ORI G NATING +-------- + DRS Fomm - - + SERVER |
| USER | N | | N | PROCESS |
S, + | S N, +----+ | Feom e e e oo - +
| / |
Tel net [<------ Si npl ex or Dupl ex
Pr ot ocol uc/ Connecti ons
Connecti on /
/
F-- - - - F--- - - +
| USER |
| PROCESS |
Fomm e m o e +

Figure 1. DRS Network Connections

CONNECTI ON PROTOCOLS AND MESSAGE FORVATS

Over a control connection the dialog is directly between an
originating user and the DRS. Here the user is defining forms or
assigning forms to connections for reformatting.

The user connects to the DRS via the initial connection protocol

(I1CP) specified in NW& RFC #80, version 1. Rather than going through
a logger, the user calls on a particular socket on which the DRS
always listens. DRS switches the user to another socket pair.

Messages sent over a control connection are of the types and formats
to be specified for TELNET. Thus, a user at a terminal should be
able to connect to a DRS via his |ocal TELNET, for exanple, as shown
in Fig. 2.

Ander son, et al. [Page 4]

RFC 138 Dat a Reconfiguration Service April 1971
Feom e e e a e oo +
oo + CC | |
Fomme oo + TELNET +------- + DRS |
| L + | |
| Feom e e e a e oo +
S TS +

USER |

Figure 2. A TELNET Connection to DRS

When a user connects to DRS he supplies a six-character user ID (U D
as a qualifier to guarantee the uni queness of his formnanmes. He

will have (at least) the follow ng commands:
1. DEFFORM (nane)
2. ENDFORM (nane)
These two commands define a form the text of which is
chronol ogically entered between them The (name) is siXx
characters. The formis stored in the DRS |ocal file
system
3. PURGE (nane)
The nanmed form as qualified by the current U D, is purged
fromthe DRS file system
4. LI STNAMES (Ul D)
The unqualified nanes of all fornms assigned to U D are
returned.
5. LI STFORM (nane)
The source text of a named formis returned.
6. DUPLEXCONNECT (user site, user send, user receive,
user method, server site, server
send, server receive, server nethod,
user-to-server form server-to-user form
7. SI MPLEXCONNECT (send site, send socket, send

Ander son

net hod, receive site, receive
socket, receive nethod, form

et al. [Page 5]

RFC 138 Dat a Reconfiguration Service April 1971

Ei t her one, both, or neither of the two parties specified in 6 or 7
may be at the sane host as the party issuing the request. Sites and
sockets specify user and server for the connection. Method indicates
the way in which the connection is established. Three options are
provi ded:
1) Sitel/socket already connected to DRS as a dummy
control connection. (A dummy control connection
shoul d not also be the real control connection.)
2) Connect via standard ICP. (Only for command no. 6.)
3) Connect directly via STR, RTS.

EXAVPLE CONNECTI ON CONFI GURATI ONS

There are basically two nodes of DRS operation: 1) the user wishes to
establish a DRS UC/ SC connection(s) between two prograns and 2) the
user wants to establish the same connection(s) where he (his
terminal) is at the end of the UC or the SC. The latter case is
appropriate when the user wishes to interact fromhis ternminal with
the serving process (e.g., a |logger).

In the first case (Fig. 1, where the originating user is either a
terminal or a program the user issues the appropriate CONNECT
conmand. The UC/ SC can be sinplex or dupl ex.

The second case has two possible configurations, shown in Figs. 3 and

e e e - - + CC +-------- + +-- - - - +

ARRREE + | sC | |

+o----- + /| TELNET | UC | DRS +------ + SP |

| /] AR + | | |

| USER | /+-------- + o + e - +
I |/
S R +

Figure 3. Use of Dummy Control Connection

e e e - - +

+oomo-- + /] USER | CC +-------- + +oomo-- +

| |/ | SIDE +------ + | SC | |

| USER| +-------- + UC | DRS +------ + SP |

| |\ | SERVING*------ + | | |

FA—— +\| SIDE | Feeoao + FA—— +
e e e - - +

Figure 4. Use of Server TELNET

Ander son, et al. [Page 6]

RFC 138 Dat a Reconfiguration Service April 1971

In Fig. 3 the user instructs his TELNET to nmake two dupl ex
connections to DRS. One is used for control information (the CC) and
the other is a dumry. When he issues the CONNECT he references the
dummy dupl ex connection (UC) using the "already connected" option

In Fig. 4 the user has his TELNET (user side) call the DRS. When he
i ssues the CONNECT the DRS calls the TELNET (server side) which
accepts the call on behalf of the console. This distinction is known
only to the user since to the DRS the configuration in Fig. 4 appears
identical to that in Fig. 1. Two points should be noted:

1) TELNET protocol is needed only to define fornms and direct

connections. It is not required for the using and serving
processes.

2) The using and serving processes need only a nini num of
nodi fication for Network use, i.e., an NCP interface.

1. THE FORM MACHI NE
| NPUT/ QUTPUT STREAMS AND FORMS

This section describes the syntax and semantics of fornms that specify
the data reconfigurations. The Form Machi ne gets an input stream
reformats the input stream according to a form describing the
reconfiguration, and emts the reformatted data as an output stream

In reading this section it will be helpful to envision the
application of a formto the data streamas depicted in Fig. 5. An
i nput stream pointer identifies the position of data (in the input
strean) that is being analyzed at any given tinme by a part of the
form Likew se, an output stream pointer |ocates data being emtted
in the output stream

AVA INI\
A FORM [B
I R I
I | Fooseooiooeiooo-os -+ I
| | | CURRENT PART OF | I
INPUT | | <= CURRENT < -cccoommccanmonn- > CURRENT => | | OUTPUT
STREAM| | PONTER | FORMBEING APPLIED | PONTER | | STREAM
| L -+ |
R |
R |
e |
\/\/ \/\/

Figure 5. Application of Formto Data Streans

Ander son, et al. [Page 7]

RFC 138 Dat a Reconfiguration Service April 1971
FORM MACHI NE BNF SYNTAX
form = rule | rule form
rule ;= label inputstream outputstream;
| abel = |INTEGER | <null>
i nput stream c:= ternms | <null>
terns := term| terns , term
out put stream = terms | <null>
term ::= identifier | identifier descriptor |
descriptor | conparator
identifier ::= an al pha character followed by 0 to 3
al phaneri cs
descri pt or ::= (replicationexpression , datatype
val ueexpressi on , |engthexpression control)
conpar at or ::= (value connective value control) |
(identifier .<=>. control)
replicationexpression ::= arithnmeticexpression | <null>
dat at ype = B| O] X| E|] A
val ueexpression ::= value | <null>
| engt hexpression ::= # | arithmeticexpression | <null>
connective ;= .LE | .LT. | .CGE | .GI. | .EQ | .NE
val ue = Jliteral | arithneticexpression
arithmeticexpression ::= primary | primary operator
arithneti cexpression
primary = identifier | L(identifier) | V(identifier) |
| NTEGER
oper at or =+ -
literal = literaltype "string"

Ander son, et al

[Page 8]

RFC 138 Dat a Reconfiguration Service April 1971

literal type = B|] O] X| E| A
string 2= fromO to 256 characters
contr ol 1= = options | <null>
opti ons c:= S(where) | F(where) | U(where) |
S(where) , F(where) |
F(where) , S(where)
wher e c:= arithneticexpression | R(arithmeticexpression)

ALTERNATE SPECI FI CATI ON OF FORM MACHI NE SYNTAX

infinity
form = {rule}
1
1 1 1
rul e .= {INTEGER} {terns} {:terms} ;
0 0 0
infinity
terns o= term{,tern}
1
term ::= identifier | {identifier} descri ptor
0
| conparator
1
descri pt or ::= ({arithneticexpression} , datatype ,
0
1 1 1
{value} , {lengthexpression} {:options}
0 0 0
1
conpar at or ::= (value connective value {:options}) |
0
1
(identifier .<=. value {:options})
0
connective ;= .LE | .LT. | .CGE | .GI. | .EQ | .NE
| engt hexpr essi on ©:= # | arithmeticexpression
dat at ype = B|] O] X| E|] A
val ue c:= literal | arithmeticexpression

Ander son, et al. [Page 9]

RFC 138 Dat a Reconfiguration Service April 1971

infinity
arithneti cexpression = primary {operator primary}
0
oper at or M O R A
primary ::= identifier | L(identifier) |
V(identifier) | |NTECGER
256
literal ::= literaltype "{CHARACTER} "
0
literal type = B|] O] X| A| E
1
opti ons c:= S(where) {,F(where)} |
0
1

F(where) {,S(where)} | U(where)
0

wher e ::= arithmeticexpression |
R(arithmeti cexpression)

identifier ;.= ALPHABETI C {ALPHAMERI C}

FORMVS
A formis an ordered set of rules.
form::= rule | rule form

The current rule is applied to the current position of the input
stream |If the (input streampart of a) rule fails to correctly
descri be the contents of the current input then another rule is made
current and applied to the current position of the input stream The
next rule to be made current is either explicitly specified by the
current termin the current rule or it is the next sequential rule by
default. Flow of control is nore fully described under TERM AND RULE
SEQUENCI NG

If the (input streampart of a) rule succeeds in correctly describing
the current input stream then sone data may be emitted at the
current position in the output streamaccording to the rule. The

i nput and out put stream pointers are advanced over the described and
emtted data, respectively, and the next rule is applied to the now
current position of the input stream

Application of the formis term nated when an explicit return
(R(arithneticexpression)) is encountered in a rule. The user and

Ander son, et al. [Page 10]

RFC 138 Dat a Reconfiguration Service April 1971

server connections are closed and the return code
(arithneticexpression) is sent to the originating user.

RULES

Arule is a replacenent, conparison, and/or an assignment operation
of the form shown bel ow.

rule ::= label inputstream outputstream;

A label is the nanme of a rule and it exists so that the rule may be
referenced el sewhere in the formfor explicit rule transfer of
control. Labels are of the form bel ow

| abel ::= |INTEGER | <null>

The optional integer labels are in the range 0 >= | NTEGER >= 9999.
The rul es need not be | abeled in ascending nunerical order.

TERVS

The inputstream (describing the input streamto be matched) and the
out put stream (describing data to be enmitted in the output strean
consi st of zero or nore terns and are of the form shown bel ow.

i nput stream
out put stream
terns

terms | <null>
cterns | <null >
term| ternms , term

Ternms are of one of four formats as indicated bel ow.

term::= identifier | identifier descriptor |
descriptor | conparator

Term Format 1
The first termformat is shown bel ow.
identifier
The identifier is a synbolic reference to a previously identified
term(termformat 2) in the form It takes on the sane attributes
(value, length, type) as the termby that nane. Termformat 1 is

normal ly used to emt data in the output stream

Identifiers are forned by an al pha character followed by 0 to 3
al phaneric characters.

Ander son, et al. [Page 11]

RFC 138 Dat a Reconfiguration Service April 1971

Term Format 2
The second termformat is shown bel ow
identifier descriptor

Termformat 2 is generally used as an input streamterm but can be
used as an output streamterm

A descriptor is defined as shown bel ow.

descriptor ::= (replicationexpression, datatype,
val ueexpressi on, | engthexpression
control)

The identifier is the synbolic nane of the termin the usua

progranm ng | anguage sense. It takes on the type, length, and val ue
attributes of the termand it may be referenced el sewhere in the
form

The replication expression is defined bel ow

replicationexpression ::= arithneticexpression | <null>
arithneticexpression ::= primary | primary operator
arithnmeti cexpression
operator ::=+ | - | * | [/
primary ::= identifier | L(identifier) | V(identifier) |
| NTEGER

The replication expression is a repeat function applied to the

conbi ned data type and val ue expression. It expresses the nunber of
times that the value (of the data type/val ue expression) is to be
repeated within the field I ength denoted by the data type/length
expr essi on.

A null replication expression has the value of one. Arithnetic
expressions are evaluated fromleft-to-right with no precedence. (It
is anticipated that this interpretation night be changed, if
necessary.)

The L(identifier) is a length operator that generates a 32-bit binary
i nteger corresponding to the Iength of the termnamed. The
V(identifier) is a value operator that generates a 32-bit binary

i nteger corresponding to the value of the termnaned. (See
Restrictions and Interpretations of Term Functions.) The val ue
operator is intended to convert character strings to their nunerica
correspondents.

Ander son, et al. [Page 12]

RFC 138 Dat a Reconfiguration Service April 1971

The data type is defined bel ow.
datatype ::=B| O] X| E| A

The data type describes the kind of data that the termrepresents.
(I't is expected that additional data types, such as floating point

and user-defined types, will be added as needed.)
Data Type Meani ng Unit Length
B Bit string 1 bit
@] Bit string 3 bits
X Bit string 4 bits
E EBCDI C char act er 8 bits
A Net work ASCI | character 8 bits
The val ue expression is defined bel ow.
val ueexpression ::= value | <null>
value ::=literal | arithmeticexpression
literal ::=1literaltype "string"
literaltype ::=B| O| X| E| A

The val ue expression is the unit value of a termexpressed in the
format indicated by the data type. It is repeated according to the
replication expression, in a field whose length is constrained by the
| engt h expression.

A null value expression in the input streamdefaults to the data
present in the input stream The data nust conply with the datatype
attri bute, however.

A null val ue expression generates padding according to Restrictions
and Interpretations of Term Functi ons.

The length expression is defined bel ow
| engt hexpression ::= # | arithmeticexpression | <null>

The length expression states the length of the field containing the
val ue expression as expanded by the replication expression. |f the
val ue of the length expression is less then the length inplied by the
expanded val ue expression, then the expanded val ue expression is
truncated, see Restrictions and Interpretations of Term Functions.

The term nal synbol # means an arbitrary length, explicitly

termnated by the value of the next term The # is legal only in the
i nput stream and not in the output stream

Ander son, et al. [Page 13]

RFC 138 Dat a Reconfiguration Service April 1971

If the Iength expression is less than or equal to zero, the term
succeeds but the appropriate stream pointer is not advanced.
Positive | engths cause the appropriate stream pointer to be advanced
if the term otherw se succeeds.
Control is defined under TERM AND RULE SEQUENCI NG

Term Format 3
Termformat 3 is shown bel ow.

descri ptor

It is identical to termformat 2 with the onission of the identifier
Termformat 3 is generally used in the output stream It is used in
the input streamwhere input data is to be passed over but not
retained for emission or |ater reference.

Term Fornat 4

The fourth termformat is shown bel ow

conpar at or (val ue connective value control) |

(identifier .<=. value control)

val ue = literal | arithmeticexpression
literal =literaltype "string"

literal type =B| O] X| E| A

string = fromO to 256 characters

connective .LE. | .LT. | .G | .GI. | .EQ | .NE

The fourth termformat is used for assignment and conpari son.
The assignnment operator .<=. assigns the value to the identifier.
The connectives have their usual neaning. Values to be conpared nust
have the sanme type and length attributes or an error condition arises
and the formfails.

The Application of a Term

The elenents of a termare applied by the foll owi ng sequence of
st eps.

1. The data type and val ue expression together specify a unit
value, call it x.

2. The replication expression specifies the nunber of tinmes x

is to be repeated (or copied) in concatenated fashion. The
val ue of the concatenated xs becones, say, y of length L1

Ander son, et al. [Page 14]

RFC 138 Dat a Reconfiguration Service April 1971

3. The data type and the |l ength expression together specify a
field length of the input area (call it L2) that begins at
the current stream pointer position

4. The value of y is truncated to y’ if L1 > L2. Call the
truncated length L1’ .

5. If the termis an input streamterm then the value y' of
length L1' is conpared to the input val ue beginning at the
current input pointer position.

6. If the values are identical over the length L1 then the
i nput value of length L2 (rmay be greater than L1') starting
at the current pointer position in the input area, becones
the value of the term

In an output streamterm the procedure is the sane except that the
source of input is the value of the term(s) naned in the val ue
expression and the data is enmitted in the output stream

The above procedure is nodified to include a one term | ook-ahead
where |l engths are indefinite because of the arbitrary synmbol, #.

Restrictions and Interpretations of Term Functions

1. Terms specifying indefinite | engths, through the use of the #
synbol nust be separated by sonme type-specific data such as a
literal. (Aliteral isn't specifically required, however. An
arbitrary nunmber of ASCI| characters could be term nated by a
non- ASClI | character.) # is legal only in the input stream not
in the output stream

2. Truncation and padding is as follows:

a) Character to character (A <--> E) conversion is left
justified and truncated or padded on the right w th bl anks.

b) Character to nuneric and nuneric to nuneric conversions are
right-justified and truncated or padded on the left with
zeros.

c) Numeric to character conversion is right-justified and
| eft- padded with bl anks.

3. The following are ignored in a formdefinition over the contro
connecti on.
a) TAB, carriage return, etc.
b) bl anks except within quotes.
c) [/* string */ is treated as conments except wi thin quotes.

4. The followi ng defaults prevail where the termpart is omtted.

Ander son, et al. [Page 15]

RFC 138

Dat a Reconfiguration Service April 1971

a) The replication expression defaults to one.

b) The data type defaults to type B.

c) The value expression of an input streamtermdefaults to
the value found in the input stream but the input stream
must conformto data type and | ength expression. The val ue
expression of an output streamtermdefaults to paddi ng
only.

d) The length expression defaults to the size of the quantity
determ ned by replication expression, data type, and val ue
expr essi on.

e) Control defaults to the next sequential termif a termis
successfully applied; else control defaults to the next
sequential rule. |If _where_ evaluates to an undefined
_label _ the formfails.

5. Arithnetic expressions are evaluated left-to-right with no

pr ecedence.

6. The following limts prevail.

a) Binary lengths are <= 32 bits

b) Character strings are <= 256 8-bit characters
c) ldentifier names are <= 4 characters

d) Maxi mum nunber of identifiers is <= 256

e) Label integers are >= 0 and <= 9999

7. Value and |l ength operators product 32-bit binary integers. The

Ander son

val ue operator is currently intended for converting A or E type
deci mal character strings to their binary correspondents. For
exanpl e, the value of E 12° would be 0...... 01100. The val ue
of EEAB would cause the formto fail

et al. [Page 16]

RFC 138 Dat a Reconfiguration Service April 1971

TERM AND RULE SEQUENCI NG

Sequencing may be explicitly controlled by including control in a

term
control = :options | <null>
options ::= S(where) | F(where) | U(where)
S(where) , F(where) |
F(where) , S(where)
wher e ::= arithneticexpression | R(arithmeticexpression)
S, F, and U denote success, fail, and unconditional transfers,
respectively. _Wiere_ evaluates to a _rule_ label, thus transfer can

be effected fromwithin a rule (at the end of a term) to the

begi nning of another rule. R nmeans terminate the formand return the
eval uated expression to the initiator over the control connection (if
still open).

If terms are not explicitly sequenced, the foll owing defaults
prevail .

1) Wen atermfails go to the next sequential rule.

2) Wen a term succeeds go to the next sequenti al
termwithin the rule.

(3) At the end of a rule, go to the next sequenti al
rul e.

Note in the follow ng exanple, the correl ati on between transfer of
control and novenent of the input pointer.

1 XYZ(,B,,8:S(2),F(3)) : XYZ :

2

3
The value of XYZ will never be emitted in the output stream since
control is transferred out of the rule upon either success or
failure. |If the termsucceeds, the 8 bits of input will be assigned

as the value of XYZ and rule 2 will then be applied to the sane input
streamdata. That is, since the conplete rule 1 was not successfully
applied, then the input stream pointer is not advanced.

Ander son, et al. [Page 17]

RFC 138 Dat a Reconfiguration Service April 1971

I'V. EXAMPLES
REMARKS

The followi ng exanples (fornms and also single rules) are sinple
representative uses of the Form Machine. The exanpl es are expressed
inatermper-line format only to aid the explanation. Typically, a
single rule nmight be witten as a single |ine.

FI ELD | NSERTI ON

To insert a field, separate the input into the two terns to allow the
inserted field between them For exanple, to do |line nunbering for a
121 character/line printer with a | eading carriage control character
use the follow ng form

(NUMB. <=>.1); /*initialize |ine nunber counter to one*/
1 CC(,E ,1:F(R(99))), [/*pick up control character and save
as CC*/

[*return a code of 99 upon exhaustion*/
LI NE(, E, , 121 : F(R(98))) /| *save text as LINE*/

: CC, /*emt control character*/
(, E, NUMB, 2), /*emt counter in first two colums*/
(,E E.", 1), /*emt period after |ine nunber*/
(, E LINE, 117), /*emt text, truncated in 117 byte field*/
(NUMB. <=. NUMB+1: U(1)); /*increment line counter and go to
rul e one*/;;
DELETI ON

Data to be deleted should be isolated as separate terns on the left,
so they may be onitted (by not emitting them) on the right.

(,8B,,8), /*isolate 8 bits to ignore*/
SAVE(, A, , 10) /*extract 10 ASCI| characters from
i nput streant/
1 (, E SAVE,); /*emit the characters in SAVE as EBCD C

characters whose length defaults to the
length of SAVE, i.e., 10, and advance to
the next rul e*/

In the above exanple, if either input streamtermfails,
t he next sequential rule is applied.

VARI ABLE LENGTH RECORDS

Sone devices, ternminals and prograns generate variable | ength
records. To follow ng rule picks up variable | ength EBCDIC records

Ander son, et al. [Page 18]

RFC 138 Dat a Reconfiguration Service April 1971

and translates themto ASClI.

CHAR(, E, , #), /[*pick up all (an arbitrary nunber of)
EBCDI C characters in the input streant/
(, X, X"FF", 2) /*foll owed by a hexadecimal literal
FF (term nal signal)*/
:(, A CHAR)), [*emit themas ASCII*/
(, X, X"25",2); [*emit an ASCI| carriage return*/

STRI NG LENGTH COVPUTATI ON

It is often necessary to prefix a length field to an arbitrarily |ong
character string. The following rule prefixes an EBCDIC string with
a one-byte length field.

Q,E , #), /*pick up all EBCDIC characters*/
TS(, X, X' FF", 2) /*followed by a hexadecimal literal, FF*/
(,B,L(Q+2,8), /*emit the length of the characters

plus the Iength of the literal plus
the length of the count field itself,
in an 8-bit field*/

Q */emt the characters*/

TS; */emit the termnal */

TRANSPCSI TI ON

It is often desirable to reorder fields, such as the follow ng
exanpl e.

Q,E ,20, R(,E ,10) , S(,E ,15), T(,E,5) : R T, S Q;
The terns are emitted in a different order
CHARACTER PACKI NG AND UNPACKI NG
In systems such as HASP, repeated sequences of characters are packed

into a count followed by the character, for nore efficient storage
and transm ssion. The first form packs nmultiple characters and the

Ander son, et al. [Page 19]

RFC 138 Dat a Reconfiguration Service April 1971

second unpacks them

/*formto pack EBCDI C streans*/

[*returns 99 if OK, input exhausted*/

/*returns 98 if illegal EBCD Ct/

/*1 ook for term nal signal FF which is not a | egal EBCDI C*/

/*duplication count nust be 0-254*/

1 (,XX'FF',2: S(R(99))) ;

/*pick up the EBCDIC and initialize count/*
CHAR(,E, ,1 : F(R(98))) , (CNT .<=. 1) ;

/ *count consecutive EBCDICs |ike CHAR*/

2 (,EECHAR 1 @ F(3)) , (CONT .<=. CNT+1 : U 2)) ;

/*emit count and current character*/

3: (,B/CNT,8), CHAR, (:U(1));

/*end of fornt/;;

/*formto unpack EBCDIC streans*/

[*1 ook for term nal*/

1 (,XX'FF',2: S(R(99))) ;

[*emt character the nunber of tines indicated*/
/*by the counter contents*/

CNT(, B,,8), CHAR(,E, ,1) : (CNT, E CHAR CNT: U(1));
[*failure of fornt/

(tU(R(98))) ;;

V. PROPCSED USES OF DATA RECONFI GURATI ON SERVI CE

The followi ng are sone proposed uses of the DRS that were subnitted
by the sites indicated.

UCLA

1. Pack/unpack text files.

2. Preprocessor to scan META conpiler input.
3. Perhaps graphics.

Char acter conversions.
Possi bl e graphics service (Evans and Sut herl and out put
format).

4. Reformat argunments of subroutines renote to each other

M
1. Reformatting within file transfer service.
2
3

U CF ILLINO S
1 Dependent upon renote use of DRS for many renote
servi ces.

SDC
1. Would be essential to data transfer in general.

Ander son, et al. [Page 20]

RFC 138 Dat a Reconfiguration Service April 1971

2. Could be used in relation to data managenent | anguage.

UCsB

1. Checkout of I/Oformats of file system

2. Debuggi ng Network services in general

3. Mapping their services into future standards.

RAND

1. To describe RIO RJE nessage formats at UCSB.

2. To describe RIS nessage formats at UCLA.

3. To adapt Network to existing services, in general.

TRE
Char act er conversi ons.
Testing data formats going into data bases for correct
field formatting.

NEZ

VI. | MPLEMENTATI ON PLANS

Four sites currently plan to inplenent and offer the service on an
experinmental basis.

1. MT I mpl erentation of forns interpreter in M DAS
(assenbly). Perhaps Tree Meta conpil er of
forms. |nplenentation on PDP-10.

2. UCLA Inplenentation on SIGVA-7 enploying META-7
to conpile forms.

3. UCSB Inplenentation on 360/ 75.

4. RAND Initial inplenentation on 360/65; conpiler to be witten
in graphics CPS; conpiled internediate forns to be
interpreted by assenbl er | anguage subroutine. Later
i mpl enent ed on PDP-10.

In addition to the above sites, the University of Illinois and Mtre
plan to experinent with the servi ce.

Ander son, et al. [Page 21]

RFC 138 Dat a Reconfiguration Service April 1971

APPENDI X A
Note 1 to the DRS Working G oup

As you recall, we spent considerable tine in discussing the use and
meaning of the arbitrary synbol, #. To summarize, it was clear that
inclusion of the # in both replication and |length expressions led to
anbiguities. W settled on its restricted use in the length
expression of an input term although no one was entirely satisfied
with this definition.

Recently, JimWhite has again conmented on the #. Jimfeels that it
is curious that one can pick up an arbitrary nunber of EBCDIC
characters, for exanple, but can't pick up an arbitrary nunber of
speci fic EBCDI C characters such as EBCDIC A's. Jimfeels that a nore
natural way to interpret the |ength, value, and replication
expressions would be as the I1BM OS assenbler interprets the

attri butes of the pseudo instruction, define constant (CD).

The | BM OS assenbl er uses the follow ng fornmat.

1 2 3 4
duplication type nmodi fiers nonmi nal val ue
factor

The duplication factor, if specified, causes the constant to be
generated the nunber of tinmes indicated by the factor. The type
defines the type of constant being specified. Modifiers describe the
| ength, scaling, and exponent of the constant. Nom nal val ue
supplies the constant described by the subfields that precede it.

Assune that we use the # only as a duplication factor (replication
expression). Hence, in the exanple of the formto pack EBCDIC
characters, the counter and | ooping can be elininated.

CHAR(, E, , 1) ;
LEN(#, #, CHAR 1) : (, B, L(LEN)+1,*) , CHAR ;

The interpretation is that the data type, |length expression, and

val ue expression nmake up the unit value. This quantity can then be
replicated. As our docunment now stands, only the data type and val ue
expression make up the unit val ue.

The application of a termaccording to Jins suggestion is as

foll ows.
1. The data type, value expression, and |ength expression together
specify a unit value, call it x.

Ander son, et al. [Page 22]

RFC 138 Dat a Reconfiguration Service April 1971

2. The replication expression specifies the nunber of tines x is to
be repeated. The value of the concatenated xs becones y of

I ength L.

3. If the termis an input streamtermthen the val ue begi nni ng at
the current input pointer position.

4. |f the input value satisfies the constraints of y over length L

then the input value of length L becomes the value of the term
Note 2 to the DRS Working G oup

There has been recent debate of whether the input pointer should be
advanced upon successful conpletion of a rule (as it now is defined)
or upon successful conpletion of each term See the exanple on page
22. If the input pointer is advanced upon successful conpletion of a
term then rules beconme equivalent to terns.

| would like to for us to discuss at the SJICC both the term
attri butes and the input pointer advance issues.

John

[This RFC was put into machine readable formfor entry |
[into the online RFC archives by Katsunori Tanaka 4/99]

Ander son, et al. [Page 23]

