Net wor k Wor ki ng Group N. Brownl ee
Request for Comments: 2123 The University of Auckland
Cat egory: I nfornmational March 1997

Traffic Fl ow Measurenent: Experiences with NeTraMet

Status of this Meno

This meno provides information for the Internet community. This neno
does not specify an Internet standard of any kind. Distribution of

this meno is unlimted.

Abstract

This nenp records experiences in inplenmenting and using the Traffic

FIl ow Measurenent Architecture and Meter MB. |t discusses the

i npl ementation of NeTraMet (a traffic neter) and NeMaC (a conbi ned
manager and neter reader), considers the witing of meter rule sets
and gives sonme gui dance on setting up a traffic fl ow nmeasurenent

system usi ng NeTralMet.
Tabl e of Contents
1 Introduction
1 NeTraMet structure and devel opnent

I
1.

1.2 Scope of this document
2 I nplenmentation
2.
2.

1 Choice of nmeter platform. .o
2 Progranmm ng support requirements .
2.2.1 DOS environment
2.2.2 Unix environnment
2.3 Inplementing the meter
2.3.1 Data structures
2. 3.2 Packet matching G e e
2.3.3 Testing groups of rule addresses .
2. 3.4 Conpression of address masks .
2.3.5 Ignoring unwanted fl ow data
2.3.6 Observing neter reader activity
2.3.7 Meter nmenory managenent
2.4 Data collection .o
2.5 Restarting a neter
2.6 Performance
3 Witing rule sets
3.1 Rule set to observe all flows :
3.2 Specifying flow direction, using corrputed attrl butes .
3.3 Subroutines
3.4 More conplicated ruIe sets :
Br ownl ee I nf or mat i onal

Coooo~N~N~NOOUORABRDMWN

RFC 2123 Traffi c Fl ow Measur enent March 1997

4 Flow data files 26
4.1 Sanple flow data file .27
4.2 Flow data file features 28
4.3 Ternminating and restarting nmeter reading 29

5 Anal ysis applications 30

6 Using NeTraMet in a nmeasurenent system 31
6.1 Exanples of NeTraMet in productionuse 31

7 Acknow edgnent s 33

8 References 33

9 Security Considerations 34

10 Aut hor’s Address 34
1 Introduction

Early in 1992 ny University needed to devel op a systemfor recovering
the costs of its Internet traffic. |In March of that year | attended
the I nternet Accounting Wrking Goup’s session at the San D ego

| ETF, where | was delighted to find that the Group had produced a
detailed architecture for measuring network traffic and were waiting
for someone to try inplenenting it.

During 1992 | produced a prototype nmeasurenent system using bal anced
binary trees to store infornmation about traffic flows. This work was
reported at the Washington I ETF in Novenber 1992. The prototype

perfornmed well, but it nade no attenpt to recover nenory fromold
flows, and the overheads in nmanagi ng the bal anced trees proved to be
unacceptably high. | nmoved on to devel op a production-quality

system this time using hash tables to index the flow information.

This version was called NeTraMet (the Network Traffic Meter), and was
rel eased as free software in Cctober 1993. Since then | have

conti nued working on NeTraMet, producing new rel eases two or three
times each year. NeTraMet is now in production use at many sites
around the world. It is difficult to estimate the nunber of sites,
but there is an active NeTraMet mailing |ist, which had about 130
subscribers in March 1996

Early in 1996 the Realtinme Traffic Fl ow Measurenent Working G oup
(RTFM was chartered to nove the Traffic Fl ow Measurenent
Architecture on to the | ETF standards track. This docunent records
traffic fl ow neasurenent experience gained through three years
experience with NeTraMet.

Br ownl ee I nf or mat i onal [Page 2]

RFC 2123 Traffi c Fl ow Measur enent March 1997

1.1 NeTraMet structure and devel opnent
The Traffic Flow Architecture docunment [1] describes four conponents:

- METERS, which are attached to the network at the points where
it is desired to measure the traffic,

- METER READERS, which read data fromneters and store it for |ater
use,

- MANAGERS, which configure nmeters and control neter readers, and

- ANALYSI S APPLI CATI ONS, which process the data from nmeter readers
so as to produce whatever reports are required.

NeTraMet is a computer programwhich inplenents the Traffic Meter,
stores the neasured flow data in nenory, and provi des an SNMP agent
so as to nmake it available to Meter Readers. The NeTraMet
distribution files include NeMaC, which is a conbi ned Manager and
Met er Reader capabl e of managing an arbitrary nunber of neters, each
of which may be using its own rule set, and having its flow data
collected at its own specified intervals. The NeTraMet distribution
al so includes several rudinmentary Analysis Applications, allow ng
users to produce sinple plots fromNeMaC s flow data files (fd filter
and fd_extract) and to monitor - in real time - the flows at a renote
meter (nmrc and nifty).

Since the first release the Traffic Meter M B [2] has been both

i nproved and sinplified. Significant changes have included better
ways to specify traffic flows (i.e. nore actions and better control
structures for the Packet Matching Engi ne), and conputed attributes
(class and kind). These changes have been pronpted by operati onal
requirenents at sites using NeTraMet, and have been tested
extensively in successive versions of NeTraMet.

NeTraMet is widely used to collect usage data for Internet Service
Providers. This is especially so in Australia and New Zeal and, but
there are also active users at sites around the world, for exanple in
Canada, France, Germany and Pol and.

NeTraMet is very useful as a tool for understanding exactly where
traffic is flowwng in large networks. Since the Traffic Meters
perform consi derabl e data reduction (as specified by their rule sets)
they significantly reduce the volunme of data to be read by Meter
Readers. This characteristic makes NeTraMet particularly effective
for networks with many renote sites. An exanple of this (the
Kawai hi ko network) is briefly described bel ow.

Br ownl ee I nf or mat i onal [Page 3]

RFC 2123 Traffi c Fl ow Measur enent March 1997

As well as providing data for post-observation analysis, NeTraMet can
be used for real-tinme network nonitoring and troubl e-shooting. The
NeTraMet distribution includes "nifty,’” an X/ Mtif application which
monitors traffic flows and attenpts to highlight those which are
"interesting.’

1.2 Scope of this docunent

Thi s docunent presents the experience gained fromthree years work
with the Traffic Fl ow Measurenent Architecture. |Its contents are
grouped as foll ows

- Inmplenentation issues for NeTraMet and NeMaC,

- Howrule files work, and howto wite themfor particular
pur poses, and

- How to use NeTraMet and NeMaC for short-termand | ong-termfl ow
nmeasur enent .

2 Inplementation
2.1 Choice of neter platform

As pointed out in the Architecture docunent [1], the goal of the
Realtinme Traffic Flow Measurenment Wrking Goup is to develop a
standard for the Traffic Meter, with the goal of seeing it

i npl enented in network devices such as hubs, swi tches and routers.
Until the Architecture is well enough developed to allow this, it has
sufficed to inplement the nmeter as a programrunning on a general -
pur pose conputer system

The choice of conmputer systemfor NeTraMet was driven by the need to
choose one which would be widely available within the Internet
comunity. One strong possibility was a Unix system since these are
commonly used for a variety of network support and rmanagenent tasks.
For the initial inplenmentation, however, Unix would have had sone

di sadvant ages:

- The wide variety of different Unix systens can increase the
difficulties of software support.

- The cost of a Unix systemas a neter is too high to allow users

to run neters sinultaneously at many points within their
net wor ks.

Br ownl ee I nf or mat i onal [Page 4]

RFC 2123 Traffi c Fl ow Measur enent March 1997

Anot her factor in choosing the platformwas system performance. Wen
| first started inplenmenting NeTraMet it was inpossible to predict
how rmuch processi ng workl oad was needed for a viable neter.

Simlarly, | had no idea how nuch nmenory would be required for code
or data. | therefore chose to inplenment NeTraMet on a DOS PC. This
was because:

- It is a mnimumsystemin all respects. |If the neter works
wel | on such a system it can be inplenented on al nost any
har dware (including routers, switches, etc.)

- It is an inexpensive system Sites can easily afford to have
many nmeters around their networks.

- It is a sinple system and one which | had conplete control over
This allowed ne to inplenent effective instrunentation to nonitor
the neter’s performance, and to include a wide variety of
performance optim sations in the code.

Once the neter was running | needed a manager to download rule files
toit. Since a single manager and neter reader can effectively
support a large nunber of neters, a Unix environnent for NeMaC was a
natural choice. There are fewer software support problens for NeMaC
than for NeTraMet since NeMaC has mnimal support needs - it only
needs to open a UDP socket to the SNWMP port on each controlled neter

Early NeTraMet distributions contained only the PC neter and Uni x
manager. In later releases | ported NeTraMet (the neter) to Unix,
and extended the control features of NeMaC (the conbi ned nanager and
meter reader). | have also experinented with porting NeMaC to the
DOS system This is not difficult, but doesn't seemto be worth

pur sui ng.

The current version of NeTraMet is a production-quality traffic
nmeasur ement system whi ch has been in continuous use at the University
of Auckland for nearly two years.

2.2 Progranm ng support requirenents

To inplement the Traffic Flow Meter | needed a progranm ng
envi ronnment provi ding good support for the follow ng:

- observation of packet headers on the network;
- systemtinmer with better than 10 ns resol ution

- IP (Internet Protocol), for comunications wi th manager and neter
r eader;

Br ownl ee I nf or mat i onal [Page 5]

RFC 2123 Traffi c Fl ow Measur enent March 1997

- SNMP, for the agent inplenenting the Meter MB.
2.2.1 DOS environment

For the PC 1 chose to use Ethernet as the physical network medi um
This is sinply an initial choice, being the nediumused within the
Uni versity of Auckland s data network. Interfaces for other nedia
could easily be added as they are needed.

In the PC environnment a variety of ’generalised network interfaces
are available. | considered those avail abl e from conpani es such as
Novel I, DEC and M crosoft and deci ded agai nst them partly because
they are proprietary, and partly because they did not appear to be
particularly easy to use. Instead | chose the CRYNWR Packet Drivers
[3] . These are available for a wide variety of interface cards and
are sinple and clearly docunented. They support Ethernet’s

prom scuous node, allow ng one to observe headers for every passing
packet in a straightforward manner. One di sadvantage of the Packet
Drivers is that it is harder to use themw th newer user shells (such
as Mcrosoft Wndows), but this was irrelevant since | intended to
run the neter as the only programon a dedi cated machi ne.

Timng on the PC presented a challenge since the BIOS tiner routines
only provide a clock tick about 18 times each second, which limts

the available tinme resolution. Initially | made do with a timng
resolution of one second for packets, since |I believed that nost
flows existed for many seconds. In recent years it has becone

apparent that nany flows have lifetinmes well under a second. To
nmeasure them properly with the Traffic Fl ow Meter one needs tines
resolved to 10 mllisecond intervals, this being the size of

Ti meTi cks, the nost common tinme unit within SNMP [4]. Since all the
details of the original PC are readily available [5], it was not

difficult to understand the underlying hardware. | have witten PC
timer routines for NeTraMet which read the hardware timer with 256
times the resolution of the DOS clock ticks, i.e. about 5 ticks per

mllisecond.

There are many TCP/ I P inpl enentations available for DCS, but nost of
them are comercial software. Instead | chose Waterl oo TCP [6],
since this was available (including full source code) as public
domai n software. This was necessary since | needed to nodify it to
all ow nme to save incoming packet headers at the sane tinme as
forwardi ng packets destined for the neter to the I P handler routines.
For SNWP | chose CMJ SNWP [7], since again this was available (with
full source code) as public donmain software. This nade it fairly
sinple to port it fromUnix to the PC

Br ownl ee I nf or mat i onal [Page 6]

RFC 2123 Traffi c Fl ow Measur enent March 1997

Finally, for the NeTraMet devel opment | used Borland' s Turbo C and
Turbo Assenbl er. Although many newer C progranmm ng environnments are
now avail abl e, | have been perfectly happy with Turbo C version 2 for
the NeTraMet project!

2.2.2 Unix environnent

In inplementing the Unix meter, the one obvious problemwas ' how do
get access to packet headers?’ Early versions of the Unix neter were
i npl ement ed using various systemspecific interfaces on a SunGCs 4.2
system Later versions use libpcap [8], which provides a portable
nmet hod of obtaining access to packet headers on a wi de range of Unix

systens. | have verified that this works very well for ethernet
interfaces on Solaris, SunGCS, I|rix, DEC Unix and Linux, and for FDD
interfaces on Solaris. |ibpcap provides tinmestanps for each packet

header with resolution determined by the systemclock, which is
certainly better than 10 ns!

Al'l Unix systens provide TCP/IP capabilities, so that was not an
i ssue. For SNWP | used CMJ SNWP, exactly as on the PC

2.3 Inplementing the neter

This section briefly discusses the data structures used by the neter,
and the packet matching process. One very strong concern during the
evolution of NeTraMet has been the need for the highest possible

| evel of meter performance. A variety of interesting optinmsations
have been devel oped to achieve this; as discussed bel ow. Another
particul ar concern was the need for efficient and effective nenory
managent; this is discussed in detail bel ow

2.3.1 Data structures
Al'l the programs in NeTraMet, NeMaC and their supporting utility
progranms are witten in C, partly because C and its run-tine

libraries provides good access to the underlying hardware, and partly
because | have found it to be a highly portabl e | anguage.

Br ownl ee I nf or mat i onal [Page 7]

RFC 2123 Traffi c Fl ow Measur enent March 1997

The data for each flowis stored in a C structure. The structure
includes all the flow s attribute values (including packet and byte
counts), together with a link field which can be used to link flows
into lists. NeTraMet assunes that Adjacent addresses are 802 MAC
Addresses, which are all six bytes long. Simlarly, Transport
addresses are assunes to be two bytes long, which is the case for
port nunbers in IP. Peer addresses are normally four bytes or |ess
in length. They may, however, be as long as 20 bytes (for CLNS).
have chosen to use a fixed Peer address size, defined at conpile
time, so as to avoid the conplexity of having variabl e-sized fl ow
structures.

The flow table itself is an array of pointers to flow data
structures, which allows indexed access to flows via their flow

nunbers. There is also a single large hash table, referred to in the

Architecture docunent [1] as the flow table’s 'search index'. Each

hash value in the table points to a circular chain of flows. To find

a flow one conputes its hash value then searches that value' s flow
chai n.

The neter stores each rule in a C structure. Al the rule conponents

have fixed sizes, but address fields nmust be w de enough to hold any
type of address - Adjacent, Peer or Transport. The rule address
width is defined at conpile tinme, in the same way as fl ow Peer
addresses. Each rule set is inplenmented as an array of pointers to
rule data structures, and the rule table is an array of pointers to
the rule sets. The size of each rule set is specified by NeMaC
(before it begins downl oading the rule set), but the nmaxi num nunber
of rule sets is defined at conpile tine.

2. 3.2 Packet matching

Packet matching is carried out in NeTraMet exactly as described in
the Architecture docunent [1]. Each incom ng packet header is

anal ysed so as to deternmine its attribute values. These values are
stored in a structure which is passed to the Packet Matchi ng Engi ne.
To facilitate matching with source and destination reversed this
structure contains two substructures, one containing the source

Adj acent, Peer and Transport address val ues, the other containing the

destinati on address val ues.

2.3.3 Testing groups of rule addresses

As described in the Architecture [1] each rule’' s address will usually

be tested, i.e. ANDed with the rule’'s nask and conpared with the
rule’s value. |If the conparison fails, the next rule in sequence is
executed. This allows one to wite rule sets which use a group of
rules to test an inconing packet to see whether one of its addresses

Br ownl ee I nf or mat i onal [Page 8]

RFC 2123 Traffi c Fl ow Measur enent March 1997

- e.g. its SourcePeerAddress - is one of a set of specified IP
addresses. Such groups of related rules can grow quite |arge,

contai ning hundreds of rules. It was clear that sequential execution
of such groups of rules would be slow, and that sonething better was
essenti al .

The optim sation inplemented in NeTraMet is to find groups of rules
which test the sane attribute with the sane mask, and convert them
into a single hashed search of their values. The overhead of setting
up hash tables (one for each group) is incurred once, just before the
meter starts running a new rule set. Wen a 'group’ test is to be
perforned, the meter ANDs the inconing attribute val ue, conputes a
hash value fromit, and uses this to search the group’s hash table.
Early tests showed that the rule hash chains were usually very short,
usual ly having only one or two nenbers. The effect is to reduce

| arge sequences of tests to a hash conputation and | ookup, with a
very small nunber of conpares; in short this is an essenti al
optimsation for any traffic meter

There is, of course, overhead associated with perforning the hashed
conpare. NeTraMet handles this by having a mni num group size
defined at conpile tinme. |If the group is too small it is not

conbi ned into a hashed group

In early versions of NeTraMet | did not allow Gotos into a hashed
group of rules, which proved to be an unnecessarily conservative
position. NeTraMet stores each group’s hash table in a separate
menory area, and keeps a pointer to the hash table in the first rule
of the group. (The rules data structure has an extra conponent to
hold this hash table pointer). Rules within the group don’'t have
hash tabl e pointers; when they are executed as the target of a Goto
rul e they behave as ordinary rules, i.e. their tests are perforned
normal |'y.

2. 3.4 Conpression of address masks

Wien the Packet Matching Engi ne has decided that an incom ng packet
belongs to a flow which is to be neasured, it searches the flow table
to determ ne whether or not the flowis already present. It does
this by conputing a hash fromthe packet and using it for access to
the flow tabl e’ s search index.

When designing a hash table, one normally assunmes that the objects in
the table have a constant size. For NeTraMet’s flow table this would
mean that each flow would contain a value for every attribute. This,
however, is not the case, since only those attribute val ues ’pushed’
by rul es during packet natching are stored for a flow.

Br ownl ee I nf or mat i onal [Page 9]

RFC 2123 Traffi c Fl ow Measur enent March 1997

To denmonstrate this problem, let us assune that every flowin the
table contains a value for only one attribute, SourcePeerAddress, and
that the rule set decides whether flows belong to a specified |list of
| P networks, in which case only their network nunbers are pushed.

The rules performthis test using a variety of masks, since the
networ k nunber allocations range from 16 to 24 bits in width. In
searching the flow table, the meter rnust distinguish between zeroes
in the address and 'don’t care’ bits which had been ANDed out. To
achieve this it nust store SourcePeerMask values in the flow table as
wel | as the ANDed SourcePeer Address val ues.

In early versions of NeTraMet this problemwas side-stepped by using
mul ti ple hash tables and relying on the user to wite rules which
used the sanme set of attributes and nmasks for all the flows in each
table. This was effective, but clumsy and difficult to explain.
Later versions changed to using a single hash table, and storing the
mask values for all the address attributes in each flow.

The current version of the neter stores the address masks in
conpressed form After exanmining a | arge nunber of rule sets
realised that although a rule set may have many rules, it usually has
a very small nunber of address masks. It is a sinple matter to build
a table of address nmasks, and store an index to this 'nmask table’

i nstead of a conplete mask. NeTraMet’s naxi num nunmber of masks is
defined at conpile tinme, up to a maxi nrumof 256. This allows ne to
use a single byte for each nask in the flow data structure,
significantly reducing the structure’s size. As well as this size
reduction, two masks can be conpared by conparing their indices in
the mask table, i.e. it reduces to a single-byte comparison

Overall, using a mask table seens to provide useful inprovenents in
storage efficiency and execution speed.

2.3.5 Ignoring unwanted fl ow data

As described in the Architecture docunment [1], every incom ng packet
is tested against the current rule set by the Packet Matching Engi ne.
This section explains ny efforts to i nprove NeTraMet perfornmance on
the PC by reducing the anpbunt of processing required by each incomni ng
packet .

On the PC each incoming packet causes an interrupt, which NeTraMet
must process so as to collect informati on about the packet. 1In early
versions | used a ring buffer with 512 slots for packet headers, and
sinmply copi ed each packet’s first 64 bytes into the next free slot.
The packet headers were |ater taken fromthe buffer, attribute val ues
were extracted fromthem and the resulting "inconming attribute

val ues’ records were passed to the Packet Matching Engi ne.

Br ownl ee I nf or mat i onal [Page 10]

RFC 2123 Traffi c Fl ow Measur enent March 1997

| nmodified the interrupt handling code to extract the attribute

val ues and store themin a '"buffer slot.” This reduced the anmount of
storage required in each slot, allow ng nore space for storing flows.
It did increase slightly the anpbunt of processing done for each
packet interrupt, but this has not caused any probl ens.

In later versions | realised that if one is only interested in
nmeasuring | P packets, there is no point in storing (and |ater
processi ng) Novell or EtherTal k packets! It is a sinple natter for
the neter to inspect a rule set and determ ne which Peer types are of
interest. |f there are PushRule rules which test SourcePeer Type (or
Dest Peer Type), they specify which types are of interest. |If there
are no such rules, every packet type is of interest. The PC NeTraMet
has a set of Bool ean variables, one for each protocol it can handle.
The val ues of these ’'protocol’ variables are deternined when the
nmeter begins running a new rule set. For each incom ng packet, the

interrupt handl er deternines the Peer type. |If the protocol is not
of interest, no further processing is done - the packet is sinply
ignored. In a simlar manner, if Adjacent addresses are never tested

there is no point in copying theminto the packet buffer slot.

The overall effect of these optim sations is nbst noticeable for rule
files which nmeasure IP flows on a network segnent which also carries
a lot of traffic for other network protocols; this situation is
comon on nul ti protocol Local Area networks. On the Unix version of
NeTraMet the QOperating System does all the packet interrupt
processing, and libpcap [8] delivers packet headers directly to
NeTraMet. The 'protocol’ and 'adjacent address’ optimsations are
still perforned, at the point when NeTraMet receives the packet
headers from |i bpcap

2.3.6 Qoserving neter reader activity

The Architecture docunent [1] explains that a flow data record mnust
be held in the meter until its data has been read by a neter reader.
A meter nust therefore have a reliable way of deciding when fl ow data
has been read. The problemis conplicated by the fact that there may
be nmore than one neter reader, and that neter readers collect their
data asynchronously.

Br ownl ee | nf or mat i onal [Page 11]

RFC 2123 Traffi c Fl ow Measur enent March 1997

Early versions of NeTraMet solved this problemby having a single MB
vari able which a neter reader could set to indicate that it was

begi nning a data collection. |In response to such an SNVWP SET
request, NeTraMet would update its 'collectors’ table. This had an
entry for each neter reader, and variables recording the start tine
for the last two collections. The nost recent collection mght stil
be in progress, but its start time provides a safe estimte of the
time when the one before it actually finished. Space used for flows
whi ch have been idle since the penultinmate collection started can be
recovered by the neter’s garbage collector, as described bel ow

The Meter M B [2] specifies a nore general table of neter reader
information. A neter reader wishing to collect data froma neter
must informthe nmeter of its intention by creating a rowin the
table, then setting a LastTine variable in that rowto indicate the
start of a collection. The neter handl es such a SET request exactly
as described above. If there are multiple neter readers the neter
can easily find the earliest tine any of themstarted its penultinate
col l ection, and may recover flows idle since then. Should a neter
reader fail, NeTraMet will eventually tine out its entry in the neter
reader info table, and delete it. This avoids a situation where the
nmeter can’'t recover flows until they have been coll ected by severa
nmeter readers, one of which has fail ed.

2.3.7 Meter nmenory managenent
In principle, the size of the flowtable (i.e. the maxi mum nunber of

flows) could be changed dynami cally. This would involve allocating
space for the flow table' s new pointer array and copying the old

pointers into it. NeTraMet does not inplenent this. Instead the
maxi num nunber of flows is set fromthe conmand |line when it starts
execution. If no maximumis specified, a conpile-tine default nunber
i s used.

Menory for flow data structures (i.e. "flows’) is allocated
dynamically. NeTraMet requests the C run-tinme systemfor bl ocks of
several hundred flows, and links theminto a free list. Wen a new
flow is needed NeTraMet gets nenory space fromthe free list, then
searches the flow table's pointer array for an unused fl ow pointer.
In practice a 'last-allocated” index is used to point to the flow
table, so a sinple linear search suffices. The flow index is saved
inthe flows data record, and its other attribute values are set to
zero.

Br ownl ee | nf or mat i onal [Page 12]

RFC 2123 Traffi c Fl ow Measur enent March 1997

To release a flow data record it nust first be renoved from any hash
list it is part of - this is straightforward since those lists are
circular. The flows entry in the flow table pointer array is then
set to zero (NULL pointer), and its space is returned to the free
list.

Once a flow data record is created it could continue to exist
indefinitely. 1In tinme, however, the neter would run out of space.
To deal with this problem NeTraMet uses an increnmental garbage
collector to reclaimnmenory.

At regular intervals specified by a ' GarbageCol | ectlnterval’ variable
the garbage collector procedure is invoked. This searches through
the flow table | ooking for flows which night be recovered. To
control the resources consuned by garbage collection there are linits
on the nunber of in-use and idle flows which the garbage collector
may inspect these are set either when NeTraMet is started (as
options on the command |ine) or dynamically by NeMaC (using vari abl es
in an Enterprise MB for NeTraMet)

To deci de whether a flow can be recovered, the garbage coll ector
considers how long it has been idle (no packets in either direction),
and when its data was |ast collected. |If it has been collected by
all known neter readers since its LastTinme, its nenory may be
recovered. This alogrithmis inplenmented using a variable called

" Gar bageCol I ect Tinme,” which normally contains the neter’s UpTi me when
the penultinmate collection (i.e. the one before last) was started.
See the section on observing neter reader activity (above) for nore
details.

Shoul d flows not be collected often enough the nmeter could run out of
space. NeTraMet attenpts to prevent this by having a lowpriority
background process check the percentage of flows active and conpare
it with the H ghwaterMark M B variable. |f the percentage of active
flows is greater than the high-water mark, 'GarbageCollectTine' is
increnented by the current value of the InactivityTi neout MB

vari abl e.

The Meter M B [2] specifies that a meter should switch to using a
"standby’ rule set if the percentage of active flows rises above

H ghWaterMark. I n using NeTraMet to neasure traffic flows to and
fromthe University of Auckland it has not been difficult to create
standby rules which are very sinilar to the 'production’ rule file,
differing only in that they push nuch | ess information about flows.
This has, on several occasions, allowed the nmeter to continue running
for one or two days after the neter reader failed. Wen the neter
reader restarted, it was able to collect all the accunul ated fl ow

dat a!

Br ownl ee I nf or mat i onal [Page 13]

RFC 2123 Traffi c Fl ow Measur enent March 1997

The M B al so specifies that the neter should take sonme action when
the active fl ow percentage rises above its FloodMark value. |If this
were not done, the meter could spend a rapidly increasing proportion
of its tinme garbage collecting, to the point where its ability to
respond to requests fromits manager woul d be conprom sed. NeTraMet
switches to the default rule set when its FloodMark is reached.

A potentially |large nunber of new flows may be created when the neter

switches to a standby rule set. It is inportant to set a

Hi ghWater Mark so as to allow enough flow table space for this. In
practice, a H ghwWaterMark of 65% and a Fl oodvark of 95% seem to work
wel | .

2.4 Data collection

As expl ai ned above, a neter reader wi shing to collect flows begins
each collection by setting the LastTine variable inits
Reader I nfoTable row, then works its way through the flow table
collecting data. A nunber of algorithnms can be used to exami ne the
flow table; these are presented bel ow.

The sinpl est approach is a linear scan of the table, reading the
LastTine variable for each row. |If the read fails the rowis
inactive. If it succeeds, it is of interest if its LastTinme value is
greater than the tine of the last collection. Although this nethod
is sinple it is also rather slow, requiring an SNMP GET request for
every possible flow, this renders it inpractical

Early versions of NeTraMet used two 'wi ndows’ into the flowtable to
find flows which were of interest. Both wi ndows were SNWVP tabl es,

i ndexed by a variable which specified a tinme. A succession of
GETNEXT requests on one of these wi ndows all owed NeMaC (the neter
reader) to find the flowindices for all flows which had been active
since the specified tine. The two wi ndows were the ActivityTine

wi ndow (which located active flows), and the CreateTi ne wi ndow (which
| ocated new flows). Knowi ng the index of an active flow, the neter
reader can GET the values for all the attributes of interest. NeMaC
all ows the user to specify which these are, rather than sinply read
all the attributes.

Havi ng the two wi ndows all owed NeMaC to read attributes which renain
constant - such as the flow s address attributes - when the flowis
created, but to only read attri butes which change with tinme - such as
its packet and byte counts - during later collections. Experience
has shown, however, that nany flows have rather short lifetinmes; one
effect of this is that the inproved efficiency of using two wi ndows
does not result in any worthwhile inprovenent in collection

per f or mance.

Br ownl ee | nf or mat i onal [Page 14]

RFC 2123 Traffi c Fl ow Measur enent March 1997

The current version of the Meter MB [2] uses a TineFilter variable
inthe flowtable entries. This can be used with GETNEXT requests to
find all flows which have been active since a specified tine

directly, without requiring the extra 'wi ndow SNWP variables. It
can be conbined with SNMPv2's GETBULK request to further reduce the
nunber of SNWVP packets needed for each collection; | have yet to

i npl enent this in NeTraMet.

A di sadvantage of using SNVWP to collect data fromthe neter is that
SNMP packets inpose a high overhead. For exanple, if we wish to read
an Integer32 variable (four bytes of data), it will be returned with
its object identifier, type and length, i.e. at |east ten bytes of
superfluous data. One way to reduce this overhead is to use an
Opaque object to return a collection of data. NeTraMet uses this
approach to retrieve 'colum activity data’ fromthe neter, as

foll ows.

Each packet of columm activity data contains data values for a
specified attribute, and each value is preceded by its flow nunber.
The fl ow table can be regarded as a two-di nensional array, with a
colum for each flow attribute. Columm activity data objects all ow
the neter reader to read colums of the flow table, so as to collect
only those attributes specified by the user. The actual

i npl ementation is conplicated by the fact that since the flow table
is read colum by colum, rows can becone active after the first

col um has been read. NeMaC reads the wi dest colums (those with
greatest size in bytes, e.g. PeerAddress) first, and ignores any rows
whi ch appear in later colums. Newy active rows will, of course, be
read in the next collection

Usi ng Opaque objects in this way dranatically reduces the nunber of
SNMP packets required to read a nmeter. This has proved worthwhile in
situati ons where the nunber of flows is large (for exanple on busy
LANs), and where the neter(s) are physically dispersed over slow WAN
links. It has the disadvantage that general -purpose M B browsers
cannot understand the colum activity variables, but this seens a
small price to pay for the inproved data collection performance.

2.5 Restarting a neter

If a meter fails, for exanple because of a power failure, it wll
restart and begin running rule set 1, the default rule set which is
built into the meter. Its nanager nust recognise that this has
happened, and respond with sone suitable action.

NeMaC al l ows the user to specify a 'keepalive interval. After every
such interval NeMaC reads the nmeter’'s sysUptinme and conpares it with
the last sysUptinme. |If the new sysUptine is |ess than the |ast one,

Br ownl ee I nf or mat i onal [Page 15]

RFC 2123 Traffi c Fl ow Measur enent March 1997

NeMaC deci des that the neter has restarted. It downl oads the neter’s
backup rule set and production rule set, then requests the neter to
start running the production rule set. In nornal use we use a
keepalive interval of five mnutes and a collection interval of 15
mnutes. |If a meter restarts, we lose up to five mnutes data before
the rules sets are downl oaded.

Having the neter run the default rule set on startup is part of the
Traffic Fl ow Measurenent Architecture [1], in keeping with the notion
that neters are very sinple devices which do not have di sk storage.

Si nce disks are now very cheap, it may be worth considering whet her
the architecture should allow a nmeter to save its configuration
(including rule sets) on disk.

2.6 Perfornmance

The PC version of the neter, NeTraMet, continually nmeasures how nmuch
processor tine is being used. Wenever there is no incomng packet
data to process, 'dunmy’ packets are generated and placed in the

i nput buffer. These packets are processed nornally by the Packet

Mat chi ng Engi ne; they have a PeerType of 'dunmy.’ The nunbers of
dummy and norrmal packets are counted by the neter; their ratio is
used as an estimate of the processor time whichis '"idle,’ i.e. not
bei ng used to process inconm ng packets. The Unix version is intended
to run as a process in a multiprocessing system so it cannot busy-
wait in this way.

The nmeter al so collects several other performance neasures; these can
be di splayed on the nmeter console in response to keyboard requests.

The PC neter can be used with a 10 MHz 286 machi ne, on which it can
handl e a steady | oad of about 750 packets per second. On a 25 M
386SX it will handl e about 1250 packets per second. Users have
reported that a 40 MHz 486 can handl e peaks of about 3,000 packets
per second wi thout packet |oss. The Unix neter has been tested
metering traffic on a (lightly |oaded) FDDI interface; it uses about
one percent of the processor tinme on a SPARC 10 system runni ng

Sol ari s.

3 Witing rule sets

The Traffic Meter provides a versatile device for neasuring a user-
specified set of traffic flows, and performning useful data reduction
on them This data reduction capability not only nininises the

vol ume of data to be collected by neter readers, but also sinplifies
the later processing of traffic flow data.

Br ownl ee I nf or mat i onal [Page 16]

RFC 2123 Traffi c Fl ow Measur enent March 1997

The flows of interest, and the processing to be perforned, are
specified in a 'rule set’ which is downl oaded to the nmeter (NeTraMet)
by the manager (NeMaC). This section explains what is involved in
witing rule sets.

NeTraMet is limted to netering packets observed on a network
segnent. This means that for all the observed flows, Source and Dest
Type attributes (e.g. SourcePeerType and Dest Peer Type) have the sane
val ue.

The NeTraMet inplenentation uses single variables in its flow data
structure for AdjacentType, SourceType and TransType. Nonet hel ess,
the rule sets discussed bel ow push val ues for both Source and Dest

Type attributes; this nake sure that packet matchi ng works properly
with the directions reversed, even for a neter which allows Source

and Dest Type values to be different.

3.1 Rule set to observe all flows

NeMaC reads rule sets fromtext files which contain the rules, the
set nunber which the nmeter (and nmeter reader) will identify them by,
and a 'format,’ i.e. a list specifying which attributes the neter
reader should collect and wite to the flow data file. The #
character indicates the start of a coment; NeMaC ignhores the rest of

the line.

SET 2

#

RULES

#
Sour cePeer Type & 255 = Dummy: | gnore, O;
Null & 0 = 0: GotoAct, Next;

#
Sour cePeer Type & 255 = 0: PushPkttoAct, Next;
Dest Peer Type & 255 = 0: PushPkttoAct, Next;
Sour cePeer Address & 255. 255. 255. 255 = 0: PushPkttoAct, Next;
Dest Peer Addr ess & 255. 255. 255. 255 = 0: PushPkttoAct, Next;
Sour ceTransType & 255 = 0: PushPkttoAct, Next;
Dest TransType & 255 = 0: PushPkttoAct, Next;
Sour ceTransAddress & 255. 255 = 0: PushPkttoAct, Next;
Dest Tr ansAddr ess & 255. 255 = 0: CountPkt, O;

#

FORMAT Fl owRul eSet Fl owm ndex FirstTine " "
Sour cePeer Type Sour cePeer Addr ess Dest Peer Addr ess
Sour ceTransType Sour ceTransAddress Dest Tr ansAddr ess
ToPDUs FronPDUs " " ToCctets Fron(xtets;

Br ownl ee | nf or mat i onal [Page 17]

RFC 2123 Traffi c Fl ow Measur enent March 1997

The first rule tests the incom ng packet’s SourcePeer Type to see
whether it is "dunmy.’ If it is, the packet is ignored, otherw se
the next rule is executed.

The second rule tests the Null attribute. Such a test always
succeeds, so the rule sinply junps to the action of the next rule.
(The keyword "next’ is converted by NeMaC into the nunber of the
followng rule.)

The third rul e pushes the packet’s SourcePeer Type val ue, then junps
to the action of the next rule. The user does not know in advance
what the value of PushPkt rules will be, which is why the val ue
appearing in themis always zero. The user nust take care not to
wite rule sets which try to performthe test in a PushPkt rule.
This is a very common error in a rule set, so NeMaC tests for it and
di spl ays an error nessage.

The followi ng rules push a series of attribute values fromthe
packet, and the last rule also Counts the packet, i.e. it tells the
Packet Mat ching Engi ne (PME) that the packet has been successfully
mat ched. The PME responds by searching the flow table to see whether
the flowis already current (i.e. in the table), creating a new fl ow
data record for it should this be necessary, and increnenting its
packet and byte counters.

Overall this rule set sinply classifies the packet (i.e. decides
whether or not it is to be counted), then pushes all the Peer and

Transport attribute values for it. It nmakes no attenpt to specify a
direction for the flow - this is left to the PME, as described in
[1]. The resulting flow data file will have each flow s source and

destination addresses in the order of the first packet the neter
observed for the flow

3.2 Specifying flow direction, using conputed attributes

As indicated above, the Packet Matching Engine will reliably
determne the flow, and the direction within that flow, for every

packet seen by a neter. |If the rule set does not specify a direction
for the flow, the PME sinply assunes that the first packet observed
for a flowis travelling forward, i.e. fromsource to destination

In later analysis of the flow data, however, one is usually
interested in traffic to or froma particular source.

One can achieve this in a sinple nanner by witing a rule set to
specify the source for flows. Al that is required is to have rules
whi ch succeed if the packet is travelling in the required direction,
and whi ch execute a 'Fail’ action otherwise. This is denonstrated in
the followi ng two exanpl es.

Br ownl ee I nf or mat i onal [Page 18]

RFC 2123 Traffi c Fl ow Measur enent March 1997

(Note that early versions of NeMaC allowed 'Retry’ as a synonym for
"Fail.’ The current version also allows 'NoMatch,’ which seens a
better way to inply "fail, allowing PME to try a second match with
directions reversed.")

Count |P packets fromnetwork 130.216.0.0
#

Sour cePeer Type & 255 = I P: Pushto, ip_pkt;
Null & O = 0: lgnore, O;

#

i p_pkt:
Sour cePeer Address & 255.255.0.0 = 130.216.0.0: Goto c_pkt;
Null & 0 = 0: NoMatch, O;

#

Cc_pkt:

Sour cePeer Addr ess & 255. 255. 255. 255 = 0: PushPkttoAct, Next;
Dest Peer Addr ess & 255. 255. 255. 255 = 0: Count Pkt, O;

The rule | abelled ip_pkt tests whether the packet cane from network
130.216. If it did not, the test fails and the following rule
executes a NoMatch action, causing the PME to retry the match with
the directions reversed. |If the second match fails the packet did
not have 130.216 as an end-point, and is ignored.

The next rule set neters IP traffic on a network segnment which
connects two routers, gl and g2. It classifies flows into three
groups - those travelling fromgl to g2, those whose source is gl and
t hose whose source is g2.

Br ownl ee I nf or mat i onal [Page 19]

RFC 2123 Traffi c Fl ow Measur enent March 1997

Count |P packets between two gateways

#

0 ------- Fom e e e o i oo Fom e e e oo oo oo S S
I I I

S . + S . + e

| 91 I I 92 I | meter |

+- 4o - -+ -+ +- 4o - -+ -+ Fomm - +

#

Sour cePeer Type & 255 = I P: Pushto, ip_pkt;
Null & O = 0: lgnore, O;
#
i p_pkt:
Sour ceAdj acent Addr ess & FF- FF- FF- FF- FF- FF = 00- 80- 48- 81- OE- 7C
Goto, si;
Null & 0 = 0: CGoto, s2;
sl:
Dest Adj acent Addr ess & FF- FF- FF- FF- FF- FF = 02- 07- 01- 04- ED- 4A
Got 0Act, g3;
Null & 0 = 0: CGotoAct, gl;
s2:
Sour ceAdj acent Addr ess & FF- FF- FF- FF- FF- FF = 02-07- 01- 04- ED- 4A:
Got o, s3;
Null & 0 = 0: NoMatch, O;
s3:
Dest Adj acent Addr ess & FF- FF- FF- FF- FF- FF = 00- 80- 48- 81- OE- 7C
NoMat ch, O;
Null & 0 = 0: CGotoAct, g2;
#
gl: FlowC ass & 255
g2: FlowC ass & 255
g3: FlowC ass & 255
#
c_pkt:
Sour ceAdj acent Addr ess & FF- FF- FF- FF- FF- FF = O:
PushPktt oAct, Next;
Dest Adj acent Address & FF- FF- FF- FF- FF- FF = 0: PushPktt oAct, Next;
Sour cePeer Addr ess & 255. 255. 255. 255 = 0: PushPkttoAct, Next;
Dest Peer Address & 255. 255. 255. 255 = 0: PushPkttoAct, Next;
Null & 0 = 0: Count, O

1. PushtoAct, c_pkt; # Fromgl
2: PushtoAct, c_pkt; # Fromg2
3: PushtoAct, c_pkt; # gl to g2

The first two rules ignore non-1P packets. The next two rules Goto
sl if the packet’s source was gl, or to s2 otherwise. The rule

| abel l ed s2 tests whether the packet’'s source was g2; if not a
NoMat ch action is executed, allowing the PME to try the match with
the packet’'s direction reversed. |If the match fails on the second
try the packet didn't cone from(or go to) gl or g2, and is ignored.

Br ownl ee I nf or mat i onal [Page 20]

RFC 2123 Traffi c Fl ow Measur enent March 1997

Packets which come fromgl are tested by the rule labelled sl1, and
the PME will Goto either g3 or gl.

Packets which came fromg2 are tested by the rule labelled s3. |If
they are not going to g1 the PME will Goto g2. |If they are going to
gl a NoMatch action is executed - we want them counted as backward-
travel ling packets for the gl-g2 fl ow

The rules at g1, g2 and g3 push the value 1, 2 or 3 fromtheir rule
into the flow s FlowClass attribute. This value can be used by an
Anal ysis Application to separate the flows into the three groups of
interest. FlowCl ass is an exanple of a 'conputed’ attribute, i.e.
one whose value is Pushed by the PVE during rul e matching.

The remai ning rules Push the values of other attributes required for
| ater analysis, then Count the flow

3.3 Subroutines

Subroutines are inplemented in the PME in nuch the sane way as in
BASIC. A subroutine body is just a sequence of statenents, supported
by the GoSub and Return actions. 'GoSub’ saves the PME s running
environnment and junps to the first rule of the subroutine body.
Subroutine calls may be nested as required - NeTraMet defines the
maxi num nesting at conpile tine. 'Return n’ restores the environnent
and junps to the action part of the nth rule after the Gosub, where n
is the index value fromthe Return rule.

The Return action provides a way of influencing the flow of contro
inarule set, rather like a FORTRAN Conputed Goto. This is one way
in which a subroutine can return a result. The other way is by
Pushing a value in either a conputed attribute (as denonstrated in

t he preceding section), or in a flow attri bute.

One common use for a subroutine is to test whether a packet attribute
mat ches one of a set of values. Such a subroutine beconmes nuch nore
useful if it can be used to test one of several attributes. The PME
architecture provides for this by using 'neter variables’ to hold the
nanes of the attributes to be tested. The nmeter variables are called
V1, V2, V3, V4 and V5, and the Assign action is provided to set their
values. If, for exanple, we need a subroutine to test either

Sour cePeer Addr ess or Dest Peer Address, we wite its rules to test V1
instead. Before calling the subroutine we Assign SourcePeer Addr ess
to V1; later tests of V1 are converted by the PME into tests on

Sour cePeer Address. Note that since neter variables may be reassi gned
in a subroutine, their values are part of the environnment which nust
be saved by a Gosub acti on.

Br ownl ee | nf or mat i onal [Page 21]

RFC 2123 Traffi c Fl ow Measur enent March 1997

The followi ng rule set denobnstrates the use of a subroutine ..

Rule specification file to tally IP packets in three groups:

UAto AIT, UAto elsewhere, AIT to el sewhere
#
- S —— F- - e e e - - - I I TR F-- - - -
I I I
H# +- - - - - - - + +- -t - - - + +---+---+
| UA | | AT | | rmeter |
H# +- +-+-+-+--+ +- +-+-+-+--+ +------- +
#
Sour cePeer Type & 255 = | P: Pusht oAct, ip_pkt;
Null & 0 = O: | gnore, O;
#
i p_pkt:
vl & 0 = SourcePeer Address: AssignAct, Next;
Null & 0 = 0: Gosub, classify;
Null & 0 = 0: GotoAct, from.ua; # 1 ua
Null & 0 = 0: GotoAct, fromait; # 2 ait
Null & 0 = 0: NowMatch, O; # 3 ot her
#
fromua:
vl & 0 = Dest Peer Address: AssignhAct, Next;
Null & 0 = 0: Gosub, classify;
Null & 0 = 0: Ignore, O; # 1 ua-ua
Null & 0 = 0: GotoAct, ok_pkt; # 2 uva-ait
Null & 0 = 0: Gotoact, ok_pkt; # 3 ua- ot her
#
fromait:
vl & 0 = Dest Peer Address: AssighAct, Next;
Null & 0 = 0: Gosub, classify;
Null & 0 = 0: NowMatch, O; # 1 ait-ua
Null & 0 = 0: Ignore, O; # 2 ait-ait
Null & 0 = 0: GotoAct, ok_pkt; # 3 ait-other
#
ok_pkt:
Null & 0 = O: Count, O;

The subroutine begins at the rule |abelled classify (shown bel ow).
It returns to the first, second or third rule after the invoking
CGosub rul e, depending on whether the tested PeerAddress is in the UA

AIT, or "other’ group of networks. In the listing below only one
network is tested in each of the groups - it is trivial to add nore
rules (one per network) into either of the first two groups. 1In this

exanpl e the subroutine Pushes the network nunmber fromthe packet into
the tested attri bute before returning.

Br ownl ee | nf or mat i onal [Page 22]

RFC 2123 Traffi c Fl ow Measur enent March 1997

3.4

#
I

The first invocation of classify (above) begins at the rule |abelled
i p_pkt. It Assigns SourcePeer Address to V1 then executes a Gosub
action. Cassify returns to one of the three following rules. They
will Goto fromua or fromait if the packet came fromthe UA or AT
groups, otherwise the PME will retry the match. This neans that
matched flows will have a UA or AIT network as their source, and

fl ows between other networks will be ignored.

The next two invocations of 'classify' test the packet’s

Dest Peer Address. Packets fromAI T to UA are Retried, forcing themto
be counted as AUto AIT flows. Packets fromUA to UA are ignored, as
are packets fromAIT to AlT.

classify:
vl & 255.255.0.0
vl & 255.255.0.0

130. 216.0.0: Got oAct, ua; # ua
156. 62. 0. O: CotoAct, ait; # ait

Null & 0 = O: Return, 3; # ot her
ua:
vl & 255.255.0.0 = O: PushPktt oAct, Next;
Null & 0 = O: Return, 1;
ait:
vl & 255.255.0.0 = O: PushPktt oAct, Next;
Null & 0 = O: Return, 2;

More conplicated rule sets

The next exanpl e denponstrates a way of grouping IP flows together
dependi ng on their Transport Address, i.e. their |P port nunber.

Si nply Pushing every flow s SourceTransAddress and Dest Tr ansAddr ess
woul d produce a | arge nunber of flows, nmpbst of which differ only in
one of their transport addresses (the one which is not a well-known

port).

I nstead we Push the well-known port nunber into each flow s

Sour ceTransAddress; its DestTransAddress will be zero by default.
Sour cePeer Type & 255 = dumy: I gnore, O;
Sour cePeer Type & 255 = | P: Pushto, |P_pkt;

Null & 0 = O: Got 0Act ﬁbxt;
Sour cePeer Type & 255 = O: PushPktt oAct, Next;
Null & 0 = 0: Count, 0; # Count others by protocol type

P_pkt:
SourceTransType & 255 tcp: Pushto, tcp_udp
SourceTransType & 255 udp: Pushto, tcp_udp

SourceTransType & 255 i cnp: Count Pkt, O;
SourceTransType & 255 ospf: Count Pkt, O;
Null & 0 = 0: GotoAct, c_unknown; # Unknown transport type

Br ownl ee I nf or mat i onal [Page 23]

RFC 2123 Traffi c Fl ow Measur enent March 1997

#
t

S
S
S
S
S
S
S
S

S

#

#

#
C

#
C

#

cp_udp:
_domai n:

Sour ceTransAddress & 255.255 = dormai n: PushtoAct, c_well_known;
_ftp:

Sour ceTransAddress & 255.255 = ftp: Pusht oAct, c_wel |l _known;
_i map:

Sour ceTransAddress & 255.255 = 113: Pusht oAct, c_wel |l _known;
_nfs

Sour ceTransAddress & 255. 255 = 2049: Pusht oAct, c_wel |l _known;
_pop:

Sour ceTransAddress & 255.255 = 110: Pusht oAct, c_wel |l _known;
_sntp:

Sour ceTransAddress & 255.255 = sntp: Pusht oAct, c_wel |l _known;
_telnet:

Sour ceTransAddress & 255.255 = telnet: PushtoAct, c_well_known;
VW

Sour ceTransAddress & 255. 255 = ww. Pusht oAct, c_wel |l _known;
_Xwin

Sour ceTransAddress & 255. 255 = 6000: Pusht oAct, c_wel |l _known;

Dest Tr ansAddr ess & 255. 255 = dommai n: CGot 0Act, s_dormmi n;

Dest TransAddress & 255.255 = ftp: CGot 0Act, s_ftp;

Dest TransAddress & 255.255 = 113: CGot 0Act, s_inmap

Dest TransAddr ess & 255. 255 = 2049: CGot 0Act, s_nfs;

Dest TransAddress & 255. 255 = 110: CGot 0Act, s_pop

Dest TransAddr ess & 255. 255 = sntp: CGot 0Act, s_sntp

Dest TransAddress & 255. 255 = tel net: CGot 0Act, s_tel net;

Dest TransAddr ess & 255. 255 = ww. CGot 0Act, s_vwwy,

Dest TransAddr ess & 255. 255 = 6000: CGot 0Act, S_XW n;

Null & 0 = 0: GotoAct, c_unknown; # ' Unusual’ port
_unknown:

Sour ceTransType & 255 = O: PushPktt oAct, Next;

Dest Tr ansType & 255 = O: PushPktt oAct, Next;

Sour ceTr ansAddr ess & 255. 255
Dest Tr ansAddr ess & 255. 255

0: PushPkttoAct, Next;
0: Count Pkt, O;

_wel I _known:
Null & 0 = 0: Count, O

The first few rules ignore dummy packets, select |IP packets for
further processing, and count packets for other protocols in a single
flow for each PeerType. TCP and UDP packets cause the PME to Push
their TransType and Goto tcp_udp. |CWP and OSPF packets are counted
in flows which have only their TransType Pushed.

Br ownl ee | nf or mat i onal [Page 24]

RFC 2123 Traffi c Fl ow Measur enent March 1997

At tcp_udp the packets’ SourceTransAddress is tested to see whet her
it isincluded in a set of "interesting port nunbers. If it is, the
port nunber is pushed fromthe rule into the SourceTransAddress
attribute, and the packet is counted at c_well _known. (NeMaC accepts
Pushto as a synonym for PushRul et o).

This testing is repeated for the packet’'s DestTransAddress; if one of
these tests succeeds the PME Coes to the corresponding rul e above and
Pushes the port nunber into the flow s SourceTransAddress. |If these
tests fail the packet is counted at c_unknown, where all the flow s
Trans attributes are pushed. For production use nore well-known
ports would need to be included in the tests above - c_unknown is
intended only for little-used exception fl ows!

Note that these rules only Push a value into a flow s

Sour ceTransAddress, and they don't contain any NoMatch actions. They
therefore don’t specify a packet’s direction, and they could be used
in other rule sets to group together flows for well-known ports.

The | ast exanple (below) nmeters flows froma renote router, and
denonstrates anot her approach to grouping well-known ports.

Sour ceAdj acent Addr ess & FF- FF- FF- FF- FF- FF
00- 60- 3E- 10- EO- Al: Coto, gateway; #
Dest Adj acent Addr ess & FF- FF- FF- FF- FF- FF =
Goto, gateway; # Source is tnkr2
Null & 0 = O: | gnore, O;

nkr2 router
O_

t
00- 60- 3E- 10- EO- Al:

#
gat eway:
Sour cePeer Type & 255 = I P. CGotoAct, |P_pkt;
Null & 0 = 0: GotoAct, Next;
Sour cePeer Type & 255 = 0: Count Pkt, O;
#
| P_pkt:
SourceTransType & 255 = tcp: PushRul eto, tcp_udp
SourceTransType & 255 = udp: PushRul eto, tcp_udp
Null & 0 = 0: GotoAct, not_wkp; # Unknown transport type
#
tcp_udp:
SourceTransAddress & FC-00 = 0: GotoAct, well _known_port;
Dest TransAddress & FC-00 = 0: NoMatch, O
Null & 0 = 0: GotoAct, not_wkp;
#
not _wkp:

Dest Tr ansAddr ess & 255. 255
wel | _known_port:

Sour cePeer Type & 255

Dest Peer Type & 255

I
e

PushPktt oAct, Next;

0: PushPkttoAct, Next;
0: PushPkttoAct, Next;

Br ownl ee I nf or mat i onal [Page 25]

RFC 2123 Traffi c Fl ow Measur enent March 1997

Sour cePeer Address & 255. 255. 255. 0
Dest Peer Addr ess & 255.255.255.0
Sour ceTransType & 255

Dest TransType & 255

Sour ceTransAddress & 255. 255

PushPktt oAct, Next;
PushPktt oAct, Next;
PushPktt oAct, Next;
PushPktt oAct, Next;
Count Pkt, O;

o nn
eeeeQ

The first group of rules test incom ng packet’s Adjacent Addresses to
see whether they belong to a flowwith an end point at the specified
router. Any which don't are ignored. Non-IP packets are counted in
flows which only have their PeerType Pushed; these will produce one
flow for each non-1P protocol. |P packets with TransTypes ot her than
UDP and TCP are counted at not_wkp, where all their address

attri butes are pushed.

The hi gh-order six bits of SourceTransAddress for UDP and TCP packets
are conpared with zero. |If this succeeds their source port nunber is
| ess than 1024, so they are froma well-known port. The port nunber
is pushed fromthe rule into the flow s SourceTransAddress attri bute,
and the packet is counted at well _known_port. |If the test fails, it
is repeated on the packet’'s DestTransAddress. |If the destination is
a wel I -known port the match is Retried, and will succeed with the

wel | - known port as the flow s source.

If later analysis were to show that a high proportion of the observed
flows were fromnon-well-known ports, further pairs of rules could be
added to performa test in each direction for other heavily-used
ports.

4 Flow data files

Al t hough the Architecture docunent [1] specifies - in great detail -
how the Traffic Flow Meter works, and how a neter reader shoul d
collect flow data froma nmeter, it does not say anything about how
the coll ected data should be stored. NeMaC uses a sinple, self-
docunenting file format, which has proved to be very effective in
use.

There are two kinds of records in a flow data file: flow records and
i nformation records. Each flow record is sinply a sequence of
attribute values with separators (these can be specified in a NeMaC
rule file) or spaces between them terninated by a new i ne.

Information records all start with a cross-hatch. The file's first
record begins with ##, and identifies the file as being a file of
data from NeTraMet. It records NeMaC s paraneters and the tinme this
collection was started. The file's second record begins with
#Format: and is a copy of the Format statement used by NeMaC to
col l ect the data.

Br ownl ee I nf or mat i onal [Page 26]

RFC 2123 Traffi c Fl ow Measur enent March 1997

4.1

The rest of the file is a sequence of collected data sets. Each of
these starts with a #Tinme: record, giving the tinme-of-day the
collection was started, the nmeter name, and the range of neter tines
this collection represents. These fromand to tinmes are neter
UpTinmes, i.e. they are tinmes in hundredths of seconds since the neter
commenced operation. Mst analysis applications have sinply used the
collection start times (which are ASCI| tine-of-day values), but the
fromand to tinmes could be used to convert Uptine values to tine-of-
day. The flow records which conprise a data set foll ow the #Tine
record.

Sample flow data file

A sanple flow data file appears below. Mst of the flow records have
been del eted, but |ines of dots show where they were.

##NeTraMet v3.2. -¢300 -r rules.lan -e rul es.default

test_nmeter -i ethO 4000 flows starting at 12:31:27 Wd 1 Feb 95

#Format: flowul eset flow ndex firsttinme sourcepeertype

sour cepeer address dest peeraddress topdus fronpdus
tooctets fronoctets

#Tinme: 12:31:27 Wed 1 Feb 95 130.216. 14. 251 Fl ows

WWWWWWwWwwwwwkrRrEFrEFPEk

WWWWWwWwWwwww

Br o

from1l to 3642

2 13 5 31.32.0.0 33.34.0.0 1138 0 121824 0

313 2 11.12.0.0 13.14.0.0 4215 0 689711 0

4 13 7 41.42.0.0 43.34.0.0 1432 0 411712 0

513 6 21.22.0.0 23.24.0.0 8243 0 4338744 0

6 3560 2 130.216.14.0 130.216.3.0 0 10 O 1053

7 3560 2 130.216.14.0 130.216.76.0 59 65 4286 3796
8 3560 7 0.0.255.0 1.144.200.0 0 4 0 222

9 3560 2 130.216.14.0 130.216.14.0 118 1 32060 60

10 3560 6 130.216.0.28 130.216.0.192 782 1 344620 66
11 3560 7 0.0.255.0 0.128.113.0 01 O 73

12 3560 5 59.3.13.0 4.1.152.0 11 60 60

13 3560 7 0.128.94.0 0.129.27.0 2 2 120 158
14 3560 5 59.3.40.0 4.1.153.0 2 2 120 120
15 3560 5 0.0.0.0 4.1.153.0 01 O 60

16 3560 5 4.1.152.0 59.2.189.0 2 2 120 120
42 3560 7 0.128.42.0 0.129.34.0 01 0 60

43 3560 7 0.128.42.0 0.128.43.0 01 0 60

44 3560 7 0.128.42.0 0.128.41.0 01 O 60

45 3560 7 0.128.42.0 0.129.2.0 01 0O 60

46 3560 5 4.1.152.0 59.2.208.0 2 2 120 120
47 3560 5 59.3.46.0 4.1.150.0 2 2 120 120
48 3560 5 4.1.152.0 59.2.198.0 2 2 120 120
49 3560 5 0.0.0.0 59.2.120.0 01 O 60

50 3664 5 4.1.152.0 59.2.214.0 01 O 60

wnl ee | nf or mat i onal [Page 27]

RFC 2123

Traffi c Fl ow Measur enent March 1997

3 51 3664 5 0.0.0.0 4.2.142.0 01 0 60
3 52 3664 5 4.1.153.0 59.3.45.0 4 4 240 240

Feb 95 130. 216. 14. 251 Fl ows

6 3560 2 130.216.14.0 130.216.3.0 0 21 0 2378

7 3560 2 130.216.14.0 130.216.76.0 9586 7148 1111118 565274
8 3560 7 0.0.255.0 1.144.200.0 0 26 0 1983

9 3560 2 130.216.14.0 130.216.14.0 10596 1 2792846 60

28 130.216.0.192 16589 1 7878902 66
0.128.113.0 0 87 0 16848
4.1.152.0 20 20 1200 1200

0.128.94.0 0.129.27.0 15 14 900 1144

4.1.153.0 38 38 2280 2280
1.153.0 0 30 0 1800
59.2.189.0 20 20 1200 1200

.0.0 59.2.141.0 0 11 0 660

.129.113.0 0.128.37.0 01 0 82
.128.41.0 0.128.46.0 1 1 543 543
.128.211.0 0.128.46.0 1 1 543 543
.128.47.0 2.38.221.0 1 1 60 60
202.14.100.0 130.216.76.0 0 4 0 240

76.0 130.216.3.0 0 232 0 16240
Feb 95 130. 216. 14. 251 Fl ows

0 130.216.3.0 51 180 3079 138195
0 130.216.76.0 21842 18428 2467693 1356570

0.0.255.0 1.144.200.0 O 30 O 2282

#Time: 12:36:25 Wd 1
from 3641 to 33420

3

3

3

3

3 10 3560 6 130.216.0.

3 11 3560 7 0.0.255.0

3 12 3560 5 59.3.13.0

3 13 3560 7

3 14 3560 5 59.3.40.0

3 15 3560 5 0.0.0.0 4.

3 16 3560 5 4.1.152.0

317 3560 5 0.0

3 476 26162 7 O

3 477 27628 7 O

3 478 27732 7 O

3 479 31048 7 O

3 480 32717 2

3 481 32717 2 130.216

#Time: 12:41:25 Wd 1
from 33419 to 63384

3 6 3560 2 130.216. 14.

3 7 3560 2 130.216. 14.

3 8 3560 7

3 9 3560 2 130.216. 14.

3 10 3560 6 130.216.0.

3 11 3560 7 0.0.255.0

3 12 3560 5 59.3.13.0

3 14 3560 5 59.3.40.0

3 15 3560 5 0.0.0.0 4.

0 130.216.14.0 24980 1 5051834 60
28 130.216.0.192 20087 1 8800070 66
0.128.113.0 0 164 0O 32608

4.1.152.0 41 41 2460 2460

4.1.153.0 82 82 4920 4920

1.153.0 0 60 O 3600

4.2 Flow data file features

Several features of NeMaC s flow data files (as indicated above) are

wor t hy of

- Collection times overlap slightly between sanpl es.

not e:

flows which were created after the collection started, and nakes
sure that flows are not mssed froma collection

Br ownl ee

I nf or mat i onal [Page 28]

This all ows for

RFC 2123 Traffi c Fl ow Measur enent March 1997

4.3

Br o

The rule set may change during a run. The above shows flows from
rule set 1 - the default set - in the first collection, followed by
the first flows created by rule set 3 (which has just been

downl oaded by NeMaC).

FI om ndexes may be reused by the neter once their flows have been
recovered by the garbage collector. The conbi nation of

FI owRul eSet, Flowl ndex and StartTinme are needed to identify a flow
uni quel y.

Packet and Byte counters are 32-bit unsigned integers, and are
never reset by the neter. Conputing the counts occurring within a
collection interval requires taking the difference between the
collected count and its value when the flow was | ast coll ected.
Note that counter wap-around can be allowed for by sinply
perform ng an unsi gned subtraction and ignoring any carry.

In the sanple flow data file above | have used doubl e spaces as
separators between the flow identifiers, peer addresses, pdu counts
and packet counts.

The format of addresses in the flow data file depends on the type
of address. NeMaC al ways di spl ays Adj acent addresses as six hex
byt es separated by hyphens, and Transport addresses as (16-bit)
integers. The format of a Peer address depends on its Peer Type,
e.g. dotted decimal for IP. To facilitate this NeMaC needs to know
the Peer Type for each flow, the user nust request NeMaC to coll ect
it.

Termi nating and restarting neter reading

When NeMaC first starts collecting froma nmeter, it reads the flow
data for all active flows. This provides a starting point for

anal ysis applications to conpute the counts between successive

col I ections.

Fromtime to tinme the user needs to termnate a flow data file and
begin a new one. For exanple, a user nmight need to generate a
separate file for each day of metering. NeMaC provides for this by
closing the file after each collection, then opening it and appendi ng
the data fromthe next collection. To terminate a file the user
sinply renanmes it. The Unix systemw || effect the nane change
either imediately (if the file was closed) or as soon as the current
collection is conplete (and the file is closed).

When NeMaC begins its next collection it observes that the file has

di sappeared, so it creates a new one and wites the # header records
before witing the collected data.

wnl ee I nf or mat i onal [Page 29]

RFC 2123 Traffi c Fl ow Measur enent March 1997

There is one aspect of the above which requires sone care on the
user’'s part. The last data set in a file is not duplicated as the
first data set of the next file. |In other words, analysis
applications nust either | ook ahead at the first data set of the next
file, or begin by reading the |ast data set of the previous file. |If
they fail to do this they will | oose one collections worth of flow
data at each change of file.

5 Anal ysis applications

Most anal ysis applications will be unique, taking data produced by a
| ocal | y-devel oped rule set and producing reports to satisfy specific
| ocal requirenments. The NeTraMet distribution files include three
applications which are of general use, as follows:

- fd_filter conputes data rates, i.e. the differences between
successive data sets in a flow data file. It also allows the user
to assign a 'tag’ nunmber to each flow, these are 'conputed
attributes simlar to Flowd ass and FlowKind - the only difference
is that they are conputed fromthe collected data sets.

- fd_extract takes 'tagged files fromfd filter and produces sinple
"colum list’ files for use by other progranms. One comon use for
fd_extract is to produce tine-series data files which can be plotted
by utilities Iike GNUPI ot.

- nmrc is a ’'renote console’ for a NeTraMet nmeter. It is a slightly
sinmplified version of NeMaC conbined with fd_filter. It can be used
to monitor any neter, and will display (as |ines of text

characters) information about the n busiest flows observed during
each col l ection interval

- nifty is atraffic flow anal yser, which (like nmrc) displays data
froma NeTraMet nmeter. nifty is an X Mdtif application, which
produces displays |ike 'Packet rate (pps) vs Flow lifetinme
(mnutes),’ so as to highlight those flows which are 'interesting.’

These applications are useful in thenmselves, and they provide a good

starting point for users who wish to wite their own anal ysis
appl i cati ons.

Br ownl ee I nf or mat i onal [Page 30]

RFC 2123 Traffi c Fl ow Measur enent March 1997

6 Using NeTraMet in a neasurenment system

This section gives a brief sumuary of the steps involved in setting
up a traffic measurenent system using NeTraMet. These are:

- Decide what is to be neasured. One good way to approach this is to
specify exactly which flows are to be measured, and what reports

will be required. Specifying the flows should nake it obvious
where nmeters will have to be placed so that the flows can be
observed, whether PCs will be adequate for the task, etc.

- Install neters. As well as actually placing the neter hosts this
i ncl udes meking sure that they are configured correctly, wth
appropriate | P addresses, SNWP conmunity strings, etc.

- Develop the rule set (and a standby rule set). The degree of
difficulty here depends on how nuch is known in advance about the
traffic. One possible approach is to start with the neter default
rule set and nmeasure how nmuch traffic there is for each PeerType.
(This is a good way to verify that NeTraMet and NeMaC are wor ki ng
properly). You can now add rules so as to increase the granularity
of the flows; this will of course increase the nunber of flows to
be collected, and force the nmeter’s garbage coll ector to work
harder. Another approach is to try a rule set with very fine
granularity (i.e. one which Pushes all the address attributes),

t hen observing how many flows are collected every few m nutes.

- Develop a strategy for controlling neter reader. This neans
setting the nmeter’s nmaxi mum nunber of flows, the collection
i nterval, how breaks between flow data files will be handl ed, how
of ten NeMaC shoul d check that the neter is running, etc.

- Devel op application(s) to process the collected fl ow data and
produce the required files and reports.

- Test run. Monitor the system then refine the rule sets and neter
readi ng strategy until the overall system performance is
satisfactory.

This process can take quite a long tinme, but the overall result is
well worth the effort.

6.1 Exanples of NeTraMet in production use
At the University of Auckland we run two sets of neters. One of
these nmeasures the traffic entering and | eaving our University

networ k, and generates usage reports for all our Internet users.
This has been in production since early 1994.

Br ownl ee I nf or mat i onal [Page 31]

RFC 2123 Traffi c Fl ow Measur enent March 1997

The other set consists of nmeters which are distributed at

Uni versities throughout New Zeal and. They provide continuous traffic
flow measurenents at five-mnute intervals for all the |inks making
up the Universities’ network (Kawai hiko); this system has been in
production since January 1996, and has al ready proved very useful in
pl anni ng the network’s devel opnent.

The Kawai hi ko Networ k provides | P connectivity for the New Zeal and
Universities. They are linked via a Frane Relay cloud, using a
partial nesh of permanent virtual circuits. There is a NeTraMet
nmeter at each site, nmetering inward and outward traffic. Al the
nmeters are managed from Auckl and, and they all run copies of the sane
rule set.

The rul e set has about 650 rules, nost of which are in a single
subroutine which classifies Peer Addresses into three categories -

" Kawai hi ko network,’ ’'other New Zeal and network’ and ' non- New Zeal and
network.’ Inside New Zeal and | P addresses lie within six CIDR

bl ocks, and there are about four hundred ol der networks which have
addr esses outside those blocks. The rules are arranged in groups by
subnet size, i.e. all the /24 networks are tested first, then the /23
networks, etc, finishing with the /16 networks. This neans that

al t hough there are about 600 networks, any Peer Address can be
classified with only nine tests.

The Kawai hi ko rule set classifies flows, using conputed attributes to
i ndicate the network ’'kind (Kawai hi ko / New Zeal and / international)
for each flow s SourcePeer Address and Dest Peer Address, and to

i ndicate whether the flowis a 'network news’ flow or not.

Flow data is collected fromall of the neters every five m nutes, and
is used to produce weekly reports, as follows:

- Traffic Plots. Plots of the 5-mnute traffic rates for each site
showi ng international traffic in and out, news traffic in and out,
and total traffic in and out of the site.

- Traffic Matrices. Two of these are produced, one for news traffic,
the other for total traffic. They showthe traffic rates from
every site (including 'other New Zeal and’ and 'international’) to
every other site. The nean, third quartile and nmaxi num are printed
for every cell in the matrices.

Br ownl ee I nf or mat i onal [Page 32]

RFC 2123 Traffi c Fl ow Measur enent March 1997

7 Acknow edgnent s

This nenp docunents the inplenmentation work on traffic flow

nmeasur enent here at the University of Auckland. Many of ny

Uni versity coll eagues have contributed significantly to this work,
especially Russell Fulton (who devel oped the rules sets, Perl scripts
and Cron jobs which produce our traffic usage reports automatically
week after week) and John Wiite (for his patient help in docunenting
the project).

8 Ref erences

[1] Brownlee, N, MIls, C, and G Ruth, "Traffic Fl ow
Measurenment: Architecture", RFC 2063, The University of Auckl and,
Bolt Beranek and Newran Inc., GIE Laboratories, Inc, January 1997.

[2] Brownlee, N, "Traffic Fl ow Measurenment: Meter MB",
RFC 2064, The University of Auckland, January 1997

[3] CRYNWR Packer Drivers distribution site:
http://ww. crynw . conl

[4] Case J., McCoghrie K., Rose M, and \Wal dbusser S.,
"Structure of Managenent Information for version 2 of the

Si npl e Networ k Managenenet Protocol"”, RFC 1902, SNWP Research
Inc., Hughes LAN Systens, Dover Beach Consulting, Carnegie
Mel I on University, April 1993.

[5] IBM Corporation, "IBM PC Techni cal Reference Manual ," 1984.

[6] Waterl oo TCP distribution site:
http://mvnpc9. ci w. uni - kar |l sruhe. de: 80/ d: /public/tcp_ip/wattcp

[7] CMJ SNWP distribution site:
ftp://1ancaster. andrew. cnu. edu/ pub/ snnp- di st

[8] libpcap distribution site:
ftp://ftp.ee.lbl.gov/libpcap-*.tar.gz

Br ownl ee I nf or mat i onal [Page 33]

RFC 2123 Traffi c Fl ow Measur enent March 1997

9 Security Considerations
Security issues are not discussed in detail in this docunment. The
nmet er’ s nmanagenent and collection protocols are responsible for
providing sufficient data integrity and confidentiality.

10 Aut hor’s Address

Nevi | Brownl ee
The University of Auckl and

Phone: +64 9 373 7599 x8941
Emai | : n. brownl ee@uckl and. ac. nz

Br ownl ee I nf or mat i onal [Page 34]

