Net wor k Wor ki ng G oup T. Brisco
Request for Comments: 1794 Rut gers University
Cat egory: Informational April 1995

DNS Support for Load Bal anci ng
Status of this Meno

This meno provides information for the Internet community. This neno
does not specify an Internet standard of any kind. Distribution of
this meno is unlimted.

1. Introduction

This RFC is nmeant to first chronicle a foray into the | ETF DNS
Worki ng Group, discuss other possible alternatives to
provi de/ si nul ate | oad bal anci ng support for DNS, and to provide an
ultimate, flexible solution for providing DNS support for bal ancing
| oads of many types.

2. History

The history of this probably dates back well before ny own tinme - so
undoubt edly sone holes are here. Hopefully they can be filled in by
ot her aut hors.

Initially; "load bal ancing" was intended to permt the Domain Nane
System (DNS) [1] agents to support the concept of "clusters" (derived
fromthe VM5 usage) of machines - where all nachines were
functionally simlar or the sane, and it didn't particularly matter
whi ch machi ne was picked - as long as the | oad of the processing was
reasonably well distributed across a series of actual different

hosts. Around 1986 a nunber of different schenes started surfacing
as hacks to the Berkeley Internet Nanme Donai n server (BIND)
distribution. Probably the nost widely distributed of these were the
"Shuffl e Address” (SA) nodifications by Bryan Beecher, or possibly
Marshal | Rose’s "Round Robin" code.

The SA records, however, did a round-robin ordering of the Address
resource records, and didn't do nmuch with regard to the particul ar

| oads on the target machines. WMatt Madi son (of TGV) inplenmented sone
changes that used VMS facilities to review the system | oads, and
return A RRs in the order of |east-|loaded to nost | oaded.

The problemwas with SAs was that | oad was not actually a factor, and

TGV s relied on VM5 specific facilities to order the records. The SA
RRs required changes to the DNS specification (in file syntax and in

Brisco [Page 1]

RFC 1794 DNS Support for Load Bal anci ng April 1995

record processing). These were both viewed as drawbacks and not as
general solutions.

Most of the Internet waited in anticipation of an | ETF approved
nmet hod for sinmulating "clusters”.

Through a few | ETF DNS Wrki ng Group sessions (Chaired by Rob Austein
of Epilogue), it was collectively agreed upon that a nunber of
criteria nust be net:

A) Backwards conpatibility with the existing DNS RFC
B) I nformation changes frequently.

C Miltiple addresses shoul d be sent out.

D) Must interact with other RRs appropriately.

E) Must be able to represent many types of "l oads"

F) Must be fast.

(A) would ensure that the install ed base of BIND and ot her DNS
i mpl enent ati ons woul d continue to operate and interoperate properly.

(B) would pernmit very fast update tines - to enabl e nodeling of
real -time data. Five mnutes was thought as a normal interval
t hough changes as fast as every sixty seconds could be inagi ned.

(C would cover the possibility of a host’s address being adverti sed
as optimal, yet the machine crashed during the period within the TTL
of the RR The second-nost preferable address woul d be adverti sed
second, the third-nost preferable third, and so on. This would all ow
a reasonabl e stab at recovery during nmachine fail ures.

(D) would ensure correct handling of all ancillary information - such
as MX; RP, and TXT information, as well as reverse | ookup
information. It needed to be ensured that such processes as nai
handl i ng continued to work in an unsurprising and predictable manner.

(E) would ensure the flexibility that everyone wi shed. A breadth of
"l oads" were wished to be represented by various nenbers of the DNS
Working Group. Sone "loads" were fairly eclectic - such as the
address ordering by the RTT to the host, sone were pragmatic - such
as bal ancing the CPU | oad evenly across a series of hosts. A
represented valid concerns within their own context, and the idea of
havi ng separate RR types for each was unthinkable (primarily; it
woul d viol ate goal A).

Brisco [Page 2]

RFC 1794 DNS Support for Load Bal anci ng April 1995

(F) needed to ensure a fewthings. Primarily that the tine to
calculate the information to order the addressing information did not
exceed the TTL of the information distributed - i.e., that elenents
with a TTL of five minutes didn't take six minutes to cal cul ate.
Simlarly; it seens a fairly clear goal in the DNS RFC that clients
shoul d not be kept waiting - that request processing should continue
regardl ess of the state of any other processing occurring.

3. Possible Alternatives

During various discussions with the DNS Wrking Goup and with the
Load Bal ancing Conmittee, it was noted that no existing solution
dealt with all wi shes appropriately. One of the major successes of
the DNS is its flexibility - and it was felt that this needed to be
retained in all aspects. It was conceived that perhaps not only
address informati on woul d need to be changed rapidly, but other
records nay also need to change rapidly (at |east this could not be
rul ed out - who knows what technologies lurk in the future).

O primary concern to many was the ability to interact with ol der
i npl ementations of DNS. The DNS is inplenmented wi dely now, and
changes to critical portions of the protocol could cause havoc for
years. |t becane rapidly apparent through conversations with Jon
Postel and Dave Crocker (Area Director) that nodifications to the
protocol woul d be viewed diny.

4. A Fl exi bl e Model

During many hours of discussions, it arose upon suggestion from Rob
Aust ein that the changes could be inplenented w thout changes to the
protocol; if zone transfer behavior could be subtly changed, then the
zone transfer process could accombdate the changi ng of various RR

i nformati on. Wat was needed was a smarter programto do the zone
transfers. Pursuant to this, changes were nade to BIND that woul d
permt the specification of the programto do the zone transfers for
particul ar zones.

There is no specification that a secondary has to receive updates
fromits primary server in any specific manner - only that it needs
to check periodically, and obtain new zone copi es when changes have
been made. Conceivably the zone transfer agent could obtain the

i nformati on from any nunber of sources (e.g., a |load average daenon,
a round-robin sorter) and present the information back to the
nanmeserver for distribution

A nunber of questions arose fromthis concept, and all seemto have

been dealt with accordingly. Primarily, the DNS protocol doesn’t
guarantee ordering. Wile the DNS protocol doesn't guarantee

Brisco [Page 3]

RFC 1794 DNS Support for Load Bal anci ng April 1995

ordering, it is clear that the ordering is predictive - that
information read in twice in the sane order will be presented tw ce
in the same order to clients. dients, of course, nmay reorder this
information, but that is deened as a "local issue" as it is
configurable by the renpte systenms administrators (e.g., sortlists,
etc). The zone transfer agent would have to account for any "m s-
ordering"” that may occur locally, but renote reordering (e.g., client
side sortlists) of RRs is is inpossible to predict. Since |loca

nm s-ordering is consistent, the zone transfer agents could easily
account for this.

Secondarily, but perhaps nore subtly, the problemarises that zone
transfers aren’'t used by primary naneservers, only by secondary
naneservers. To clarify this, the idea of "fast" or "volatile"
subzones nust be dealt with. In a volatile environnent (where
address or other RR ordering changes rapidly), the refresh rate of a
zone nust be set very low, and the TTL of the RRs handed out mnust
simlarly be very low There is no use in handing out informtion
with TTLs of an hour, when the conditions for ordering the RRs
changes nminutely. There must be a relatively close relationship
between the refresh rates and TTLs of the information. O course,
with very low refresh rates, zone transfers between the primry and
secondary woul d have to occur frequently. Gven that primry and
secondary naneservers shoul d be topol ogically and geographically far
apart, noving that nmuch data that frequently is seen as prohibitive.
Al so; the longer the propagation tinme between the primry and
secondary, the larger the wi ndow in which circunstances can change -

thus invalidating the secondary’s information. It is generally
t hought that passing volatile information on to a secondary is fairly
useless - if secondaries want accurate information, then they should

calculate it thensel ves and not obtain it via zone transfers. This
avoi ds the problemw th secondaries |osing contact with the primaries
(but access to the targets of the volatile domain are stil

reachabl e), but the secondary has information that is grow ng stale.

What is essentially necessary is a secondary (wWith no primary) which
can cal cul ate the necessary ordering of the RR data for itself (which
al so avoids the problem of different versions of domain servers
predictively ordering RRinformation in different predictive
fashions). For a volatile zone, there is no primary DNS agent, but
rather a series of autononbus secondary agents. Each autononous
secondary agent is, of course, capable of calculating the ordering or
content of the volatile RRs itself.

Brisco [Page 4]

RFC 1794 DNS Support for Load Bal anci ng April 1995

5.

| npl ement ati on

Wth sone help from Masataka Ohta (Tokyo Institute of Technol ogy), |
i npl emrented nodifications to BIND to pernit the specification of the
zone transfer program (zone transfer agent) for particul ar donains:

transfer <domai n- nanme> <pr ogr am nane>
Currently | define a separate subdomain that has a few hosts defined

init - all volatile information. The zone has a refresh rate of
300, and a mininmum TTL of 300 indicated. The configuration file is

i ndicated as "vol atile. hosts". Every 300 seconds a program "doAxfer"
isrun to do the zone transfer. The program "doAxfer" reads the file
"volatile.hosts.tenplate" and the file "volatile.hosts.list". The

addresses specified in volatile.hosts.list are rotated a random
nunber of tines, and then substituted (in order) into

vol atile.hosts.tenplate to generate the file volatile.hosts. The
program "doAxfer" then exits with a value of 1 - to indicate to the
naneserver that the zone transfer was successful, and that the file
shoul d be read in, and the information distributed. This results in
a host having nultiple addresses, and the addresses are random zed
every five mnutes (300 seconds).

Two bugs continue to plague us in this endeavor. BIND currently

considers any TTL under 300 seconds as "irrational", and substitutes
in the value of 300 instead. This greatly hanpers the functionality
of volatile zones. 1In the fastest of all cases - a O TTL -

i nformati on woul d be used once, and then thrown away. Presumably the
new RR i nformati on could be cal cul ated every 5 seconds, and the RRs
handed out with a TTL of 0. It nust be considered that one
limtation of the speed of a zone is going to be the ability of a
machi ne to cal culate new information fast enough

The other bug that also effects this is that, as with TTLs, BIND
considers any zone refresh rate under 15 minutes to be simlarly
irrational. Cbviously zone refresh rates of 15 minutes is
unacceptable for this sort of applications.

For a work-around, the current code sets these sane hard-coded val ues
to 60 seconds. Sixty seconds is still large enough to avoid any

resi dual bugs associated with small tiner values, but is also short
enough to allow fast subzones to be of use.

This version of BINDis currently in release within Rutgers
University, operating in both "fast" and normal zones.

Brisco [Page 5]

RFC 1794 DNS Support for Load Bal anci ng April 1995

6. Perfornmance

Wil e the performance of fast zones isn't exactly stellar, it is not
much nore than the normal CPU | oads i nduced by BIND. Testing was
performed on a Sun Sparc-2 being used as a normal workstation, but no
resol vers were using the name server - essentially the naneserver was
idle. For a configuration with no fast subzones, BIND accrued 11 CPU
seconds in 24 hours. For a configuration with one fast zone, siXx
address records, and being refreshed every 300 seconds (5 m nutes),
BIND accrued 1 ninute 4 seconds CPU tine. For the sane previous
configuration, but being refreshed every sixty seconds, BIND accrued
5 m nutes and 38 seconds of CPU tine.

As is no great surprise, the CPU Il oad on the serving machi ne was
linear to the frequency of the refresh time. The sixty second
refresh configuration used approximately five tines as nmuch CPU time
as did the 300 second refresh configuration. One can easily
extrapol ate that the overall CPU utilization would be linear to the
nunber of zones and the frequency of the refresh period. Al of this
is based on a shell script that always indicated that a zone update
was necessary, a nore intelligent program should realize when the
reordering of the RRs was unnecessary and avoid such periodic zone

r el oads.

7. Acknow edgnents
Most of the ideas in this docunment are the results of conversations
and proposal s from many, many people - including, but not limted to,
Robert Austein, Stuart Vance, Masataka Ohta, Mrshall Rose, and the
menbers of the | ETF DNS Wor ki ng G oup.

8. References
[1] Mockapetris, P., "Domain Nanmes - |nplenmentation and

Speci fication", STD 13, RFC 1035, USC/ Information Sciences
Institute, Novenber 1987.

Brisco [Page 6]

RFC 1794 DNS Support for Load Bal anci ng April 1995

9. Security Considerations
Security issues are not discussed in this neno.
10. Aut hor’s Address

Thomas P. Brisco

Associ ate Director for Network Operations

Rut gers University

Conputi ng Services, Tel ecomuni cations Division
Hill Center for the Mathematical Sciences

Busch Canpus

Pi scat away, New Jersey 08855-0879

USA

Phone: +1-908-445-2351
EMai | : brisco@ utgers. edu

Brisco [Page 7]

