Net wor k Wor ki ng Group G Trewitt
Request for Coments: 1023 St anf ord
C. Partridge

BBN/ NNSC

Cct ober 1987

HEMS Monitoring and Control Language

This RFC specifies the design of a general -purpose, yet efficient,
monitoring and control |anguage for managi ng network entities. The
data in the entity is nodeled as a hierarchy and specific itens are
named by giving the path fromthe root of the tree. Mst itens are
read-only, but sone can be "set" in order to performcontro
operations. Both requests and responses are represented using the
| SO ASN. 1 data encodi ng rul es.

STATUS OF TH S MEMO

The purpose of this RFC is provide a specification for nonitoring and
control of network entities in the Internet. This is an experinmental
specification and is intended for use in testing the ideas presented
here. No proposals in this neno are intended as standards for the
Internet at this time. After sufficient experinentation and

di scussion, this RFC will be redrafted, perhaps as a standard.
Distribution of this nmeno is unlimnmted.

This I anguage is a conponent of the Hi gh-Level Entity Monitoring
System (HEMS) described in RFC- 1021 and RFC-1022. Readers nay want
to consult these RFCs when reading this nmeno. RFC-1024 contains
detail ed assignments of nunbers and structures used in this system
This nenp assunes a know edge of the | SO data encodi ng standard,
ASN. 1.

OVERVI EW AND SCOPE

The basic nodel of nonitoring and control used in this proposal is
that a query is sent to a nonitored entity and the entity sends back
a response. The termquery is used in the database sense -- it may
request information, nodify things, or both. W wll use gateway-
oriented exanples, but it should be understood that this query-
response mechani smcan be applied to other entities besides just

gat eways.

In particular, there is no notion of an interactive "conversation" as

in SMIP [RFC-821] or FTP [RFC-959]. A query is a conplete request
that stands on its own and elicits a conplete response.

Trewitt & Partridge [Page 1]

RFC 1023 HEMS Language Cct ober 1987

It is not necessary for a nonitored entity to be able to store the

conplete query. It is quite possible for an inplenentation to
process the query on the fly, producing portions of the response
while the query is still being received.

O her RFCs associated with HEMS are: RFC- 1021 -- Overview, RFC 1022
-- transport protocol and nmessage encapsul ati on; RFC- 1024 -- precise
data definitions. These issues are not dealt with here. It is
assuned that there is sonme nechanismto transport a sequence of
octets to a query processor within the nonitored entity and that
there is sone nmechanismto return a sequence of octets to the entity
maki ng the query.

ENCODI NG OF QUERI ES AND RESPONSES

Bot h queri es and responses are encoded using the representation
defined in 1SO Standard ASN.1 (Abstract Syntax Notation 1). ASN 1
represents data as sequences of <tag,length,contents> triples that
are encoded as a stream of octets. The data tuples may be
recursively nested to represent structured data such as arrays or
records. For a full description of this notation, see the |ISO
docunments 1S 8824 and IS 8825. See the end of this neno for

i nformati on about ordering these docunents.

NOTATI ON USED I N THI S PROPOSAL

The notation used in this meno is simlar to that used in ASN 1, but
|l ess fornmal, smaller, and (hopefully) easier to read. The nost
important difference is that, in this nmeno, we are not concerned with
the length of the data itens.

ASN. 1 data itenms may be either a "sinple type" such as integer or
octet string or a "structured type", a collection of data itens. The
notation or a "structured type", a collection of data itens. The
not ati on:

| D(val ue)
represents a sinple data itemwhose tag is "ID'" with the given val ue.
A structured data itemis represented as:

ID{ ... contents ... }
where contents is a sequence of data itenms. Renenber that the
contents may include both sinple and structured types, so the
structure is fully recursive

There are situations where it is desirable to specify a type but give
no val ue, such as when there is no nmeani ngful value for a particular
nmeasured parameter or when the entire contents of a structured type
is being specified. In this situation, the sane notation is used,

Trewitt & Partridge [Page 2]

RFC 1023 HEMS Language Cct ober 1987

but with the value onmtted:

I D()
or
oy o . .
The representation of this is obvious -- the data itemhas zero for

the length and no contents.
DATA MODEL

Data in a nmonitored entity is nodel ed as a hierarchy.

| mpl enentations are not required to organize the data internally as a
hi erarchy, but they nust provide this view of the data through the
guery |l anguage. A hierarchy offers useful structure for the
foll ow ng operations:

Or gani zati on A hierarchy allows related data to be grouped
together in a natural way.

Nani ng The nanme of a piece of data is just the path from
the root to the data of interest.

Mappi ng onto ASN. 1
ASN. 1 can easily represent a hierarchy by using
"constructor" types as an envelope for an entire
subtree.

Efficient Representation
H erarchical structures are quite conpact and can
be traversed very quickly.

Each node in the hierarchy nmust have names for its conponent parts.

Al t hough we woul d normally think of names as being ASCI| strings such
as "input errors", the actual name would just be an ASN. 1 tag. Such
nanes woul d be small integers (typically, less than 100) and so could
easily be mapped by the nonitored entity onto its interna
representation.

W will use the term"dictionary" to represent an internal node in
the hierarchy. Here is a possible organization of the hierarchy in
an entity that has several network interfaces and nultiple processes.
The exact organization of data in entities is specified in RFC 1024.

Trewitt & Partridge [Page 3]

RFC 1023 HEMS Language Cct ober 1987

system {
name -- host nane
cl ock-msec -- msec since boot
interfaces -- # of interfaces
interfaces { -- one per interface
interface { type, ip-addr, in-pkts, out-pkts, }
interface { type, ip-addr, in-pkts, out-pkts, }
interface { type, ip-addr, in-pkts, out-pkts, }
}
processes {
process { nanme, stack, interrupts, . . . }
process { nanme, stack, interrupts, . . . }
}
route-table {
route-entry { dest, interface, nexthop, cost, }
route-entry { dest, interface, nexthop, cost, }

}

arp-table {
arp-entry { hard-addr, ip-addr, age }
arp-entry { hard-addr, ip-addr, age }

nmenory { }

The "nane" of the clock in this entity would be:

systen{ cl ock-nsec }
and the nane of a route-entry’s |IP address woul d be:

route-table{ route-entry{ ip-addr } }.
Actually, this is the nane of the I P addresses of ALL of the routing
table entries. This anbiguity is a problemin any situation where
there are several instances of an itembeing nonitored. |f there was
a meani ngful index for such tabular data (e.g., "routing table entry
#1"), there would be no problem Unfortunately, there usually isn't
such an index. The solution to this problemrequires that the data
be accessed on the basis of some of its content. More on this |ater

More than one piece of data can be nanmed by a single ASN. 1 object.
The entire collection of systeminformation is named by:
systen{ }
and the nane of a routing table's I P address and cost woul d be:
route-tabl e{ route-entry{ ip-addr, cost } }.

Trewitt & Partridge [Page 4]

RFC 1023 HEMS Language Cct ober 1987

Arrays

There is one sub-type of a dictionary that is used as the basis for
tabl es of objects with identical types. W call these dictionaries
arrays. In the exanple above, the dictionaries for interfaces,
processes, routing tables, and ARP tables are all arrays. |In fact,
we expect that npst of the interesting data in an entity will be
contained in arrays.

The primary difference between arrays and plain dictionaries is that
arrays may contain only one type of item while dictionaries, in

general, will contain many different types of items. Arrays are
usual Iy accessed associatively using special operators in the
| anguage.

The fact that these objects are viewed externally as arrays does not
mean that they are represented in an inplenentation as linear lists
of objects. Any collection of sane-typed objects is viewed as an
array, even though it mght be represented as, for exanple, a hash
tabl e.

REPRESENTATI ON OF A REPLY
The data returned to the nonitoring entity is a sequence of ASN. 1

data itenms. Each of these corresponds to one the top-Ievel
dictionaries maintained by the nonitored entity. The tags for these

data items will be in the "application-specific" class (e.g., if an
entity has the above structure for its data, then the only top-Ievel
data itenms that will be returned will have tags corresponding to
these groups). |If a query returned data fromtwo of these, the
representation mght |ook Iike:

interfaces{ . . . } route-tabl¢{

which is just a streamof two ASN. 1 objects.(éach of which may
consi st of many sub-objects).

Data not in the root dictionary will have tags fromthe context-
specific class. Therefore, data nust always be fully qualified. For
exanpl e, the nanme of the entity would al ways be returned encapsul at ed
inside an ASN. 1 object for "systent. |If it were not, there would be
no way to tell if the object that was returned were "nane" inside the
"systent dictionary or "dest" inside the "interfaces" dictionary
(assuming in this case that "nane" and "dest" were assigned the sane
ASN. 1 tag).

Having fully-qualified data sinplifies decoding of the data at the
receiving end and allows the tags to be locally chosen (e.qg.,
definitions for tags dealing with ARP tables can’t conflict with
definitions for tags dealing with interfaces). Therefore, the people

Trewitt & Partridge [Page 5]

RFC 1023 HEMS Language Cct ober 1987

doi ng the nanme assignnments are | ess constrained. In addition, nopst
of the identifiers will be fairly small integers.
It will often be the case that requested data may not be avail abl e,

ei ther because the request was badly fornmed (asked for data that

couldn’t exist) or because the particular data itemwasn’'t defined in
a particular situation (time since |last error, when there hasn't been

an error). In this situation, the returned data itemw /|| have the
same tag as in the request, but will have zero-length data.
Therefore, there can NEVER be an "undefined data" error.

This allows conpletely generic queries to be conposed without regard
to whether the data is defined at all of the entities that wll
receive the request. All of the available data will be returned,
Wi t hout generating errors that might otherwi se termnate the
processing of the query.

REPRESENTATI ON OF A REQUEST

A request to a nonitored entity is also a sequence of ASN. 1 data
items. Each itemwll fit into one of the follow ng categori es:

Tenpl ate These are objects with the same types as the
obj ects returned by a request. The difference
is that a tenplate only specifies the shape of
the data -- there are no values contained in
it. Tenplates are used to select specific data
to be returned. No ordering of returned data
isinplied by the ordering in a tenplate. A
tenpl ate nay be either sinple or structured,
dependi ng upon what data it is nam ng. The
representations of the sinple data itens in a
template all have a length of zero

Tag Atag is a special case of a tenplate that is a
sinmple (non-structured) type (i.e., it nanes
exactly one node in the dictionary tree).

Opcodes These objects tell the query interpreter to do
somet hing. They are described in detail later in
this report. Opcodes are represented as an
application-specific type whose val ue determ nes
the operation. These values are defined in
RFC- 1024.

Dat a These are the sanme objects that are used to

represent information returned froman entity.
It is occasionally be necessary to send data as

Trewitt & Partridge [Page 6]

RFC 1023 HEMS Language Cct ober 1987

part of a request. For exanple, when requesting
i nformati on about the interface with | P address
"10.0.0.51", the address would be sent in the
same format in the request as it would be seen
in areply.
Data, Tags, and Tenplates are usually in either the context-specific
class, except for items in the root dictionary and a few speci al
cases, which are in the application-specific class.
QUERY LANGUAGE
Al t hough queries are forned in a flexible way using what we term a
"l anguage", this is not a programing |anguage. There are operations
that operate on data, but nost other features of programi ng
| anguages are not present. |In particular:
- Prograns are not stored in the query processor.
- The only formof tenmporary storage is a stack
In the current version of the query | anguage:
- There are no subroutines.
- There are no control structures defined in the |anguage.
- There are no arithnetic or conditional operators.
These features could be added to the | anguage if needed.
This I anguage is designed with the goal of being expressive enough to

write useful queries with, but to guarantee sinplicity, both of query
execution and | anguage i npl enment ati on.

The central elenent of the language is the stack. It may contain
tenpl ates, (and therefore tags), data, or dictionaries (and therefore
arrays) fromthe entity being nonitored. Initially, it contains one

item the root dictionary.

The overal | operation consists of reading ASN.1 objects fromthe

i nput stream Al objects that aren’t opcodes are pushed onto the
stack as soon as they are read. Each opcode is executed i nmedi ately
and may renove things fromthe stack and may generate ASN. 1 objects
and send themto the output stream Note that portions of the
response may be generated while the query is still being received.

The foll owi ng opcodes are defined in the |anguage. This is a

Trewitt & Partridge [Page 7]

RFC 1023 HEMS Language Cct ober 1987

provisional list -- changes may need to be nmade to deal with
addi ti onal needs.

In the descriptions bel ow, opcode nanes are in capital letters,
preceded by the argunments used fromthe stack and foll owed by results
left on the stack. For exanpl e:

oP ab oP t
nmeans that the OP operator takes <a> and off of the
stack and | eaves <t> on the stack. Many of the operators
bel ow | eave the first operand (<a> in this exanple) on
the stack for future use.

Here are the operators defined in the query | anguage:

GET dict tenplate GET di ct
Emit an ASN. 1 object with the sane "shape" as the given
tenplate. Any itens in the tenplate that are not in
<di ctionary> (or its conponents) are represented as
objects with a length of zero. This handles requests for
data that isn't available, either because it isn't
defined or because it doesn’'t apply in this situation.

or di ct GET di ct
If there is no tenplate, get all of the itens in the
dictionary. This is equivalent to providing a tenplate
that lists all of the itens in the dictionary.

BEG N dictl tag BEG N dictl dict
Pushes the value for dict{ tag } on the stack, which
shoul d be another dictionary. At the sanme tinme, produce
t he begi nning octets of an ASN. 1 object corresponding to

that dictionary. It is up to the inplenentation to
choose between using the "indefinite | ength”
representation or going back and filling the length in
| ater.

END di ct END --

Pop the dictionary off of the stack and terninate the
currently open ASN. 1 object. Mist be paired with a
BEQ N.

Getting Itenms Based on Their Val ues
One problemthat has not been dealt with was alluded to earlier:
When dealing with array data, how do you specify one or nore entries

based upon sonme value in the array entries? Consider the situation
where there are several interfaces. The data mi ght be organi zed as:

Trewitt & Partridge [Page 8]

RFC 1023 HEMS Language Cct ober 1987

i nterfaces {
interface { type, ip-addr, in-pkts, out-pkts, ...}
interface { type, ip-addr, in-pkts, out-pkts, ...}

}

If you only want infornmation about one interface (perhaps because
there is an enornmous anount of data about each), then you have to
have sonme way to nane it. One possibility is to just nunber the
interfaces and refer to the desired interface as:

i nterfaces(3)
for the third one.

But this is probably not sufficient since interface nunbers may
change over tinme, perhaps fromone reboot to the next. This nethod
is not sufficient at all for arrays with many el enents, such as
processes, routing tables, etc. Large, changing arrays are probably
the nore common case, in fact.

Because of the lack of utility of indexing in this context, there is
no general nechanismin the | anguage for indexing.

A better schene is to select objects based upon sone val ue contai ned
in them such as the |IP address or process name. The GET- MATCH
operator provides this functionality in a fairly general way.

GET- MATCH array val ue tenpl ate GET- MATCH array
<array> should be a array (dictionary containing only
one type of itemj. The first tag in <val ue> and
<tenplate> nmust match this type. For each entry in
<array>, match the <val ue> agai nst the contents of
the entry. |If there is a match, emt the entry based
upon <tenplate>, just as in a GET operation.

If there are several leaf itenms in the value to be matched agai nst,
as in:

route-entry{ interface(l), cost(3) }
all of themnust match an array entry for it to be emtted.

Here is an exanple of how this operator would be used to obtain the

i nput and out put packet counts for the interface with ip-address
10. 0. 0. 51.

Trewitt & Partridge [Page 9]

RFC 1023 HEMS Language Cct ober 1987

i nterfaces BEG N -- get dictionary
interface{ ip-addr(10.0.0.51) } -- value to match

i nterface{ in-pkts out-pkts } -- data tenplate to get
GET- MATCH

END -- finished with dict

The exact meaning of a "match" is dependent upon the characteristics
of the entities being conpared. In alnost all cases, it is a

conpari son for exact equality. However, it is quite reasonable to
define values that allow matches to do interesting things. For
exanpl e, one might define three different flavors of "ip-addr": one
that has only the I P net nunber, one with the |IP net+subnet, and the
whol e | P address. Another possibility is to allow for wildcards in

| P addresses (e.g., if the "host" part of an |IP address was all ones,
then that woul d match against any | P address with the sane net
nunber).

So, for all data itens defined, the behavior of the match operation
must be defined if it is not sinple equality.

| mpl enent ati ons don’t have to provide the ability to use all itens in
an object to match against. It is expected that some data structures
that provide for efficient |ookup for one item my be very
inefficient for matching agai nst others. (For instance, routing
tables are designed for |ookup with IP addresses. It may be very
difficult to search the routing table, matching against costs.)

NOTE: It would be desirable to provide a general -purpose filtering
capability, rather than just "equality" as provided by GET- MATCH
However, because of the potential conplexity of such a facility, |ack
of a widely-accepted representation for filter expressions, and tinme
pressure, we are not defining this nmechani sm now.

However, if a generalized filtering mechanismis devised, the CET-
MATCH operator w |l disappear.

Data Attri butes

Al though ASN. 1 data is self-describing as far as the structure goes,
it gives no information about what the data nmeans (e.g., By |ooking
at the raw data, it is possible to tell that an itemis of type
[context 5] and 4 octets long). That does not tell how to interpret
the data (is this an integer, an |IP address, or a 4-character
string?), or what the data nmeans (IP address of what?).

Most of the tine, this information will cone from RFC- 1024, which

defines all of the ASN.1 tags and their precise neaning. Wen
ext ensi ons have been nmade, it may not be possible to get

Trewitt & Partridge [Page 10]

RFC 1023 HEMS Language Cct ober 1987

docunentati on on the extensions. (See the section about extensions,
page 15.)

The query | anguage provides a set of operators parallel to the GET
and GET- MATCH operators that return a set of attributes describing
the data. This information should be sufficient to let a human
under st and the nmeaning of the data and to | et a sophisticated
application treat the data appropriately. The information is
sufficient to et an application format the information on a display
and deci de whet her or not to subtract one sanple from anot her.

Sone of the attributes are textual descriptions to help a human
understand the nature of the data and provide neani ngful |abels for
it. Extensive descriptions of standard data are optional, since they
are defined in RFC-1024. Conplete descriptions of extensions nust be

avail able, even if they are docunented in a user’s manual. Network
firefighters may not have the nmanual handy when the network is
br oken.

The fornmat of the attributes is not as sinple as the fornat of the
data itself. It isn't possible to use the data’s tag, since that
woul d just | ook exactly like the data itself. The format is:

Attributes ::= [APPLI CATION 2] I MPLICI T SEQUENCE {
t agASN1 [0] IMPLICIT I NTEGER
val ueFor mat [1] IMPLICI T | NTEGER
| ongDesc [2] IMPLICIT I A5String OPTI ONAL,
short Desc [3] IMPLICIT I A5String OPTI ONAL,
uni t sDesc [4] IMPLICIT I A5String OPTI ONAL,
preci si on [5] I'MPLICIT | NTEGER OPTI ONAL,

properties [6] IMPLICIT BI TSTRI NG OPTI ONAL,
}

For exanmple, the attributes for
systen{ name, clock-nsec }
m ght be:
systen
Attributes{
t agASN1(nane), val ueFormat (1 A5String),
| ongDesc(" The nanme of the host"),
short Desc(" host nane")

1
Attributes{
t agASN1(cl ock-nmsec), val ueFormat (I nteger),
| ongDesc("milliseconds since boot"),
short Desc("uptinme"), unitsDesc("ns")
preci sion(4294967296) ,
properties(1)

Trewitt & Partridge [Page 11]

RFC 1023 HEMS Language Cct ober 1987

}

Note that in this exanple <name> and <cl ock-nsec> are integer val ues
for the ASN. 1 tags for the two data itenms. A conplete definition of
the contents of the Attributes type is in RFC 1024.

Note that there will be exactly as many Attributes itenms in the
result as there are objects in the tenplate. Attributes objects for
items which do not exist in the entity will have a val ueFornat of
NULL and none of the optional elenments wll appear.

CET- ATTRI BUTES
dict tenplate GET- ATTRI BUTES di ct
Emit ASN. 1 Attributes objects that for the objects naned
in <tenplate>. Any itens in the tenplate that are not
in <dictionary> (or its conmponents), elicit an
Attributes object with no.

or di ct CGET- ATTRI BUTES di ct
If there is no tenplate, enit Attribute objects for all
of the itens in the dictionary. This is equivalent to
providing a tenplate that lists all of the itens in the
dictionary. This allows a conplete list of a
dictionary’'s contents to be obtained.

CET- ATTRI BUTES- MATCH
di ct val ue tenpl ate GET- ATTRI BUTES- MATCH di ct <array>
shoul d be an array (dictionary containing only one
type of iten). The first tag in <val ue> and
<tenplate> nmust match this type. For each entry in
<array>, match the <val ue> agai nst the contents of the
entry. If there is a match, emt the atributes based
upon <tenplate>, just as in a GET-ATTRI BUTES operati on.

GET- ATTRI BUTES- MATCH i s necessary because there will be situations
where the contents of the elenents of an array may differ, even

t hough the array el enments thenselves are of the sane type. The nost
obvi ous exanple of this is the situation where several network
interfaces exist and are of different types, with different data
collected for each type.

NOTE: The GET- ATTRI BUTES- MATCH operator will disappear if a
generalized filtering nechanismis devised.

ADDI TI ONAL NOTE: A much cl eaner method would be to store the
attri butes as sub-conponents of the data itemof interest. For
exanpl e, requesting:

systen{ clock-nmsec() } GET
woul d normal Iy just get the value of the data. Asking for an

Trewitt & Partridge [Page 12]

RFC 1023 HEMS Language Cct ober 1987

addi ti onal |layer down the tree would now get its attributes:

systen{ cl ock-nsec{ shortDesc, unitsDesc } GET
woul d get the named attributes. (The attributes would be naned with
application-specific tags.) Unfortunately, ASN. 1 doesn't provide an
obvi ous notation to describe this type of organization. So, we're
stuck with the CGET-ATTRI BUTES operator. However, if this cleaner
organi zati on becomes possible, this decision may be re-thought.

Exam ni ng Menory

Even with the ability to symbolically access all of this information
in an entity, there will still be tinmes when it is necessary to get
to very low |l evel s and exam ne nmenory, as in renote debuggi ng
operations. The building blocks outlined so far can easily be
extended to allow nenory to be exam ned.

Menory is nodeled as an array, with an ASN. 1 representati on of
CctetString. Because of the variety of addressing architectures in
exi stence, the conversion between the CctetString and "nmenory" is
very nachi ne-dependent. The only sinple case is for byte-addressed
machi nes with 8 bits per byte.

Each address space in an entity is represented by one dictionary. In
a one- address-space situation, this dictionary will be at the top
level. |If each process has its own address space, then one "nenory"

dictionary may exist for each process.

The CGET- RANGE operator is provided for the primary purpose of

retrieving the contents of nenory, but can be used on any array. It
is only useful in these other contexts if the array index is
meani ngf ul .

GET-RANCGE array start length GET- RANCGE di ct
Get <length> elenents of <array> starting at <start>.
<start> and <l ength> are both ASN. 1 | NTEGER type.

The returned data nmay not be <length> octets long, since it nay take
nmore than one octet to represent one nenory | ocation

Menory is special in that it will not automatically be returned as
part of a request for an entire dictionary (e.g., If nmenory is part
of the "systent dictionary, then requesting:

systen{}
will emit the entire contents of the systemdictionary, but not the

menory item.

NOTE: The GET- RANGE operator nmay di sappear if a generalized
filtering nechanismis devised.

Trewitt & Partridge [Page 13]

RFC 1023 HEMS Language Cct ober 1987

Control ling Things

Al'l of the operators defined so far only allow data in an entity to
be retrieved. By replacing the "tenplate" argunments used in the GET
operators with values, data in the entity can be changed.

There are many control operations that do not correspond to sinply
changi ng the value of a piece of data, such as bringing an interface
"down" or "up". In these cases, a special data item associated with
t he conmponent being controlled (e.g., each interface), would be
defined. Control operations then consist of "setting" this itemto
an appropriate comrand code.

SET di ct val ue SET di ct
Set the value(s) of data in the entity to the val ue(s)
given in <val ue>.

SET- MATCH array nval ue sval ue SET- MATCH di ct
<array> should be a array (dictionary containing only one
type of iten). The first tag in <nmval ue> and <sval ue>
must match this type. For each entry in <array> match
t he <nmval ue> agai nst the contents of the entry. |If there
is a match, set value(s) in the entity to the value(s) in
<sval ue>, just as in SET.

CREATE array val ue SET di ct
Insert a new entry into <array>. Dependi ng upon the
context, there may be severe restrictions about what
constitutes a valid <val ue>

DELETE array val ue SET di ct
Delete the entry(s) in <array> that have val ues that
mat ch <val ue>.

If there are several leaf itens in the nmatched value, as in
route-entry{ interface(l), cost(3) }
all of themnust match an array entry for any val ues to be changed.

Here is an exanple of how this operator would be used to shut down
the interface with ip-address 10.0.0.51 changing its status to

"down".
i nterfaces BEG N -- get dictionary
interface{ ip-addr(10.0.0.51) } -- value to match
interface{ status(down) } -- value to set
SET- MATCH
END -- finished with dict

Trewitt & Partridge [Page 14]

RFC 1023 HEMS Language Cct ober 1987

Delete the routing table entry for 36.0.0.0.

route-table BEG N -- get dictionary
route-entry{ ip-addr(36.0.0.0) } -- value to match
DELETE

END -- finished with dict

Note that this BEG N END pair ends up sending an enpty ASN. 1 item

We don't regard this as a problem as it is likely that there will be
some get operations executed in the same context. |In addition, the
"open" ASN. 1 item provides the correct context for reporting errors.
(See page 14.)

NOTE: The SET- MATCH operator will disappear and the DELETE operator
will change if a generalized filtering mechanismis devised.

At omi ¢ QOperations

At oni c operations can be provided if desired by allowing the stack to
contain a fragnent of a query. A new operation would take a query
fragment and verify its executability and execute it, atomcally.

This is nmentioned as a possibility, but it nay be difficult to
i npl erent. More study is needed.

ERRORS

If sonme particular infornmation is requested but is not available for
any reason (e.g., it doesn't apply to this inplenentation, isn't
collected, etc.), it can ALWAYS be returned as "no-val ue" by giving
the ASN.1 length as O.

Wien there is any other kind of error, such as having inproper
argunments on the top of the stack or trying to execute BEG N when the
tag doesn't refer to a dictionary, an ERROR object be enmitted. The
contents of this object identify the exact nature of the error and
are di scussed in RFC 1024.

Since there nmay be several unterminated ASN. 1 objects in progress at
the time the error occurs, each one nust be term nated. Each

unterm nated object will be closed with a copy of the ERROR object.
Dependi ng upon the type of length encoding used for this object, this
will involve filling the value for the length (definite Iength forn
or emtting two zero octets (indefinite length form. After al
objects are terminated, a final copy of the ERROR object will be
emtted. This structure guarantees that the error will be noticed at
every level of interpretation on the receiving end.

Trewitt & Partridge [Page 15]

RFC 1023 HEMS Language Cct ober 1987

If there was an error before any ASN. 1 objects were generated, then
the result would sinply be:
error(details)

If a couple of ASN. 1 objects were unterninated, the result mght | ook
like:

i nterfaces{
interface { nane(...) type(...) error(details) }
error(details)

error{detail s}
EXTENDI NG THE SET OF VALUES

There are two ways to extend the set of val ues understood by the
query |l anguage. The first is to register the data and its meaning
and get an ASN.1 tag assigned for it. This is the preferred nethod
because it nmakes that data specification available for everyone to
use.

The second nethod is to use the Vendor Specific application type to
"wrap" the vendor-specific data. Werever an inplenentation defines
data that is not in RFC-1024, the "Vendor Specific" tag should be used
to |l abel a dictionary containing the vendor-specific data. For
exanmple, if a vendor had sone data associated with interfaces that
was too strange to get standard nunbers assigned for, they could,

i nstead represent the data |ike this:

i nterfaces {
interface {
i n-pkts, out-pkts, .
Vendor Specific { epheneris, declination }
}
}

In this case, epheneris and declination are two context-dependent
tags assigned by the vendor for its non-standard data.

| f the vendor-specific nmethod is chosen, the private data MJST have
descriptions available through the GET- ATTRI BUTES and GET-
ATTRI BUTESMATCH operators. Even with this descriptive ability, the
preferred nmethod is to get standard nunmbers assigned if possible.

| MPLEMENTATI ON

Al'though it is not normally in the spirit of RFCs to define an
i npl ementation, the authors feel that sone suggestions will be useful

Trewitt & Partridge [Page 16]

RFC 1023 HEMS Language Cct ober 1987

to early inplenmentors of the query language. This list is not mneant
to be conplete, but nerely to give sone hints about how the authors
i magi ne that the query processor mght be inplemented efficiently.

- The stack is an abstraction -- it should be inplenented
with pointers, not by copying dictionaries, etc.

- An object-oriented approach should nake initi al
i nplementation fairly easy. Changes to the "shape" if the
data itenms (which will certainly occur, early on) will also
be easier to make.

- Only a few "nessages” need to be understood by objects.

- Most interesting objects are dictionaries, each of which
can be inplenented using pointers to the data and procedure
"hooks" to perform specific operations such as GET, MATCH
SET, etc.

- The hardest part is actually extracting the data from an
existing TCP/IP inmplenmentions that weren’'t designed with
detailed nonitoring in mnd. This should be |ess of a
problemif a systemis designed with easy nonitoring as a
goal .

OBTAI NI NG A COPY OF THE ASN. 1 SPECI FI CATI ON

Copi es of 1SO Standard ASN. 1 (Abstract Syntax Notation 1) are

available fromthe followi ng source. It comes in two parts; both are
needed:

IS 8824 -- Specification (neaning, notation)

IS 8825 -- Encoding Rules (representation)

They are avail able from

Omi com I nc.

115 Park St, S.E (new address as of March, 1987)
Vi enna, VA 22180

(703) 281-1135

Trewitt & Partridge [Page 17]

