Net wor k Wor ki ng G oup

1 T)

Request for Comments: 722
976

NI C #36806

. ABSTRACT

Thi s paper addresses sone issues concerned with the
design of distributed services. |In particular, it is
concerned with the characteristics of the interactions,
bet ween prograns whi ch support sone service at various
network sites. The ideas presented are derived mainly from
experience with various service protocols [Reference 1]
on the ARPANET.

A nodel is devel oped of interactions between prograns.
Salient features of this nodel which pronote and sinplify
the construction of reliable, responsive services are
identified. These dualities are notivated by probl ens
experienced with various ARPANET protocols and in the design
and mai nt enance of prograns which use these protocols in the
perfornmance of sone service.

Using this nodel as a tenplate, the genera
architecture of one possible interaction protocol is
presented. This nechani sm provides a foundati on on which
protocols would be constructed for particul ar services,
sinmplifying the process of creating services which are easy
to inplenment and maintain, and appear reliable and
responsive to the custoner. This presentation is nmeant to
serve as an introduction to a specific instance of such a
protocol, called the RRP, which is defined in one of the
ref erences.

Jack Haverty (M

Sept 1

1. OVERVI EW AND TERM NOLOGY

Thi s paper considers the interaction of two prograns
whi ch support some network service. |t develops a nodel of
the interactions of a class of such applications, and
i ncl udes sone thoughts on desirable goals and
characteristics of inplenmentations. The nodel is derived
froma proposal [Reference 2] for mail-handling
systens. Term nology, as introduced, is highlighted by
capitalization

Many uses of conputer networks involve comuni cation
directly between prograns, wthout human intervention or
nonitoring. Sone exanples would include an advanced
mai | - handl i ng system or any kind of nulti-site data base
manager .

Such prograns will be terned SERVERs. They are the
users of some nechani sm whi ch provi des the needed
conmmuni cati on and synchroni zation. The particular facility
which the servers inplenment will be ternmed a SERVI CE
Servers for any particular service my be witten in several
| anguages, operate in various system environnments on
different kinds of conputers. The entity which utilizes the
service will be terned the CUSTOVER

Servers interact during ENCOUNTERs, which are the
peri ods when two servers are in conmunication. An encounter
begi ns when one server establishes a CHANNEL, a
bi di recti onal comrunication Ilink with another server. The
i nteraction between servers is effected by the exchange of
i nformati on over the channel. The conventions used in such
an exchange are defined by the PROTOCOLs for the
i nteraction.

The thene of this paper is a nodel for a particul ar
class of process interactions which my be used as a basis
for many possible services, where the interactions are
fairly sinple. Services which fit in this category interact
in a manner which can be nodel ed by a REQUEST- REPLY
DI SCI PLI NE, which is defined herein.

A set of guidelines and goals is devel oped, which
address issues relevant to ease or inplenentation and
reliability of operation of servers. These guidelines may
be used to assist in the fornulation of protocols specific
to appropriate services.

Additionally, the guidelines presented may be used as a
basis for a general process interaction protocol, by
extracting the primtives and operational concepts which
woul d be commopn to a protocol constructed for virtually any
such servi ce.

From t hese ideas, a protocol which provides a
foundation can be constructed, to be extended for particular
services by adding prinmitives specific to each. The RRP
[Reference 4] is one such possible protocol. It
provi des basic primtives to control the interaction between
servers, and a mechanismfor extending the prinmtives to
i ncl ude service-specific operations.

The di scussion here is primarily intended to explain
the basis for the design of the RRP, and to present somne
general issues of design of services.

I1l. THE REQUEST- REPLY DI SCI PLI NE

The class of services relevant to this discussion are
t hose whose interactions could be perfornmed in the foll ow ng
nmanner .

Two servers have established a channel by sonme externa
means. A single interaction between servers begins with one
server, called the REQUESTER, issuing a request. The server
receiving that request, the RESPONDER, issues a REPLY. The
requester interprets the reply sequence to determ ne whet her
the request was successful, failed, or partially failed, and
takes appropriate action. Such a sequence of events is
termed an EXCHANGE. This is anal ogous to a subroutine cal
in a sinple single-processor operating system

This nodel is ternmed a REQUEST- REPLY DI SCI PLI NE of
programinteraction. |t should be noted that this is only a
nodel of program behavi or, and does not necessarily exclude
services which require, for exanple, sone neasure of
pi pelining of requests for efficiency in |ong-delay
situation;. In fact, nost network services would require
such neasures, put their interactions can still be reduced
to the request-reply nodel.

At any tinme, one of the partners is in control of the
interaction, and is terned the MASTER of the interaction
The other partner is called the SLAVE. 1In the sinplest
cases, the requester is always the nmaster, although this is
not always true in particular inplenentations, such as the
RRP [Ref erence 4].

V. CHARACTERI STI CS OF AN | NTERACTI ON MECHANI SM

The followi ng set of characteristics desirable in an
interaction nechanismis the result of experience with
program conmuni cati on in various ARPANET applications, such
as message services, file transfer, Dataconputer, and renote
job entry applications.

In attenpting to produce such systens, severa
qualities recurred which would be desirable in the
substructure upon which the systens are built. These
characteristics would pronote ease of witing and debuggi ng
servers, maintaining reliability, and providing services
whi ch are responsive to custoner needs, while avoiding
di sruptions of servi ce.

The qualities desired in the interaction nechani smare
presented along with a discussion of the effects which they
are intended to produce in the associated services. It nust
be enphasi zed that this discussion is related to a class of
sinmpl e services, and m ght not be appropriate for nore
compl ex applications.

1/ Servers must be able to transfer data in a precise
fashion, retaining the structure and semantic
nmeani ng of the data, despite the dissimlarities of
the conputer systens in which they function.

2/ Synchroni zation and timnm ng problens due to the
characteristics of the conmunications |ink rmust be
i sol ated and handl ed separately from any which
nm ght be characteristic of the service itself.

3/ Since services nay wi sh to provi de expanded
facilities as they are used and devel oped, a
nmechani sm nust be included to enable the service
protocol to evol ve.

4/ Since various progranms which act as servers nmay
under go si nmul taneous devel opnent, care nust be
taken to insure that servers with different
capabilities interact reliably, maintaining at
| east the sane | evel of service as existed
previ ously.

5/ The nechani snms for extending the facilities nust
avoid requiring servers to be nodi fied when new
capabilities are introduced, but not inpede
progress by maintai ners who are anxious to provide
a new or experimental service.

These qualities may be placed in three categories, data
precision (1), process synchronization (2), and service
enhancenment (3, 4, 5). Each will be discussed separately in
the follow ng sections. The significance of each quality
and its effect on the associated service characteristics
will be included, with sonme references to related probl ens
with current and past services.

Si nce these considerations are common to many possi bl e
services, it is appropriate for the interaction protocol to
include themw thin its machi nery as nmuch as possible. This
permits services to be inplenmented which, if carefully
desi gned, inherit these properties fromthe interaction
substrate

V. PRECI SE DATA TRANSFER

Precision in data transfer pernits semantic and
structural information which exists in the sender’s instance
of a datumto be reproduced in the receiver’s inmage of the
datum even though it may be represented in the systens
involved in entirely different fashions.

For programs to provide powerful, reliable
capabilities, they nmust be able to interact using data which
is nmeaningful to the particular service involved. The
i nteraction nechani smnmust pernit services to define their
own relevant data types, and transfer such itens efficiently
and precisely. This facility provides a 'standard for data,
permitting the service' s designers to concentrate on
hi gher-1evel issues of concern to the service itself.

Data of a given type should be recogni zabl e as such
wi t hout need for context. The mechani sm should al so pernit
new data types to be handl ed by ol der servers without error
even though they cannot interpret the semantics of the new
dat a.

These characteristic permts services to be designed in
terms of the abstract data they need to function, w thout
continued detailed concern for the particular formats in
which it is represented within various machi nes.

For example, servers may need to transfer a datum
identifying a particular date, which may be represented
internally within systens in different fornms. The data
transfer nmechani smshould be capable of transferring such a
datum as a date per se, rather than a strict pattern or bits
or characters.

For example, in current FTP-based mail systens,
nmessages often contain information with significant semantic
meani ng, which is | ost or obscured when transferred between
sites. An exanple might be a file specification, which
effectively loses all identity as such when translated into
a sinple character stream People can usually recogni ze
such streanms as file names, but it is often extrenely
difficult, tinme-consuming, and inefficient to construct a
programto do so reliably. As a result, services which
shoul d be easy to provide to the customer, such as automatic
retrieval of relevant files, becone difficult and
unreliabl e.

Sone success has been achieved in handling certain
data, such as dates and times, by defining a particul ar
character pattern which, if seen in a particul ar context,
can be recognized as a date or tine. Each of these cases
has been done on an individual basis, by defining a format
for the individual data of concern. Generally, the format
depends to sone extent on the datum occurring within a
particul ar context, and is not uni que enough to be
identifiable outside of that context.

A particul ar service can achieve data precision by
neticul ous specification of the protocols by which data is
transferred. This need is w despread enough, however, that
it is appropriate to consider inclusion of a facility to
provide data precision within the interaction nmechani sm
itself.

The maj or effect of this would be to facilitate the
design of reliable, responsive services, by relieving the
service’'s designers fromthe need to consider very | owlevel
details of data representation, which are usually the | east
interesting, but highly critical, aspects of the design. By
i solating the data transfer mechanism thls architecture
al so pronotes nodularity or inplenentations, which can
reduce the cost and tinme needed to inplenent or nodify
servi ces.

VI . PROCESS SYNCHRONI ZATI ON

A maj or source of problens in nany services invol ved
synchroni zati on of server; interacting over a relatively
| ow- bandwi dt h, hi gh-del ay comunications I|ink.

Interactions in nost services involve issuing a command
and waiting for a response. The nunber of responses which
can be elicited by a given conmand often varies, and there
is usually no way to deternmine if all replies have arrived.
Progranms can easily issue a request before the responses to
a previous request have conpleted, and get out of
synchroni zation in a response is incorrectly matched to a
request. Each server program nmust be neticul ously designed
to be capable of recovering if an unexpected reply arrives
after a subsequent command is issued.

-6-

Note that, for reliable operation, it is always
necessary that each response cause a reply to occur, at
| east in the sense that the request ts confirmed at sone
point. No service should performa critical operation, such
as deleting a file, which depends on the success of a
previous request unless it has been confirned. Requests in
current protocols which do not appear to cause a reply may
be viewed as confirnmed | ater when a subsequent request is
acknowl edged, while such protocols work, they are nore
opaque than desirabl e, and consequently nmore difficult to
i mpl ement .

These characteristics of protocols have often resulted
in inmplenmentation of ad hoc nethods for interaction, such as
timeouts or sufficient length to assure correctness in an
acceptably high percentage of situations. Oten this has
requi red careful tuning of programs as experience in using a
prot ocol shows which conmands are nost likely to cause
probl ens. Such nmethods generally result in a service which
is less responsive, powerful, or efficient than desirable,
and expensive to build and nmintain.

Addi tional ly, protocol specifications for services have
of ten been inconplete, in that an enuneration of the
responses which may occur for a given conmmand is inaccurate
or non-existent. This greatly conplicates the task of the
progranmer trying to construct an intelligent server. In
nost cases, servers are slowy inproved over tinme as
experi ence shows which responses are comopn in each
i nst ance.

The synchroni zati on probl ens nmenti oned above are in
addition to those which naturally occur as part of the
servi ce operation. Thus, problens of synchronization may
be split into two classes, those inherent in the service,
and those associated with the interaction nechanismitself.

Construction of reliable, responsive servers can be
assi sted by careful design of the interaction nechani sm and
protocols. An unambi guous, conpletely specified mapping
bet ween commands and responses is desirable.

Synchroni zati on consi derations of the two types can be
attacked separately. An interaction nechani smwhich handl es
its own synchronization can be provided as a base for
service' designers to use, relieving them of considerations
of the lowlevel, protocol-derived problens, by providing
primtives which encourage the design of reliable services.

To achi eve a reasonable effective bandwidth, it is
usual ly desirable to pernmit interacting prograns to operate
in a full-duplex fashion. Significant anpbunts of data are
often in transit at any tinme. This magnifies the problens
associated with interaction by introducing parallelism The
i nteraction nechani smcan al so be structured to provi de ways
of handling these problens, and to provide a basis on which
servers which exploit parallelismcan be constructed.

-7-

Many of these problens are too conplex to warrant their
consi deration in any but the nbst active services. As a
result, services are often constructed which avoid
probl ens by inefficiencies in their operation, as nentioned
above. Provision of an interaction mechanismand primtives
for use by such services would pronote efficiency interaction
even by sinple services which do not have the resources to
consider all the problens in detail

VI'1. SERVI CE ENHANCEMENT

When particul ar prograns inplenenting a service are
under goi ng devel opnent sinul taneously by severa
organi zations, or are naintained at many distributed sites.
many probl enms can devel op concerning the conpatibility of
di ssimlar servers.

This situation occurs in the initial phase of
i mpl enenting a service, as well as whenever the protocols
are nodified to fix problenms or expand the servi ce.
Virtually every interaction protocol is nodified fromtine
to tinme to add new capabilities. Two particular exanples
arc the TELNET protocol and nmail header formats.

I n nost cases, the basic protocol had no facility for
i mpl ementing changes in an invisible fashion. This has had
several consequences.

First, it is very difficult to change a protocol unless
the majority of concerned namintainers are interested in the
changes and therefore willing to exert effort to change the
prograns involved. This situation has occurred in previous
cases because any change necessarily inpacts all servers.
The services involved therefore often stagnate, and it
becones inappropriately difficult to provide a custonmer with
a seem ngly sinple enhancenent.

Second, when protocols change by will of the mgjority,
exi sting servers often stop working or behave erratically
whi ch they suddenly find their partner speaking a new
| anguage. This is equally disconcerting to the service
custoner, as well as annoying to the maintainers of the
servers at the various sites affected.

These problens can be easily avoi ded, or at |east
significantly reduced, by careful design of the interaction
protocols. In particular, the interaction mechanismitself
can be structured to avoid the problementirely, |eaving
only those probl ens associated with the particul ar service
operations thensel ves.

The interaction machinery should be structured so that
the nmechani snms of the interaction substrate itself may be
i mproved or expanded in a fashion which is absolutely
invisible to current servers.

- 8-

1/ No server should be required to inplenent a change
which is uninportant to its customers.

2/ No server should be prevented fromutilizing a new
facility when interacting with a willing partner.

3/ Service should not be degraded in any way when a
new protocol facility is nade avail abl e.

In cases where a single service is provided by
different server progranms at many sites, it is desirable for
the various sites to be able to participate at a | evel
appropriate to them A new server program should be able to
partici pate quickly, using only sinple mechanisnms of the
protocol, and evolve into nore advanced, powerful, or
efficient interaction as desired. Sites wishing to utilize
advanced or experinental features nust be allowed to do so
wi t hout inposing inplenentation of such features on others.
Conversely, sites wishing to participate in a mninma
fashi on nust not prevent others from using advanced
features. 1In all cases, the various servers nust be capabl e
of continued interaction at the highest |evel supported by
bot h.

The goal is an evolving system whi ch nai ntai ns
reliability as well as both upward and downward
conmpatibility. The protocol itself should have these
characteristics, and it should provide the nmechanisns to
service interaction protocols to be defined which
i nherit these qualities.

VI11. STRUCTURI NG AN | NTERACTI ON MECHANI SM

The qualities presented previously should provide at
| east a starting point for inplenentation of services which
avoi d the problens nentioned. The rest of this paper
addresses issues of a particular possible architecture of an
i nteraction nmechani sm

The design architecture splits the service-specific
conventions fromthose of the interaction per se. An
interaction protocol is provided which inplenents the
machi nery of the request-reply nodel, and includes handling
of the problens of data precision, synchronization, and
enhancenent. This protocol is not specific to any servi ce,
but rather provides prinitives, in the form of
servi ce-desi gned requests and replies, on which a particul ar
service protocol is built.

An actual inplenentation for a particular service could
nmerge the code of the interaction protocol with the service
itself, or the interaction protocol could be provided as a
"service’ whose customer is the service being inplenented.

-0-

The goals of this design architecture foll ow.

1/ Provision of a general interaction nechanismto be
used by services which foll ow a request-reply
di scipline. Services would design their protocols
using the primtives of the nechanismas a
foundati on.

2/ | NTERACTI ON MECHANI SM EXTENSI BI LI TY. The
i nteracti on nechani sm may be expanded as desired
wi t hout inpacting on existing servers unless they
wi sh to use the new features.

3/ SERVER EXTENSI BI LI TY. Servers can be inpl enmented
using the nost basic primtives. |Inplenmentations
may | ater be extended to utilize additional
capabilities to negate sone of the inefficiency
inherent in a strict request-reply structure.

4/ SERVI CE EXTENSIBILITY. The primtives permt a
service to be expanded as desired w thout inpacting
on existing servers in any way unless they wish to
use the new features.

5/ SERVER COWPATIBILITY. Wthin the set of servers of
a given application, it is possible to have
different servers operating at different |evels of
sophi stication, and still maintain the ability for
any pair of servers to interact successfully.

These goal s involve two basic areas of design. First,
the interaction mechanismitself is designed to neet the
goal s. Secondly, guidelines for structure of the particul ar
service' protocols are necessary, in order for it to inherit
the qualities needed to neet the goals.

| X. PARTI TI ONI NG THE PROBLEM

In defining the interaction mechanismitself, the
probl em may be sinplified by considering two areas of
concern separately.

1/ The characteristics and format of the data conveyed
by the channel may be defi ned.

2/ The conventions used to define the interaction may

be defined, in terns of the avail able data
supported by the channel

-10-

For purposes of this paper, the data repertoire and
characteristics of the channel are assuned to be as
described in [Reference 3] and sumarized in an
appendi x. Discussions of the interaction between servers
will use only the abstract concepts of primtive and
semantic data items, to isolate the issues of interaction
fromthose of data formats and communi cation details, and
therefore sinplify the problem

Addi tionally, actual inplenmentation of a nmechani sm
foll owing the ideas presented here can be acconplished in a
nodul ar fashion, isolating code which is concerned with the
channel itself fromcode concerned with the interaction
behavi or.

The interaction nmechani smprovides primtives to the
service’ designer which are |ikew se defined in terms of the
data itens avail able. Service designers are encouraged, but
not required, to define interactions in terns of these data
only.

X. THE PRI M TI VES

The interaction nmechani smassunes the exi stence of a
channel [Reference 3] between two servers. Two
new senantic data types are defined to inplenent the
interaction. These are, unsurprisingly, called CONTROL
REQUESTs and CONTROL REPLYs. Each of these data itens
contains at |east two el enents.

1/ The TYPE el enent identifies a particular type of
request or reply.

2/ The SEQUENCE el enent is used to match replies to
their correspondi ng request.

Q her elenments may appear. Their interpretation
depends on the particular type of request or reply in which
t hey appear.

The interaction protocol itself is defined in terns of
control requests and control replies. A very small nunber
of request and reply types is defined as the m ninal
i mpl ementation level. Additional request and reply types
are al so defined, for use by nore advanced servers, to
Provi de additional capabilities to the service, or sinply to
i ncrease efficiency of operation.

-11-

Two additional data itens are defined, called USER
REQUESTs and USER REPLYs. These are structured |ike
requests and replies, but the various types are defined by
the service itself, to inplement the primtives needed in
its operation.

Control and user requests and replies are generically
referenced as sinply REQUESTs and REPLYs.

The protocol of the interaction has severa
characteristics which formthe basis of the request-reply
nodel, and attenpt to neet the goals nentioned previously.

1/ Every request elicits a reply.

2/ Every reply is associated unanbi guously with a
previ ous request.

3/ Each server always knows the state of the
i nteraction, such as whether or not nore data is
expected fromits partner

4/ The protocol definition includes enuneration of the
possi bl e responses for each request. Service
protocols are encouraged to do |ikew se for user
requests and user replies.

5/ Servers who receive requests of unknown type issue
a response which effectively refuses the request.
Servers attenpting to use advanced features of a
protocol ’'rephrase’ their requests in sinpler terns
where possible to maintain the previous |evel of
servi ce.

The minimal inplenentation will support interaction
al nost exactly along the lines of the request-reply
di sci pli ne.

Extensions to the minimal configuration are defined for
two reasons. First, the strict request-reply discipline
nodel is inefficient for use in high-volune situations
because of the delays involved. Several extensions are
defined to cope with this problem Thus, although the
interaction is based on such a discipline, it does not
necessarily inplenent the interaction in that fashion.
Second, additional primtives are defined which provide sonme
standard process synchroni zati on operations, for use by the
servi ces.

The protocol architecture presented here is defined in
detail in an associated docunent. [Reference 4]

-12-

Appendi x | -- The Channel

The followi ng discussion is a summary of the ideas
presented in [Reference 3], which should be
consulted for further detail

The comuni cation |ink between two servers is terned a
CHANNEL. Channel s provi de bidirectional conmunications
capabilities, and will wusually be full-duplex. The prograns
i nvol ved establish the channel as their individual
applications require, using some formof initial connection
pr ot ocol

The channel acts as an interface between servers. It
conveys abstract data itens whose semantics are understood
by the programmers involved, such as | NTEGERs, STRINGs, FILE
PATH NAMES, and so on. Because the users of the channel my
operate in dissimlar conputer environnments, their
comuni cation is defined only in ternms of such abstract data
items, which are the atonmic units of information carried on
the channel. The programinplenmenting the channel at each
site converts the data between an encoded transm ssion
format appropriate to the particul ar conmunication |ink
i nvol ved, and whatever internal representational formis
appropriate in the conputer itself.

The channel protocol provides a nechani smfor
definition of various types of data items of semantic val ue
for the particular service concerned, for exanple, possibly,
user-name, set, syllable, sentence, and other data itens of
interest to the particular service. The channel provides a
mechani smfor transportation of such user-defined data from
host to host.

The channel may actually be inplenmented by one or nore
separate encodi ng nechani sns whi ch woul d be used in
different conditions, initially, the channel machinery woul d
provide a rudinentary facility based on a single nmechani sm
such as the MSDTP [Reference 3].

The mechani smis not dependent on the existence of
actual line-style network connections but will operate in
ot her environnments, such as a nessage-oriented (as opposed
to connection-oriented) conmunications architecture, and in
fact is nore naturally structured for such an environnent.

-13-

Xl. REFERENCES

[1] Network Information Center, ARPANET Protocol Handbook,
April, 1976.

[2] Broos, Haverty, Vezza, Message Services Protoco
proposal , Decenber, 1975.

[3] Haverty, Jack, Message Services Data Transfer Protocol,
NWG RFC 713, NI C 34729, April, 1976.

[4] Haverty, Jack, RRP, A Process Conmunication Protocol for
Request-reply Disciplines, N\WG RFC 723, NI C 36807, (to
be issued)

- 14-

