Net wor k Wor ki ng Group J. Lennox

Request for Comments: 2824 H. Schul zri nne
Cat egory: I nfornmational Col unbi a University
May 2000

Cal |l Processing Language Franmework and Requirements
Status of this Meno

This meno provides information for the Internet conmunity. |t does
not specify an Internet standard of any kind. Distribution of this
meno is unlimted.

Copyright Notice
Copyright (C) The Internet Society (2000). Al Rights Reserved.
Abstract

A | arge nunber of the services we wish to make possible for |Internet
tel ephony require fairly el aborate conbinati ons of signalling
operations, often in network devices, to conplete. W want a sinple
and standardi zed way to create such services to nake them easier to
i mpl enent and deploy. This docunent describes an architectura
framework for such a nmechanism which we call a call processing

| anguage. It also outlines requirenments for such a | anguage.

Tabl e of Contents

1 Introduction 2
2 Termnol ogy 3
3 Exanpl e services 4
4 US@Qge SCENAIi 0S .. vttt ettt e et e 6
5 CPL creation e 6
6 Network nmodel 7
6.1 Model components 7
6.1.1 End Systens 7
6.1.2 Signalling servers 8
6.2 Component interactions 8
7 Interaction of CPL with network nodel 10
7.1 What a script does 10
7.2 Which script is executed 11
7.3 Where a SCript runsS 12
8 Creation and transport of a call processing

anguage SCript 12
9 Feature interaction behavior 13
9.1 Feature-to-feature interactions 13

Lennox & Schul zri nne I nf or mat i onal [Page 1]

RFC 2824 CPL-F May 2000

=

9.2 Script-to-script interactions 14
9.3 Server-to-server interactions 15
9.4 Signalling ambiguity i 15
10 Rel ationship with existing |anguages 15
11 Related WOrk 17
11.1 IN service creation environnents 17
11.2 Sl P Ca 17
12 Necessary | anguage features 17
12.1 Language characteristics, 17
12.2 Base features -- call signalling 19
12.3 Base features -- non-signalling 21
12. 4 Language features i, 22
12.5 CoNtr ol .. 23
13 Security Considerations i, 23
14 ACKNOW edgment S 23
15 Aut hors’ Addresses 23
16 Bibliography 24
17 Ful | Copyright Statement 25

ntroducti on

Recently, several protocols have been created to all ow tel ephone
calls to be nmade over I P networks, notably SIP [1] and H 323 [2].
These energi ng standards have opened up the possibility of a broad
and dramati c decentralization of the provisioning of telephone
services so they can be under the user’s control

Many | nternet tel ephony services can, and shoul d, be inplenented
entirely on end devices. Miulti-party calls, for instance, or cal
waiting alert tones, or canp-on services, depend heavily on end-
system state and on the specific content of nedia streans,

i nformati on which often is only available to the end system A

variety of services, however -- those involving user |ocation, cal

di stribution, behavior when end systens are busy, and the like -- are
i ndependent of a particular end device, or need to be operational
even when an end device is unavail abl e. These services are still best

|l ocated in a network device, rather than in an end system

Traditionally, network-based services have been created only by
service providers. Service creation typically involved using
proprietary or restricted tools, and there was little range for
custom zati on or enhancenent by end users. 1In the |Internet

envi ronnent, however, this changes. d obal connectivity and open
protocols allow end users or third parties to design and inpl enment
new or custom zed services, and to deploy and nodify their services
dynami cally without requiring a service provider to act as an

i nternediary.

Lennox & Schul zri nne I nf or mat i onal [Page 2]

RFC 2824 CPL-F May 2000

A nunber of Internet applications have such custom zation
environnents -- the web has CAd [3], for instance, and e-mmil has
Sieve [4] or procmail. To create such an open custom zation
environnent for Internet tel ephony, we need a standardi zed, safe way
for these new service creators to describe the desired behavior of
net work servers.

Thi s docunent describes an architecture in which network devices
respond to call signalling events by triggering user-created prograns
written in a sinple, static, non-expressively-conplete | anguage. W
call this language a call processing | anguage.

The devel opnent of this docunent has been substantially informed by
t he devel opnent of a particular call processing | anguage, as
described in [5]. In general, when this docunent refers to "a cal
processing | anguage," it is referring to a generic |anguage that
fills this role; "the call processing | anguage" or "the CPL" refers
to this particul ar | anguage.

2 Term nol ogy

In this section we define sone of the ternmi nology used in this
docunent .

SIP [1] term nol ogy used includes:

invitation: The initial |INVITE request of a SIP transaction, by
whi ch one party initiates a call w th another.

redirect server: A SIP device which responds to invitations and
ot her requests by informng the request originator of an
alternate address to which the request should be sent.

proxy server: A SIP device which receives invitations and ot her
requests, and forwards themto other SIP devices. It then
receives the responses to the requests it forwarded, and
forwards them back to the sender of the initial request.

user agent: A SIP device which creates and receives requests, so
as to set up or otherwi se affect the state of a call. This
may be, for exanple, a tel ephone or a voicemail system

user agent client: The portion of a user agent which initiates
requests.

user agent server: The portion of a user agent which responds to
requests.

Lennox & Schul zri nne I nf or mat i onal [Page 3]

RFC 2824 CPL-F May 2000

H. 323 [2] term nol ogy used incl udes:

termnal: An H 323 device which originates and receives calls, and
their associ ated nedi a.

gat ekeeper: An H. 323 entity on the network that provides address
transl ati on and controls access to the network for H 323
ternmi nal s and ot her endpoints. The gat ekeeper may al so
provi de other services to the endpoints such as bandw dth
managenent and | ocating gat eways.

gateway: A device which translates calls between an H 323 network
and anot her network, typically the public-sw tched tel ephone
net wor k.

RAS: The Regi stration, Adm ssion and Status nessages communi cated
between two H 323 entities, for exanple between an endpoi nt
and a gat ekeeper.

General termnology used in this docunent includes:

user |ocation: The process by which an Internet tel ephony device
determ nes where a user nanmed by a particul ar address can be
f ound.

CPL: A Call Processing Language, a sinple | anguage to describe how
Internet tel ephony call invitations should be processed.

script: A particular instance of a CPL, describing a particul ar
set of services desired.

end system A device fromwhich and to which calls are
established. It creates and receives the call’s nedia
(audi o, video, or the like). This may be a SIP user agent or
an H. 323 ternmni nal

signalling server: A device which handles the routing of cal
invitations. It does not process or interact with the nedia
of acall. It nay be a SIP proxy or redirect server, or an
H. 323 gat ekeeper

3 Exanpl e services

To notivate the subsequent discussion, this section gives sone
speci fi c exanpl es of services which we want users to be able to
create programmatically. Note that sonme of these exanples are
deliberately somewhat conplicated, so as to denonstrate the |evel of
deci sion logic that should be possible.

Lennox & Schul zri nne I nf or mat i onal [Page 4]

RFC 2824

CPL-F May 2000

Call forward on busy/no answer

When a new call cones in, the call should ring at the user’s
desk telephone. If it is busy, the call should always be
redirected to the user’s voicemail box. If, instead, there's no
answer after four rings, it should also be redirected to his or
her voicemail, unless it’'s froma supervisor, in which case it
shoul d be proxied to the user’s cell phone if it is currently
regi stered.

| nf ormati on addr ess

A conpany advertises a general "information" address for
prospective custonmers. Wen a call conmes in to this address, if
it’s currently working hours, the caller should be given a |ist
of the people currently willing to accept general information
calls. If it’'s outside of working hours, the caller should get
a webpage indicating what tinmes they can call

Intelligent user |ocation

When a call conmes in, the list of |ocations where the user has
regi stered shoul d be consul ted. Depending on the type of cal
(work, personal, etc.), the call should ring at an appropriate
subset of the registered |ocations, depending on information in
the registrations. |If the user picks up fromnore than one
station, the pick-ups should be reported back separately to the
calling party.

Intelligent user |ocation with nmedia know edge

When a call comes in, the call should be proxied to the station
the user has registered fromwhose nedia capabilities best
match those specified in the call request. If the user does not
pick up fromthat station within four rings, the call should be
proxied to the other stations fromwhich he or she has

regi stered, sequentially, in order of decreasing closeness of
mat ch.

Client billing allocation -- [awer’s office

When a call comes in, the calling address is correlated with
the corresponding client, and client’s nane, address, and the
time of the call is logged. If no corresponding client is
found, the call is forwarded to the | awer’s secretary.

Lennox & Schul zri nne I nf or mat i onal [Page 5]

RFC 2824 CPL-F May 2000

4 Usage scenari os

A CPL woul d be useful for inplenmenting services in a nunber of
di fferent scenari os.

0 Script creation by end user

In the nost direct approach for creating a service with a CPL,
an end user sinply creates a script describing their service.
He or she sinply deci des what service he or she wants,
describes it using a CPL script, and then uploads it to a
server.

o Third party outsourcing

Because a CPL is a standardi zed | anguage, it can al so be used
to allow third parties to create or custonize services for
clients. These scripts can then be run on servers owned by the
end user or the user’s service provider.

0 Administrator service definition

A CPL can al so be used by server adnministrators to create
sinpl e services or describe policy for servers they control

If a server is inplenmenting CPL services in any case, extending
the service architecture to allow administrators as well as
users to create scripts is a sinple extension

o Web m ddl ewar e

Finally, there have been a nunber of proposals for service
creation or custom zation using web interfaces. A CPL could be
used as the back-end to such environnments: a web application
could create a CPL script on behalf of a user, and the

t el ephony server could then inplenent the services w thout

ei ther conponent having to be aware of the specifics of the

ot her.

5 CPL creation
There are al so a nunber of means by which CPL scripts could be

created. Like HTM., which can be created in a nunmber of different
manners, we envision nmultiple creation styles for a CPL script.

Lennox & Schul zri nne I nf or mat i onal [Page 6]

RFC 2824 CPL-F May 2000

o Hand aut horing

Most directly, CPL scripts can be created by hand, by

know edgeabl e users. The CPL described in [5] has a text
format with an unconplicated syntax, so hand authoring will be
strai ght f orward.

o0 Automated scripts

CPL features can be created by automated nmeans, such as in the
exanpl e of the web m ddl eware described in the previous
section. Wth a sinple, text-based syntax, standard text-
processing | anguages will be able to create and edit CPL
scripts easily.

o QGUJ tools

Finally, users will be able to use GUI tools to create and edit
CPL scripts. W expect that nopst average-experience users wll
take this approach once the CPL gains popularity. The CPL will
be designed with this application in mind, so that the full
expressive power of scripts can be represented sinply and
straightforwardly in a graphical manner.

6 Net wor k nodel

The Call Processing Language operates on a generalized nodel of an

I nternet tel ephony network. Wiile the details of various protocols
differ, on an abstract level all major Internet tel ephony
architectures are sufficiently simlar that their major features can
be described commonly. This docunent generally uses SIP terninol ogy,
as its authors’ experience has nainly been with that protocol.

6.1 Model conponents

In the Call Processing Language's network nodel, an Internet
t el ephony network contains two types of conponents.

6.1.1 End systens

End systens are devices which originate and/or receive signalling

i nformati on and nedi a. These include sinple and conpl ex tel ephone
devi ces, PC tel ephony clients, and automated voi ce systens. The CPL
abstracts away the details of the capabilities of these devices. An
end systemcan originate a call; and it can accept, reject, or
forward incomng calls. The details of this process (ringing, nulti-
line tel ephones, and so forth) are not inportant for the CPL.

Lennox & Schul zri nne I nf or mat i onal [Page 7]

RFC 2824 CPL-F May 2000

For the purposes of the CPL, gateways -- for exanple, a device which
connects calls between an | P tel ephony network and the PSTN -- are
al so considered to be end systens. Qther devices, such as m xers or
firewalls, are not directly dealt with by the CPL, and they will not
be di scussed here.

6.1.2 Signalling servers

Signal ling servers are devices which relay or control signalling
information. In SIP, they are proxy servers, redirect servers, or
registrars; in H 323, they are gatekeepers.

Signal ling servers can performthree types of actions on call setup
i nformati on. They can:

proxy it: forward it on to one or nore other network or end
systens, returning one of the responses received.

redirect it: return a response infornm ng the sending systemof a
different address to which it should send the request.

reject it: informthe sending systemthat the setup request could
not be conpl et ed.

RFC 2543 [1] has illustrations of proxy and redirect functionality.
End systens may al so be able to perform sone of these actions: al nost
certainly rejection, and possibly redirection.

Signalling servers also nornmally maintain information about user

| ocation. \Wether by neans of registrations (SIP REG STER or H. 323
RAS nmessages), static configuration, or dynam c searches, signalling
servers mnmust have sone nmeans by which they can deterni ne where a user
is currently located, in order to nake intelligent choices about
their proxying or redirection behavior.

Signalling servers are also usually able to keep | ogs of transactions
that pass through them and to send e-mail to destinations on the
Internet, under progranmatic control.

6.2 Component interactions

When an end system places a call, the call establishnent request can
proceed by a variety of routes through conponents of the network. To
begin with, the originating end system nust decide where to send its
requests. There are two possibilities here: the originator may be
configured so that all its requests go to a single local server; or
it may resolve the destination address to |ocate a renote signalling
server or end systemto which it can send the request directly.

Lennox & Schul zri nne I nf or mat i onal [Page 8]

RFC 2824 CPL-F May 2000

Once the request arrives at a signalling server, that server uses its
user | ocation database, its local policy, DNS resolution, or other
nmet hods, to determine the next signalling server or end systemto

whi ch the request should be sent. A request may pass through any
nunber of signalling servers: fromzero (in the case when end systens
comuni cate directly) to, in principle, every server on the network.
What's nore, any end systemor signalling server can (in principle)
receive requests fromor send themto any other.

For example, in figure 1, there are two paths the call establishnent
request information may take. For Route 1, the originator knows only
a user address for the user it is trying to contact, and it is
configured to send outgoing calls through a | ocal outgoing proxy
server. Therefore, it forwards the request to its local server,

whi ch finds the server of record for that address, and forwards it on
to that server.

In this case, the organization the destination user belongs to uses a
mul ti-stage setup to find users. The corporate server identifies

whi ch department a user is part of, then forwards the request to the
appropriate departnmental server, which actually |ocates the user
(This is simlar to the way e-nmail forwarding is often configured.)
The response to the request will travel back along the sanme path.

For Route 2, however, the originator knows the specific device
address it is trying to contact, and it is not configured to use a
| ocal outgoing proxy. |In this case, the originator can directly
contact the destination without having to comunicate with any
network servers at all.

W see, then, that in Internet tel ephony signalling servers cannot in
general know the state of end systens they "control," since
signalling informati on may have bypassed them This architectura
[imtation inplies a nunber of restrictions on how sone services can
be i npl enented. For instance, a network system cannot reliably know
if an end systemis currently busy or not; a call may have been

pl aced to the end systemw thout traversing that network system

Thus, signalling nessages nust explicitly travel to end systens to
find out their state; in the exanple, the end systemnust explicitly
return a "busy" indication.

Lennox & Schul zri nne I nf or mat i onal [Page 9]

RFC 2824 CPL-F May 2000

Qut goi ng Cor por at e Depart nent a
Pr oxy Server Server
_______ Qut goi ng proxy contacts
| | corporate server | | | |

| | e > | BEEEEEETEE > | |
| I | I | I
Route 1 N \ Sear ches
/ \ for
Sends t o/ \ User
proxy / |
	Route 2	
	>	
	Originator directly contacts destination	
Ori gi nat or Desti nation

Figure 1: Possible paths of call setup nmessages
7 Interaction of CPL with network node
7.1 What a script does

A CPL script runs in a signalling server, and controls that systenis
proxy, redirect, or rejection actions for the set-up of a particular
call. It does not attenpt to coordinate the behavior of nultiple
signalling servers, or to describe features on a "d obal Functiona
Plane" as in the Intelligent Network architecture [6].

More specifically, a script replaces the user location functionality
of a signalling server. As described in section 6.1.2, a signalling
server typically maintains a database of |ocations where a user can
be reached; it makes its proxy, redirect, and rejection decisions
based on the contents of that database. A CPL script replaces this
basi ¢ dat abase | ookup functionality; it takes the registration

i nformation, the specifics of a call request, and other external
information it wants to reference, and chooses the signalling actions
to perform

Abstractly, a script can be considered as a list of condition/action
pairs; if sone attribute of the registration, request, and externa

i nformati on nmatches a given condition, then the correspondi ng action
(or nore properly set of actions) is taken. In sone circunstances,
addi ti onal actions can be taken based on the consequences of the
first action and additional conditions. If no condition matches the
invitation, the signalling server’s standard action -- its |ocation
dat abase | ookup, for exanple -- is taken

Lennox & Schul zri nne I nf or mat i onal [Page 10]

RFC 2824 CPL-F May 2000

7.2 Which script is executed

CPL scripts are usually associated with a particular |nternet

t el ephony address. Wen a call establishment request arrives at a
signalling server which is a CPL server, that server associates the
source and destination addresses specified in the request with its
dat abase of CPL scripts; if one matches, the corresponding script is
execut ed.

Once the script has executed, if it has chosen to performa proxy
action, a new Internet tel ephony address will result as the
destination of that proxying. Once this has occurred, the server
agai n checks its database of scripts to see if any of themare
associated with the new address; if one is, that script as well is
executed (assunming that a script has not attenpted to proxy to an
address which the server has already tried). For nore details of this
recursion process, and a description of what happens when a server
has scripts that correspond both to a scripts origination address and
its destination address, see section 9. 2.

In general, in an Internet tel ephony network, an address will denote
one of two things: either a user, or a device. A user address refers
to a particular individual, for exanple sip:joe@xanple.com

regardl ess of where that user actually is or what kind of device he
or she is using. A device address, by contrast, refers to a
particul ar physical device, such as sip:x26063@hones. exanpl e. com

O her, internediate sorts of addresses are al so possible, and have
some use (such as an address for "my cell phone, wherever it
currently happens to be registered"), but we expect themto be |ess
common. A CPL script is agnostic to the type of address it is
associated with; while scripts associated with user addresses are
probably the nost useful for npbst services, there is no reason that a
script could not be associated with any other type of address as
wel I . The recursion process described above allows scripts to be
associ ated with several of a user’s addresses; thus, a user script
could specify an action "try ne at ny cell phone," whereas a device
script could say "I don't want to accept cell phone calls while I'm
out of ny hone area.”

It is also possible for a CPL script to be associated not with one
specific Internet tel ephony address, but rather with all addresses
handl ed by a signalling server, or a |arge set of them For instance,
an adm ni strator might configure a systemto prevent calls fromor to
a list of banned incoming or outgoing addresses; these shoul d
presunmably be configured for everyone, but users should still to be
able to have their own customscripts as well. Exactly when such

Lennox & Schul zri nne | nf or mat i onal [Page 11]

RFC 2824 CPL-F May 2000

scripts should be executed in the recursion process depends on the
preci se nature of the administrative script. See section 9.2 for
further discussion of this.

7.3 Where a script runs

Users can have CPL scripts on any network server which their cal
establ i shnent requests pass through and with which they have a trust
rel ati onship. For instance, in the exanple in figure 1, the
originating user could have a script on the outgoing proxy, and the
destination user could have scripts on both the corporate server and
the departnmental server. These scripts would typically perform
different functions, related to the role of the server on which they
reside; a script on the corporate-w de server could be used to
custom ze which departnent the user wi shes to be found at, for

i nstance, whereas a script at the departnental server could be used
for nore fine-grained |ocation custom zation. Sone services, such as
filtering out unwanted calls, could be |ocated at either server. See
section 9.3 for sone inplications of a scenario like this.

Thi s nodel does not specify the neans by which users |locate a CPL-
capabl e network server. In general, this will be through the same
means by which they locate a |ocal Internet tel ephony server to

regi ster thenselves with; this may be through manual configuration

or through autonated nmeans such as the Service Location Protocol [7].
It has been proposed that autonated nmeans of |ocating such servers
should include a field to indicate whether the server allows users to
upl oad CPLs.

8 Creation and transport of a call processing | anguage scri pt

Users create call processing | anguage scripts, typically on end
devices, and transmt themthrough the network to signalling servers.
Scripts persist in signalling servers until changed or del eted,

unl ess they are specifically given an expiration tine; a network
system whi ch supports CPL scripting will need stabl e storage.

The end device on which the user creates the CPL script need not bear
any relationship to the end devices to which calls are actually

pl aced. For example, a CPL script might be created on a PC, whereas
calls might be intended to be received on a sinple audio-only

tel ephone. | ndeed, the device on which the script is created may not
be an "end device" in the sense described in section 6.1.1 at all;
for instance, a user could create and upload a CPL script froma

non- nul ti medi a- capabl e web terni nal

Lennox & Schul zri nne | nf or mat i onal [Page 12]

RFC 2824 CPL-F May 2000

The CPL al so mi ght not necessarily be created on a device near either
the end device or the signalling server in network terms. For
exanpl e, a user night decide to forward his or her calls to a renote
|l ocation only after arriving at that |ocation.

The exact means by which the end device transmits the script to the
server remains to be determined; it is likely that many sol utions
will be able to co-exist. This nmethod will need to be authenticated
in alnost all cases. The nmethods that have been suggested include
web file upload, SIP REA STER nessage payl oads, renote nethod

i nvocation, SNWP, ACAP, LDAP, and renpote file systens such as NFS

Users can also retrieve their current script fromthe network to an
end systemso it can be edited. The signalling server should al so be
able to report errors related to the script to the user, both static
errors that could be detected at upload tine, and any run-tinme errors
t hat occur.

If a user has trust relationships with nultiple signalling servers
(as discussed in section 7.3), the user nay choose to upload scripts
to any or all of those servers. These scripts can be entirely

i ndependent .

9 Feature interaction behavior

Feature interaction is the termused in tel ephony systens when two or
nmore requested features produce anmbi guous or conflicting behavi or

[8]. Feature interaction issues for features inplenmented with a cal
processi ng | anguage can be roughly divided into three categories:
feature-to-feature in one server, script-to-script in one server, and
server-to-server

9.1 Feature-to-feature interactions

Due to the explicit nature of event conditions discussed in the
previ ous section, feature-to-feature interaction is not likely to be
a problemin a call processing | anguage environment. Wereas a
subscriber to traditional tel ephone features m ght unthinkingly
subscribe to both "call waiting" and "call forward on busy," a user
creating a CPL script would only be able to trigger one action in
response to the condition "a call arrives while the line is busy."

G ven a good user interface for creation, or a CPL server which can
check for unreachable code in an upl oaded script, contradictory
condi tion/action pairs can be avoi ded.

Lennox & Schul zri nne I nf or mat i onal [Page 13]

RFC 2824 CPL-F May 2000

9.2 Script-to-script interactions

Script-to-script interactions arise when a server invokes multiple
scripts for a single call, as described in section 7.2. This can
occur in a nunber of cases: if both the call originator and the
destination have scripts specified on a single server; if a script
forwards a request to another address which also has a script; or if
an adm nistrative script is specified as well as a user’s individual
script.

The solution to this interaction is to determne an ordering anong
the scripts to be executed. In this ordering, the "first" script is
executed first; if this script allows or pernits the call to be
proxi ed, the script corresponding to the next address is executed.
When the first script says to forward the request to sonme other
address, those actions are considered as new requests which arrive at
the second script. When the second script sends back a fina
response, that response arrives at the first script in the sane
manner as if a request arrived over the network. Note that in sone
cases, forwarding can be recursive; a CPL server must be careful to
prevent forwardi ng | oops.

Abstractly, this can be viewed as equivalent to having each script
execute on a separate signalling server. Since the CPL architecture
is designed to allow scripts to be executed on nultiple signalling
servers in the course of locating a user, we can conceptually
transformscript-to-script interactions into the server-to-server

i nteractions described in the next section, reducing the nunber of
types of interactions we need to concern ourselves wth.

The question, then, is to determne the correct ordering of the
scripts. For the case of a script forwarding to an address which
al so has a script, the ordering is obvious; the other two cases are
somewhat nore subtle. Wen both originator and destination scripts
exist, the originator’s script should be executed before the
destination script; this allows the originator to perform address
translation, call filtering, etc., before a destination address is
determ ned and a correspondi ng script is chosen.

Even nore conplicated is the case of the ordering of adm nistrative
scripts. Many adm nistrative scripts, such as ones that restrict
source and destination addresses, need to be run after originator
scripts, but before destination scripts, to avoid a user’s script
evadi ng adm ni strative restrictions through clever forwarding;
however, others, such as a gl obal address book translation function,
woul d need to be run earlier or later. Servers which allow

Lennox & Schul zri nne | nf or mat i onal [Page 14]

RFC 2824 CPL-F May 2000

administrative scripts to be run will need to allow the adm ni strator
to configure when in the script execution process a particular
admi ni strative script should fall

9.3 Server-to-server interactions

The third case of feature interactions, server-to-server

interactions, is the nost conplex of these three. The canoni cal
exanple of this type of interaction is the conbination of Oiginating
Call Screening and Call Forwarding: a user (or administrator) may
wish to prevent calls frombeing placed to a particul ar address, but
the local script has no way of knowing if a call placed to some

other, legitimte address will be proxied, by a renbte server, to the
banned address. This type of problemis unsolvable in an
admi ni stratively heterogeneous network, even a "lightly"

het er ogeneous network such as current tel ephone systens. CPL does not
claimto solve it, but the problemis not any worse for CPL scripts
than for any other nmeans of depl oying services.

Anot her cl ass of server-to-server interactions are best resol ved by
the underlying signalling protocol, since they can arise whether the
signhalling servers are being controlled by a call processing | anguage
or by sonme entirely different means. One exanple of this is
forwarding | oops, where user X may have calls forwarded to Y, who has
calls forwarded back to X. SIP has a nechanismto detect such | oops.
A call processing | anguage server thus does not need to define any
speci al nmechanisns to prevent such occurrences; it should, however,
be possible to trigger a different set of call processing actions in
the event that a loop is detected, and/or to report back an error to
the owner of the script through sonme standardi zed run-tine error
reporting mechani sm

9.4 Signalling anbiguity

10

As an aside, [8] discusses a fourth type of feature interaction for
traditional tel ephone networks, signalling anbiguity. This can arise
when several features overload the same operation in the limted
signal path froman end station to the network: for exanple, flashing
the switch-hook can nean both "add a party to a three-way call" and
"switch to call waiting." Because of the explicit nature of
signhalling in both the Internet tel ephony protocols discussed here,
this issue does not ari se.

Rel ationship with existing | anguages
Thi s docunent’s description of the CPL as a "l anguage" is not

intended to inply that a new | anguage necessarily needs to be
i npl enented fromscratch. A server could potentially inplenent al

Lennox & Schul zri nne I nf or mat i onal [Page 15]

RFC 2824 CPL-F May 2000

the functionality described here as a library or set of extensions
for an existing | anguage; Java, or the various freely-avail able
scripting | anguages (Tcl, Perl, Python, Guile), are obvious

possi bilities.

However, there are notivations for creating a new | anguage. All the
exi sting | anguages are, naturally, expressively conplete; this has
two inherent disadvantages. The first is that any function

i npl emented in themcan take an arbitrarily long tine, use an
arbitrarily | arge anmount of nmenory, and may never termninate. For cal
processing, this sort of resource usage is probably not necessary,
and as described in section 12.1, may in fact be undesirable. One
nodel for this is the electronic mail filtering | anguage Sieve [4],
whi ch deliberately restricts itself from being Turing-conplete.

Simlar |evels of safety and protection (though not automatic
generation and parsing) could also be achi eved through the use of a
"sandbox" such as is used by Java applets, where strict bounds are

i nposed on the anobunt of nenory, cpu tinme, stack space, etc., that a
program can use. The difficulty with this approach is primarily in
its lack of transparency and portability: wunless the |levels of these
bounds are inposed by the standard, a bad idea so |ong as avail abl e
resources are increasing exponentially with Moore's Law, a user can
never be sure whether a particular program can successfully be
executed on a given server without running into the server’s resource
limts, and a program whi ch executes successfully on one server may
fail unexpectedly on anot her. Non-expressively-conplete | anguages, on
the other hand, allow an inplicit contract between the script witer
and the server: so long as the script stays within the rules of the
| anguage, the server will guarantee that it will execute the script.

The second di sadvantage with expressively conpl ete | anguages is that
t hey make automatic generation and parsing of scripts very difficult,
as every parsing tool nust be a full interpreter for the | anguage. An
anal ogy can be drawn fromthe docunent-creation world: while text

mar kup | anguages |i ke HTM. or XM. can be, and are, easily manipul at ed
by smart editors, powerful docunent progranmi ng | anguages such as
LaTeX or Postscript usually cannot be. Wiile there are word
processors that can save their documents in LaTeX form they cannot
accept as input arbitrary LaTeX docunents, |et al one preserve the
structure of the original docunent in an edited form By contrast,
essentially any HTM. editor can edit any HTM. docunent fromthe web,
and the high-quality ones preserve the structure of the origina
docunents in the course of editing them

Lennox & Schul zri nne I nf or mat i onal [Page 16]

RFC 2824 CPL-F May 2000

11

11.

11.

12

12.

Rel at ed wor k
1 IN service creation environnents

The ITU s IN series describe, on an abstract |evel, service creation
environnments [6]. These describe services in a traditional circuit-
swi tched tel ephone network as a series of decisions and actions
arranged in a directed acyclic graph. Many vendors of IN services use
nmodi fi ed and extended versions of this for their proprietary service
creation environnents.

2 SIP Cd

SIP CA [9] is an interface for inplenenting services on SIP servers.
Unlike a CPL, it is a very lowlevel interface, and would not be
appropriate for services witten by non-trusted users.

The paper "Programm ng |Internet Tel ephony Services" [10] discusses
the simlarities and contrasts between SIP Cd and CPL in nore
detail.

Necessary | anguage features

This section lists those properties of a call processing |anguage
which we believe to be necessary to have in order to inplenent the
notivating exanples, in line with the described architecture.

1 Language characteristics

These are sone abstract attributes which any proposed call processing
| anguage shoul d possess.

o Light-weight, efficient, easy to inplenment

In addition to the general reasons why this is desirable, a
networ k server mght conceivably handle very | arge cal

vol umes, and we don’t want CPL execution to be a nmjor

bottl eneck. One way to achieve this night be to conpile scripts
bef ore executi on.

o Easily verifiable for correctness

For a script which runs in a server, ms-configurations can
result in a user becom ng unreachable, making it difficult to
indicate run-tinme errors to a user (though a second-channel
error reporting nechani smsuch as e-mail could aneliorate
this). Thus, it should be possible to verify, when the script

Lennox & Schul zri nne | nf or mat i onal [Page 17]

RFC 2824

CPL-F May 2000

is conmtted to the server, that it is at |east syntactically
correct, does not have any obvious |oops or other failure
nodes, and does not use too many Server resources.

Executable in a safe manner

No action the CPL script takes should be able to subvert
anyt hi ng about the server which the user shouldn’t have access
to, or affect the state of other users w thout perm ssion.
Additionally, since CPL scripts will typically run on a server
on which users cannot normally run code, either the | anguage or
its execution environnent nmust be designed so that scripts
cannot use unlimted anobunts of network resources, server CPU
time, storage, or nenory.

Easily witeable and parsable by both humans and nachi nes.

For maximum flexibility, we want to allow humans to wite their
own scripts, or to use and customi ze script libraries provided
by others. However, nost users will want to have a nore
intuitive user-interface for the same functionality, and so
wi Il have a program which creates scripts for them Both cases
shoul d be easy; in particular, it should be easy for script
editors to read hunan-generated scripts, and vice-versa.

Ext ensi bl e

It should be possible to add additional features to a | anguage
in away that existing scripts continue to work, and existing
servers can easily recogni ze features they don’t understand and
safely informthe user of this fact.

| ndependent of underlying signalling details

The sane scripts should be usabl e whether the underlying
protocol is SIP, H 323, a traditional tel ephone network, or any
ot her means of setting up calls. It should also be agnostic to
address formats. (W use SIP termnology in our descriptions of
requirements, but this should map fairly easily to other
systens.) It may al so be useful to have the | anguage extend to
processi ng of other sorts of communication, such as e-mail or

f ax.

Lennox & Schul zri nne I nf or mat i onal [Page 18]

RFC 2824

CPL-F May 2000

12. 2 Base features -- call signalling

To be useful, a call processing | anguage obvi ously should be able to
react to and initiate call signalling events.

o Should execute actions when a call request arrives

See section 7, particularly 7.1.

o Should be able to nmake decisions based on event properties

A nunber of properties of a call event are relevant for a
script’s decision process. These include, roughly in order of
i nportance:

Destinati on address

W want to be able to do destination-based routing or
screening. Note that in SIP we want to be able to filter on
either or both of the addresses in the To header and the
Request - URI .

Origi nator address

Simlarly, we want to be able to do originator-based
screening or routing.

Cal l er Preferences

In SIP, a caller can express preferences about the type of
device to be reached -- see [11]. The script should be able
to make decisions based on this infornmation

I nformati on about caller or cal

SI P has textual fields such as Subject, O ganization,
Priority, etc., and a display nane for addresses; users can
al so add non-standard additional headers. H 323 has a single
Display field. The script should be able to nake deci sions
based on these paraneters.

Medi a description

Call invitations specify the types of nmedia that will fl ow,
their bandw dt h usage, their network destination addresses,
etc. The script should be able to nmake deci sions based on
these nmedi a characteristics.

Lennox & Schul zri nne I nf or mat i onal [Page 19]

RFC 2824 CPL-F May 2000

- Authentication/encryption status

Call invitations can be authenticated. Many properties of
the authentication are relevant: the nethod of

aut henti cation/encryption, who perforned the authentication,
whi ch specific fields were encrypted, etc. The script
shoul d be able to nake deci sions based on these security

par aneters

o Should be able to take action based on a call invitation

There are a nunber of actions we can take in response to an
i nconming call setup request. W can

- reject it

We shoul d be able to indicate that the call is not
acceptable or not able to be conpleted. W should al so be
able to send nore specific rejection codes (including, for
SI P, the associated textual string, warning codes, or
nessage payl oad).

- redirect it

We shoul d be able to tell the call initiator sender to try a
different |ocation.

- proxy it

We shoul d be able to send the call invitation on to another
| ocation, or to several other |ocations ("forking" the
invitation), and await the responses. It should al so be
possible to specify a timeout value after which we give up
on receiving any definitive responses.

o Should be able to take action based a response to a proxied or
forked call invitation

Once we have proxied an invitation, we need to be able to nmake
deci si ons based on the responses we receive to that invitation
(or the lack thereof). W should be able to:

- consider its nessage fields

We shoul d be able to consider the same fields of a response
as we consider in the initial invitation.

Lennox & Schul zri nne I nf or mat i onal [Page 20]

RFC 2824 CPL-F

- relay it on to the call originator

May 2000

If the response is satisfactory, it should be returned to

t he sender.

- for a fork, choose one of several responses to relay back

If we forked an invitation, we obviously expect to receive
several responses. There are several issues here -- choosing
anong the responses, and how long to wait if we’ ve received

responses from sone but not all destinations.
- initiate other actions

If we didn't get a response, or any we |iked,

able to try sonething el se instead (e.g., ca

busy).

12. 3 Base features -- non-signalling

we shoul d be
| forward on

A nunber of other features that a call processing | anguage shoul d

have do not refer to call signalling per se; however,
extrenely desirable to inplenment nany useful features.

The servers which provide these features mght reside
I nternet devices, or mght be |local to the server (or
possibilities). The | anguage shoul d be independent of
these servers, at |least at a high |evel

o Logging
In addition to the CPL server’s natural |ogging
user will also want to be able to log arbitrary
The actual storage for this |ogging information
either locally or renotely.

o Error reporting

they are still

i n other
ot her
the | ocati on of

of events, the
ot her itens.
m ght |ive

I f an unexpected error occurs, the script should be able to
report the error to the script’s owner. This may use the sane
mechani smas the script server uses to report |anguage errors

to the user (see section 12.5).
0 Access to user-location info

Proxies will often collect infornmation on users’
| ocation, either through SI P REG STER nessages,

current
the H. 323 RRQ

fam ly of RAS nmessages, or sonme other mechani sm (see section

Lennox & Schul zri nne | nf or mat i onal

[Page 21]

RFC 2824

CPL-F May 2000

6.2). The CPL should be able to refer to this information so a
call can be forwarded to the registered | ocations or sone
subset of them

Dat abase access

Much information for CPL control mght be stored in externa
dat abases, for exanple a w de-area address database, or

aut hori zation information, for a CPL under administrative
control. The | anguage coul d specify some specific database
access protocols (such as SQ. or LDAP), or could be nore
generi c.

O her external information

O her external information a script could access includes web
pages, which could be sent back in a SIP nessage body; or a
clean interface to renpte procedure calls such as Corba, RM,
or DCOM for instance to access an external billing database.
However, for sinplicity, these interfaces may not be in the
initial version of the protocol

12. 4 Language features

Sone features do not involve any operations external to the CPL's
execution environnment, but are still necessary to allow sonme standard
services to be inplenented. (This list is not exhaustive.)

o

Pat t er n- mat chi ng

It should be possible to give special treatnent to addresses
and other text strings based not only on the full string but
al so on nore general or conplex sub-patterns of them

Address filtering

Once a set of addresses has been retrieved through one of the
nmet hods in section 12.3, the user needs to be able to choose a
sub-set of them based on their address conponents or other
par aneters.

Randomi zati on

Sone forns of call distribution are randomnm zed as to where they
actually end up

Lennox & Schul zri nne | nf or mat i onal [Page 22]

RFC 2824 CPL-F May 2000

12.

13

14

15

o Date/tine information

Users may wi sh to condition some services (e.g., call
forwarding, call distribution) on the current tinme of day, day
of the week, etc.

5 Contr ol

As described in section 8 we nust have a nmechanismto send and
retrieve CPL scripts, and associated data, to and froma signalling
server. This nmethod shoul d support reporting upload-tine errors to
users; we al so need sonme nechanismto report errors to users at
script execution tine. Authentication is vital, and encryption is
very useful. The specification of this nechani smcan be (and probably
ought to be) a separate specification fromthat of the cal

processi ng | anguage itself.

Security Considerations

The security considerations of transferring CPL scripts are di scussed
in sections 8 and 12.5. Sone consi derations about the execution of
the | anguage are discussed in section 12.1

Acknow edgnent s

W would like to thank Tom La Porta and Jonat han Rosenberg for their
comments and suggesti ons.

Aut hor s’ Addr esses

Jonat han Lennox

Dept. of Computer Science

Col unmbi a Uni versity

1214 Anst erdam Avenue, MC 0401
New York, NY 10027

USA

EMai | : | ennox@s. col unbi a. edu

Henni ng Schul zri nne

Dept. of Computer Science

Col unbi a University

1214 Ansterdam Avenue, MC 0401
New Yor k, NY 10027

USA

EMai | : schul zri nne@s. col unbi a. edu

Lennox & Schul zri nne I nf or mat i onal [Page 23]

RFC 2824 CPL-F May 2000

16 Bi bl i ography

[1] Handley, M, Schul zrinne, H., Schooler, E. and J. Rosenberg,
"SIP. Session Initiation Protocol", RFC 2543, March 1999.

[2] International Tel ecomunication Union, "Packet based nultinedia
communi cati on systens,”" Recomendati on H. 323, Tel ecomruni cati on
St andar di zati on Sector of |ITU, Geneva, Switzerland, Feb. 1998.

[3] K. Coar and D. Robinson, "The WMWVcomon gateway interface
version 1.1", Work in Progress.

[4] T. Showalter, "Sieve: A nmail filtering | anguage", Wrk in
Pr ogr ess.

[5] J. Lennox and H. Schul zrinne, "CPL: a | anguage for user control
of internet tel ephony services", Wrk in Progress.

[6] International Tel ecommunication Union, "General recomendations
on tel ephone switching and signaling -- intelligent network:
Introduction to intelligent network capability set 1,"
Recomrendati on Q 1211, Tel ecommuni cati on Standardi zati on Sect or
of ITU, Geneva, Switzerland, Mar. 1993.

[7] «@uttman, E., Perkins, C., Veizades, J. and M Day, "Service
Location Protocol, Version 2", RFC 2608, June 1999.

[8 E. J. Canmeron, N. D. Giffeth, Y.-J. Lin, M E. Nilson, W K
Schure, and H Velthuijsen, "A feature interaction benchmark for
I N and beyond," Feature Interactions in Tel ecommuni cati ons
Systens, 10OS Press, pp. 1-23, 1994.

[9] J. Lennox, J. Rosenberg, and H. Schul zri nne, "Common gat eway
interface for SIP", Wrk in Progress.

[10] J. Rosenberg, J. Lennox, and H. Schul zri nne, "Progranmi ng
internet tel ephony services," Technical Report CUCS-010-99,
Col unmbi a University, New York, New York, Mar. 1999.

[11] H. Schul zrinne and J. Rosenberg, "SIP caller preferences and
callee capabilities", Wrk in Progress.

Lennox & Schul zri nne | nf or mat i onal [Page 24]

RFC 2824 CPL-F May 2000

17 Full Copyright Statenent
Copyright (C) The Internet Society (2000). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
ot hers, and derivative works that comment on or otherw se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng I nternet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into |Ianguages other than
Engli sh.

The limted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknow edgenent

Fundi ng for the RFC Editor function is currently provided by the
I nternet Society.

Lennox & Schul zri nne I nf or mat i onal [Page 25]

