Net wor k Wor ki ng Group Ri chard Schantz (BBN TEN
EX)

Request for Comments: 672 Dec 1
974

NI C #31440

A Milti-Site Data Collection Facility

Pr ef ace:

Thi s RFC reproduces nost of a working docunent
prepared during the design and inplenentation of the
protocols for the TIP-TENEX integrated systemfor
handl ing TIP accounting. Bernie Cosell (BBNTIP)

and Bob Thomas (BBN TENEX) have contributed to
various aspects of this work. The system has been
partially operational for about a nonth on sel ected
hosts. W feel that the techni ques described here
have wi de applicability beyond TIP accounting.

Section |

Protocols for a Multi-site Data Collection Facility

| nt roducti on

The devel opnent of conputer networks has provided the
groundwor k for distributed conputation: one in which a job or task
is conprised of conponents from various conputer systems. In a
single conputer system the unavailability or malfunction of any of
the job conmponents (e.g. program file, device, etc.) usually
necessitates job termination. Wth conmputer networks, it becones
feasible to duplicate certain job conponents which previously had no
basis for duplication. (In a single system it does not matter how
many times a process that perforns a certain function is duplicated;
a systemcrash nmakes all unavailable). It is such resource
duplication that enables us to utilize the network to achi eve high
reliability and load leveling. In order to realize the potential of
resource duplication, it is necessary to have protocols which
provide for the orderly use of these resources. In this docunent,
we first discuss in general terns a problemof protocol definition
for interacting with a nmultiply defined resource (server). The
problemdeals with providing a highly reliable data collection
facility, by supporting it at nmany sites throughout the network. In
the second section of this docunment, we describe in detail a
particul ar inplenmentation of the protocol which handles the problem
of utilizing multiple data collector processes for collecting
accounting data generated by the network TIPs. This exanple al so
illustrates the specialization of hosts to performparts of a
conmputation they are best equi pped to handle. The | arge network
hosts (TENEX systens) performthe accounting function for the snal
net work access Ti Ps.

The situation to be discussed is the following: a data
generating process needs to use a data collection service which is
duplicately provided by processes on a nunmber of network nachines.
A request to a server involves sending the data to be coll ected.

An I nitial Approach

The data generator could proceed by selecting a particul ar
server and sending its request to that server. It mght also take
the attitude that if the nmessage reaches the destination host (the
conmmuni cation subsystemw || indicate this) the nmessage will be
properly processed to conmpletion. Failure of the request Message
woul d then |l ead to selecting another server, until the request
succeeds or all servers have been tried.

Such a sinple strategy is a poor one. It nmakes sense to
require that the servicing process send a positive acknow edgenent
to the requesting process. If nothing else, the reply indicates
that the server process itself is still functioning. Waiting for
such a reply also inplies that there is a strategy for selecting
another server if the reply is not forthcom ng. Herein lies a
problem |f the expected reply is tined out, and then a new request
is sent to another server, we run the risk of receiving the
(del ayed) original acknow edgenment at a later tine. This could
result in having the data entered into the collection systemtw ce
(data duplication). If the request is re-transmtted to the same
server only, we face the possibility of not being able to access a
collector (data loss). In addition, for |oad |eveling purposes, we
may Wi sh to send new requests to sonme (or all) servers. W can then
use their reply (or lack of reply) as an indicator of |oad on that
particul ar instance of the service. Doing this w thout data
duplication requires nore than a sinple request and acknow edgenent
protocol *.

Ext ensi on of the Protocol

The general protocol devel oped to handle nultiple collection
servers involves having the data generator send the data request to
sonme (or all) data collectors. Those willing to handl e the request
reply with an "1’ ve got it" nessage. They then await further
notification before finalizing the processing of the data. The data
generator sends a "go ahead" nmessage to one of the replying
collectors, and a "discard" nessage to all other replying
coll ectors. The "go ahead" nessage is the signal to process the
data (i.e. collect permanently), while the "discard" nessage
i ndicates that the data is being collected el sewhere and shoul d not
be retained.

The question now arises as to whether or not the collector
process shoul d acknow edge recei pt of the "go ahead" nessage with a
reply of its own, and then should the generator process acknow edge
this acknow edgement, etc. We would like to send as few nessages as
possi bl e to achi eve reliable comunication. Therefore, when a state

* | f the servers are independent of each other to the extent that if
two or nore servers all act on the same request, the end result is
the sane as having a single server act on the request, then a sinple
request/acknow edgenent protocol is adequate. Such nay be the case,
for exanple, if we subject the totality of collected data (i.e. al
data collected by all collectors for a certain period) to a
duplicate detection scan. If we could store enough context in each
entry to be able to deternine duplicates, then having two or nore
servers act on the data would be functionally equivalent to
processing by a single server.

is reached for which further acknow edgenents lead to a previously
visited state, or when the cost of further acknow edgenents outwei gh
the increase in reliability they bring, further acknow edgenents
becone unnecessary.

The initial question was should the collector process
acknowl edge the "go ahead" nessage? Assune for the nonment that it
shoul d not send such an acknow edgenent. The data generator could
verify, through the communi cation subsystem the transm ssion of the
"go ahead" message to the host of the collector. If this nmessage
did not arrive correctly, the generator has the option of
re-transmtting it or sending a "go ahead" to another coll ector
whi ch has acknowl edged recei pt of the data. Either strategy
i nvolves no risk of duplication. If the "go ahead" nessage arrives
correctly, and a collector acknow edgenent to the "go ahead" nessage
is not required, then we incur a vulnerability to (collector host)
systemcrash fromthe tine the "go ahead" nessage is accepted by the
host until the tine the data is totally processed. Call the data
processing tinme P. Once the data generator has selected a
particular collector (on the basis of receiving its "I’'ve got it"
nessage), we also incur a vulnerability to mal function of this
col l ector process. The vulnerable period is fromthe tine the
collector sends its "i’'ve got it" message until the tine the data is
processed. This anobunts to two network transit tinmes (2N) plus | MP
and host overhead for nmessage delivery (0) plus data processing tine
(P). [Total tinme=2N+P+Q . A malfunction (crash) in this period can
cause the loss of data. There is no potential for duplication.

Now, assune that the data collector process nust acknow edge
the "go ahead" nessage. The question then arises as to when such an
acknow edgenent shoul d be sent. The reasonabl e choices are either
i medi ately before final processing of the data (i.c. before the
data is permanently recorded) or inmediately after final processing.
It can be argued that unless another acknow edgenent is required (by
the generator to the collector) to this acknow edgenent BEFORE t he
actual data update, then the best tinme for the collector to
acknow edge the "go ahead" is after final processing. This is so
because receiving the acknow edgenent conveys nore information if it
is sent after processing, while not receiving it (tineout), in
ei ther case, leaves us in an unknown state with respect to the data
updat e. Depending on the rel ative speeds of various network and
system conponents, the data may or nay not be permanently entered.
Therefore if we interpret the tinmeout as a signal to have the data
processed at another site, we run the risk of duplication of data.
To avoid data duplication, the tineout strategy nust only invol ve
re-sendi ng the "go ahead" nessage to the same collector. This wll
only help if the lack of reply is due to a | ost network nessage.

Qur vulnerability intervals to system and process nal function remain
as before.

It is our conjecture (to be analyzed further) that any further
acknowl edgenents to these acknow edgenents will have virtually no
effect on reducing the period of vulnerability outlined above. As
such, the protocol with the fewest nessages required is superior.

-4-

Dat a Dependent Aspects of the Protocol

As di scussed above, a nain issue is which process should be the
last to respond (send an acknow edgenent). |If the data generator
sends the | ast nmessage (i.e. "go ahead"), we can only check on its
correct arrival at the destination host. W nust "take on faith"
the ability of the collector to correctly conplete the transaction
This strategy is geared toward avoi ding data duplication. If on the
ot her hand, the protocol specifies that the collector is to send the
| ast nessage, with the tineout of such a nessage causing the data
generator to use another collector, then the protocol is geared
toward the best efforts of recording the data sonmewhere, at the
expense of possible duplication.

Thus, the nature of the problemw |l dictate which of the
protocols is appropriate for a given situation. The next section
deals in the specifics of an inplenment;tion of a data collection
protocol to handle the problem of collecting TIP accounting data by
usi ng the TENEX systens for running the collection server processes.
It is shown how the general protocol is optimzed for the accounting
data col | ection.

Section ||

Protocol for TIP-TENEX Accounting Server Information Exchange

Overview of the Facility

When a user initially requests service froma TIP, the TIP wll
performa broadcast ICP to find an avail abl e RSEXEC whi ch mai nt ai ns
an authentication data base. The user nust then conplete s login
sequence in order to authenticate hinmself. If he is successful the
RSEXEC wi Il transmit his unique ID code to the TIP. Failure wll
cause the RSEXEC to cl ose the connection and the TIP to hang up on
the user. After the user is authenticated, the TIP will accunul ate
accounting data for the user session. The data includes a count of
nessages sent on behalf of the user, and the connect tine for the
user. Fromtinme to tinme the TIP will transmt internediate
accounting data to Accounting Server (ACTSER) processes scattered
t hr oughout the network. These accounting servers will maintain
files containing intermedi ate raw accounting data. The raw
accounting data will periodically be collected and sorted to produce
an accounting data base. Providing a nunmber of accounting servers
reduces the possibility of being unable to find a repository for the
internedi ate data, which otherwi se would be | ost due to buffering
limtations in the TiPs. The nmultitude of accounting servers can
al so serve to reduce the |oad on the individual hosts providing this
facility.

The rest of this docunent details the protocol that has been
devel oped to ensure delivery of TIP accounting data to one of the
avai |l abl e accounting servers for storage in the internedi ate
accounting files.

Adapting the Protoco

The TIP to Accounting Server data exchange uses a protocol that
allows the TIP to select for data transm ssion one, sone, or al
server hosts either sequentially or in parallel, yet insures that
the data that beconmes part of the accounting file does not contain
duplicate information. The protocol also mnimzes the anmount of
data buffering that nust be done by the Iimted capacity TiPs. The
protocol is applicable to a wide class of data collection problens
whi ch use a nunber of data generators and collectors. The foll ow ng
descri bes how the protocol works for TIP accounting.

Each TIP is responsible for naintaining in its nenory the cells
indicating the connect tinme and the nunmber of nessages sent for each
of its current users. These cells are incremented by the TIP for
every quantum of connect tinme and nessage sent, as the case nmay be.
This is the data generation phase. Periodically, the TIP will scan
all its active counters, and along with each user ID code, pack the
accunul ated data into one network nessage (i.e. less than 8K bits).
The TIP then transmits this data to a set of Accounting Server
processes residing throughout the network. The data transfer is
over a specially designated host-host Iink. The accounting servers
utilize the raw network message facility of TENEX 1.32 in order to
directly access that |ink. Wien an ACTSER receives a data nessage
froma TIP, it buffers the data and replies by returning the entire
nessage to the originating TIP. The TIP responds with a positive
acknowl edgenent ("go ahead") to the first ACTSER which returns the
data, and responds with a negative acknow edgement ("discard") to
al | subsequent ACTSER data return messages for this series of
transfers. If the TIP does not receive a reply fromany ACTSER, it
accumul ates new data (i.e. the TIP has all the while been
incrementing its local counters to reflect the increased connect
time and nessage count; the current values will conprise new data
transfers) and sends the new data to the Accounting Server
processes. Wen an ACTSER receives a positive acknow edgenent from
a TIP (i.e. "go ahead"), it appends the appropriate parts of the
buffered data to the locally maintained accounting information file.
On receiving a negative acknow edgenment fromthe TIP (i.e.
"discard"), the ACTSER di scards the data buffered for this TIP. In
-addition, when the TIP responds with a "go ahead” to the first
ACTSER whi ch has accepted the data (acknow edged by returning the
data along with the "lI’ve got it"), the TIP decrenents the connect
time and nessage counters for each user by the ampunt indicated in
the data returned by the ACTSER This data will already be
accounted for in the intermedi ate accounting files.

As an aid in determ ning which ACTSER replies are to current
requests, and which are tardy replies to old requests, the TIP

-6-

nmai nt ai ns a sequence nunber indicator, and appends this nunber to
each data nessage sent to an ACTSER On receiving a reply from an
ACTSER, the TIP nmerely checks the returned sequence nunber to see if
this is the first reply to the current set of TIP requests. If the
returned sequence nunber is the sane as the current sequence nunber,
then this is the first reply; a positive acknow edgenent is sent
of f, the counters are decrenented by the returned data, and the
sequence nunber is increnented. If the returned sequence nunber is
not the sane as the current one (i.e. not the one we are now
seeking a reply for) then a negative acknow edgenent is sent to the
replying ACTSER. After a positive acknow edgenent to an ACTSER (and
the inplied incrementing of the sequence nunber), the TIP can wait
for nore information to accunul ate, and then start transmtting
agai n using the new sequence nunber.

Further darification of the Protocol

There are a nunber of points concerning the protocol that
shoul d be not ed.

1. The data generator (TIP) can send different (i.e. updated
versions) data to different data collectors (accounting servers) as
part of the sanme |ogical transm ssion sequence. This is possible
because the TIP does not account for the data sent until it receives
the acknow edgenent of the data echo. This strategy relieves the
TIP of any buffering in conjunction with re-transm ssion of data

whi ch hasn’t been acknow edged.

2. A new data request to an accounting server froma TIP wll

al so serve as a negative acknow edgenent concerning any data already
buffered by the ACTSER for that TIP, but not yet acknow edged. The
old data will be discarded, and the new data will be buffered and
echoed as an acknow edgenent. This allows the TIP the option of not
sendi ng a negati ve acknow edgenent when it is not convenient to do
so, without having to renenber that it nust be sent at a later tine.
There is one exception to this convention. |If the new data nessage
has the sanme sequence nunber as the old buffered nessage, then the
new data must be discarded, and the old data kept and re-echoed.
This is to prevent a sl ow acknow edgenent to the old data from being
accepted by the TIP, after the TIP has already sent the new data to
the sl ow host. This caveat can be avoided if the TIP does not

resend to a non-responding server within the tinme period that a
nmessage coul d possibly be stuck in the network, but could still be
delivered. Ignoring this situation may result in sone accounting
data being counted twi ce. Because of the rule to keep ol d data when
confronted with matchi ng sequence nunbers, on restarting after a
crash, the TIP should send a "discard" nessage to all servers in
order to clear any data which has been buffered for it prior to the
crash. An alternative to this would be for the TIP to initialize
its sequence nunber froma varying source such as tinme of day.

3. The accounting server sinilarly need not acknow edge recei pt
of data (by echoing) if it finds itself otherw se occupied. This
will nmean that the ACTSER is not buffering the data, and hence is
not a candidate for entering the data into the file. However, the

-7-

TIP may try this ACTSER at a later tinme (even with the sane data),
with no ill effects.

4. Because of 2 and 3 above, the protocol is robust with respect

to lost or garbled transni ssions of TIP data requests and accounti ng
server echo replies. That is, in the event of |oss of such a
nessage, a re-transmssion will occur as the normal procedure.

5. There is no synchronization problemwi th respect to the
sequence nunber used for duplicate detection, since this nunber is
mai ntained only at the TIP site. The accounting server nerely
echoes the sequence nunber it has received as part of the data.

6. There are, however, sone constraints on the size of the

sequence nunber field. It nust be |l arge enough so that ALL traces

of the previous use of a given sequence nunber are totally reMved
fromthe network before the nunber is re-used by the TIP. The
sequence nunber is nodul o the size of the | argest nunber represented
by the nunmber of bits allocated, and is cyclic. Problens generally
ari se when a host proceeds froma service interruption while it was
holding on to a reply. If during the service interruption, we have
cycl ed through our sequence nunbers exactly N tines (where Nis any
integer), this VERY tardy reply could be mistaken for a reply to the
new data, which has the same sequence nunber (i.e. N revolutions of
sequence nunbers later). By utilizing a sufficiently |arge sequence
nunber field (16 bits), and by allow ng sufficient tine between

i nstances of sending new data, we can effectively reduce the
probability of such an error to zero.

7. Since the data involved in this problemis the source of
accounting information, care nust be taken to avoid duplicate
entries. This nust be done at the expense of potentially |osing

data in certain instances. O her than the obvious TIP mal function,
there are two known ways of losing data. One is the situation where
no accounting server responds to a TIP for an extended period of
time causing the TIP counters to overflow (highly unlikely if there
are sufficient Accounting Servers). In this case, the TIP can hold
the counters at their nmaxi numvalue until a server cones up, thereby
keeping the | ost accounting data at its m ninmum The ot her

situation results from adapting the protocol to our insistence on no
duplicate data in the increnental files. W are vulnerable to data
loss with no recourse fromthe time the server receives the "go
ahead" to update the file with the buffered data (i.e. positive
acknow edgenent) until the tine the update is conpleted and the file
is closed. An accounting server crash during this period will cause
that accounting data to be lost. In our initial inplenentation, we
have slightly extended this period of vulnerability in order to save
the TIP fromhaving to buffer the acknow edged data for a short
period of tinme. By updating TIP counters fromthe returned data in
parallel with sending the "go ahead" acknow edgenent, we relieve the
TIP of the burden of buffering this data until the Request for Next
Message (RFNM) from the accounting server I|MP is received. This

adds slightly to our period of vulnerability to nmal function, noving
t he begi nning of the period fromthe point when the ACTSER host
receives the "go ahead", back to the point when the TIP sends off

- 8-

the "go ahead" (i.e. a period of one network transit tinme plus sone
| MP processing tinme). However, |loss of data in this period is

det ectabl e through the Host Dead or Inconplete Transm ssion return
in place of the RFNM W intend to record such occurrences with the

Network Control Center. |f this data | oss becones intolerable, the
TIP programwi Il be nodified to await the RFNM for the positive
acknowl edgenent before updating its counters. In such a case, if

t he RFNM does not cone, the TIP can discard the buffered data and
re-transnt new data to other servers.

8. There is adequate protection against the entry of forged data
into the internediate accounting files. This is primarily due to
the systemenforced Iinmted access to Host-Inp nessages and
Host - Host links. In addition, nessages received on such designated
linted access links can be easily verified as conming froma TIP
The | MP subnet appends the signature (address) of the sending host
to all of its nmessages, so there can be no forging. The Accounting
Server is in a position to check if the source of the nessage is in
fact a TIP data generator

Current Paraneters of the Protocol

In the initial inplenmentation, the TIP sends its accunul ated
accounting data about once every half hour. If it gets no positive
acknow edgenent, it tries to send with greater frequency (about
every 5 mnutes) until it finally succeeds. It can then return to
the normal waiting period. (A TIP user |ogout introduces an
exception to this behavior. In order to re-use the TIP port and its
associ ated counters as soon as possible, a user termnating his TIP
sessi on causes the accounting data to be sent imedi ately).
initially, our inplenentation calls for each TIP to renenber a
"favored" accounting server. At the wait period expiration, the TIP
will try to deposit the data at its "favored" site. If successfu
within a short timeout period, this site remains the favored site,
and the wait interval is reset. If unsuccessful within the short

ti meout, the data can be sent to all servers*. The one replying
first will update its file with the data and al so becone the
"favored" server for this TIP. Wth these paraneters, a host would
have to undergo a proceedabl e service interruption of nore than a
year in order for the potential sequence nunber problemoutlined in
(6) above to occur.

Concl udi ng Remar ks

When the inplenmentation is conplete, we will have a genera

data accumnul ati on and col |l ecti on system whi ch can be used to gather
a wide variety of information. The protocol as outlined is geared
to gathering data which is either independent of the previously
accumul ated data itens (e.g. recordi ng nanmes), or data which
adheres to a comutative relationship (e.g. counting). This is a

-0-

consequence of the policy of retransmi ssion of different versions of
the data to different potential collectors (to relieve TIP buffering
probl ens) .

In the specified version of the protocol, care was taken to

avoi d duplicate data entries, at the cost of possibly |osing sone
data through collector mal function. Data collection problens which
requi re avoi ding such loss (at the cost of possible duplication of
sonme data itens) can easily be acconmodated with a slight adjustnent
to the protocol. Collected data which does not adhere to the

commut ative rel ati onshi p indicated above, can al so be handl ed by
utilizing nore buffer space at the data generator sites.

The sequence nunber can be increnmented for this new set of data
nessages, and the new data can also be sent to the slow host. In
this way we won’t be giving the tardy response fromthe old favored
host unfair advantage in determ ning which server can respond nost
quickly. If there is no reply to this series of nessages, the TIP
can continue to resend the new data. However, the sequence nunber
shoul d not be increnmented, since no reply was received, and since

i ndi scrimnate increnmenting of the sequence nunber increases the
chance of recycling during the lifetime of a nmessage.

-10-

