Net wor k Wor ki ng Group S. Shepler
Request for Comments: 3010 B. Cal | aghan
bsol etes: 1813, 1094 D. Robi nson

Cat egory: Standards Track R Thurl ow
Sun M crosystens Inc.

C. Beane

Hummi ngbird Ltd.

M Eisler

Zanbeel , |Inc.

D. Noveck

Net wor k Appliance, Inc.
Decenber 2000

NFS version 4 Protocol

Status of this Meno

Thi s docunment specifies an Internet standards track protocol for the
Internet conmunity, and requests di scussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this meno is unlimnited.

Copyright Notice
Copyright (C) The Internet Society (2000). Al Rights Reserved.

Abstract

NFS (Network File Systen) version 4 is a distributed file system
protocol which owes heritage to NFS protocol versions 2 [RFC1094] and
3 [RFC1813]. Unlike earlier versions, the NFS version 4 protocol
supports traditional file access while integrating support for file

| ocki ng and the nount protocol. |In addition, support for strong
security (and its negotiation), conmpound operations, client caching,
and internationalization have been added. O course, attention has
been applied to maki ng NFS version 4 operate well in an Internet

envi ronnent .

Key Words

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMVENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119.

Shepler, et al. St andards Track [Page 1]

RFC 3010

NFS version 4 Protocol

Tabl e of Contents

NEREEEPREREEREE

N =

POWWhdPODODONDE

ouoaoaaaaoohbhiabbbbbbROOOOWOWOWWWOONNDNERERRPRPRRRRRRRERE
WD PP e

CoNoh~ONE

| ntroduction .

CURhLOWWONE

Overvi ew of NFS Ver3| on 4 Features .
RPC and Security . .o
Procedure and Operation Structure
File System Model .

1. Filehandl e Types .

2. Attribute Types : :
3. File System Repli catl on and M gratl on
OPEN and CLOSE .

File locking . . .
Client Caching and DeI egatl on

General Definitions Co

Protocol Data Types

Basi ¢ Data Types . :
Structured Data Types

RPC and Security Flavor

el

N =

Ei

N =

PP

T

Shepl er,

Ports and Transports .

Security Flavors . Co e
Security mschanlsnB for NFS version 4
Kerberos V5 as security triple .

LI PKEY as a security triple

1.
2.
.3. SPKM 3 asasecurltytrlple
S :

ecurity Negotiation .
Security Error
SECINFO . . .
Cal | back RPC Authentlcatlon
| ehandles . . .
bt ai ni ng the Flrst Fllehandle
Root Fil ehandl e Co
Public Fil ehandl e
Fi |l ehandl e Types . . .
General Properties of a Fllehandle :
Persi stent Filehandl e
Vol atile Fil ehandl e

One Method of Constructi ng a VoI atl I e Fl I ehandl e .
Client Recovery from Filehandl e Expiration . .

le Attributes . . .

Mandat ory Attrlbutes :

Reconmended Attributes .

Named Attributes
Mandatory Attributes - Definitions . .
Reconmended Attributes - Definitions .
Interpreting owner and owner_group .
Character Case Attributes .
Quota Attributes .

Access Control Lists .

et al. St andards Track

Decenber 2000

O OO ~NO O Ul

RFC 3010 NFS version 4 Protocol
9.1. ACE type .
9.2. ACE flag . . .
9.3. ACE Access I\/ask
9.4. ACE who .
File System M gratl on and Repl [catl on
1. Replication .
2. Mgration .
3. Interpretation of thefs Iocatlons Attrlbute. .
4. Filehandl e Recovery for M gration or Replication .

NFS Server Nane Space
Server Exports .
Browsi ng Exports . .
Server Pseudo File System
Multiple Roots . . .
Fi | ehandl e Vol at|||ty
Exported Root . .o
Mount Point Crossing . .
Security Policy and Nane Space Present at| on
| e Locki ng and Share Reservations
Locking . .
Client ID : .
Server Rel ease of Cl [ent| d : :
nfs_| ockowner and stateid Defi n|t| on .
Use of the stateid . .
Sequenci ng of Lock Requests
Recovery from Repl ayed Requests
Rel easi ng nfs_| ockowner State
Lock Ranges
Bl ocki ng Locks .
Lease Renewal
Crash Recovery . Coe
1. dient Failure and Recovery
2. Server Failure and Recovery
3. Network Partitions and Recovery
Recovery froma Lock Request Ti nmeout or Abort
Server Revocation of Locks .
Share Reservations .
OPEN CLOSE Operations . .
.10. Open Upgrade and Dovvngrade
.11. Short and Long Leases
.12. docks and Cal cul ati ng Lease EXpI ratl on .
.13. Mgration, Replication and State
.13.1. Mgration and State . .
.13.2. Replication and State . .
.13.3. Notification of Mgrated Lease
Client-Side Caching :
1. Performance Chall enges for CI [ent Sl de Cachl ng .
2. Delegation and Cal |l backs .

ONohAwNE

NooswbdE T

©©© 00000000000 00000PPAOOOOOOIPRPRPPEONNNNNNNNNOOOO 00001
CoNonooOkhwdRERRERRERRERREPE

Shepl er, et al. St andar ds Track

Decenber 2000

41
41
43
44
44
45
45
46
47
47
47
48
48
49
49
49
49
50
50
51
51
53
54
55
56
56
57
57
58
58
59
59
60
62
63
63
65
65
66
66
67
67
67
68
69
69
70
71

[Page 3]

RFC 301

COLOOVOVOLOLOOOOVVLOLOO
ONohAAAARhLOWWOWWWON

o o=

NN =
o=

NSESESESENYSESINES

0

=

PP

PP

Shepl er,

NFS version 4 Protocol Decenber 2000
Del egati on Recovery 72
Data Caching . . . 74
Dat a Cachi ng and GDENS Co 74
Data Caching and Fil e Locki ng .o 75
Dat a Cachi ng and Mandatory File Lockr ng 77
Data Caching and File ldentity . 77
Open Del egation . . : 78
Open Del egati on and Data Cachl ng : 80
Open Del egation and File Locks . 82
Recal | of Open Del egati on 82
Del egati on Revocati on 84
Dat a Cachi ng and Revocati on : 84
Revocati on Recovery for Wite Open DeI egatl on 85
Attribute Caching 85
Nane Caching . . 86
Directory Caching 87
M nor Versi oni ng 88
Internationalization Coe . 91
Uni versal Versus Local Character Sets Co : 91
Overvi ew of Universal Character Set Standar ds . 92
Difficulties with UCS-4, UCS-2, Unicode . 93
UTF-8 and its solutions . 94
Nor mal i zati on . 94
Error Definitions . . 95
NFS Version 4 Requests 99
Compound Procedure . : 100
Eval uati on of a Conpound Request 100
Synchronous Mdi fying Oper ations 101
Operati on Val ues : Co 102
NFS Version 4 Procedures . . 102
Procedure 0: NULL - No Operatr on . . : 102
Procedure 1: COVPOUND - Conpound Operatl ons . 102
Operation 3: ACCESS - Check Access Rights . 105
Qperation 4: CLOSE - Close File . . . 108
Operation 5: COM T - Commit Cached Data 109
Operation 6: CREATE - Create a Non-Regular File Cbject. 112
Operation 7: DELEGPURCE - Purge Del egations Awaiting
Recovery L. 114
6. Operation 8: DELEGRETURN - Return Del egation 115
7. Qperation 9: CGETATTR - Get Attributes . . . 115
8. Qperation 10: GETFH - CGet Current Filehandl e 117
9. (Qperation 11: LINK - Create Link to a File 118
10. Qperation 12: LOCK - Create Lock . 119
11. Operation 13: LOCKT - Test For Lock 121
12. QOperation 14: LOCKU - Unlock File . 122
13. Operation 15: LOOKUP - Lookup Fil ename . 123
14. QOperation 16: LOOKUPP - Lookup Parent Di rectory 126
et al. St andards Track [Page 4]

RFC 3010

14. 2.

14.
14.

NN

14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
15.
15.
15.
15.
15.
16.
17.
17. 1.
18.
19.
20.
20.
20.
20.
21.

NPNPNNNPNNNNPNDNNNDNNDNDNNNDNDN

NISINES

wN ke

1. Intr

The NFS version 4 protocol

defin
the e
recov
files
revis

Shepl er,

NFS version 4 Protocol Decenber

15. Operation 17: NVERIFY - Verify Difference in
Attributes . .

.16. Operation 18: OPEN - Open a Regular File . . .
.17. Operation 19: OPENATTR - Open Naned Attribute

Directory

.18. Operation 20: OPEN_CONFI RM - Confl rm Open .
.19. Operation 21: OPEN_DOANNGRADE - Reduce Open File Access
.20. Operation 22: PUTFH - Set Current Filehandle . . .
.21. Operation 23: PUTPUBFH - Set Public Filehandle .
.22. Operation 24: PUTROOTFH - Set Root Fil ehandl e

.23. Qperation 25: READ - Read fromFile . . .

.24. Operation 26: READDI R - Read Di rectory . .

.25. Operation 27: READLINK - Read Synbolic Li nk

.26. (Qperation 28: REMOVE - Renove Fil esystem Obj ect

.27. Operation 29: RENAME - Renanme Directory Entry

.28. (Qperation 30: RENEW- Renew a Lease . . .
.29. (Operation 31: RESTOREFH - Restore Saved Fl I ehandl e .
.30. Operation 32: SAVEFH - Save Current Filehandle .
.31. Operation 33: SECINFO - Ootain Avail able Security
.32. Qperation 34: SETATTR - Set Attributes
.33. Operation 35: SETCLIENTID - Negotiate Cllentld G
.34. Operation 36: SETCLIENTID CONFIRM - ConfirmdCientid .
.35. Operation 37: VERIFY - Verify Sane Attributes
.36. Operation 38: WRITE - Wite to File .

NFS Version 4 Call back Procedures . .
Procedure 0: CB_NULL - No Operation . . .
Procedure 1: CB_COVPOUND - Conpound Oper atl ons

.1. Operation 3: CB_GETATTR - Cet Attributes . .
.2. Operation 4: CB_RECALL - Recall an Open Del egatl on

Security Considerations .
| ANA Considerations . . .
Named Attribute Defi n|t| on
RPC definition file .
Bi bl i ogr aphy
Aut hors . .
Editor's Address
Aut hors’ Addresses
Acknow edgenents . . .
Ful | Copyright Statenent

oducti on

2000

127
128

137
138
140
141
142
143
144
146
150
151
153
155
156
157
158
160
162
163
164
166
170
170
171
172
173
174
174
174
175
206
210
210
210
211
212

is a further revision of the NFS protocol

ed already by versions 2 [RFC1094] and 3 [RFC1813]. It retains
ssential characteristics of previous versions: design for easy
ery, independent of transport protocols, operating systenms and

ystens, sinplicity, and good performance. The NFS version 4

ion has the foll owi ng goal s:

et al. St andar ds Track [Page 5]

RFC 3010 NFS version 4 Protocol Decenber 2000

o |Inproved access and good performance on the Internet.

The protocol is designed to transit firewalls easily, perform well
where |atency is high and bandwidth is Iow, and scale to very
| arge nunbers of clients per server

0 Strong security with negotiation built into the protocol

The protocol builds on the work of the ONCRPC working group in
supporting the RPCSEC GSS protocol. Additionally, the NFS version
4 protocol provides a nechanismto allow clients and servers the
ability to negotiate security and require clients and servers to
support a mininmal set of security schenes.

0 GCood cross-platforminteroperability.

The protocol features a file system nodel that provides a useful
conmon set of features that does not unduly favor one file system
or operating system over another.

o Designed for protocol extensions.

The protocol is designed to accept standard extensions that do not
conpr oni se backward conpatibility.

1.1. Overview of NFS Version 4 Features

To provide a reasonabl e context for the reader, the major features of
NFS version 4 protocol will be reviewed in brief. This will be done
to provide an appropriate context for both the reader who is famliar
with the previous versions of the NFS protocol and the reader that is
new to the NFS protocols. For the reader new to the NFS protocols,
there is still a fundanental know edge that is expected. The reader
should be faniliar with the XDR and RPC protocols as described in

[RFC1831] and [RFC1832]. A basic know edge of file systens and
distributed file systens is expected as well.

1.1.1. RPC and Security

As with previous versions of NFS, the External Data Representation
(XDR) and Renote Procedure Call (RPC) mechani sns used for the NFS
version 4 protocol are those defined in [RFC1831] and [RFC1832]. To
nmeet end to end security requirenments, the RPCSEC GSS franework

[RFC2203] will be used to extend the basic RPC security. Wth the
use of RPCSEC _GSS, various nechani snms can be provided to offer
authentication, integrity, and privacy to the NFS version 4 protocol.
Kerberos V5 will be used as described in [RFC1964] to provide one
security framework. The LIPKEY GSS- APl nechani sm described in

Shepl er, et al. St andar ds Track [Page 6]

RFC 3010 NFS version 4 Protocol Decenber 2000

[RFC2847] will be used to provide for the use of user password and
server public key by the NFS version 4 protocol. Wth the use of
RPCSEC_GSS, ot her mechani sns may al so be specified and used for NFS
version 4 security.

To enabl e in-band security negotiation, the NFS version 4 protoco
has added a new operation which provides the client a method of
querying the server about its policies regarding which security
mechani sns nust be used for access to the server’s file system
resources. Wth this, the client can securely match the security
mechani smthat nmeets the policies specified at both the client and
server.

1.1.2. Procedure and QOperation Structure

A significant departure fromthe previous versions of the NFS
protocol is the introduction of the COMPOUND procedure. For the NFS
version 4 protocol, there are two RPC procedures, NULL and COVPOUND
The COVPOUND procedure is defined in ternms of operations and these
operations correspond nore closely to the traditional NFS procedures.
Wth the use of the COVPOUND procedure, the client is able to build
sinple or conplex requests. These COVPOUND requests allow for a
reduction in the nunber of RPCs needed for logical file system
operations. For exanple, w thout previous contact with a server a
client will be able to read data froma file in one request by
conbi ni ng LOCKUP, OPEN, and READ operations in a single COMWOUND RPC
Wth previous versions of the NFS protocol, this type of single
request was not possible.

The nodel used for COWOUND is very sinple. There is no |ogical OR
or ANDi ng of operations. The operations conmbined within a COMPOUND
request are evaluated in order by the server. Once an operation
returns a failing result, the evaluation ends and the results of all
eval uated operations are returned to the client.

The NFS version 4 protocol continues to have the client refer to a
file or directory at the server by a "filehandle". The COVPOUND
procedure has a nethod of passing a filehandle fromone operation to
another within the sequence of operations. There is a concept of a
"current filehandle" and "saved filehandle". Myst operations use the
"current filehandle" as the file systemobject to operate upon. The
"saved filehandle" is used as tenporary fil ehandl e storage within a
COVPOUND procedure as well as an additional operand for certain
operati ons.

Shepl er, et al. St andar ds Track [Page 7]

RFC 3010 NFS version 4 Protocol Decenber 2000

1.1.3. File System Model

The general file system nodel used for the NFS version 4 protocol is
the sanme as previous versions. The server file systemis

hi erarchical with the regular files contained within being treated as
opaque byte streanms. In a slight departure, file and directory namnes
are encoded with UTF-8 to deal with the basics of

i nternationalization.

The NFS version 4 protocol does not require a separate protocol to
provide for the initial mapping between path name and fil ehandl e.

I nst ead of using the ol der MOUNT protocol for this nmapping, the
server provides a ROOT filehandle that represents the |ogical root or
top of the file systemtree provided by the server. The server
provides multiple file systens by gluing themtogether with pseudo
file systems. These pseudo file systens provide for potential gaps
in the path nanes between real file systens.

1.1.3.1. Filehandl e Types

In previous versions of the NFS protocol, the filehandl e provided by
the server was guaranteed to be valid or persistent for the lifetine
of the file systemobject to which it referred. For some server

i npl ementations, this persistence requirenent has been difficult to
meet. For the NFS version 4 protocol, this requirenment has been

rel axed by introduci ng another type of filehandle, volatile. Wth
persistent and volatile filehandl e types, the server inplenmentation
can match the abilities of the file systemat the server along with
the operating environnent. The client will have know edge of the
type of filehandle being provided by the server and can be prepared
to deal with the semantics of each

1.1.3.2. Attribute Types

The NFS version 4 protocol introduces three classes of file system or
file attributes. Like the additional filehandl e type, the
classification of file attributes has been done to ease server

i npl ementations along with extending the overall functionality of the
NFS protocol. This attribute nodel is structured to be extensible
such that new attributes can be introduced in ninor revisions of the
protocol w thout requiring significant rework.

The three classifications are: mandatory, recomended and naned
attributes. This is a significant departure fromthe previous

attri bute nodel used in the NFS protocol. Previously, the attributes
for the file systemand file objects were a fixed set of mainly Unix
attributes. |If the server or client did not support a particul ar

attribute, it would have to sinulate the attribute the best it coul d.

Shepl er, et al. St andar ds Track [Page 8]

RFC 3010 NFS version 4 Protocol Decenber 2000

Mandatory attri butes are the minimal set of file or file system

attri butes that nust be provided by the server and nust be properly
represented by the server. Recommended attributes represent
different file systemtypes and operating environnments. The
recommended attributes will allow for better interoperability and the
i nclusion of nore operating environments. The mandatory and
recommended attribute sets are traditional file or file system
attributes. The third type of attribute is the naned attribute. A
naned attribute is an opaque byte streamthat is associated with a
directory or file and referred to by a string nane. Nanmed attributes
are nmeant to be used by client applications as a nmethod to associate
application specific data with a regular file or directory.

One significant addition to the recormmended set of file attributes is
the Access Control List (ACL) attribute. This attribute provides for
directory and file access control beyond the nodel used in previous
versions of the NFS protocol. The ACL definition allows for

speci fication of user and group |level access control.

1.1.3.3. File System Replication and M gration

Wth the use of a special file attribute, the ability to mgrate or
replicate server file systens is enabled within the protocol. The
file systemlocations attribute provides a nethod for the client to
probe the server about the location of a file system |In the event

of a mgration of a file system the client will receive an error
when operating on the file systemand it can then query as to the new
file systemlocation. Sinmilar steps are used for replication, the
client is able to query the server for the nultiple avail abl e

| ocations of a particular file system Fromthis information, the
client can use its own policies to access the appropriate file system
| ocati on.

1.1.4. OPEN and CLCSE

The NFS version 4 protocol introduces OPEN and CLOSE operations. The
OPEN operation provides a single point where file | ookup, creation,
and share semantics can be conbi ned. The CLOSE operation al so

provi des for the rel ease of state accunul ated by OPEN

1.1.5. File |ocking

Wth the NFS version 4 protocol, the support for byte range file
locking is part of the NFS protocol. The file |ocking support is
structured so that an RPC cal | back nmechanismis not required. This
is a departure fromthe previous versions of the NFS file | ocking
protocol, Network Lock Manager (NLM. The state associated with file
| ocks is maintained at the server under a | ease-based nodel. The

Shepl er, et al. St andar ds Track [Page 9]

RFC 3010 NFS version 4 Protocol Decenber 2000

server defines a single lease period for all state held by a NFS
client. |If the client does not renew its |ease within the defined
period, all state associated with the client’s |ease may be rel eased
by the server. The client nay renewits |lease with use of the RENEW
operation or inplicitly by use of other operations (prinmarily READ).

1.1.6. dient Caching and Del egation

The file, attribute, and directory caching for the NFS version 4
protocol is simlar to previous versions. Attributes and directory
informati on are cached for a duration determined by the client. At
the end of a predefined tineout, the client will query the server to
see if the related file system object has been updated.

For file data, the client checks its cache validity when the file is
opened. A query is sent to the server to determine if the file has
been changed. Based on this information, the client determnes if
the data cache for the file should kept or released. Also, when the
file is closed, any nodified data is witten to the server

If an application wants to serialize access to file data, file
| ocking of the file data ranges in question should be used.

The major addition to NFS version 4 in the area of caching is the
ability of the server to delegate certain responsibilities to the
client. Wen the server grants a delegation for a file to a client,
the client is guaranteed certain semantics with respect to the
sharing of that file with other clients. At OPEN, the server may
provide the client either a read or wite delegation for the file.
If the client is granted a read delegation, it is assured that no
other client has the ability to wite to the file for the duration of
the delegation. |If the client is granted a wite del egation, the
client is assured that no other client has read or wite access to
the file.

Del egati ons can be recalled by the server. |If another client
requests access to the file in such a way that the access conflicts
with the granted del egation, the server is able to notify the initial
client and recall the delegation. This requires that a callback path
exi st between the server and client. |If this callback path does not
exi st, then del egations can not be granted. The essence of a

del egation is that it allows the client to locally service operations
such as OPEN, CLOSE, LOCK, LOCKU, READ, WRI TE wi t hout inmedi ate
interaction with the server.

Shepl er, et al. St andar ds Track [Page 10]

RFC 3010 NFS version 4 Protocol Decenber 2000

1.2. GCeneral Definitions

The following definitions are provided for the purpose of providing
an appropriate context for the reader.

Cient The "client" is the entity that accesses the NFS server’s
resources. The client may be an application which contains
the logic to access the NFS server directly. The client
may al so be the traditional operating systemclient renote
file system services for a set of applications.

In the case of file locking the client is the entity that
mai ntains a set of |ocks on behalf of one or nore
applications. This client is responsible for crash or
failure recovery for those |ocks it nmanages.

Note that nmultiple clients may share the sanme transport and
multiple clients may exist on the same network node.

Clientid A 64-bit quantity used as a unique, short-hand reference to
a client supplied Verifier and ID. The server is
responsi ble for supplying the dientid.

Lease An interval of tine defined by the server for which the
client is irrevocably granted a lock. At the end of a
| ease period the | ock may be revoked if the | ease has not
been extended. The | ock nust be revoked if a conflicting
| ock has been granted after the | ease interval

Al'l leases granted by a server have the sane fixed
interval. Note that the fixed interval was chosen to

al l eviate the expense a server would have in nmaintaining
state about variable length | eases across server failures.

Lock The term "l ock"” is used to refer to both record (byte-
range) locks as well as file (share) |ocks unless
specifically stated otherw se.

Server The "Server"” is the entity responsible for coordinating
client access to a set of file systens.

St abl e Storage
NFS version 4 servers nust be able to recover w thout data
loss frommultiple power failures (including cascading
power failures, that is, several power failures in quick
succession), operating systemfailures, and hardware
failure of conponents other than the storage nediumitself
(for exanple, disk, nonvolatile RAM.

Shepler, et al. St andards Track [Page 11]

RFC 3010

Statei d

Verifier

2. Protocol

NFS version 4 Protocol Decenber 2000

Sone exanpl es of stable storage that are allowable for an
NFS server i ncl ude:

1. Media commit of data, that is, the nodified data has
been successfully witten to the disk nedia, for
exanpl e, the disk platter

2. An immediate reply disk drive with battery-backed on-
drive internediate storage or uninterruptible power
system (UPS) .

3. Server conmit of data with battery-backed internediate
storage and recovery software.

4. Cache conmmit with uninterruptible power system (UPS) and
recovery software.

A 64-bit quantity returned by a server that uniquely
defines the locking state granted by the server for a
specific lock owner for a specific file.

St at ei ds conposed of all bits 0 or all bits 1 have speci al
nmeani ng and are reserved val ues.

A 64-bit quantity generated by the client that the server
can use to deternine if the client has restarted and | ost
all previous |ock state.

Data Types

The syntax and semantics to describe the data types of the NFS

version 4

docunent s.

types and

protocol are defined in the XDR [RFC1832] and RPC [RFC1831]
The next sections build upon the XDR data types to define
structures specific to this protocol.

2.1. Basic Data Types

Data Type Definition

int32_t typedef int int32_t;

uint32_t t ypedef unsigned int uint32_t;
int64_t t ypedef hyper int64_t;

ui nt64_t t ypedef unsi gned hyper uint64_t;

Shepler, et al. St andards Track [Page 12]

RFC 3010 NFS version 4 Protocol Decenber 2000
attrlist4 t ypedef opaque attrlist4<>
Used for file/directory attributes

bi t map4 t ypedef uint32_t bi t map4<>
Used in attribute array encoding.

changei d4 t ypedef ui nt 64_t changei d4;
Used in definition of change_info

clientid4 t ypedef uint64_t clientid4;
Shorthand reference to client identification

conmponent 4 typedef utf8string component 4;
Represents path nane conponents

count 4 t ypedef uint32_t count 4;
Various count paraneters (READ, WRITE, COW T)

| engt h4 t ypedef uint64_t | engt h4;
Descri bes LOCK | engt hs

i nktext4 typedef utf8string I i nkt ext 4,
Synbolic link contents

node4 t ypedef uint32_t node4;
Mode attribute data type

nfs_cookie4 typedef uint64_t nf s_cooki e4;
Opaque cooki e val ue for READDI R

nfs_fh4 t ypedef opaque nfs_f h4<NFS4_FHSI ZE>;
Fil ehandl e definition; NFS4_FHSI ZE i s defined as 128

nfs_ftyped enum nfs_ftype4;
Various defined file types

nfsstat4 enum nf sst at 4;
Return value for operations

of fset4 t ypedef uint64_t of f set 4;
Various of fset designations (READ, WRI TE, LOCK, COW T)

pat hnane4 t ypedef conponent4 pat hname4<>;
Represents path nane for LOOKUP, OPEN and ot hers

qop4 t ypedef uint32_t qop4;
Quality of protection designation in SECI NFO

Shepl er, et al. St andar ds Track [Page 13]

RFC 3010 NFS version 4 Protocol Decenber 2000

sec_oi d4 t ypedef opaque sec_oi d4<>;
Security Cbject Identifier
The sec_oid4 data type is not really opaque.
I nst ead contains an ASN. 1 OBJECT | DENTI FI ER as used
by GSS-API in the nmech_type argunent to
GSS I nit_sec_context. See [RFC2078] for details.

seqi d4 t ypedef uint32_t seqi d4;
Sequence identifier used for file |ocking

statei d4 t ypedef uint64_t st at ei d4;
State identifier used for file |ocking and del egati on

ut f8string t ypedef opaque ut f 8stri ng<>;
UTF-8 encodi ng for strings

verifierd t ypedef opaque verifier4[NFS4_VERI Fl ER_SI ZE] ;
Verifier used for various operations (COMWM T, CREATE,
OPEN, READDI R, SETCLI ENTI D, WRI TE)
NFS4_VERI FI ER_SI ZE is defined as 8

2.2. Structured Data Types

nfstinme4
struct nfstinmed {
i nt 64_t seconds;
ui nt 32_t nseconds;

}

The nfstined4 structure gives the nunber of seconds and nanoseconds
since mdnight or O hour January 1, 1970 Coordi nated Uni versal
Time (UTC). Values greater than zero for the seconds field denote
dates after the 0 hour January 1, 1970. Values |less than zero for
the seconds field denote dates before the O hour January 1, 1970.
In both cases, the nseconds field is to be added to the seconds
field for the final time representation. For exanple, if the tine
to be represented is one-half second before O hour January 1,

1970, the seconds field woul d have a value of negative one (-1)
and the nseconds fields would have a val ue of one-half second
(500000000). Values greater than 999, 999,999 for nseconds are
consi dered invalid.

This data type is used to pass tine and date information. A
server converts to and fromits local representation of tine when
processing tinme val ues, preserving as nuch accuracy as possible.
If the precision of timestanps stored for a file systemobject is

Shepler, et al. St andards Track [Page 14]

RFC 3010 NFS version 4 Protocol Decenber 2000

| ess than defined, |oss of precision can occur. An adjunct tinme
mai nt enance protocol is recommended to reduce client and server

time skew.
ti me_howd
enum ti me_how4 {
SET_TO SERVER TIME4 = 0,
SET_TO CLIENT_TIME4 = 1
¥
settinme4

union settime4 switch (tine_howd set it) {
case SET_TO _CLI ENT_TI ME4:
nfstinme4 time;
defaul t:
voi d;
1

The above definitions are used as the attribute definitions to
set time values. If set_it is SET_TO SERVER TIME4, then the
server uses its local representation of tinme for the tinme val ue.

specdat a4

struct specdata4d {
uint32_t specdatal
uint 32_t specdat a2;

H

This data type represents additional information for the device
file types NF4ACHR and NF4BLK

fsid4
struct fsid4 {
ui nt 64 _t naj or ;

ui nt 64 _t n nor;

};

This type is the file systemidentifier that is used as a
mandatory attri bute.

Shepl er, et al. St andar ds Track [Page 15]

RFC 3010 NFS version 4 Protocol Decenber 2000

fs_location4d

struct fs_locationd {
utf8string server <>
pat hnane4 r oot pat h;

H

fs_locations4

struct fs_locationsd {
pat hnane4 fs_root;
fs |l ocation4 |ocations<>;

H

The fs_locationd4 and fs_| ocations4 data types are used for the
fs_locations recormended attribute which is used for mgration
and replication support.

fattr4
struct fattr4 {
bi t map4 attrmask;
attrlist4 attr_val s;

H

The fattr4 structure is used to represent file and directory
attributes.

The bitmap is a counted array of 32 bit integers used to contain
bit values. The position of the integer in the array that

contains bit n can be conputed fromthe expression (n / 32) and
its bit within that integer is (n nod 32).

change_i nf 04

struct change_info4 {

bool at omic;
changei d4 bef ore;
changei d4 after

Shepl er, et al. St andar ds Track [Page 16]

RFC 3010 NFS version 4 Protocol Decenber 2000

This structure is used wth the CREATE, LINK, REMOVE, RENAME
operations to let the client the know val ue of the change
attribute for the directory in which the target file system
obj ect resides.

clientaddr4

struct clientaddr4 {
/* see struct rpcb in RFC 1833 */
string r_netid<>; /* network id */
string r_addr<>; /* universal address */

H

The clientaddr4 structure is used as part of the SETCLI ENT
operation to either specify the address of the client that is
using a clientid or as part of the call back registration.

cb _client4

struct cb_client4 {
unsi gned int cb_program
clientaddr4 cb_l ocati on;

b
This structure is used by the client to informthe server of its
call back address; includes the program nunber and client
addr ess.

nfs_client_id4

struct nfs_client_id4 {

verifier4d verifier;
opaque i d<>;
1
This structure is part of the argunents to the SETCLI ENTID

operati on.

nfs_| ockowner 4

struct nfs_| ockowner4 {
clientid4 clientid;
opaque owner <>;

H

Shepler, et al. St andards Track [Page 17]

RFC 3010 NFS version 4 Protocol Decenber 2000

This structure is used to identify the owner of a OPEN share or
file Iock.

3. RPC and Security Flavor

The NFS version 4 protocol is a Renote Procedure Call (RPC)
application that uses RPC version 2 and the correspondi ng exXterna
Data Representation (XDR) as defined in [RFC1831] and [RFC1832]. The
RPCSEC_GSS security flavor as defined in [RFC2203] MJST be used as
the mechanismto deliver stronger security for the NFS version 4

pr ot ocol .

3.1. Ports and Transports

Hi storically, NFS version 2 and version 3 servers have resided on
port 2049. The registered port 2049 [RFC1700] for the NFS protoco
shoul d be the default configuration. Using the registered port for
NFS services nmeans the NFS client will not need to use the RPC

bi ndi ng protocols as described in [RFC1833]; this will allow NFS to
transit firewalls.

The transport used by the RPC service for the NFS version 4 protoco
MUST provi de congestion control conparable to that defined for TCP in
[RFC2581]. If the operating environment inplenents TCP, the NFS
version 4 protocol SHOULD be supported over TCP. The NFS client and
server may use other transports if they support congestion control as
defined above and in those cases a nechani sm may be provided to
override TCP usage in favor of another transport.

If TCP is used as the transport, the client and server SHOULD use

persi stent connections. This will prevent the weakening of TCP s
congestion control via short |ived connections and will inprove
performance for the WAN environnent by elimnating the need for SYN
handshakes.

Note that for various timers, the client and server should avoid
i nadvertent synchronization of those timers. For further discussion
of the general issue refer to [Floyd].

3.2. Security Flavors

Traditional RPC inplenentations have included AUTH NONE, AUTH _SYS,
AUTH DH, and AUTH KRB4 as security flavors. Wth [RFC2203] an

addi tional security flavor of RPCSEC_GSS has been introduced which
uses the functionality of GSS APl [RFC2078]. This allows for the use
of varying security mechani sns by the RPC | ayer wi thout the
addi ti onal inplenentation overhead of adding RPC security flavors.

For NFS version 4, the RPCSEC GSS security flavor MJST be used to

Shepl er, et al. St andar ds Track [Page 18]

RFC 3010 NFS version 4 Protocol Decenber 2000

enabl e the mandatory security nmechanism Qher flavors, such as,
AUTH_NONE, AUTH _SYS, and AUTH DH MAY be inpl enented as well.

3.2.1. Security nechanisns for NFS version 4

The use of RPCSEC GSS requires selection of: mechanism quality of
protection, and service (authentication, integrity, privacy). The
remai nder of this docurment will refer to these three paraneters of
the RPCSEC GSS security as the security triple.

3.2.1.1. Kerberos V5 as security triple

The Kerberos V5 GSS- APl nechani sm as described in [RFC1964] MJST be
i npl enented and provide the follow ng security triples.

col um descri ptions:

== nunber of pseudo flavor
== nanme of pseudo flavor
nmechani smis A D

== mechani sm s al gorithn(s)
== RPCSEC_GSS service

OrhWwWNBE
1
1

390003 krb5 1.2.840.113554.1.2.2 DES MAC MD5 rpc_gss_svc_none
390004 krb5i 1.2.840.113554.1.2.2 DES MAC MD5 rpc_gss_svc_integrity
390005 krb5p 1.2.840.113554.1.2.2 DES MAC MD5 rpc_gss_svc_privacy

for integrity,

and 56 bit DES

for privacy.

Note that the pseudo flavor is presented here as a mapping aid to the
i npl enentor. Because this NFS protocol includes a nethod to
negotiate security and it understands the GSS-API nechanism the
pseudo flavor is not needed. The pseudo flavor is needed for NFS
version 3 since the security negotiation is done via the MOUNT

pr ot ocol .

For a discussion of NFS use of RPCSEC GSS and Kerberos V5, please
see [RFC2623].

3.2.1.2. LIPKEY as a security triple
The LI PKEY GSS- APl nmechani sm as described in [RFC2847] MJUST be
i mpl enented and provide the follow ng security triples. The

definition of the colums matches the previous subsection "Kerberos
V5 as security triple"

Shepl er, et al. St andar ds Track [Page 19]

RFC 3010 NFS version 4 Protocol Decenber 2000

390006 |i pkey 1.3.6.1.5.5.9 negoti ated rpc_gss_svc_none
390007 lipkey-i 1.3.6.1.5.5.9 negotiated rpc_gss_svc_integrity
390008 lipkey-p 1.3.6.1.5.5.9 negotiated rpc_gss_svc_privacy

The nechanismalgorithmis listed as "negotiated". This is because
LI PKEY is layered on SPKM 3 and in SPKM 3 [RFC2847] the
confidentiality and integrity algorithnms are negotiated. Since
SPKM 3 specifies HVAC-MD5 for integrity as MANDATORY, 128 bit
cast5CBC for confidentiality for privacy as MANDATORY, and furt her
speci fies that HVAC- MD5 and cast 5CBC MJUST be listed first before
weaker al gorithns, specifying "negotiated" in colum 4 does not
inmpair interoperability. 1In the event an SPKM 3 peer does not
support the mandatory al gorithms, the other peer is free to accept or
reject the GSS-API context creation

Because SPKM 3 negoti ates the al gorithns, subsequent calls to

LI PKEY' s GSS Wap() and GSS GetM C() by RPCSEC GSS will use a quality
of protection value of 0 (zero). See section 5.2 of [RFC2025] for an
expl anati on.

LI PKEY uses SPKM 3 to create a secure channel in which to pass a user
nanme and password fromthe client to the user. Once the user nanme
and password have been accepted by the server, calls to the LIPKEY
context are redirected to the SPKM 3 context. See [RFC2847] for nore
details.

3.2.1.3. SPKM 3 as a security triple

The SPKM 3 GSS- APl nmechani sm as described in [RFC2847] MJUST be

i mpl enented and provide the follow ng security triples. The
definition of the colums matches the previous subsection "Kerberos
V5 as security triple".

390009 spknB 1.3.6.1.5.5.1.3 negoti ated rpc_gss_svc_none
390010 spknBi 1.3.6.1.5.5.1.3 negotiated rpc_gss_svc_integrity
390011 spknBp 1.3.6.1.5.5.1.3 negotiated rpc_gss_svc_privacy

For a discussion as to why the nmechanismalgorithmis listed as
"negoti ated", see the previous section "LIPKEY as a security triple."

Because SPKM 3 negotiates the algorithns, subsequent calls to SPKM
3's GSS Wap() and GSS_GetM C() by RPCSEC GSS will use a quality of
protection value of 0 (zero). See section 5.2 of [RFC2025] for an
expl anati on.

Shepl er, et al. St andar ds Track [Page 20]

RFC 3010 NFS version 4 Protocol Decenber 2000

Even though LIPKEY is |ayered over SPKM 3, SPKM 3 is specified as a
mandatory set of triples to handle the situations where the initiator
(the client) is anonynous or where the initiator has its own
certificate. If the initiator is anonynous, there will not be a user
nane and password to send to the target (the server). |If the
initiator has its own certificate, then using passwords is
super fl uous.

3.3. Security Negotiation

Wth the NFS version 4 server potentially offering multiple security
mechani sns, the client needs a nethod to deternmine or negotiate which
mechanismis to be used for its conmunication with the server. The
NFS server may have nultiple points withinits file system nane space
that are available for use by NFS clients. In turn the NFS server
may be configured such that each of these entry points nmay have
different or nmultiple security nechanisns in use.

The security negotiation between client and server nust be done with
a secure channel to elimnate the possibility of a third party
intercepting the negotiation sequence and forcing the client and
server to choose a |ower level of security than required or desired.

3.3.1. Security Error

Based on the assunption that each NFS version 4 client and server
must support a mnimum set of security (i.e. LIPKEY, SPKM 3, and
Kerberos-V5 all under RPCSEC GSS), the NFS client will start its
conmuni cation with the server with one of the mnimal security
triples. During conmmunication with the server, the client may
receive an NFS error of NFS4ERR_WRONGSEC. This error allows the
server to notify the client that the security triple currently being
used is not appropriate for access to the server’'s file system
resources. The client is then responsible for determ ning what
security triples are available at the server and choose one which is
appropriate for the client.

3.3.2. SECI NFO

The new SECI NFO operation will allow the client to determ ne, on a
per filehandl e basis, what security triple is to be used for server
access. In general, the client will not have to use the SECI NFO
procedure except during initial comunication with the server or when
the client crosses policy boundaries at the server. It is possible
that the server’s policies change during the client’s interaction
therefore forcing the client to negotiate a new security triple.

Shepler, et al. St andards Track [Page 21]

RFC 3010 NFS version 4 Protocol Decenber 2000

3.4. Call back RPC Aut hentication

The cal | back RPC (described later) nust nmutually authenticate the NFS
server to the principal that acquired the clientid (al so descri bed
later), using the sane security flavor the original SETCLI ENTID
operation used. Because LIPKEY is |ayered over SPKM3, it is

perm ssible for the server to use SPKM 3 and not LIPKEY for the
cal | back even if the client used LIPKEY for SETCLIENTID.

For AUTH NONE, there are no principals, so this is a non-issue.

For AUTH SYS, the server sinply uses the AUTH SYS credential that the
user used when it set up the del egation.

For AUTH DH, one commonly used convention is that the server uses the
credential corresponding to this AUTH DH pri nci pal:

uni x. host @onai n

where host and donmain are variables corresponding to the nane of
server host and directory services domain in which it [ives such as a
Net work I nformation System domain or a DNS donai n.

Regardl ess of what security nechani sm under RPCSEC GSS i s being used,
the NFS server, MJST identify itself in GSS-APlI via a

GSS_C _NT_HOSTBASED SERVI CE nane type. GSS_C NT_HOSTBASED SERVI CE
nanes are of the form

servi ce@ost nane
For NFS, the "service" elenent is

nfs
| mpl enent ati ons of security nechanisms will convert nfs@uostnhane to
various different forns. For Kerberos V5 and LI PKEY, the follow ng
formis RECOMVENDED:

nf s/ host nane
For Kerberos V5, nfs/hostnanme would be a server principal in the
Kerberos Key Distribution Center database. For LIPKEY, this would be
the username passed to the target (the NFS version 4 client that
recei ves the call back).
It should be noted that LIPKEY may not work for call backs, since the

LI PKEY client uses a user id/password. |[If the NFS client receiving
the call back can authenticate the NFS server’s user nane/ password

Shepler, et al. St andards Track [Page 22]

RFC 3010 NFS version 4 Protocol Decenber 2000

pair, and if the user that the NFS server is authenticating to has a
public key certificate, then it works.

In situations where NFS client uses LIPKEY and uses a per-host
principal for the SETCLI ENTID operation, instead of using LIPKEY for
SETCLIENTID, it is RECOVWENDED that SPKM 3 wi th nutual authentication
be used. This effectively neans that the client will use a
certificate to authenticate and identify the initiator to the target
on the NFS server. Using SPKM 3 and not LIPKEY has the follow ng
advant ages:

o Wen the server does a callback, it nust authenticate to the
principal used in the SETCLIENTID. Even if LIPKEY is used,
because LIPKEY is |ayered over SPKM 3, the NFS client will need to
have a certificate that corresponds to the principal used in the
SETCLI ENTI D operation. From an adm nistrative perspective, having
a user name, password, and certificate for both the client and
server is redundant.

0 LIPKEY was intended to minimze additional infrastructure
requi rements beyond a certificate for the target, and the
expectation is that existing password infrastructure can be
| everaged for the initiator. |In sone environments, a per-host
password does not exist yet. |If certificates are used for any
per-host principals, then additional password infrastructure is
not needed.

0o In cases when a host is both an NFS client and server, it can
share the sanme per-host certificate.

4. Fil ehandl es

The filehandl e in the NFS protocol is a per server unique identifier
for a file systemobject. The contents of the filehandl e are opaque
to the client. Therefore, the server is responsible for translating
the filehandle to an internal representation of the file system
object. Since the filehandle is the client’s reference to an object
and the client may cache this reference, the server SHOULD not reuse
a filehandle for another file systemobject. |If the server needs to
reuse a filehandl e value, the tinme el apsed before reuse SHOULD be

| arge enough such that it is unlikely the client has a cached copy of
the reused filehandl e value. Note that a client may cache a
filehandle for a very long tinme. For exanple, a client may cache NFS
data to |l ocal storage as a nethod to expand its effective cache size
and as a neans to survive client restarts. Therefore, the lifetine
of a cached filehandl e may be extended.

Shepl er, et al. St andar ds Track [Page 23]

RFC 3010 NFS version 4 Protocol Decenber 2000

4.1. Oobtaining the First Filehandle

The operations of the NFS protocol are defined in terms of one or
nmore filehandl es. Therefore, the client needs a filehandle to
initiate comuni cation with the server. Wth the NFS version 2
protocol [RFC1094] and the NFS version 3 protocol [RFC1813], there
exists an ancillary protocol to obtain this first filehandle. The
MOUNT prot ocol, RPC program nunber 100005, provides the mechani sm of
translating a string based file systempath nanme to a fil ehandl e

whi ch can then be used by the NFS protocols.

The MOUNT protocol has deficiencies in the area of security and use
via firewalls. This is one reason that the use of the public
filehandl e was introduced in [RFC2054] and [RFC2055]. Wth the use
of the public filehandl e in conbination with the LOOKUP procedure in
the NFS version 2 and 3 protocols, it has been denonstrated that the
MOUNT protocol is unnecessary for viable interaction between NFS
client and server.

Therefore, the NFS version 4 protocol will not use an ancillary
protocol for translation fromstring based path nanes to a
filehandle. Two special filehandles will be used as starting points

for the NFS client.
4.1.1. Root Fil ehandle

The first of the special filehandles is the ROOT filehandle. The
ROOT filehandle is the "conceptual” root of the file system name
space at the NFS server. The client uses or starts with the ROOT

fil ehandl e by enpl oying the PUTROOTFH operati on. The PUTROOTFH
operation instructs the server to set the "current" filehandle to the
ROOT of the server’'s file tree. Once this PUTROOTFH operation is
used, the client can then traverse the entirety of the server’'s file
tree with the LOOKUP procedure. A conplete discussion of the server
nanme space is in the section "NFS Server Nane Space"

4.1.2. Public Filehandl e

The second special filehandle is the PUBLIC fil ehandle. Unlike the
ROOT fil ehandle, the PUBLIC fil ehandl e may be bound or represent an
arbitrary file system object at the server. The server is
responsible for this binding. It may be that the PUBLIC fil ehandl e
and the ROOT filehandle refer to the sane file system object.

However, it is up to the administrative software at the server and
the policies of the server admnistrator to define the binding of the
PUBLI C fil ehandl e and server file systemobject. The client may not
make any assunptions about this binding.

Shepler, et al. St andards Track [Page 24]

RFC 3010 NFS version 4 Protocol Decenber 2000

4.2. Filehandl e Types

In the NFS version 2 and 3 protocols, there was one type of
filehandle with a single set of semantics. The NFS version 4
protocol introduces a new type of filehandle in an attenpt to
accommodat e certain server environnents. The first type of
filehandle is 'persistent’. The semantics of a persistent filehandle
are the sane as the filehandles of the NFS version 2 and 3 protocols.
The second or new type of filehandle is the "volatile" filehandle.

The volatile filehandl e type is being introduced to address server
functionality or inplenmentation issues which make correct

i npl enentation of a persistent filehandl e infeasible. Sone server
environnments do not provide a file systemlevel invariant that can be
used to construct a persistent filehandle. The underlying server
file systemmay not provide the invariant or the server’s file system
progranm ng i nterfaces nmay not provide access to the needed
invariant. Volatile filehandl es may ease the inplenentation of
server functionality such as hierarchical storage nanagenent or file
system reorgani zation or mgration. However, the volatile filehandle
i ncreases the inplenmentation burden for the client. However this

i ncreased burden is deened acceptabl e based on the overall gains

achi eved by the protocol.

Since the client will need to handl e persistent and vol atile
filehandl e differently, a file attribute is defined which may be used
by the client to determine the filehandl e types being returned by the
server.

4.2.1. GCeneral Properties of a Filehandle

The filehandl e contains all the informati on the server needs to

di stinguish an individual file. To the client, the filehandle is
opaque. The client stores filehandles for use in a |ater request and
can conpare two filehandl es fromthe sane server for equality by
doi ng a byte-by-byte conpari son. However, the client MJST NOT
otherwi se interpret the contents of filehandles. If two filehandles
fromthe sane server are equal, they MIST refer to the sanme file. |If
they are not equal, the client may use information provided by the
server, in the formof file attributes, to deternine whether they
denote the sane files or different files. The client would do this
as necessary for client side caching. Servers SHOULD try to naintain
a one-to-one correspondence between filehandles and files but this is
not required. dients MIST use filehandl e conparisons only to

i nprove performance, not for correct behavior. Al clients need to
be prepared for situations in which it cannot be determ ned whet her
two filehandl es denote the sanme object and in such cases, avoid
maki ng invalid assunptions which mght cause incorrect behavior.

Shepl er, et al. St andar ds Track [Page 25]

RFC 3010 NFS version 4 Protocol Decenber 2000

Further discussion of filehandle and attribute conparison in the
context of data caching is presented in the section "Data Caching and
File Identity".

As an exanple, in the case that two different path names when
traversed at the server termnate at the sane file system object, the
server SHOULD return the sane filehandl e for each path. This can
occur if a hard link is used to create two file nanmes which refer to
the same underlying file object and associated data. For exanple, if
paths /a/b/c and /a/d/c refer to the sane file, the server SHOULD
return the same filehandl e for both path names traversals.

4.2.2. Persistent Filehandl e

A persistent filehandl e is defined as having a fixed value for the
lifetime of the file systemobject to which it refers. Once the

server creates the filehandle for a file system object, the server
MUST accept the sanme filehandle for the object for the lifetinme of
the object. |If the server restarts or reboots the NFS server nust
honor the sane filehandle value as it did in the server’s previous
instantiation. Simlarly, if the file systemis nigrated, the new
NFS server nust honor the sanme file handle as the old NFS server

The persistent filehandle will be becone stale or invalid when the
file systemobject is renoved. When the server is presented with a
persistent filehandle that refers to a deleted object, it MJST return
an error of NFS4ERR_STALE. A filehandl e may beconme stal e when the
file systemcontaining the object is no |longer available. The file
system may becone unavailable if it exists on renovable nedia and the
media is no |l onger available at the server or the file systemin
whol e has been destroyed or the file system has sinply been renoved
fromthe server’s nane space (i.e. unnmounted in a Unix environnent).

4.2.3. Volatile Filehandl e

A volatile filehandl e does not share the sane | ongevity
characteristics of a persistent filehandle. The server may determ ne
that a volatile filehandle is no |onger valid at nmany different
points in time. |If the server can definitively determne that a
volatile filehandle refers to an object that has been renoved, the
server should return NFS4ERR STALE to the client (as is the case for
persistent filehandles). 1In all other cases where the server

determ nes that a volatile filehandl e can no | onger be used, it
shoul d return an error of NFS4ERR_FHEXPI RED.

Shepl er, et al. St andar ds Track [Page 26]

RFC 3010 NFS version 4 Protocol Decenber 2000

The mandatory attribute "fh_expire_type" is used by the client to
determ ne what type of filehandle the server is providing for a
particular file system This attribute is a bitmask with the
foll ow ng val ues:

FH4_PERSI STENT
The val ue of FH4_PERSI STENT is used to indicate a persistent
filehandl e, which is valid until the object is renmoved fromthe
file system The server will not return NFS4ERR_FHEXPI RED f or
this filehandle. FH4_PERSI STENT is defined as a value in which
none of the bits specified below are set.

FH4_NOEXPI RE_W TH_OPEN
The filehandle will not expire while client has the file open
If this bit is set, then the values FH4_VOLATI LE_ANY or
FH4_VOL_RENAME do not inpact expiration while the file is open.
Once the file is closed or if the FHA_NOEXPI RE_W TH OPEN bit is
false, the rest of the volatile related bits apply.

FHA_VOLATI LE_ANY
The filehandle may expire at any tinme and will expire during
system m gration and renane.

FH4A_VOL_M GRATI ON
The filehandle will expire during file systemmigration. My
only be set if FH4_VOLATILE ANY is not set.

FHA_VOL_RENAME
The filehandl e may expire due to a renane. This includes a
renane by the requesting client or a renanme by another client.
May only be set if FH4_VOLATILE ANY is not set.

Servers which provide volatile filehandl es should deny a RENAME or
REMOVE that would affect an OPEN file or any of the conponents
leading to the OPEN file. |In addition, the server should deny al
RENAMVE or REMOVE requests during the grace or |ease period upon
server restart.

The reader may be wondering why there are three FH4_VOL* bits and why
FH4_VOLATI LE_ANY is excl usive of FH4_VOL_M GRATI ON and
FH4A_VOL_RENAME. If the a filehandle is normally persistent but
cannot persist across a file set migration, then the presence of the
FH4_VOL_M GRATI ON or FH4_VOL_RENAME tells the client that it can
treat the file handle as persistent for purposes of maintaining a
file nane to file handl e cache, except for the specific event
described by the bit. However, FH4_VOLATILE ANY tells the client
that it should not maintain such a cache for unopened files. A
server MJST not present FH4_VOLATILE_ANY with FH4_VOL_M GRATI ON or

Shepler, et al. St andards Track [Page 27]

RFC 3010 NFS version 4 Protocol Decenber 2000

4.

4.

2.

3.

FH4_VOL_RENAME as this will lead to confusion. FH4_VOLATI LE_ANY
inplies that the file handle will expire upon migration or renane, in
addition to other events.

4. One Method of Constructing a Volatile Filehandle

As nmentioned, in sone instances a filehandle is stale (no |onger
val i d; perhaps because the file was renoved fromthe server) or it is
expired (the underlying file is valid but since the filehandle is
volatile, it may have expired). Thus the server needs to be able to
return NFS4ERR_STALE in the forner case and NFS4ERR FHEXPIRED in the
| atter case. This can be done by careful construction of the volatile
filehandle. One possible inplenmentation foll ows.

A volatile filehandl e, while opaque to the client could contain:
[volatile bit =1 | server boot tine | slot | generation nunber]
o slot is an index in the server volatile filehandle table

0 generation nunber is the generation nunber for the table
entry/ sl ot

If the server boot tine is |less than the current server boot tineg,
return NFS4ERR_FHEXPI RED. |If slot is out of range, return

NFSAERR BADHANDLE. |f the generation nunber does not match, return
NFS4ERR_FHEXPI RED.

When the server reboots, the table is gone (it is volatile).

If volatile bit is O, then it is a persistent filehandle with a
different structure following it.

Client Recovery from Fil ehandl e Expiration

| f possible, the client SHOULD recover fromthe receipt of an
NFS4ERR _FHEXPI RED error. The client nust take on additional
responsibility so that it may prepare itself to recover fromthe
expiration of a volatile filehandle. |If the server returns
persistent filehandles, the client does not need these additional
st eps.

For volatile filehandles, nost comonly the client will need to store
t he conmponent names |l eading up to and including the file system
object in question. Wth these names, the client should be able to
recover by finding a filehandle in the nanme space that is stil

avail able or by starting at the root of the server’s file system nane
space.

Shepl er, et al. St andar ds Track [Page 28]

RFC 3010 NFS version 4 Protocol Decenber 2000

If the expired filehandle refers to an object that has been renoved
fromthe file system obviously the client will not be able to
recover fromthe expired fil ehandle.

It is also possible that the expired filehandle refers to a file that
has been renaned. |If the file was renanmed by another client, again
it is possible that the original client will not be able to recover.
However, in the case that the client itself is renaming the file and
the file is open, it is possible that the client may be able to
recover. The client can deternine the new path nane based on the
processing of the renane request. The client can then regenerate the
new fil ehandl e based on the new path name. The client could al so use
t he compound operation mechanismto construct a set of operations
like:

RENAVE A B
LOOKUP B
GETFH

5. File Attributes

To neet the requirenents of extensibility and increased
interoperability with non-Unix platforms, attributes nust be handl ed
in a flexible manner. The NFS Version 3 fattr3 structure contains a
fixed list of attributes that not all clients and servers are able to
support or care about. The fattr3 structure can not be extended as
new needs arise and it provides no way to indicate non-support. Wth
the NFS Version 4 protocol, the client will be able to ask what

attri butes the server supports and will be able to request only those
attributes in which it is interested.

To this end, attributes will be divided into three groups: nmandatory,
reconmended, and naned. Both mandatory and recomrended attri butes
are supported in the NFS version 4 protocol by a specific and well -
defined encoding and are identified by nunber. They are requested by
setting a bit in the bit vector sent in the CGETATTR request; the
server response includes a bit vector to list what attributes were
returned in the response. New nandatory or recommended attri butes
may be added to the NFS protocol between major revisions by
publ i shing a standards-track RFC which allocates a new attribute
nunber val ue and defines the encoding for the attribute. See the
section "M nor Versioning" for further discussion.

Narmed attributes are accessed by the new OPENATTR operati on, which
accesses a hidden directory of attributes associated with a file
system obj ect. OPENATTR takes a filehandle for the object and
returns the filehandle for the attribute hierarchy. The filehandle
for the named attributes is a directory object accessible by LOOKUP

Shepl er, et al. St andar ds Track [Page 29]

RFC 3010 NFS version 4 Protocol Decenber 2000

or READDI R and contains files whose nanmes represent the naned
attri butes and whose data bytes are the value of the attribute. For

exanpl e:
L OOKUP "foo" ; look up file
GETATTR attrbits
OPENATTR ; access foo’'s naned attributes
L OOKUP "x11i con" ; look up specific attribute
READ 0, 4096 ; read stream of bytes

Naned attributes are intended for data needed by applications rather
than by an NFS client inplenentation. NFS inplenentors are strongly
encouraged to define their new attributes as recomended attributes

by bringing themto the | ETF standards-track process.

The set of attributes which are classified as mandatory is
deliberately snmall since servers nust do whatever it takes to support
them The recomrended attributes may be unsupported; though a server
shoul d support as nany as it can. Attributes are deenmed nmandatory if
the data is both needed by a | arge nunber of clients and is not

ot herwi se reasonably conmputable by the client when support is not
provi ded on the server

5.1. Mandatory Attributes

These MJUST be supported by every NFS Version 4 client and server in
order to ensure a mninmumlevel of interoperability. The server nust
store and return these attributes and the client nust be able to
function with an attribute set linmted to these attributes. Wth
just the mandatory attributes sonme client functionality may be
inpaired or limted in sone ways. A client nay ask for any of these
attributes to be returned by setting a bit in the GETATTR request and
the server nust return their val ue.

5.2. Recommended Attri butes

These attributes are understood well enough to warrant support in the
NFS Version 4 protocol. However, they may not be supported on al
clients and servers. A client nay ask for any of these attributes to
be returned by setting a bit in the GETATTR request but nust handl e
the case where the server does not return them A client may ask for
the set of attributes the server supports and shoul d not request

attri butes the server does not support. A server should be tol erant
of requests for unsupported attributes and sinply not return them

rat her than considering the request an error. It is expected that
servers will support all attributes they confortably can and only
fail to support attributes which are difficult to support in their
operating environments. A server should provide attributes whenever

Shepl er, et al. St andar ds Track [Page 30]

RFC 3010 NFS version 4 Protocol Decenber 2000

5.

5.

3.

4.

they don’'t have to "tell lies" to the client. For exanple, a file
nmodi fication time should be either an accurate time or should not be
supported by the server. This will not always be confortable to

clients but it seens that the client has a better ability to
fabricate or construct an attribute or do without the attri bute.

Named Attri butes

These attributes are not supported by direct encoding in the NFS
Version 4 protocol but are accessed by string nanmes rather than
nunbers and correspond to an uninterpreted stream of bytes which are
stored with the file system object. The nane space for these

attri butes may be accessed by using the OPENATTR operation. The
OPENATTR operation returns a filehandle for a virtual "attribute
directory" and further perusal of the name space may be done using
READDI R and LOOKUP operations on this filehandle. Nanmed attributes
may then be exam ned or changed by nornmal READ and WRI TE and CREATE
operations on the fil ehandl es returned from READD R and LOOKUP
Naned attri butes nay have attri butes.

It is recomended that servers support arbitrary naned attributes. A
client should not depend on the ability to store any nanmed attri butes
in the server’'s file system |f a server does support naned
attributes, a client which is also able to handle them should be abl e
to copy a file's data and neta-data with conpl ete transparency from
one location to another; this would inply that nanmes all owed for
regular directory entries are valid for naned attri bute names as
wel | .

Nanes of attributes will not be controlled by this docunent or other
| ETF standards track docunents. See the section "I ANA
Consi derations" for further discussion.

Mandat ory Attributes - Definitions
Nane # Dat aType Access Descri ption
supp_attr 0 bi t map READ The bit vector which

woul d retrieve all
mandat ory and
reconmended attributes
that are supported for
thi s object.

type 1 nfs4 ftype READ The type of the object
(file, directory,
sym i nk)

Shepler, et al. St andards Track [Page 31]

RFC 3010 NFS version 4 Protocol Decenber 2000

fh_expire_type 2 ui nt 32 READ Server uses this to
specify filehandle
expiration behavior to
the client. See the
section "Fil ehandl es"
for additional
descri ption.

change 3 ui nt 64 READ A val ue created by the
server that the client
can use to deternine
if file data,
directory contents or
attributes of the
obj ect have been
nodi fied. The server
may return the
object’s time_nodify
attribute for this
attribute s val ue but
only if the file
system obj ect can not
be updated nore
frequently than the
resol ution of
time_nodify.

si ze 4 ui nt 64 R'W The size of the object
in bytes.

I i nk_support 5 bool ean READ Does the object’'s file
system supports hard
links?

sym i nk_support 6 bool ean READ Does the object’'s file

syst em supports
synmbolic |inks?

nanmed_attr 7 bool ean READ Does this object have
named attributes?

fsid 8 fsid4 READ Uni que file system
identifier for the
file system hol di ng
this object. fsid
cont ai ns maj or and
n nor conponents each
of which are uint64.

Shepler, et al. St andards Track [Page 32]

RFC 3010

uni que_handl es

| ease_tine

rdattr_error

9

10

11

NFS version 4

bool ean

nfs_| eased

enum

5.5. Recommended Attributes - Definiti

Nanme

#

Data Type

Pr ot ocol

READ

READ

READ

ons

Access

Decenber 2000

Are two distinct

fil ehandl es guarant eed
to refer to two
different file system
obj ects?

Durati on of | eases at
server in seconds.

Error returned from

getattr during
readdir.

Descri ption

ACL

acl support

archi ve

cansettine

case_insensitive

case_preserving

Shepl er, et al.

12

13

14

15

16

17

nf sace4<>

ui nt 32

bool ean

bool ean

bool ean

bool ean

R'W

READ

R'W

READ

READ

READ

St andards Track

The access contr ol
list for the object.

I ndi cat es what types
of ACLs are supported
on the current file
system

Whet her or not this
file has been

archi ved since the
tinme of |ast
nodi fi cation
(deprecated in favor
of tinme_backup).

Is the server able to
change the times for
a file system object
as specified in a
SETATTR oper ati on?

Are filename
compari sons on this
file system case

i nsensitive?

Is fil enane case on

this file system
preserved?

[Page 33]

RFC 3010

chown_restricted

fil ehandl e

fileid

files_avail

files_free

files_total

Shepl er, et al.

18

19

20

21

22

23

NFS version 4 Protocol

bool ean

nfs4_fh

ui nt 64

ui nt 64

ui nt 64

ui nt 64

READ

READ

READ

READ

READ

READ

St andards Track

Decenber 2000

If TRUE, the server
will reject any
request to change

ei ther the owner or
t he group associ at ed
with a file if the
caller is not a
privileged user (for
exanple, "root" in
Uni X operating
environnents or in NT
t he "Take Omnership"
privil ege)

The fil ehandl e of
this object
(primarily for
readdir requests).

A nunber uni quel y
identifying the file
within the file
system

File slots avail able
to this user on the
file system
containing this
object - this should
be the snal |l est
relevant limt.

Free file slots on
the file system
containing this
object - this should
be the snal |l est
relevant limt.

Total file slots on
the file system
containing this

obj ect .

[Page 34]

RFC 3010

fs_locations

hi dden

honogeneous

maxfil esi ze

max| i nk

maxnane

maxr ead

maxwrite

Shepl er, et al.

24

25

26

27

28

29

30

31

NFS version 4 Protocol

fs_locations

bool ean

bool ean

ui nt 64

ui nt 32

ui nt 32

ui nt 64

ui nt 64

READ

R'W

READ

READ

READ

READ

READ

READ

St andards Track

Decenber 2000

Locations where this
file system may be

f ound. | f the server
returns NFS4ERR_MOVED
as an error, this
attri bute nust be
support ed.

Is file considered
hi dden with respect
to the WN32 API?

Whet her or not this
object’s file system
i s honpbgeneous, i.e.
are per file system
attri butes the sane
for all file systenis
obj ect s.

Maxi mum support ed
file size for the
file systemof this
obj ect .

Maxi mum nunber of
links for this
obj ect .

Maxi mum fil ename size
supported for this
obj ect .

Maxi mum read size
supported for this
obj ect .

Maxi mumwite size
supported for this
object. This

attri bute SHOULD be
supported if the file
is witable. Lack of
this attribute can
lead to the client

ei ther wasting

[Page 35]

RFC 3010

nm net ype

node

no_trunc

num i nks

owner

owner _group

quot a_avail _hard

quot a_avail _soft

quot a_used

rawdev

Shepl er, et al.

32

33

34

35

36

37

38

39

40

41

NFS version 4 Protocol

ut f 8<>

node4

bool ean

ui nt 32

ut f 8<>

ut f 8<>

ui nt 64

ui nt 64

ui nt 64

specdat a4

R'W

R'W

READ

READ

R'W

R'W

READ

READ

READ

READ

St andards Track

Decenber 2000

bandwi dt h or not
recei ving the best
per f or mance.

M ME body
type/ subtype of this
obj ect .

Uni x- styl e perm ssion
bits for this object
(deprecated in favor
of ACLSs)

If a nane | onger than
name_max i s used,

will an error be
returned or will the
nane be truncated?

Nunmber of hard |inks
to this object.

The string nanme of
the owner of this
obj ect .

The string nanme of
the group ownership
of this object.

For definition see
"Quota Attributes"
section bel ow.

For definition see
"Quota Attributes"
section bel ow.

For definition see
"Quota Attributes"
section bel ow.

Raw devi ce
identifier. Unix
devi ce maj or/ m nor
node i nformati on.

[Page 36]

RFC 3010

space_avai |

space_free

space_t ot al

space_used

system

ti me_access

ti me_access_set

ti me_backup

time_create

Shepl er, et al.

42

43

44

45

46

47

48

49

50

NFS version 4 Protocol

ui nt 64

ui nt 64

ui nt 64

ui nt 64

bool ean

nfsti ne4

settine4

nfsti ne4

nfsti ne4

READ

READ

READ

READ

R'W

READ

WRI TE

R'W

R'W

St andards Track

Decenber 2000

Di sk space in bytes
available to this
user on the file
syst em cont ai ni ng
this object - this
shoul d be the
snmal | est rel evant
limt.

Free di sk space in
bytes on the file
syst em cont ai ni ng
this object - this
shoul d be the
smal | est rel evant
[imt.

Total disk space in
bytes on the file
syst em cont ai ni ng
this object.

Nunber of file system
bytes allocated to
this object.

Is this file a system
file with respect to
the WN32 API ?

The tinme of |ast
access to the object.

Set the tinme of |ast
access to the object.
SETATTR use only.

The tinme of |ast
backup of the object.

The tinme of creation
of the object. This
attri bute does not
have any relation to
the traditional Unix
file attribute
"ctime" or "change
time".

[Page 37]

RFC 3010 NFS version 4 Protocol Decenber 2000

time_delta 51 nfstine4 READ Smal | est usef ul
server tinme
granularity.

ti me_met adat a 52 nfstine4 R'W The tinme of |ast
net a- dat a
nodi fi cation of the
obj ect .

time_nodify 53 nfstine4 READ The tinme of |ast
nodi fication to the
obj ect .

time_nodi fy_set 54 settinmed VRI TE Set the tinme of |ast

nmodi fication to the
object. SETATTR use
only.

5.6. Interpreting owner and owner _group

The recommended attributes "owner" and "owner_group" are represented
interns of a UTF-8 string. To avoid a representation that is tied
to a particular underlying inplenentation at the client or server,
the use of the UTF-8 string has been chosen. Note that section 6.1
of [RFC2624] provides additional rationale. It is expected that the
client and server will have their own | ocal representation of owner
and owner _group that is used for |ocal storage or presentation to the
end user. Therefore, it is expected that when these attributes are
transferred between the client and server that the |oca
representation is translated to a syntax of the form

"user @ns_domain". This will allowfor a client and server that do
not use the sane | ocal representation the ability to translate to a
comon syntax that can be interpreted by both.

The translation is not specified as part of the protocol. This

all ows various solutions to be enployed. For exanple, a |ocal
translation table nmay be consulted that maps between a nuneric id to
t he user @ns_domai n syntax. A nane service may al so be used to
acconplish the translation. The "dns_domai n" portion of the owner
string is neant to be a DNS domain nane. For exanple, user@etf.org.

In the case where there is no translation available to the client or
server, the attribute value nust be constructed without the "@.
Therefore, the absence of the @fromthe owner or owner_group
attribute signifies that no translation was avail able and the
receiver of the attribute should not place any special nmeaning with

Shepl er, et al. St andar ds Track [Page 38]

RFC 3010 NFS version 4 Protocol Decenber 2000

the attribute value. Even though the attribute val ue can not be
translated, it may still be useful. 1In the case of a client, the
attribute string may be used for |ocal display of ownership.

5.7. Character Case Attri butes

Wth respect to the case_insensitive and case_preserving attri butes,
each UCS-4 character (which UTF-8 encodes) has a "long descriptive
nane" [RFC1345] which may or may not included the word " CAPI TAL" or
"SMALL". The presence of SMALL or CAPI TAL allows an NFS server to

i mpl ement unamnbi guous and efficient table driven mappi ngs for case

i nsensitive conpari sons, and non-case-preserving storage. For
general character handling and internationalization issues, see the
section "Internationalization".

5.8. Quota Attributes

For the attributes related to file system quotas, the follow ng
definitions apply:

quot a_avail _soft
The val ue in bytes which represents the anpbunt of additiona
di sk space that can be allocated to this file or directory
before the user may reasonably be warned. It is understood
that this space may be consuned by allocations to other files
or directories though there is a rule as to which other files
or directories.

quot a_avai |l _hard
The val ue in bytes which represent the anount of additi onal
di sk space beyond the current allocation that can be all ocated
tothis file or directory before further allocations will be
refused. It is understood that this space may be consuned by
al locations to other files or directories.

quot a_used
The value in bytes which represent the amount of disc space
used by this file or directory and possi bly a nunber of other
simlar files or directories, where the set of "simlar" neets
at least the criterion that allocating space to any file or
directory in the set will reduce the "quota_avail _hard" of
every other file or directory in the set.

Note that there may be a number of distinct but overl apping
sets of files or directories for which a quota_used value is
mai ntained. E.g. "all files with a given owner", "all files
with a given group owner". etc.

Shepl er, et al. St andar ds Track [Page 39]

RFC 3010 NFS version 4 Protocol Decenber 2000

The server is at liberty to choose any of those sets but should
do so in a repeatable way. The rule may be configured per-
filesystemor nmay be "choose the set with the snallest quota".

5.9. Access Control Lists

The NFS ACL attribute is an array of access control entries (ACE).
There are various access control entry types. The server is able to
comuni cat e which ACE types are supported by returning the
appropriate value within the acl support attribute. The types of ACEs
are defined as follows:

Type Descri ption

ALLOW Explicitly grants the access defined in
acemask4 to the file or directory.

DENY Explicitly denies the access defined in
acemask4 to the file or directory.

AUDI T LOG (system dependent) any access
attenpt to a file or directory which
uses any of the access nethods specified
i n acenask4.

ALARM Generate a system ALARM (system
dependent) when any access attenpt is
made to a file or directory for the
access nethods specified in acenask4.

The NFS ACE attribute is defined as foll ows:

t ypedef uint32_t acet ype4;
t ypedef uint32_t acef | ag4;
t ypedef uint32_t acenask4;
struct nfsace4d {
acetype4 type;
acefl ag4 flag;
acenmask4 access_nask
ut f8string who;

b

To determine if an ACCESS or OPEN request succeeds each nfsace4 entry
is processed in order by the server. Only ACEs which have a "who"
that matches the requester are considered. Each ACE is processed
until all of the bits of the requester’s access have been ALLONED
Once a bit (see below) has been ALLOAED by an ACCESS ALLOWED ACE, it

Shepl er, et al. St andar ds Track [Page 40]

RFC 3010 NFS version 4 Protocol Decenber 2000

is no longer considered in the processing of later ACEs. If an
ACCESS _DENI ED ACE is encountered where the requester’s node still has
UNALLOWED bits in comon with the "access_nask"” of the ACE, the
request is denied.

The bitnmask constants used to represent the above definitions within
the acl support attribute are as foll ows:

const ACL4_SUPPORT_ALLOW ACL = 0x00000001
const ACL4_SUPPCORT_DENY_ACL = 0x00000002;
const ACL4_SUPPORT_AUDI T_ACL = 0x00000004;
const ACL4_SUPPORT_ALARM ACL = 0x00000008;

5.9.1. ACE type

The semantics of the "type" field follow the descriptions provided
above.

The bitnask constants used for the type field are as follows:

const ACE4_ACCESS ALLOWED ACE_TYPE = 0x00000000;
const ACE4_ACCESS_DENI ED _ACE_TYPE = 0x00000001;
const ACE4_SYSTEM AUDI T_ACE_TYPE = 0x00000002;
const ACE4_SYSTEM ALARM ACE_TYPE = 0x00000003;

5.9.2. ACE flag
The "flag" field contains values based on the follow ng descriptions.
ACE4_FI LE_| NHERI T_ACE

Can be placed on a directory and indicates that this ACE shoul d be
added to each new non-directory file created.

ACE4 Dl RECTORY_I NHERI T_ACE

Can be placed on a directory and indicates that this ACE should be
added to each new directory created.

ACE4_| NHERI T_ONLY_ACE

Can be placed on a directory but does not apply to the directory,
only to newy created files/directories as specified by the above two
fl ags.

ACE4_NO_PROPAGATE_| NHERI T_ACE

Shepler, et al. St andards Track [Page 41]

RFC 3010 NFS version 4 Protocol Decenber 2000

Can be placed on a directory. Nornmally when a new directory is
created and an ACE exists on the parent directory which is nmarked
ACL4_ DI RECTORY_I NHERI T_ACE, two ACEs are placed on the new directory.
One for the directory itself and one which is an inheritable ACE for
newy created directories. This flag tells the server to not place
an ACE on the newly created directory which is inheritable by
subdirectories of the created directory.

ACE4_SUCCESSFUL_ACCESS ACE_FLAG
ACL4_FAI LED ACCESS ACE_FLAG

Both indicate for AUDIT and ALARM which state to log the event. On
every ACCESS or OPEN call which occurs on a file or directory which
has an ACL that is of type ACE4_SYSTEM AUDI T_ACE_TYPE or
ACE4_SYSTEM ALARM ACE_TYPE, the attenpted access is conmpared to the
acedmask of these ACLs. If the access is a subset of acednmask and the
identifier match, an AUDIT trail or an ALARMis generated. By
default this happens regardl ess of the success or failure of the
ACCESS or OPEN cal | .

The flag ACE4_SUCCESSFUL_ACCESS ACE FLAG only produces the AUDI T or
ALARM i f the ACCESS or OPEN call is successful. The

ACE4_FAlI LED _ACCESS_ACE_FLAG causes the ALARM or AUDIT if the ACCESS
or OPEN call fails.

ACE4_| DENTI FI ER_GROUP

| ndi cates that the "who" refers to a GROUP as defi ned under Uni x.

The bitnask constants used for the flag field are as foll ows:

const ACE4_FI LE | NHERI T_ACE = 0x00000001;
const ACE4_DI RECTORY_I NHERI T_ACE = 0x00000002;
const ACE4_NO PROPAGATE_I NHERI T_ACE = 0x00000004;
const ACE4 | NHERI T_ONLY_ACE = 0x00000008;
const ACE4_SUCCESSFUL_ACCESS ACE_FLAG = 0x00000010;
const ACE4_FAI LED ACCESS ACE FLAG = 0x00000020;
const ACE4_| DENTI FI ER_GROUP = 0x00000040;

Shepler, et al. St andards Track [Page 42]

RFC 3010

.3. ACE Access Mask

The access_nask

NFS version 4 Protocol

Decenber

2000

field contains val ues based on the follow ng:

Access Descri ption

READ_DATA Perm ssion to read the data of the file

LI ST_DI RECTORY Perm ssion to list the contents of a
directory

VRl TE_DATA Perm ssion to nodify the file's data

ADD _FI LE Perm ssion to add a newfile to a
directory

APPEND DATA Permi ssion to append data to a file

ADD_SUBDI RECTORY Perm ssion to create a subdirectory to a
directory

READ _NAMED ATTRS Perm ssion to read the nanmed attributes
of afile

VRl TE_NAMED_ATTRS Perm ssion to wite the nanmed attributes
of afile

EXECUTE Perm ssion to execute a file

DELETE_CHI LD Perm ssion to delete a file or directory
within a directory

READ_ATTRI BUTES The ability to read basic attributes
(non-acls) of a file

VRl TE_ATTRI BUTES Perm ssion to change basic attributes

DELETE
READ_ACL

WRI TE_ACL
WRI TE_OMNER
SYNCHRONI ZE

The bitmask constants used for

(non-acl s)

Per mi ssi on
Per mi ssi on
Per mi ssi on
Per mi ssi on
Per mi ssi on

of afile

Delete the file
Read the ACL
Wite the ACL
change the owner

to
to
to
to
to

access file locally at the

server with synchronous reads and wites

const
const
const
const
const
const
const
const
const
const
const
const

Shepl er,

ACE4_READ DATA
ACE4_LI ST_DI RECTORY
ACE4_\\RI TE_DATA
ACE4_ADD FI LE
ACE4_APPEND DATA
ACE4_ADD_SUBDI RECTORY
ACE4_READ NAVED ATTRS
ACE4_WRI TE_NAVED_ATTRS
ACE4_EXECUTE
ACE4_DELETE_CHI LD
ACE4_READ ATTRI BUTES
ACE4_\\RI TE_ATTRI BUTES

et al.

0x00000001;
0x00000001;
0x00000002;
0x00000002;
0x00000004;
0x00000004;
0x00000008;
0x00000010;
0x00000020;
0x00000040;
0x00000080;
0x00000100;

St andards Track

the access nmask field are as foll ows:

[Page 43]

RFC 3010 NFS version 4 Protocol Decenber 2000

const ACE4_DELETE = 0x00010000;
const ACE4_READ _ACL = 0x00020000;
const ACE4_WRI TE_ACL = 0x00040000;
const ACE4_WRI TE_OMER = 0x00080000
const ACE4_SYNCHRON ZE = 0x00100000;

5.9.4. ACE who

There are several special identifiers ("who") which need to be
under st ood universally. Some of these identifiers cannot be
under st ood when an NFS client accesses the server, but have neani ng
when a | ocal process accesses the file. The ability to display and
nodi fy these permi ssions is permtted over NFS.

Who Descri ption

" OANER! The owner of the file.

" GROUP" The group associated with the file.

" EVERYONE" The worl d.

" | NTERACTI VE" Accessed froman interactive term nal

" NETWORK" Accessed via the network.

" DI ALUP" Accessed as a dialup user to the server

" BATCH" Accessed froma batch job.

" ANONYMOUS" Accessed wit hout any aut hentication

" AUTHENTI CATED" Any aut henti cated user (opposite of
ANONYMOUS)

" SERVI CE" Access from a system service.

To avoid conflict, these special identifiers are distinguish by an
appended "@ and should appear in the form"xxxx@ (note: no domain
nane after the "@). For exanple: ANONYMOUS@

6. File System Mgration and Replication

Wth the use of the reconmended attribute "fs_|ocations", the NFS
version 4 server has a nmethod of providing file systemmgration or
replication services. For the purposes of migration and replication,
afile systemw ||l be defined as all files that share a given fsid
(both najor and m nor val ues are the sane).

The fs_locations attribute provides a list of file system | ocations.
These | ocations are specified by providing the server nane (either
DNS domain or | P address) and the path name representing the root of
the file system Depending on the type of service being provided,
the list will provide a new |l ocation or a set of alternate |ocations
for the file system The client will use this information to
redirect its requests to the new server.

Shepl er, et al. St andar ds Track [Page 44]

RFC 3010 NFS version 4 Protocol Decenber 2000

6.1. Replication

It is expected that file systemreplication will be used in the case
of read-only data. Typically, the file systemw || be replicated on
two or nore servers. The fs_locations attribute will provide the

list of these locations to the client. On first access of the file
system the client should obtain the value of the fs_|ocations
attribute. If, in the future, the client finds the server
unresponsive, the client nay attenpt to use another server specified
by fs_locations.

If applicable, the client nust take the appropriate steps to recover
valid filehandles fromthe new server. This is described in nore
detail in the follow ng sections.

6.2. Mgration

File systemmgration is used to nove a file systemfrom one server
to another. Mgration is typically used for a file systemthat is
writable and has a single copy. The expected use of mgration is for
| oad bal anci ng or general resource reallocation. The protocol does
not specify how the file systemw Il be noved between servers. This
server-to-server transfer mechanismis left to the server

i npl enentor. However, the nethod used to communi cate the mgration
event between client and server is specified here.

Once the servers participating in the migration have conpleted the
nove of the file system the error NFSAERR MOVED wi || be returned for
subsequent requests received by the original server. The

NFSAERR MOVED error is returned for all operations except GETATTR
Upon receiving the NFS4ERR MOVED error, the client will obtain the
value of the fs_ locations attribute. The client will then use the
contents of the attribute to redirect its requests to the specified
server. To facilitate the use of CGETATTR, operations such as PUTFH
nmust al so be accepted by the server for the mgrated file system s
filehandles. Note that if the server returns NFS4ERR _MOVED, the
server MUST support the fs_|ocations attribute.

If the client requests nore attributes than just fs_|ocations, the
server may return fs_locations only. This is to be expected since
the server has migrated the file systemand may not have a method of
obtai ning additional attribute data.

The server inplenmentor needs to be careful in developing a migration
solution. The server nust consider all of the state information
clients may have outstanding at the server. This includes but is not
limted to | ocking/share state, delegation state, and asynchronous

Shepl er, et al. St andar ds Track [Page 45]

RFC 3010 NFS version 4 Protocol Decenber 2000

file wites which are represented by WRITE and COWM T verifiers. The
server should strive to minimze the inpact on its clients during and
after the nmigration process.

6.3. Interpretation of the fs_locations Attribute
The fs_location attribute is structured in the follow ng way:

struct fs_location {

ut f8string server <>;
pat hnane4 r oot pat h;
1
struct fs_locations {
pat hnane4 fs_root;
fs_location | ocati ons<>
1

The fs_location struct is used to represent the location of a file
system by providing a server nane and the path to the root of the
file system For a nmulti-homed server or a set of servers that use
the sanme rootpath, an array of server names may be provided. An
entry in the server array is an UTF8 string and represents one of a
traditional DNS host nane, |Pv4 address, or |IPv6 address. It is not
a requirenent that all servers that share the sane rootpath be listed
in one fs_location struct. The array of server nanes is provided for
conveni ence. Servers that share the sane rootpath may al so be |isted
in separate fs_location entries in the fs_|ocations attribute.

The fs_locations struct and attribute then contains an array of

| ocations. Since the nanme space of each server may be constructed
differently, the "fs_root" field is provided. The path represented
by fs_root represents the location of the file systemin the server’s
nane space. Therefore, the fs_root path is only associated with the
server fromwhich the fs_|ocations attribute was obtai ned. The
fs_root path is neant to aid the client in locating the file system
at the various servers |isted.

As an exanple, there is areplicated file systemlocated at two
servers (servA and servB). At servAthe file systemis |ocated at
path "/a/b/c". At servB the file systemis |located at path "/x/y/z"
In this exanple the client accesses the file systemfirst at servA
with a multi-conponent |ookup path of "/a/b/c/d". Since the client
used a multi-conmponent |ookup to obtain the filehandle at "/al/b/c/d"
it is unaware that the file systenmis root is located in servA' s name
space at "/al/b/c". Wen the client switches to servB, it will need
to determine that the directory it first referenced at servA is now
represented by the path "/x/y/z/d" on servB. To facilitate this, the

Shepl er, et al. St andar ds Track [Page 46]

RFC 3010 NFS version 4 Protocol Decenber 2000

fs locations attribute provided by servA would have a fs_root val ue
of "/alb/c" and two entries in fs_location. One entry in fs_|ocation
will be for itself (servA) and the other will be for servB with a
path of "/x/yl/z". Wth this information, the client is able to
substitute "/x/y/z" for the "/a/b/c" at the beginning of its access
path and construct "/x/y/z/d" to use for the new server.

6.4. Filehandl e Recovery for Mgration or Replication

Fil ehandl es for file systens that are replicated or migrated
general |y have the sanme semantics as for file systens that are not
replicated or mgrated. For exanple, if a file system has persistent
filehandles and it is mgrated to another server, the filehandle
values for the file systemw Il be valid at the new server

For volatile filehandles, the servers involved |ikely do not have a
mechanismto transfer filehandl e format and content between

t hemsel ves. Therefore, a server may have difficulty in determning
if a volatile filehandle froman old server should return an error of
NFS4ERR _FHEXPI RED. Therefore, the client is informed, with the use
of the fh_expire_type attribute, whether volatile filehandl es will
expire at the nmigration or replication event. |f the bit

FH4A_ VOL_M GRATION is set in the fh_expire_type attribute, the client
must treat the volatile filehandle as if the server had returned the
NFS4AERR _FHEXPI RED error. At the migration or replication event in
the presence of the FH4_VOL_M GRATION bit, the client will not
present the original or old volatile file handle to the new server
The client will start its conmunication with the new server by
recovering its filehandles using the saved file names.

7. NFS Server Nanme Space
7.1. Server Exports

On a UNI X server the name space describes all the files reachabl e by
pat hnames under the root directory or "/". On a Wndows NT server
the name space constitutes all the files on disks named by mapped
disk letters. NFS server administrators rarely nake the entire
server’s file system name space available to NFS clients. Mre often
portions of the name space are nade available via an "export"
feature. In previous versions of the NFS protocol, the root
filehandl e for each export is obtained through the MOUNT protocol;
the client sends a string that identifies the export of nane space
and the server returns the root filehandle for it. The MOUNT
protocol supports an EXPORTS procedure that will enunerate the
server’s exports.

Shepl er, et al. St andar ds Track [Page 47]

RFC 3010 NFS version 4 Protocol Decenber 2000

7.2. Browsing Exports

The NFS version 4 protocol provides a root filehandle that clients
can use to obtain filehandl es for these exports via a nulti-conmponent
LOOKUP. A conmon user experience is to use a graphical user
interface (perhaps a file "Open" dialog window to find a file via
progressive browsing through a directory tree. The client nust be
able to nove fromone export to another export via single-conponent,
progressi ve LOOKUP operati ons.

This style of browsing is not well supported by the NFS version 2 and
3 protocols. The client expects all LOOKUP operations to remain
within a single server file system For exanple, the device
attribute will not change. This prevents a client fromtaking nane
space paths that span exports.

An aut onpunter on the client can obtain a snapshot of the server’s
nane space using the EXPORTS procedure of the MOUNT protocol. If it
under st ands the server’s pathnane syntax, it can create an imge of
the server’s nane space on the client. The parts of the name space
that are not exported by the server are filled in with a "pseudo file
systeni that allows the user to browse fromone nounted file system
to another. There is a drawback to this representation of the
server’s name space on the client: it is static. |If the server
admi ni strator adds a new export the client will be unaware of it.

7.3. Server Pseudo File System

NFS version 4 servers avoid this name space inconsistency by
presenting all the exports within the framework of a single server
nane space. An NFS version 4 client uses LOOKUP and READDI R
operations to browse seam essly fromone export to another. Portions
of the server nane space that are not exported are bridged via a
"pseudo file systeni that provides a view of exported directories
only. A pseudo file systemhas a unique fsid and behaves like a
normal, read only file system

Based on the construction of the server’s nanme space, it is possible
that nultiple pseudo file systens may exist. For exanple,

/a pseudo file system
/alb real file system
/alblc pseudo file system

/alblc/d real file system

Each of the pseudo file systens are consi der separate entities and
therefore will have a unique fsid.

Shepl er, et al. St andar ds Track [Page 48]

RFC 3010 NFS version 4 Protocol Decenber 2000

7.4. Miltiple Roots

The DOS and W ndows operating environments are sonetines described as
having "nultiple roots". File systens are commonly represented as
disk letters. MacCOS represents file systens as top |evel nanes. NFS
version 4 servers for these platforns can construct a pseudo file
system above these root names so that disk letters or volunme names
are sinply directory nanmes in the pseudo root.

7.5. Filehandle Volatility

The nature of the server’s pseudo file systemis that it is a |ogical
representation of file systenm(s) available fromthe server

Therefore, the pseudo file systemis nost likely constructed

dynam cally when the server is first instantiated. It is expected
that the pseudo file system may not have an on di sk counterpart from
whi ch persistent filehandl es could be constructed. Even though it is
preferable that the server provide persistent filehandles for the
pseudo file system the NFS client should expect that pseudo file
systemfilehandl es are volatile. This can be confirmed by checking
the associated "fh_expire_type" attribute for those filehandles in
question. |If the filehandles are volatile, the NFS client must be
prepared to recover a filehandl e value (e.g. with a nmulti-conmponent
LOCKUP) when receiving an error of NFSAERR_FHEXPI RED.

7.6. Exported Root

If the server’s root file systemis exported, one might concl ude that
a pseudo-file systemis not needed. This would be wong. Assune the
followng file systens on a server

/ di skl (exported)
/a di sk2 (not exported)
lalb di sk3 (exported)

Because disk2 is not exported, disk3 cannot be reached with sinple
LOOKUPs. The server nust bridge the gap with a pseudo-file system

7.7. Mount Point Crossing
The server file system environnent nay be constructed in such a way
that one file systemcontains a directory which is 'covered or
mount ed upon by a second file system For exanple:

lalb (file system1)
/alblcld (file system 2)

Shepl er, et al. St andar ds Track [Page 49]

RFC 3010 NFS version 4 Protocol Decenber 2000

The pseudo file systemfor this server may be constructed to | ook

like:

/ (pl ace hol der/ not exported)

/alb (file system1)

/alblcld (file system 2)
It is the server’s responsibility to present the pseudo file system
that is conplete to the client. |If the client sends a | ookup request
for the path "/a/b/c/d", the server’s response is the fil ehandl e of
the file system™"/a/b/c/d". |In previous versions of the NFS

protocol, the server would respond with the directory "/a/b/c/d"
within the file system"/a/b".

The NFS client will be able to determne if it crosses a server npunt
point by a change in the value of the "fsid" attribute.

7.8. Security Policy and Name Space Presentation

The application of the server’'s security policy needs to be carefully
consi dered by the inplementor. One may choose to linit the
viewability of portions of the pseudo file system based on the
server’s perception of the client’s ability to authenticate itself
properly. However, with the support of nultiple security mechani sns
and the ability to negotiate the appropriate use of these nechani smns,
the server is unable to properly determine if a client will be able
to authenticate itself. |If, based on its policies, the server
chooses to limt the contents of the pseudo file system the server
may effectively hide file systens froma client that may ot herw se
have | egiti mate access.

8. File Locking and Share Reservations
Integrating |locking into the NFS protocol necessarily causes it to be
state-full. Wth the inclusion of "share" file | ocks the protoco
becones substantially nore dependent on state than the traditiona
conbi nati on of NFS and NLM [XNFS]. There are three conponents to
maki ng this state manageabl e:
o Clear division between client and server

O Ability to reliably detect inconsistency in state between client
and server

o Sinple and robust recovery nechani sns

Shepl er, et al. St andar ds Track [Page 50]

RFC 3010 NFS version 4 Protocol Decenber 2000

In this npdel, the server owns the state information. The client
comuni cates its view of this state to the server as needed. The
client is also able to detect inconsistent state before nodifying a
file.

To support Wn32 "share" locks it is necessary to atom cally OPEN or
CREATE files. Having a separate share/unshare operation woul d not
allow correct inplenentation of the Wn32 OpenFile API. In order to
correctly inplenment share semantics, the previous NFS protoco
mechani sns used when a file is opened or created (LOOKUP, CREATE
ACCESS) need to be replaced. The NFS version 4 protocol has an OPEN
operation that subsunes the functionality of LOOKUP, CREATE, and
ACCESS. However, because nany operations require a filehandle, the
traditional LOOKUP is preserved to map a file name to filehandle

wi t hout establishing state on the server. The policy of granting
access or nodifying files is managed by the server based on the
client’s state. These nmechanisns can inplenment policy ranging from
advisory only locking to full mandatory | ocki ng.

8.1. Locking

It is assunmed that manipulating a lock is rare when conpared to READ
and WRI TE operations. It is also assunmed that crashes and network
partitions are relatively rare. Therefore it is inportant that the
READ and WRI TE operations have a |ightwei ght nmechanismto indicate if
they possess a held I ock. A lock request contains the heavywei ght
information required to establish a | ock and uni quely define the | ock
owner .

The followi ng sections describe the transition fromthe heavy wei ght
information to the eventual stateid used for nobst client and server
| ocking and | ease interactions.

8.1.1. dient ID
For each LOCK request, the client nust identify itself to the server
This is done in such a way as to allow for correct |ock
identification and crash recovery. Cient identification is
acconplished with two val ues.
o Awverifier that is used to detect client reboots.
o A variable | ength opaque array to uniquely define a client.

For an operating systemthis may be a fully qualified host nane

or | P address. For a user level NFS client it nmay additionally
contain a process id or other unique sequence.

Shepler, et al. St andards Track [Page 51]

RFC 3010 NFS version 4 Protocol Decenber 2000

The data structure for the Cient ID would then appear as:

struct nfs_client_id {
opaque verifier[4];
opaque id<>;

}

It is possible through the mis-configuration of a client or the
exi stence of a rogue client that two clients end up using the sane
nfs client_id. This situation is avoided by "negotiating" the
nfs_client_id between client and server with the use of the

SETCLI ENTI D and SETCLI ENTI D_CONFI RM operations. The foll ow ng
describes the two scenarios of negotiation.

1 dient has never connected to the server

In this case the client generates an nfs_client_id and unl ess
another client has the sane nfs_client _id.id field, the server
accepts the request. The server also records the principal (or
principal to uid mapping) fromthe credential in the RPC request
that contains the nfs_client_id negotiation request (SETCLIENTID
oper ation).

Two clients might still use the same nfs client_id.id due to
per haps configuration error. For exanple, a High Availability
configuration where the nfs_client_id.id is derived fromthe

et hernet controller address and both systens have the sane
address. In this case, the result is a switched union that
returns, in addition to NFSAERR _CLID I NUSE, the network address
(the rpchind netid and uni versal address) of the client that is
usi ng the id.

2 Cient is re-connecting to the server after a client reboot

In this case, the client still generates an nfs_client_id but the
nfs_client_id.id field will be the sane as the nfs_client_id.id
generated prior to reboot. |If the server finds that the

principal/uid is equal to the previously "registered"
nfs_client_id.id, then | ocks associated with the old nfs_client_id
are immediately released. If the principal/uid is not equal, then
this is a rogue client and the request is returned in error. For
nore di scussion of crash recovery senmantics, see the section on
"Crash Recovery".

It is possible for a retransni ssion of request to be received by
the server after the server has acted upon and responded to the
original client request. Therefore to mtigate effects of the
retransm ssion of the SETCLI ENTID operation, the client and server

Shepler, et al. St andards Track [Page 52]

RFC 3010 NFS version 4 Protocol Decenber 2000

use a confirmation step. The server returns a confirnation
verifier that the client then sends to the server in the
SETCLI ENTI D_CONFI RM operati on. Once the server receives the
confirmation fromthe client, the | ocking state for the client is
rel eased.

In both cases, upon success, NFS4 K is returned. To help reduce the
anount of data transferred on OPEN and LOCK, the server will also
return a unique 64-bit clientid value that is a shorthand reference
to the nfs_client_id values presented by the client. Fromthis point
forward, the client will use the clientid to refer to itself.

The clientid assigned by the server should be chosen so that it wll
not conflict with a clientid previously assigned by the server. This
appli es across server restarts or reboots. Wen a clientid is
presented to a server and that clientid is not recognized, as would
happen after a server reboot, the server will reject the request with
the error NFS4AERR STALE CLIENTID. When this happens, the client nust
obtain a new clientid by use of the SETCLI ENTI D operation and then
proceed to any other necessary recovery for the server reboot case
(See the section "Server Failure and Recovery").

The client nust also enploy the SETCLI ENTI D operati on when it
receives a NFS4ERR _STALE STATEID error using a stateid derived from
its current clientid, since this also indicates a server reboot which
has invalidated the existing clientid (see the next section

"nfs_l ockowner and stateid Definition" for details).

8.1.2. Server Release of dientid
If the server determnes that the client holds no associated state

for its clientid, the server may choose to release the clientid. The
server may make this choice for an inactive client so that resources

are not consunmed by those internittently active clients. |If the
client contacts the server after this release, the server nust ensure
the client receives the appropriate error so that it will use the

SETCLI ENTI DY SETCLI ENTI D_CONFI RM sequence to establish a new identity.
It should be clear that the server nmust be very hesitant to rel ease a
clientid since the resulting work on the client to recover from such
an event will be the same burden as if the server had failed and
restarted. Typically a server would not release a clientid unless
there had been no activity fromthat client for many m nutes.

Shepl er, et al. St andar ds Track [Page 53]

RFC 3010 NFS version 4 Protocol Decenber 2000

8.1.3. nfs_lockowner and stateid Definition

When requesting a lock, the client nust present to the server the
clientid and an identifier for the owner of the requested | ock.
These two fields are referred to as the nfs_|l ockowner and the
definition of those fields are:

o Aclientid returned by the server as part of the client’s use of
t he SETCLI ENTI D operati on.

o A variable I ength opaque array used to uniquely define the owner
of a lock nanaged by the client.

This nmay be a thread id, process id, or other unique val ue.

When the server grants the lock, it responds with a unique 64-bit
stateid. The stateid is used as a shorthand reference to the
nfs_| ockowner, since the server will be maintaining the
correspondence between them

The server is free to formthe stateid in any manner that it chooses
as long as it is able to recognize invalid and out-of-date stateids.
This requirenment includes those stateids generated by earlier

i nstances of the server. Fromthis, the client can be properly
notified of a server restart. This notification will occur when the
client presents a stateid to the server froma previous
instantiation.

The server nust be able to distinguish the foll owing situations and
return the error as specified:

0 The stateid was generated by an earlier server instance (i.e.
before a server reboot). The error NFS4ERR_STALE_STATEI D shoul d
be returned.

0 The stateid was generated by the current server instance but the
stateid no | onger designates the current |ocking state for the
| ockowner-file pair in question (i.e. one or nore |ocking
operations has occurred). The error NFS4AERR OLD_STATEI D shoul d be
ret urned.

This error condition will only occur when the client issues a

| ocki ng request which changes a stateid while an I/ O request that
uses that stateid is outstanding.

Shepl er, et al. St andar ds Track [Page 54]

RFC 3010 NFS version 4 Protocol Decenber 2000

0 The stateid was generated by the current server instance but the
stateid does not desighate a | ocking state for any active
| ockowner-file pair. The error NFSAERR _BAD STATEI D shoul d be

r et ur ned.

This error condition will occur when there has been a logic error
on the part of the client or server. This should not happen

One nechani smthat nmay be used to satisfy these requirenments is for
the server to divide stateids into three fields:

o A server verifier which uniquely designates a particul ar server
instantiation.

0 An index into a table of |ocking-state structures.

0 A sequence value which is incremented for each stateid that is
associated with the sane index into the | ocking-state table.

By matching the incomng stateid and its field values with the state
held at the server, the server is able to easily determne if a

stateid is valid for its current instantiation and state. |f the
stateid is not valid, the appropriate error can be supplied to the
client.

8.1.4. Use of the stateid

Al'l READ and WRI TE operations contain a stateid. If the

nfs_| ockowner perforns a READ or WRITE on a range of bytes within a

| ocked range, the stateid (previously returned by the server) nust be
used to indicate that the appropriate | ock (record or share) is held.
If no state is established by the client, either record | ock or share
| ock, a stateid of all bits O is used. If no conflicting |ocks are
held on the file, the server may service the READ or WRI TE operation
If a conflict with an explicit |lock occurs, an error is returned for
t he operation (NFS4ERR LOCKED). This allows "mandatory | ocking" to be
i npl enent ed.

A stateid of all bits 1 (one) allows READ operations to bypass record
| ocki ng checks at the server. However, WRITE operations with stateid
with bits all 1 (one) do not bypass record | ocking checks. File

| ocki ng checks are handl ed by the OPEN operation (see the section
"OPEN CLOSE Operations").

An explicit lock may not be granted while a READ or WRI TE operation
with conflicting inplicit |locking is being perforned.

Shepl er, et al. St andar ds Track [Page 55]

RFC 3010 NFS version 4 Protocol Decenber 2000

8.

8.

1

1

5. Sequenci ng of Lock Requests

Locking is different than nost NFS operations as it requires "at-
nost - one" senmantics that are not provided by ONCRPC. ONCRPC over a
reliable transport is not sufficient because a sequence of | ocking
requests may span nultiple TCP connections. |In the face of

retransm ssion or reordering, |ock or unlock requests nmust have a
wel | defined and consi stent behavior. To acconplish this, each |ock
request contains a sequence nunber that is a consecutively increasing
integer. Different nfs_| ockowners have different sequences. The
server maintains the |ast sequence nunber (L) received and the
response that was returned.

Note that for requests that contain a sequence nunber, for each
nfs_| ockowner, there should be no nore than one outstandi ng request.

If a request with a previous sequence nunber (r < L) is received, it
is rejected with the return of error NFS4ERR BAD SEQ D. G ven a
properly-functioning client, the response to (r) nust have been
received before the last request (L) was sent. |If a duplicate of

| ast request (r == L) is received, the stored response is returned.

If a request beyond the next sequence (r ==L + 2) is received, it is
rejected with the return of error NFS4ERR BAD SEQ D. Sequence
history is reinitialized whenever the client verifier changes.

Since the sequence nunber is represented with an unsigned 32-bit
integer, the arithmetic involved with the sequence nunber is nod
27 32.

It is critical the server naintain the | ast response sent to the
client to provide a nore reliable cache of duplicate non-idenpotent
requests than that of the traditional cache described in [Juszczak].
The traditional duplicate request cache uses a | east recently used
al gorithmfor renoving unneeded requests. However, the |ast |ock
request and response on a given nfs_| ockowner nust be cached as | ong
as the lock state exists on the server

6. Recovery from Repl ayed Requests

As descri bed above, the sequence nunber is per nfs_|l ockowner. As
long as the server maintains the | ast sequence nunber received and
follows the nethods described above, there are no risks of a
Byzantine router re-sending old requests. The server need only
mai ntai n the nfs_| ockowner, sequence nunber state as long as there
are open files or closed files with | ocks outstandi ng.

Shepl er, et al. St andar ds Track [Page 56]

RFC 3010 NFS version 4 Protocol Decenber 2000

LOCK, LOCKU, OPEN, OPEN_DOANGRADE, and CLOSE each contain a sequence
nunber and therefore the risk of the replay of these operations
resulting in undesired effects is non-existent while the server

mai ntai ns the nfs_| ockowner state.

8.1.7. Releasing nfs_| ockowner State

When a particul ar nfs_|l ockowner no | onger holds open or file |ocking
state at the server, the server may choose to rel ease the sequence
nunber state associated with the nfs_| ockowner. The server may nake
this choice based on | ease expiration, for the reclamation of server
menory, or other inplenmentation specific details. |In any event, the
server is able to do this safely only when the nfs_| ockowner no
longer is being utilized by the client. The server may choose to
hol d the nfs_| ockowner state in the event that retransmtted requests
are received. However, the period to hold this state is

i mpl enentati on specific.

In the case that a LOCK, LOCKU, OPEN DOANGRADE, or CLCSE is
retransmitted after the server has previously rel eased the

nfs_| ockowner state, the server will find that the nfs_|l ockowner has
no files open and an error will be returned to the client. [If the
nfs_| ockowner does have a file open, the stateid will not match and
again an error is returned to the client.

In the case that an OPEN is retransmitted and the nfs_|l ockowner is
being used for the first tinme or the nfs_|l ockowner state has been
previously rel eased by the server, the use of the OPEN_CONFI RM
operation will prevent incorrect behavior. Wen the server observes
the use of the nfs_lockowner for the first tinme, it will direct the
client to performthe OPEN_CONFIRM for the corresponding OPEN. This
sequence establishes the use of an nfs_| ockowner and associ at ed
sequence nunber. See the section "OPEN_CONFIRM - Confirm Qpen" for
further details.

8.2. Lock Ranges

The protocol allows a | ock owner to request a | ock with one byte
range and then either upgrade or unlock a sub-range of the initial

lock. It is expected that this will be an uncommobn type of request.
In any case, servers or server file systens may not be able to
support sub-range |ock semantics. In the event that a server

receives a |locking request that represents a sub-range of current

| ocking state for the | ock owner, the server is allowed to return the
error NFSA4ERR LOCK RANGE to signify that it does not support sub-
range | ock operations. Therefore, the client should be prepared to
receive this error and, if appropriate, report the error to the
requesting application.

Shepl er, et al. St andar ds Track [Page 57]

RFC 3010 NFS version 4 Protocol Decenber 2000

The client is discouraged from conbining multiple independent | ocking
ranges that happen to be adjacent into a single request since the
server may not support sub-range requests and for reasons related to
the recovery of file locking state in the event of server failure.

As discussed in the section "Server Failure and Recovery" bel ow, the
server may enploy certain optimzations during recovery that work
effectively only when the client’s behavior during |ock recovery is
simlar to the client’s |ocking behavior prior to server failure.

8.3. Blocking Locks

Sone clients require the support of blocking |Iocks. The NFS version
4 protocol nust not rely on a callback nechanismand therefore is
unable to notify a client when a previously denied | ock has been
granted. dients have no choice but to continually poll for the

Il ock. This presents a fairness problem Two new | ock types are
added, READW and WRI TEW and are used to indicate to the server that
the client is requesting a blocking lock. The server should maintain
an ordered list of pending blocking | ocks. When the conflicting |ock
is released, the server may wait the | ease period for the first
waiting client to re-request the lock. After the |ease period
expires the next waiting client request is allowed the lock. dients
are required to poll at an interval sufficiently snmall that it is
likely to acquire the lock in a tinmely manner. The server is not
required to maintain a |ist of pending blocked | ocks as it is used to
i ncrease fairness and not correct operation. Because of the
unordered nature of crash recovery, storing of lock state to stable
storage woul d be required to guarantee ordered granting of bl ocking

| ocks.

Servers nmay also note the |lock types and delay returning denial of
the request to allow extra tinme for a conflicting |lock to be

rel eased, allowi ng a successful return. In this way, clients can
avoi d the burden of needlessly frequent polling for blocking |ocks.
The server should take care in the length of delay in the event the
client retransnits the request.

8.4. Lease Renewal

The purpose of a lease is to allow a server to renpve stal e | ocks
that are held by a client that has crashed or is otherw se
unreachable. It is not a mechani smfor cache consistency and | ease
renewal s may not be denied if the | ease interval has not expired.

The followi ng events cause inplicit renewal of all of the |eases for

a given client (i.e. all those sharing a given clientid). Each of
these is a positive indication that the client is still active and

Shepl er, et al. St andar ds Track [Page 58]

RFC 3010 NFS version 4 Protocol Decenber 2000

that the associated state held at the server, for the client, is
still valid.

o An OPEN with a valid clientid.

0 Any operation made with a valid stateid (CLOSE, DELEGRETURN, LOCK,
LOCKU, OPEN, OPEN CONFIRM READ, RENEW SETATTR, WRITE). This
does not include the special stateids of all bits 0 or all bits 1.

Note that if the client had restarted or rebooted, the client
woul d not be naking these requests w thout issuing the

SETCLI ENTI D operation. The use of the SETCLI ENTI D operation
(possibly with the addition of the optional SETCLIENTI D_CONFI RM
operation) notifies the server to drop the |ocking state
associated with the client.

If the server has rebooted, the stateids (NFS4AERR _STALE STATEI D
error) or the clientid (NFS4ERR_STALE CLIENTID error) wll not
be valid hence preventing spurious renewals.

Thi s approach allows for | ow overhead | ease renewal which scal es
well. In the typical case no extra RPC calls are required for |ease
renewal and in the worst case one RPCis required every | ease period
(i.e. a RENEWoperation). The nunber of |ocks held by the client is
not a factor since all state for the client is involved with the

| ease renewal action.

Since all operations that create a new | ease al so renew exi sting

| eases, the server nmust maintain a conmon | ease expiration tinme for
all valid |leases for a given client. This |ease tine can then be
easily updated upon inplicit |ease renewal actions.

8.5. Crash Recovery

The inportant requirenment in crash recovery is that both the client
and the server know when the other has failed. Additionally, it is
required that a client sees a consistent view of data across server
restarts or reboots. Al READ and WRI TE operations that may have
been queued within the client or network buffers nmust wait until the
client has successfully recovered the | ocks protecting the READ and
VWRI TE operati ons.

8.5.1. dient Failure and Recovery
In the event that a client fails, the server nay recover the client’'s
| ocks when the associated | eases have expired. Conflicting |ocks

fromanother client may only be granted after this | ease expiration.
If the client is able to restart or reinitialize within the | ease

Shepl er, et al. St andar ds Track [Page 59]

RFC 3010 NFS version 4 Protocol Decenber 2000

period the client may be forced to wait the remainder of the |ease
peri od before obtaining new | ocks.

To nmininize client delay upon restart, |ock requests are associ ated
with an instance of the client by a client supplied verifier. This
verifier is part of the initial SETCLIENTID call nade by the client.
The server returns a clientid as a result of the SETCLIENTID
operation. The client then confirnms the use of the verifier with
SETCLI ENTI D CONFIRM The clientid in conbination with an opaque
owner field is then used by the client to identify the | ock owner for
OPEN. This chain of associations is then used to identify all Iocks
for a particular client.

Since the verifier will be changed by the client upon each
initialization, the server can conpare a new verifier to the verifier
associated with currently held | ocks and determnine that they do not
match. This signifies the client’s new instantiation and subsequent
| oss of locking state. As a result, the server is free to rel ease
all locks held which are associated with the old clientid which was
derived fromthe old verifier.

For secure environnments, a change in the verifier nmust only cause the
rel ease of |ocks associated with the authenticated requester. This
is required to prevent a rogue entity fromfreeing otherwi se valid

| ocks.

Note that the verifier nust have the sanme uni queness properties of
the verifier for the COM T operation

8.5.2. Server Failure and Recovery

If the server | oses locking state (usually as a result of a restart
or reboot), it nmust allow clients tinme to discover this fact and re-
establish the lost |ocking state. The client nust be able to re-
establish the I ocking state wi thout having the server deny valid
requests because the server has granted conflicting access to another
client. Likewise, if there is the possibility that clients have not
yet re-established their locking state for a file, the server nust

di sal | ow READ and WRI TE operations for that file. The duration of
this recovery period is equal to the duration of the | ease period.

A client can determ ne that server failure (and thus |oss of | ocking
state) has occurred, when it receives one of two errors. The
NFSAERR _STALE STATEID error indicates a stateid invalidated by a
reboot or restart. The NFS4ERR_STALE CLIENTID error indicates a
clientid invalidated by reboot or restart. Wen either of these are
received, the client nust establish a new clientid (See the section
"Client 1D') and re-establish the | ocking state as di scussed bel ow.

Shepl er, et al. St andar ds Track [Page 60]

RFC 3010 NFS version 4 Protocol Decenber 2000

The period of special handling of |ocking and READs and WRI TEs, equa
in duration to the | ease period, is referred to as the "grace
period". During the grace period, clients recover |ocks and the
associ ated state by reclaimtype | ocking requests (i.e. LOCK requests
with reclaimset to true and OPEN operations with a claimtype of
CLAIM PREVIQUS). During the grace period, the server nust reject
READ and WRI TE operati ons and non-reclai ml ocking requests (i.e.

ot her LOCK and OPEN operations) with an error of NFS4ERR _GRACE.

If the server can reliably determ ne that granting a non-reclaim
request will not conflict with reclamation of |ocks by other clients,
the NFS4ERR _GRACE error does not have to be returned and the non-
reclaimclient request can be serviced. For the server to be able to
servi ce READ and WRI TE operations during the grace period, it nust
again be able to guarantee that no possible conflict could arise

bet ween an i npending reclai mlocking request and the READ or WRI TE
operation. |If the server is unable to offer that guarantee, the
NFS4ERR _GRACE error mnust be returned to the client.

For a server to provide sinple, valid handling during the grace
period, the easiest nmethod is to sinply reject all non-reclaim

| ocki ng requests and READ and WRI TE operations by returning the
NFS4ERR _GRACE error. However, a server may keep informati on about
granted | ocks in stable storage. Wth this information, the server
could determine if a regular |ock or READ or WRI TE operation can be
safely processed.

For example, if a count of locks on a given file is available in
stabl e storage, the server can track reclainmed |locks for the file and
when all reclains have been processed, non-reclaimlocking requests
may be processed. This way the server can ensure that non-reclaim

| ocking requests will not conflict with potential reclaimrequests.
Wth respect to I/Orequests, if the server is able to deternine that
there are no outstanding reclaimrequests for a file by information
from stabl e storage or another simlar nechanism the processing of
I/ O requests could proceed normally for the file.

To reiterate, for a server that allows non-reclaimlock and I/0O
requests to be processed during the grace period, it MJST deternine
that no | ock subsequently reclainmed will be rejected and that no | ock
subsequently recl ai mred woul d have prevented any |1/O operation
processed during the grace peri od.

Clients should be prepared for the return of NFS4AERR GRACE errors for
non-reclaimlock and 1/O requests. 1In this case the client should
enploy a retry nmechanismfor the request. A delay (on the order of
several seconds) between retries should be used to avoid overwhel m ng
the server. Further discussion of the general is included in

Shepler, et al. St andards Track [Page 61]

RFC 3010 NFS version 4 Protocol Decenber 2000

[Floyd]. The client nust account for the server that is able to
perform |/ O and non-reclai mlocking requests within the grace period
as well as those that can not do so.

A reclaimtype | ocking request outside the server’s grace period can
only succeed if the server can guarantee that no conflicting | ock or
I/ O request has been granted since reboot or restart.

8.5.3. Network Partitions and Recovery

If the duration of a network partition is greater than the |ease
period provided by the server, the server will have not received a

| ease renewal fromthe client. |If this occurs, the server nmay free
all locks held for the client. As a result, all stateids held by the
client will becone invalid or stale. Once the client is able to
reach the server after such a network partition, all 1/0O subrmitted by
the client with the nowinvalid stateids will fail with the server
returning the error NFS4ERR EXPIRED. Once this error is received,
the client will suitably notify the application that held the | ock

As a courtesy to the client or as an optinization, the server nay
continue to hold I ocks on behalf of a client for which recent

comuni cati on has extended beyond the | ease period. |f the server
receives a lock or 1/Orequest that conflicts with one of these
courtesy | ocks, the server nust free the courtesy |ock and grant the
new request.

If the server continues to hold | ocks beyond the expiration of a
client’s | ease, the server MJST enploy a nethod of recording this
fact in its stable storage. Conflicting |ocks requests from anot her
client may be serviced after the | ease expiration. There are various
scenarios involving server failure after such an event that require
the storage of these | ease expirations or network partitions. One
scenario is as follows:

A client holds a lock at the server and encounters a network
partition and is unable to renew the associ ated | ease. A
second client obtains a conflicting |ock and then frees the

|l ock. After the unlock request by the second client, the
server reboots or reinitializes. Once the server recovers, the
network partition heals and the original client attenpts to
reclaimthe original |ock

In this scenari o and without any state information, the server wll

allow the reclaimand the client will be in an inconsistent state
because the server or the client has no know edge of the conflicting
| ock.

Shepler, et al. St andards Track [Page 62]

RFC 3010 NFS version 4 Protocol Decenber 2000

The server nmay choose to store this | ease expiration or network
partitioning state in a way that will only identify the client as a
whole. Note that this may potentially lead to | ock reclains being
deni ed unnecessarily because of a mix of conflicting and non-
conflicting I ocks. The server nmay al so choose to store information
about each lock that has an expired | ease with an associ at ed
conflicting I ock. The choice of the anmobunt and type of state
information that is stored is left to the inplenmentor. |In any case,
the server nust have enough state information to enable correct
recovery fromnultiple partitions and nultiple server failures.

8.6. Recovery froma Lock Request Tinmeout or Abort
In the event a lock request tines out, a client may deci de to not

retry the request. The client may al so abort the request when the
process for which it was issued is terninated (e.g. in UNI X due to a

signal. It is possible though that the server received the request
and acted upon it. This would change the state on the server wi thout
the client being aware of the change. It is paramunt that the

client re-synchronize state with server before it attenpts any ot her
operation that takes a seqid and/or a stateid with the same

nfs | ockowner. This is straightforward to do without a special re-
synchroni ze operation

Since the server mmintains the last | ock request and response

recei ved on the nfs_|l ockowner, for each nfs_|l ockowner, the client
shoul d cache the last |lock request it sent such that the | ock request
did not receive a response. Fromthis, the next tine the client does
a lock operation for the nfs_|l ockowner, it can send the cached
request, if there is one, and if the request was one that established
state (e.g. a LOCK or OPEN operation) the client can follow up with a
request to renove the state (e.g. a LOCKU or CLCSE operation). Wth
this approach, the sequencing and stateid informati on on the client
and server for the given nfs_|lockowner will re-synchronize and in
turn the lock state will re-synchronize.

8.7. Server Revocation of Locks

At any point, the server can revoke | ocks held by a client and the
client nust be prepared for this event. Wen the client detects that
its | ocks have been or nay have been revoked, the client is

responsi ble for validating the state informati on between itself and
the server. Validating |ocking state for the client neans that it
must verify or reclaimstate for each |lock currently held.

Shepl er, et al. St andar ds Track [Page 63]

RFC 3010 NFS version 4 Protocol Decenber 2000

The first instance of |ock revocation is upon server reboot or re-
initialization. 1In this instance the client will receive an error

(NFS4ERR_STALE_STATEI D or NFS4ERR STALE CLIENTID) and the client will
proceed with normal crash recovery as described in the previous

secti on.

The second | ock revocation event is the inability to renew the | ease
period. Wiile this is considered a rare or unusual event, the client
must be prepared to recover. Both the server and client will be able
to detect the failure to renew the | ease and are capabl e of
recovering w thout data corruption. For the server, it tracks the

| ast renewal event serviced for the client and knows when the | ease
will expire. Simlarly, the client nust track operations which wll
renew the | ease period. Using the tinme that each such request was
sent and the tinme that the corresponding reply was received, the
client should bound the tinme that the correspondi ng renewal could
have occurred on the server and thus deternine if it is possible that
a | ease period expiration could have occurr ed.

The third | ock revocation event can occur as a result of

adm nistrative intervention within the | ease period. Wile this is
considered a rare event, it is possible that the server’'s

adm ni strator has decided to rel ease or revoke a particular |ock held

by the client. As a result of revocation, the client will receive an
error of NFS4ERR_EXPI RED and the error is received within the | ease
period for the lock. In this instance the client may assune that

only the nfs_| ockowner’s | ocks have been lost. The client notifies
the | ock hol der appropriately. The client nmay not assunme the | ease
period has been renewed as a result of failed operation.

When the client determines the | ease period nmay have expired, the
client nust mark all locks held for the associated | ease as

"unval idated". This nmeans the client has been unable to re-establish
or confirmthe appropriate |lock state with the server. As described
in the previous section on crash recovery, there are scenarios in

whi ch the server may grant conflicting | ocks after the | ease period
has expired for a client. Wen it is possible that the | ease period
has expired, the client nust validate each lock currently held to
ensure that a conflicting |ock has not been granted. The client may
acconplish this task by issuing an I/O request, either a pending I/0O
or a zero-length read, specifying the stateid associated with the
lock in question. If the response to the request is success, the
client has validated all of the | ocks governed by that stateid and
re-established the appropriate state between itself and the server

If the 1/O request is not successful, then one or nore of the I ocks
associated with the stateid was revoked by the server and the client
must notify the owner.

Shepl er, et al. St andar ds Track [Page 64]

RFC 3010 NFS version 4 Protocol Decenber 2000

8.8. Share Reservations

A share reservation is a mechanismto control access to a file. It
is a separate and i ndependent mechanismfromrecord | ocking. Wen a
client opens a file, it issues an OPEN operation to the server

speci fying the type of access required (READ, WRITE, or BOTH) and the
type of access to deny others (deny NONE, READ, WRITE, or BOTH). |If
the OPEN fails the client will fail the application s open request.

Pseudo-code definition of the semantics:
if ((request.access & file_state.deny)) |
(request.deny & file_state.access))
return (NFS4ERR_DENI ED)

The constants used for the OPEN and OPEN_DOWGRADE operations for the
access and deny fields are as foll ows:

const OPENA_SHARE ACCESS READ = 0x00000001
const OPENA_SHARE ACCESS WRI TE = 0x00000002;
const OPEN4_SHARE_ACCESS BOTH = 0x00000003;
const OPEN4_SHARE_ DENY_NONE = 0x00000000;
const OPEN_SHARE DENY_READ = 0x00000001
const OPENA_SHARE DENY_WRI TE = 0x00000002;
const OPEN4_SHARE_DENY_BOTH = 0x00000003;

8.9. OPEN CLCSE Qperations

To provide correct share semantics, a client MJST use the OPEN
operation to obtain the initial filehandl e and indicate the desired
access and what if any access to deny. Even if the client intends to
use a stateid of all 0's or all 1's, it nust still obtain the
filehandle for the regular file with the OPEN operation so the
appropriate share senmantics can be applied. For clients that do not
have a deny node built into their open programm ng interfaces, deny
equal to NONE shoul d be used.

The OPEN operation with the CREATE flag, also subsunes the CREATE
operation for regular files as used in previous versions of the NFS
protocol. This allows a create with a share to be done atomcally.

The CLOSE operation renoves all share | ocks held by the nfs_| ockowner
on that file. |If record |ocks are held, the client SHOULD rel ease
all locks before issuing a CLOSE. The server MAY free al

out standi ng | ocks on CLOSE but sone servers may not support the CLOSE
of a file that still has record |ocks held. The server MJST return
failure if any | ocks would exist after the CLOSE.

Shepl er, et al. St andar ds Track [Page 65]

RFC 3010 NFS version 4 Protocol Decenber 2000

The LOOKUP operation will return a filehandl e w thout establishing
any lock state on the server. Wthout a valid stateid, the server
will assunme the client has the | east access. For exanple, a file

opened wi th deny READ/ WRI TE cannot be accessed using a filehandle
obt ai ned t hrough LOOKUP because it would not have a valid stateid
(i.e. using a stateid of all bits 0 or all bits 1).

8.10. Open Upgrade and Downgrade

When an OPEN is done for a file and the | ockowner for which the open
is being done already has the file open, the result is to upgrade the
open file status maintained on the server to include the access and
deny bits specified by the new OPEN as well as those for the existing
OPEN. The result is that there is one open file, as far as the
protocol is concerned, and it includes the union of the access and
deny bits for all of the OPEN requests conpleted. Only a single
CLOCSE will be done to reset the effects of both OPEN s. Note that
the client, when issuing the OPEN, may not know that the sane file is
in fact being opened. The above only applies if both OPEN s result
in the OPEN ed object being designated by the sane fil ehandl e.

When the server chooses to export mnultiple filehandl es corresponding
to the sane file object and returns different fil ehandles on two
different OPEN s of the sanme file object, the server MJST NOT "OR'
toget her the access and deny bits and coal esce the two open files.
Instead the server nust nmintain separate OPEN' s with separate
stateid’ s and will require separate CLOSE' s to free them

When multiple open files on the client are nerged into a single open
file object on the server, the close of one of the open files (on the
client) may necessitate change of the access and deny status of the
open file on the server. This is because the union of the access and
deny bits for the remaining open’s may be smaller (i.e. a proper
subset) than previously. The OPEN_DOANGRADE operation is used to
make the necessary change and the client should use it to update the
server so that share reservation requests by other clients are
handl ed properly.

8.11. Short and Long Leases

When determining the tinme period for the server |ease, the usua

| ease tradeoffs apply. Short |eases are good for fast server
recovery at a cost of increased RENEWor READ (with zero | ength)
requests. Longer |eases are certainly kinder and gentler to |arge
internet servers trying to handle very large nunbers of clients. The
nunber of RENEWrequests drop in proportion to the lease tine. The
di sadvant ages of long | eases are slower recovery after server failure
(server nust wait for |leases to expire and grace period before

Shepl er, et al. St andar ds Track [Page 66]

RFC 3010 NFS version 4 Protocol Decenber 2000

granting new | ock requests) and increased file contention (if client
fails to transnmit an unlock request then server nust wait for |ease
expiration before granting new | ocks).

Long | eases are usable if the server is able to store |l ease state in
non-vol atile nmenory. Upon recovery, the server can reconstruct the
| ease state fromits non-volatile nenory and continue operation with
its clients and therefore long | eases are not an issue.

8.12. docks and Cal cul ati ng Lease Expiration

To avoid the need for synchroni zed clocks, |ease tinmes are granted by
the server as a tine delta. However, there is a requirenent that the
client and server clocks do not drift excessively over the duration
of the lock. There is also the issue of propagation delay across the
network which could easily be several hundred mlliseconds as well as
the possibility that requests will be lost and need to be
retransmtted.

To take propagation delay into account, the client should subtract it
fromlease tines (e.g. if the client estinates the one-way
propagati on delay as 200 nsec, then it can assunme that the |lease is
al ready 200 nsec old when it gets it). |In addition, it will take
anot her 200 nsec to get a response back to the server. So the client
must send a lock renewal or wite data back to the server 400 nsec
before the | ease woul d expire.

8.13. Mgration, Replication and State

When responsibility for handling a given file systemis transferred
to a new server (mgration) or the client chooses to use an alternate
server (e.g. in response to server unresponsiveness) in the context
of file systemreplication, the appropriate handling of state shared
between the client and server (i.e. locks, |leases, stateid s, and
clientid s) is as described below. The handling differs between
mgration and replication. For related discussion of file server
state and recover of such see the sections under "File Locking and
Share Reservations”

8.13.1. Mgration and State
In the case of migration, the servers involved in the mgration of a

file system SHOULD transfer all server state fromthe original to the
new server. This nust be done in a way that is transparent to the

client. This state transfer will ease the client’s transition when a
file systemmgration occurs. |If the servers are successful in
transferring all state, the client will continue to use stateid s

assigned by the original server. Therefore the new server mnust

Shepl er, et al. St andar ds Track [Page 67]

RFC 3010 NFS version 4 Protocol Decenber 2000

recogni ze these stateid’'s as valid. This holds true for the clientid
as well. Since responsibility for an entire file systemis
transferred with a mgration event, there is no possibility that
conflicts will arise on the new server as a result of the transfer of
| ocks.

As part of the transfer of information between servers, |eases would
be transferred as well. The | eases being transferred to the new
server will typically have a different expiration time fromthose for
the sanme client, previously on the new server. To maintain the
property that all |eases on a given server for a given client expire
at the sanme tinme, the server should advance the expiration tine to
the later of the | eases being transferred or the | eases already
present. This allows the client to maintain | ease renewal of both

cl asses without special effort.

The servers may choose not to transfer the state informati on upon

m gration. However, this choice is discouraged. |In this case, when
the client presents state information fromthe original server, the
client nust be prepared to receive either NFS4ERR _STALE CLI ENTID or
NFS4AERR_STALE _STATEI D fromthe new server. The client should then
recover its state infornmation as it normally would in response to a
server failure. The new server nust take care to allow for the
recovery of state information as it would in the event of server
restart.

8.13.2. Replication and State

Since client switch-over in the case of replication is not under
server control, the handling of state is different. In this case,

| eases, stateid s and clientid s do not have validity across a
transition fromone server to another. The client must re-establish
its locks on the new server. This can be conpared to the re-
establ i shnment of |ocks by nmeans of reclaimtype requests after a
server reboot. The difference is that the server has no provision to
di stingui sh requests reclaining |locks fromthose obtaining new | ocks
or to defer the latter. Thus, a client re-establishing a |ock on the
new server (by means of a LOCK or OPEN request), may have the
requests denied due to a conflicting lock. Since replication is

i ntended for read-only use of filesystens, such denial of |ocks
shoul d not pose large difficulties in practice. Wen an attenpt to
re-establish a lock on a new server is denied, the client should
treat the situation as if his original |ock had been revoked.

Shepl er, et al. St andar ds Track [Page 68]

RFC 3010 NFS version 4 Protocol Decenber 2000

8.13.3. Notification of Mgrated Lease

In the case of |ease renewal, the client may not be submitting
requests for a file systemthat has been migrated to another server.
This can occur because of the inplicit | ease renewal nmechanism The
client renews |eases for all file systens when subnitting a request
to any one file systemat the server

In order for the client to schedul e renewal of |eases that may have
been rel ocated to the new server, the client nust find out about

| ease relocation before those | eases expire. To acconplish this, al
operations which inplicitly renew | eases for a client (i.e. OPEN
CLOSE, READ, WRI TE, RENEW LOCK, LOCKT, LOCKU), will return the error
NFSAERR LEASE MOVED if responsibility for any of the | eases to be
renewed has been transferred to a new server. This condition wll
continue until the client receives an NFS4ERR_MOVED error and the
server receives the subsequent GETATTR(fs_ | ocations) for an access to
each file systemfor which a | ease has been noved to a new server.

Wien a client receives an NFS4ERR_LEASE MOVED error, it should
perform sone operation, such as a RENEW on each file system
associated with the server in question. Wen the client receives an
NFS4ERR _MOVED error, the client can follow the normal process to
obtain the new server information (through the fs_|ocations
attribute) and performrenewal of those | eases on the new server. |If
the server has not had state transferred to it transparently, it wll
recei ve either NFS4ERR_STALE_CLI ENTI D or NFS4ERR_STALE_STATEI D from
the new server, as described above, and can then recover state
information as it does in the event of server failure.

9. dient-Side Caching

Client-side caching of data, of file attributes, and of file nanes is
essential to providing good performance with the NFS protocol.

Provi ding distributed cache coherence is a difficult problem and
previ ous versions of the NFS protocol have not attenpted it.

I nstead, several NFS client inplenmentation techniques have been used
to reduce the problens that a | ack of coherence poses for users.
These techni ques have not been clearly defined by earlier protoco
specifications and it is often unclear what is valid or invalid
client behavior.

The NFS version 4 protocol uses many techniques sinilar to those that
have been used in previous protocol versions. The NFS version 4

prot ocol does not provide distributed cache coherence. However, it
defines a nore linmted set of caching guarantees to allow | ocks and
share reservations to be used without destructive interference from
client side caching.

Shepl er, et al. St andar ds Track [Page 69]

RFC 3010 NFS version 4 Protocol Decenber 2000

In addition, the NFS version 4 protocol introduces a del egation
mechani sm whi ch all ows nmany deci sions norrmal |y made by the server to
be made locally by clients. This nechanism provides efficient
support of the commobn cases where sharing is infrequent or where
sharing is read-only.

9.1. Performance Chall enges for Cient-Side Caching

Caching techni ques used in previous versions of the NFS protocol have
been successful in providing good perfornmance. However, several

scal ability chall enges can ari se when those techniques are used with
very large nunbers of clients. This is particularly true when
clients are geographically distributed which classically increases
the latency for cache revalidation requests.

The previous versions of the NFS protocol repeat their file data
cache validation requests at the tine the file is opened. This
behavi or can have serious performance drawbacks. A comopn case is
one in which a file is only accessed by a single client. Therefore,
sharing is infrequent.

In this case, repeated reference to the server to find that no
conflicts exist is expensive. A better option with regards to
performance is to allow a client that repeatedly opens a file to do
so without reference to the server. This is done until potentially
conflicting operations fromanother client actually occur.

A simlar situation arises in connection with file | ocking. Sending
file lock and unl ock requests to the server as well as the read and
write requests necessary to nake data caching consistent with the

| ocki ng senantics (see the section "Data Caching and File Locking")
can severely limt performance. Wen |locking is used to provide
protection against infrequent conflicts, a |arge penalty is incurred.
This penalty may di scourage the use of file |ocking by applications.

The NFS version 4 protocol provides nore aggressive caching
strategies with the foll owi ng design goals:

0o Conpatibility with a |large range of server senmantics.

o0 Provide the same caching benefits as previous versions of the NFS
prot ocol when unable to provide the nore aggressive nodel

0 Requirenents for aggressive caching are organized so that a | arge

portion of the benefit can be obtained even when not all of the
requi rements can be net.

Shepl er, et al. St andar ds Track [Page 70]

RFC 3010 NFS version 4 Protocol Decenber 2000

The appropriate requirenents for the server are discussed in |ater
sections in which specific forms of caching are covered. (see the
section "Open Del egation").

9.2. Delegation and Cal | backs

Recal | abl e del egati on of server responsibilities for a file to a
client inproves perfornmance by avoiding repeated requests to the
server in the absence of inter-client conflict. Wth the use of a
"cal | back” RPC fromserver to client, a server recalls del egated
responsibilities when another client engages in sharing of a

del egated file.

A del egation is passed fromthe server to the client, specifying the
obj ect of the delegation and the type of delegation. There are
different types of del egations but each type contains a stateid to be
used to represent the del egati on when perform ng operations that
depend on the delegation. This stateid is simlar to those
associated with | ocks and share reservations but differs in that the
stateid for a delegation is associated with a clientid and may be
used on behalf of all the nfs_|ockowners for the given client. A

del egation is made to the client as a whole and not to any specific
process or thread of control within it.

Because cal | back RPCs may not work in all environnments (due to
firewalls, for exanple), correct protocol operation does not depend
on them Prelimnary testing of callback functionality by nmeans of a
CB_NULL procedure determ nes whether call backs can be supported. The
CB_NULL procedure checks the continuity of the callback path. A
server makes a prelimnary assessnent of callback availability to a
given client and avoi ds del egating responsibilities until it has
determ ned that callbacks are supported. Because the granting of a
del egation is always conditional upon the absence of conflicting
access, clients nust not assume that a delegation will be granted and
they nust al ways be prepared for OPENs to be processed without any
del egati ons being granted.

Once granted, a del egati on behaves in nost ways |ike a | ock. There
is an associated |ease that is subject to renewal together with all
of the other leases held by that client.

Unli ke | ocks, an operation by a second client to a delegated file
will cause the server to recall a delegation through a call back

On recall, the client holding the del egation nust flush nodified
state (such as nodified data) to the server and return the

del egation. The conflicting request will not receive a response
until the recall is conplete. The recall is considered conplete when

Shepler, et al. St andards Track [Page 71]

RFC 3010 NFS version 4 Protocol Decenber 2000

the client returns the delegation or the server tines out on the
recall and revokes the delegation as a result of the timeout.
Fol l owi ng the resolution of the recall, the server has the

i nformati on necessary to grant or deny the second client’s request.

At the time the client receives a delegation recall, it may have
substantial state that needs to be flushed to the server. Therefore,
the server should allow sufficient tine for the delegation to be
returned since it may involve nunmerous RPCs to the server. |If the
server is able to determne that the client is diligently flushing
state to the server as a result of the recall, the server may extend
the usual tinme allowed for a recall. However, the tine allowed for
recall compl etion should not be unbounded.

An exanple of this is when responsibility to nediate opens on a given
file is delegated to a client (see the section "Qpen Del egation").
The server will not know what opens are in effect on the client.
Wthout this know edge the server will be unable to determine if the
access and deny state for the file allows any particul ar open until
the delegation for the file has been returned.

Aclient failure or a network partition can result in failure to

respond to a recall callback. In this case, the server will revoke
the del egation which in turn will render useless any nodified state
still on the client.

9.2.1. Del egation Recovery
There are three situations that del egation recovery nust deal wth:
o Cdient reboot or restart
o Server reboot or restart
o0 Network partition (full or callback-only)
In the event the client reboots or restarts, the failure to renew
|l eases will result in the revocation of record | ocks and share
reservations. Delegations, however, may be treated a bit
differently.
There will be situations in which delegations will need to be
reestablished after a client reboots or restarts. The reason for
this is the client may have file data stored locally and this data

was associated with the previously held del egations. The client will
need to reestablish the appropriate file state on the server

Shepler, et al. St andards Track [Page 72]

RFC 3010 NFS version 4 Protocol Decenber 2000

To allow for this type of client recovery, the server nay extend the
period for del egation recovery beyond the typical |ease expiration
period. This inplies that requests fromother clients that conflict
with these delegations will need to wait. Because the normal recal
process nmay require significant tinme for the client to flush changed
state to the server, other clients need be prepared for del ays that
occur because of a conflicting delegation. This |onger interval
woul d increase the wi ndow for clients to reboot and consult stable
storage so that the del egations can be reclainmed. For open

del egati ons, such del egations are reclainmed using OPEN with a claim
type of CLAI M DELEGATE _PREV. (see the sections on "Data Cachi ng and
Revocati on” and "Operation 18: OPEN' for discussion of open

del egation and the details of OPEN respectively).

When the server reboots or restarts, delegations are reclained (using
t he OPEN operation with CLAI M DELEGATE_PREV) in a simlar fashion to
record | ocks and share reservations. However, there is a slight
semantic difference. In the normal case if the server decides that a
del egation should not be granted, it perforns the requested action
(e.g. OPEN) without granting any delegation. For reclaim the server
grants the del egation but a special designation is applied so that
the client treats the del egati on as having been granted but recalled
by the server. Because of this, the client has the duty to wite al
nodified state to the server and then return the delegation. This
process of handling del egation reclaimreconciles three principles of
the NFS Version 4 protocol

0 Upon reclaim a client reporting resources assigned to it by an
earlier server instance nust be granted those resources.

0 The server has unquestionable authority to determni ne whether
del egations are to be granted and, once granted, whether they are
to be continued.

0 The use of callbacks is not to be depended upon until the client
has proven its ability to receive them

When a network partition occurs, delegations are subject to freeing
by the server when the | ease renewal period expires. This is sinlar
to the behavior for |ocks and share reservations. For del egations,
however, the server may extend the period in which conflicting
requests are held off. Eventually the occurrence of a conflicting

request fromanother client will cause revocation of the del egation
A loss of the callback path (e.g. by later network configuration
change) will have the sane effect. A recall request will fail and
revocation of the delegation will result.

Shepl er, et al. St andar ds Track [Page 73]

RFC 3010 NFS version 4 Protocol Decenber 2000

A client normally finds out about revocation of a del egation when it
uses a stateid associated with a del egati on and receives the error
NFS4ERR EXPIRED. It also may find out about del egation revocation
after a client reboot when it attenpts to reclaima del egati on and
receives that same error. Note that in the case of a revoked wite
open del egation, there are issues because data may have been nodified
by the client whose del egation is revoked and separately by other
clients. See the section "Revocation Recovery for Wite Qpen

Del egati on” for a discussion of such issues. Note also that when
del egati ons are revoked, information about the revoked del egation
will be witten by the server to stable storage (as described in the
section "Crash Recovery"). This is done to deal with the case in
whi ch a server reboots after revoking a del egation but before the
client holding the revoked del egation is notified about the
revocati on.

9.3. Data Caching

When applications share access to a set of files, they need to be

i npl enented so as to take account of the possibility of conflicting
access by another application. This is true whether the applications
in question execute on different clients or reside on the sane
client.

Share reservations and record | ocks are the facilities the NFS
version 4 protocol provides to allow applications to coordinate
access by providing nutual exclusion facilities. The NFS version 4
protocol’s data caching nust be inplenmented such that it does not

i nvalidate the assunptions that those using these facilities depend
upon.

9.3.1. Data Caching and OPENs

In order to avoid invalidating the sharing assunptions that
applications rely on, NFS version 4 clients should not provide cached
data to applications or nodify it on behalf of an application when it
woul d not be valid to obtain or nodify that same data via a READ or
WRI TE operati on

Furthernmore, in the absence of open del egation (see the section "Qpen
Del egation") two additional rules apply. Note that these rules are
obeyed in practice by many NFS version 2 and version 3 clients.

o First, cached data present on a client nmust be revalidated after
doing an OPEN. This is to ensure that the data for the OPENed
file is still correctly reflected in the client’s cache. This
val i dati on nust be done at |east when the client’s OPEN operation
i ncl udes DENY=WRI TE or BOTH thus terninating a period in which

Shepl er, et al. St andar ds Track [Page 74]

RFC 3010 NFS version 4 Protocol Decenber 2000

9.

3.

other clients may have had the opportunity to open the file with
WRI TE access. Cients may choose to do the revalidation nore
often (i.e. at OPENs specifying DENY=NONE) to parallel the NFS
version 3 protocol’s practice for the benefit of users assum ng
this degree of cache revalidation

0o Second, nodified data nust be flushed to the server before closing
afile OPENed for wite. This is conplementary to the first rule.
If the data is not flushed at CLOSE, the revalidation done after
client OPENs as file is unable to achieve its purpose. The other
aspect to flushing the data before close is that the data nust be
commtted to stable storage, at the server, before the CLOSE
operation is requested by the client. In the case of a server
reboot or restart and a CLOSEd file, it may not be possible to
retransmt the data to be witten to the file. Hence, this
requirement.

2. Data Caching and File Locking

For those applications that choose to use file |ocking instead of
share reservations to exclude inconsistent file access, there is an
anal ogous set of constraints that apply to client side data caching.
These rules are effective only if the file locking is used in a way
that matches in an equivalent way the actual READ and WRI TE
operations executed. This is as opposed to file locking that is
based on pure convention. For exanple, it is possible to manipulate
a two-negabyte file by dividing the file into two one-negabyte
regions and protecting access to the two regions by file [ocks on
bytes zero and one. A lock for wite on byte zero of the file would
represent the right to do READ and WRI TE operations on the first
region. A lock for wite on byte one of the file would represent the
right to do READ and WRI TE operations on the second region. As |ong
as all applications nmanipulating the file obey this convention, they
will work on a local file system However, they nay not work with
the NFS version 4 protocol unless clients refrain fromdata cachi ng.

The rules for data caching in the file | ocking environnent are:

o First, when a client obtains a file lock for a particular region,
the data cache corresponding to that region (if any cache data
exi sts) nust be revalidated. |If the change attribute indicates
that the file nmay have been updated since the cached data was
obtai ned, the client nmust flush or invalidate the cached data for
the newy locked region. A client mght choose to invalidate al
of non-nodi fied cached data that it has for the file but the only
requi rement for correct operation is to invalidate all of the data
in the newy | ocked region

Shepl er, et al. St andar ds Track [Page 75]

RFC 3010 NFS version 4 Protocol Decenber 2000

0 Second, before releasing a wite lock for a region, all nodified
data for that region nmust be flushed to the server. The nodified
data nust also be witten to stable storage.

Note that flushing data to the server and the invalidation of cached
data nust reflect the actual byte ranges | ocked or unl ocked.
Roundi ng these up or down to reflect client cache bl ock boundaries
wi Il cause problens if not carefully done. For exanple, witing a
nodi fi ed bl ock when only half of that block is within an area being
unl ocked may cause invalid nodification to the region outside the
unl ocked area. This, in turn, may be part of a region | ocked by
another client. Cients can avoid this situation by synchronously
perform ng portions of wite operations that overlap that portion
(initial or final) that is not a full block. Simlarly, invalidating
a | ocked area which is not an integral nunber of full buffer bl ocks
would require the client to read one or two partial blocks fromthe
server if the revalidation procedure shows that the data which the
client possesses may not be valid.

The data that is witten to the server as a pre-requisite to the

unl ocking of a region nust be witten, at the server, to stable
storage. The client may acconplish this either with synchronous
wites or by foll owi ng asynchronous wites with a COW T operati on.
This is required because retransm ssion of the nodified data after a
server reboot might conflict with a |ock held by another client.

A client inplenmentation nay choose to accommodat e applications which
use record | ocking in non-standard ways (e.g. using a record | ock as
a gl obal semaphore) by flushing to the server nore data upon an LOCKU
than is covered by the |l ocked range. This nmay include nodified data
within files other than the one for which the unlocks are being done.
In such cases, the client nust not interfere with applications whose
READs and WRI TEs are being done only within the bounds of record

| ocks which the application holds. For exanple, an application |ocks
a single byte of a file and proceeds to wite that single byte. A
client that chose to handle a LOCKU by flushing all nodified data to
the server could validly wite that single byte in response to an
unrel ated unl ock. However, it would not be valid to wite the entire
bl ock in which that single witten byte was |ocated since it includes
an area that is not |ocked and m ght be | ocked by another client.
Client inplementations can avoid this problemby dividing files with
nodi fied data into those for which all nodifications are done to
areas covered by an appropriate record | ock and those for which there
are nodi fications not covered by a record | ock. Any wites done for
the forner class of files nust not include areas not |ocked and thus
not nodified on the client.

Shepl er, et al. St andar ds Track [Page 76]

RFC 3010 NFS version 4 Protocol Decenber 2000

9.3.3. Data Caching and Mandatory File Locking

Client side data caching needs to respect mandatory file | ocking when
it isin effect. The presence of mandatory file | ocking for a given
file is indicated in the result flags for an OPEN. Wen mandatory
locking is in effect for a file, the client nust check for an

appropriate file lock for data being read or witten. |If a lock
exists for the range being read or witten, the client may satisfy
the request using the client’s validated cache. [|f an appropriate

file lock is not held for the range of the read or wite, the read or
wite request nust not be satisfied by the client’s cache and the
request nust be sent to the server for processing. Wen a read or
wite request partially overlaps a | ocked region, the request should
be subdivided into nmultiple pieces with each region (I ocked or not)
treated appropriately.

9.3.4. Data Caching and File ldentity

When clients cache data, the file data needs to organi zed accordi ng
to the file system object to which the data bel ongs. For NFS version
3 clients, the typical practice has been to assune for the purpose of
caching that distinct filehandl es represent distinct file system
objects. The client then has the choice to organize and maintain the
data cache on this basis.

In the NFS version 4 protocol, there is now the possibility to have
significant deviations froma "one fil ehandl e per object" nodel
because a fil ehandl e nay be constructed on the basis of the object’s
pat hnane. Therefore, clients need a reliable nethod to deternine if
two filehandl es designate the sane file systemobject. If clients
were simply to assume that all distinct fil ehandl es denote distinct
obj ects and proceed to do data caching on this basis, caching

i nconsi stencies would arise between the distinct client side objects
whi ch mapped to the sanme server side object.

By providing a nethod to differentiate fil ehandles, the NFS version 4
protocol alleviates a potential functional regression in conparison
with the NFS version 3 protocol. Wthout this nethod, caching

i nconsi stencies within the same client could occur and this has not
been present in previous versions of the NFS protocol. Note that it
is possible to have such inconsistencies with applications executing
on multiple clients but that is not the issue being addressed here.

For the purposes of data caching, the follow ng steps allow an NFS

version 4 client to determ ne whether two distinct fil ehandl es denote
t he sane server side object:

Shepl er, et al. St andar ds Track [Page 77]

RFC 3010 NFS version 4 Protocol Decenber 2000

She

o |If GETATTR directed to two fil ehandl es have different val ues of
the fsid attribute, then the fil ehandl es represent distinct
obj ect s.

o |If GETATTR for any file with an fsid that matches the fsid of the
two filehandles in question returns a unique_handles attribute
with a value of TRUE, then the two objects are distinct.

o If GETATTR directed to the two filehandl es does not return the
fileid attribute for one or both of the handles, then the it
cannot be determi ned whether the two objects are the sane.
Ther ef ore, operations which depend on that know edge (e.g. client
si de data cachi ng) cannot be done reliably.

o If GETATTR directed to the two filehandles returns different
values for the fileid attribute, then they are distinct objects.

0 Oherwise they are the sanme object.
Open Del egati on

Wien a file is being OPENed, the server may del egate further handling
of opens and closes for that file to the opening client. Any such
del egation is recallable, since the circunstances that allowed for
the del egation are subject to change. |In particular, the server nay
receive a conflicting OPEN from another client, the server nust
recall the del egation before deciding whether the OPEN from the ot her
client may be granted. Mking a delegation is up to the server and
clients should not assume that any particular OPEN either will or
will not result in an open delegation. The following is a typica

set of conditions that servers m ght use in deciding whet her OPEN
shoul d be del egat ed:

0 The client nust be able to respond to the server’s call back
requests. The server will use the CB_NULL procedure for a test of
cal I back ability.

0 The client nust have responded properly to previous recalls.

0 There nust be no current open conflicting with the requested
del egati on

0 There should be no current delegation that conflicts with the
del egati on bei ng request ed.

0 The probability of future conflicting open requests should be | ow
based on the recent history of the file.

pler, et al. St andar ds Track [Page 78]

RFC 3010 NFS version 4 Protocol Decenber 2000

0 The existence of any server-specific semantics of OPEN CLCSE t hat
woul d make the required handling inconpatible with the prescribed
handling that the del egated client would apply (see bel ow).

There are two types of open del egations, read and wite. A read open
del egation allows a client to handle, on its own, requests to open a
file for reading that do not deny read access to others. Miltiple
read open del egati ons may be outstandi ng sinmultaneously and do not
conflict. A wite open delegation allows the client to handle, on
its own, all opens. Only one wite open del egation may exist for a
given file at a given tinme and it is inconsistent with any read open
del egati ons.

When a client has a read open delegation, it may not make any changes
to the contents or attributes of the file but it is assured that no
other client may do so. Wen a client has a wite open del egati on,

it my nodify the file data since no other client will be accessing
the file's data. The client holding a wite del egation may only
affect file attributes which are intimtely connected with the file
data: object_size, tinme_nodify, change.

When a client has an open delegation, it does not send OPENs or
CLOSEs to the server but updates the appropriate status internally.
For a read open del egati on, opens that cannot be handled | ocally
(opens for wite or that deny read access) nust be sent to the
server.

When an open del egation is nmade, the response to the OPEN contai ns an
open del egation structure which specifies the follow ng:

0 the type of delegation (read or wite)

0 space limtation information to control flushing of data on close
(wite open delegation only, see the section "Open Del egation and
Dat a Cachi ng")

o an nfsace4 specifying read and wite perm ssions

0 a stateid to represent the del egation for READ and WRI TE

The stateid is separate and distinct fromthe stateid for the OPEN

proper. The standard stateid, unlike the delegation stateid, is

associated with a particular nfs_|ockower and will continue to be
valid after the delegation is recalled and the file remains open.

Shepl er, et al. St andar ds Track [Page 79]

RFC 3010 NFS version 4 Protocol Decenber 2000

9. 4.

She

When a request internal to the client is made to open a file and open
del egation is in effect, it will be accepted or rejected solely on
the basis of the follow ng conditions. Any requirement for other
checks to be nmade by the del egate should result in open del egation
bei ng denied so that the checks can be made by the server itself.

0 The access and deny bits for the request and the file as descri bed
in the section "Share Reservations"

0 The read and wite perm ssions as deterni ned bel ow

The nfsaced4 passed with del egati on can be used to avoid frequent
ACCESS calls. The pernission check should be as follows:

o If the nfsace4 indicates that the open nay be done, then it should
be granted without reference to the server.

o If the nfsace4 indicates that the open nmay not be done, then an
ACCESS request nust be sent to the server to obtain the definitive
answer .

The server may return an nfsace4 that is nore restrictive than the
actual ACL of the file. This includes an nfsace4 that specifies
denial of all access. Note that sone commobn practices such as
mappi ng the traditional user "root" to the user "nobody" may make it
incorrect to return the actual ACL of the file in the del egation
response.

The use of del egation together with various other forns of caching
creates the possibility that no server authentication will ever be
performed for a given user since all of the user’s requests m ght be
satisfied locally. Wuere the client is depending on the server for
aut hentication, the client should be sure authentication occurs for
each user by use of the ACCESS operation. This should be the case
even if an ACCESS operation would not be required otherwi se. As
menti oned before, the server may enforce frequent authentication by
returning an nfsace4 denying all access with every open del egati on.

1. Open Del egation and Data Caching

OPEN del egation allows nmuch of the nessage overhead associated with
the opening and closing files to be elininated. An open when an open
del egation is in effect does not require that a validati on nessage be
sent to the server. The continued endurance of the "read open

del egati on” provides a guarantee that no OPEN for wite and thus no
write has occurred. Simlarly, when closing a file opened for wite
and if wite open delegation is in effect, the data witten does not
have to be flushed to the server until the open delegation is

pler, et al. St andar ds Track [Page 80]

RFC 3010 NFS version 4 Protocol Decenber 2000

recall ed. The continued endurance of the open del egation provides a
guarantee that no open and thus no read or wite has been done by
anot her client.

For the purposes of open del egation, READs and WRI TEs done wi t hout an
OPEN are treated as the functional equivalents of a corresponding
type of OPEN. This refers to the READs and WRI TEs that use the
speci al stateids consisting of all zero bits or all one bits.
Therefore, READs or WRITEs with a special stateid done by another
client will force the server to recall a wite open delegation. A
WRITE with a special stateid done by another client will force a
recall of read open del egati ons.

Wth delegations, a client is able to avoid witing data to the
server when the CLCSE of a file is serviced. The CLOSE operation is
the usual point at which the client is notified of a |lack of stable
storage for the nodified file data generated by the application. At
the CLOSE, file data is witten to the server and through norma
accounting the server is able to deternmine if the available file
system space for the data has been exceeded (i.e. server returns
NFS4AERR _NOSPC or NFS4ERR DQUOT). This accounting includes quot as.
The introduction of delegations requires that a alternative nethod be
in place for the sane type of communi cation to occur between client
and server.

In the del egati on response, the server provides either the lint of
the size of the file or the nunber of nodified bl ocks and associ at ed
bl ock size. The server nust ensure that the client will be able to
flush data to the server of a size equal to that provided in the
original delegation. The server nust nmake this assurance for al

out st andi ng del egations. Therefore, the server nust be careful in
its managenent of avail able space for new or nodified data taking
into account available file system space and any appli cabl e quot as.
The server can recall delegations as a result of nanagi ng the

avail able file system space. The client should abide by the server’s
state space limts for delegations. |If the client exceeds the stated
limts for the del egation, the server’s behavior is undefined.

Based on server conditions, quotas or available file system space,
the server may grant wite open delegations with very restrictive
space limtations. The limtations may be defined in a way that wll
al ways force nodified data to be flushed to the server on cl ose.

Wth respect to authentication, flushing nodified data to the server
after a CLOSE has occurred nmay be problematic. For exanple, the user
of the application may have | ogged off of the client and unexpired
aut hentication credentials may not be present. 1In this case, the
client may need to take special care to ensure that |ocal unexpired

Shepler, et al. St andards Track [Page 81]

RFC 3010 NFS version 4 Protocol Decenber 2000

credentials will in fact be available. This may be acconplished by
tracking the expiration tine of credentials and flushing data well in
advance of their expiration or by making private copies of
credentials to assure their availability when needed.

9.4.2. Open Delegation and File Locks

When a client holds a wite open del egation, |ock operations are
performed locally. This includes those required for mandatory file
| ocking. This can be done since the delegation inplies that there
can be no conflicting locks. Simlarly, all of the revalidations
that would normal ly be associated with obtaining | ocks and the
flushing of data associated with the releasing of |ocks need not be
done.

9.4.3. Recall of Open Del egation
The foll owi ng events necessitate recall of an open del egation

0 Potentially conflicting OPEN request (or READVWRI TE done with
"special" stateid)

0 SETATTR i ssued by another client
o0 REMOVE request for the file

0 RENAME request for the file as either source or target of the
RENAME

Whet her a RENAME of a directory in the path leading to the file
results in recall of an open del egati on depends on the senmantics of
the server file system |If that file system denies such RENAMES when
afile is open, the recall nust be perfornmed to determ ne whether the
file in question is, in fact, open.

In addition to the situations above, the server nmay choose to recal
open del egations at any time if resource constraints make it

advi sable to do so. dients should always be prepared for the
possibility of recall.

The server needs to enploy special handling for a GETATTR where the
target is a file that has a wite open delegation in effect. In this
case, the client holding the del egati on needs to be interrogated.

The server will use a CB_GETATTR cal | back, if the GETATTR attribute
bits include any of the attributes that a wite open del egate may
nodi fy (object_size, tine_nodify, change).

Shepler, et al. St andards Track [Page 82]

RFC 3010 NFS version 4 Protocol Decenber 2000

When a client receives a recall for an open delegation, it needs to
update state on the server before returning the del egation. These
same updates nust be done whenever a client chooses to return a

del egation voluntarily. The following itens of state need to be
dealt with:

o If the file associated with the delegation is no | onger open and
no previ ous CLOSE operation has been sent to the server, a CLCSE
operation nust be sent to the server.

o If afile has other open references at the client, then OPEN
operations nmust be sent to the server. The appropriate stateids
will be provided by the server for subsequent use by the client
since the delegation stateid will not |onger be valid. These OPEN
requests are done with the claimtype of CLAIM DELEGATE CUR. This
will allow the presentation of the delegation stateid so that the
client can establish the appropriate rights to performthe OPEN
(see the section "Operation 18: OPEN' for details.)

o If there are granted file | ocks, the correspondi ng LOCK operations
need to be perforned. This applies to the wite open del egation
case only.

o For a wite open delegation, if at the tinme of recall the file is
not open for wite, all nodified data for the file nust be flushed
to the server. |f the delegation had not existed, the client
woul d have done this data flush before the CLOSE operation

o For a wite open delegation when a file is still open at the tine
of recall, any nodified data for the file needs to be flushed to
t he server.

0 Wth the wite open delegation in place, it is possible that the
file was truncated during the duration of the del egation. For
exanpl e, the truncation could have occurred as a result of an OPEN
UNCHECKED with a object_size attribute value of zero. Therefore
if atruncation of the file has occurred and this operation has
not been propagated to the server, the truncation nust occur
before any nodified data is witten to the server

In the case of wite open delegation, file |ocking inposes sone

addi tional requirenments. The flushing of any nodified data in any
region for which a wite lock was rel eased while the wite open

del egation was in effect is what is required to precisely maintain
the associated invariant. However, because the wite open del egation
inmplies no other locking by other clients, a sinpler inplenentation

Shepl er, et al. St andar ds Track [Page 83]

RFC 3010 NFS version 4 Protocol Decenber 2000

is to flush all nodified data for the file (as described just above)
if any wite | ock has been rel eased while the wite open del egati on
was in effect.

9.4.4. Del egati on Revocation

At the point a delegation is revoked, if there are associated opens
on the client, the applications holding these opens need to be
notified. This notification usually occurs by returning errors for
READY WRI TE operations or when a close is attenpted for the open file.

If no opens exist for the file at the point the delegation is
revoked, then notification of the revocation is unnecessary.

However, if there is nodified data present at the client for the
file, the user of the application should be notified. Unfortunately,
it may not be possible to notify the user since active applications
may not be present at the client. See the section "Revocation
Recovery for Wite Open Del egation” for additional details.

9.5. Data Caching and Revocation

When | ocks and del egations are revoked, the assunptions upon which
successful caching depend are no | onger guaranteed. The owner of the
| ocks or share reservations which have been revoked needs to be
notified. This notification includes applications with a file open
that has a correspondi ng del egati on which has been revoked. Cached
data associated with the revocati on nust be renoved fromthe client.
In the case of nodified data existing in the client’s cache, that
data nust be renoved fromthe client without it being witten to the
server. As nentioned, the assunptions nade by the client are no

| onger valid at the point when a | ock or del egati on has been revoked.
For exampl e, another client may have been granted a conflicting |ock
after the revocation of the lock at the first client. Therefore, the
data within the | ock range may have been nodified by the other

client. Qbviously, the first client is unable to guarantee to the
application what has occurred to the file in the case of revocation.

Notification to a lock owner will in many cases consist of sinply
returning an error on the next and all subsequent READs/WRI TEs to the
open file or on the close. Were the nmethods available to a client
make such notification inpossible because errors for certain
operations may not be returned, nore drastic action such as signals
or process ternination nmay be appropriate. The justification for
this is that an invariant for which an application depends on may be
viol ated. Depending on how errors are typically treated for the
client operating environnment, further levels of notification

i ncl udi ng | oggi ng, consol e nessages, and GU pop-ups nay be
appropri at e.

Shepl er, et al. St andar ds Track [Page 84]

RFC 3010 NFS version 4 Protocol Decenber 2000

9.5.1. Revocation Recovery for Wite Qpen Del egation

Revocation recovery for a wite open del egati on poses the speci al

i ssue of nodified data in the client cache while the file is not
open. In this situation, any client which does not flush nodified
data to the server on each close nust ensure that the user receives
appropriate notification of the failure as a result of the
revocation. Since such situations may require human action to
correct problenms, notification schenes in which the appropriate user
or adm nistrator is notified nay be necessary. Logging and consol e
nmessages are typical exanpl es.

If there is nodified data on the client, it nust not be flushed
normally to the server. A client may attenpt to provide a copy of
the file data as nodified during the del egation under a different
nane in the file system nane space to ease recovery. Unless the
client can deternine that the file has not nodified by any other
client, this technique nmust be linited to situations in which a
client has a conplete cached copy of the file in question. Use of
such a technique may be limted to files under a certain size or nmay
only be used when sufficient disk space is guaranteed to be avail abl e
within the target file systemand when the client has sufficient
buffering resources to keep the cached copy available until it is
properly stored to the target file system

9.6. Attribute Caching

The attributes discussed in this section do not include naned
attributes. Individual named attributes are anal ogous to files and
caching of the data for these needs to be handl ed just as data
caching is for ordinary files. Simlarly, LOXUP results from an
OPENATTR directory are to be cached on the sanme basis as any ot her
pat hnanes and simlarly for directory contents.

Clients may cache file attributes obtained fromthe server and use
themto avoi d subsequent CGETATTR requests. Such caching is wite
through in that nodification to file attributes is always done by
means of requests to the server and should not be done |ocally and
cached. The exception to this are nodifications to attributes that
are intimately connected with data caching. Therefore, extending a
file by witing data to the | ocal data cache is reflected i nmediately
in the object_size as seen on the client without this change being
i medi ately reflected on the server. Normally such changes are not
propagated directly to the server but when the nodified data is
flushed to the server, analogous attribute changes are nmade on the
server. Wen open delegation is in effect, the nodified attributes
may be returned to the server in the response to a CB_RECALL call.

Shepl er, et al. St andar ds Track [Page 85]

RFC 3010 NFS version 4 Protocol Decenber 2000

The result of local caching of attributes is that the attribute
caches maintained on individual clients will not be coherent. Changes
made in one order on the server nmay be seen in a different order on
one client and in a third order on a different client.

The typical file systemapplication programm ng interfaces do not
provi de neans to atomically nodify or interrogate attributes for
multiple files at the same tine. The follow ng rules provide an
envi ronment where the potential incoherences nentioned above can be
reasonably managed. These rules are derived fromthe practice of
previ ous NFS protocols.

o Al attributes for a given file (per-fsid attributes excepted) are
cached as a unit at the client so that no non-serializability can
arise within the context of a single file.

0 An upper tinme boundary is maintained on howlong a client cache
entry can be kept wi thout being refreshed fromthe server

0 \When operations are perforned that change attributes at the
server, the updated attribute set is requested as part of the
containing RPC. This includes directory operations that update
attributes indirectly. This is acconplished by follow ng the
nodi fyi ng operation with a GETATTR operati on and then using the
results of the GETATTR to update the client’s cached attri butes.

Note that if the full set of attributes to be cached is requested by
READDI R, the results can be cached by the client on the sanme basis as
attri butes obtained via GETATTR

A client may validate its cached version of attributes for a file by
fetching only the change attribute and assumi ng that if the change
attribute has the same value as it did when the attributes were
cached, then no attributes have changed. The possible exception is
the attribute tinme_access.

9.7. Nane Caching

The results of LOOKUP and READDI R operations may be cached to avoid
the cost of subsequent LOOKUP operations. Just as in the case of
attri bute caching, inconsistencies nmay ari se anpong the various client
caches. To mitigate the effects of these inconsistencies and given
the context of typical file system APls, the foll owi ng rules should
be foll owed:

o The results of unsuccessful LOOKUPs shoul d not be cached, unless
they are specifically reverified at the point of use.

Shepl er, et al. St andar ds Track [Page 86]

RFC 3010 NFS version 4 Protocol Decenber 2000

0 An upper tine boundary is nmintained on how long a client name
cache entry can be kept w thout verifying that the entry has not
been made invalid by a directory change operation perfornmed by
anot her client.

When a client is not nmaking changes to a directory for which there
exi st nanme cache entries, the client needs to periodically fetch
attributes for that directory to ensure that it is not being

nmodi fied. After determning that no nodification has occurred, the
expiration tinme for the associated nane cache entries nay be updated
to be the current tine plus the name cache stal eness bound.

When a client is making changes to a given directory, it needs to
determ ne whether there have been changes nmade to the directory by
other clients. It does this by using the change attribute as
reported before and after the directory operation in the associated
change_i nfo4 value returned for the operation. The server is able to
comuni cate to the client whether the change_info4 data is provi ded
atomcally with respect to the directory operation. |f the change
val ues are provided atomically, the client is then able to conpare
the pre-operation change value with the change value in the client’s

nane cache. |f the conparison indicates that the directory was
updat ed by another client, the nane cache associated with the
nodified directory is purged fromthe client. |If the conparison

i ndi cates no nodi fication, the nane cache can be updated on the
client to reflect the directory operation and the associated tinmeout
extended. The post-operation change val ue needs to be saved as the
basis for future change_i nfo4 conparisons.

As denmpnstrated by the scenario above, nane caching requires that the
client revalidate nane cache data by inspecting the change attribute
of a directory at the point when the nane cache item was cached.

This requires that the server update the change attribute for
directories when the contents of the corresponding directory is
nodified. For a client to use the change_info4 information
appropriately and correctly, the server nust report the pre and post
operati on change attribute values atom cally. When the server is
unable to report the before and after values atomcally with respect
to the directory operation, the server nust indicate that fact in the
change_info4 return value. When the information is not atomically
reported, the client should not assune that other clients have not
changed the directory.

9.8. Directory Caching
The results of READDI R operations may be used to avoid subsequent

READDI R operations. Just as in the cases of attribute and nane
cachi ng, inconsistencies may arise anong the various client caches.

Shepl er, et al. St andar ds Track [Page 87]

RFC 3010 NFS version 4 Protocol Decenber 2000

10.

To mitigate the effects of these inconsistencies, and given the
context of typical file systemAPIs, the follow ng rules should be
fol | owed:

0 Cached READDIR information for a directory which is not obtained
in a single READDI R operation nust always be a consi stent snapshot
of directory contents. This is determ ned by using a GETATTR
before the first READDIR and after the |ast of READDI R that
contributes to the cache.

0 An upper tine boundary is nmaintained to indicate the | ength of
time a directory cache entry is considered valid before the client
nmust revalidate the cached information

The revalidation technique parallels that discussed in the case of
name caching. Wen the client is not changing the directory in
question, checking the change attribute of the directory with GETATTR
is adequate. The lifetinme of the cache entry can be extended at

t hese checkpoints. Wen a client is nodifying the directory, the
client needs to use the change_info4 data to deternm ne whether there
are other clients nodifying the directory. |If it is determ ned that
no other client nodifications are occurring, the client may update
its directory cache to reflect its own changes.

As denonstrated previously, directory caching requires that the
client revalidate directory cache data by inspecting the change
attribute of a directory at the point when the directory was cached.
This requires that the server update the change attribute for
directories when the contents of the corresponding directory is
nodified. For a client to use the change_info4 information
appropriately and correctly, the server mnmust report the pre and post
operati on change attribute values atom cally. When the server is
unable to report the before and after values atomcally with respect
to the directory operation, the server nust indicate that fact in the
change_info4 return value. When the information is not atomically
reported, the client should not assune that other clients have not
changed the directory.

M nor Versi oni ng

To address the requirenent of an NFS protocol that can evolve as the
need arises, the NFS version 4 protocol contains the rules and
framework to allow for future m nor changes or versioning.

The base assunption with respect to minor versioning is that any
future accepted mnor version nust follow the | ETF process and be
docunented in a standards track RFC. Therefore, each m nor version
nunber will correspond to an RFC. M nor version zero of the NFS

Shepl er, et al. St andar ds Track [Page 88]

RFC 3010 NFS version 4 Protocol Decenber 2000

version 4 protocol is represented by this RFC. The COVPOUND
procedure will support the encoding of the m nor version being
requested by the client.

The following itens represent the basic rules for the devel opnent of
m nor versions. Note that a future minor version may decide to
nmodi fy or add to the following rules as part of the mnor version
definition.

1 Procedures are not added or del eted

To nmaintain the general RPC nodel, NFS version 4 mnor versions
will not add or delete procedures fromthe NFS program

2 M nor versions nay add operations to the COVMPOUND and
CB_COVPOUND pr ocedur es.

The addition of operations to the COVPOUND and CB_COVPOUND
procedures does not affect the RPC nodel.

2.1 Mnor versions may append attributes to GETATTR4args, bitmap4,
and GETATTR4res.

This allows for the expansion of the attribute nodel to allow
for future growmh or adaptation.

2.2 Mnor version X nust append any new attributes after the |ast
docunented attri bute.

Since attribute results are specified as an opaque array of
per-attri bute XDR encoded results, the conplexity of adding new
attributes in the mdst of the current definitions will be too
bur densone.

3 M nor versions nust not nodify the structure of an existing
operation’s argunents or results.

Again the conplexity of handling multiple structure definitions
for a single operation is too burdensone. New operations shoul d
be added i nstead of nodifying existing structures for a mnor
ver si on.

This rul e does not preclude the follow ng adaptations in a mninor
ver si on.

o0 adding bits to flag fields such as new attributes to
GETATTR s bitmap4 data type

Shepl er, et al. St andar ds Track [Page 89]

RFC 3010

8.2

10

11

12

Shepl er,

NFS version 4 Protocol Decenber 2000

0 adding bits to existing attributes Iike ACLs that have flag
wor ds

o extending enunerated types (including NFS4ERR *) with new
val ues

M nor versions nay not nodify the structure of existing
attributes.

M nor versions nay not del ete operations.

This prevents the potential reuse of a particul ar operation
"slot" in a future mnor version

M nor versions nay not delete attributes.
M nor versions may not delete flag bits or enuneration val ues.

M nor versions nay declare an operation as nandatory to NOT
i mpl erment .

Speci fying an operation as "mandatory to not inplenent” is

equi val ent to obsol eting an operation. For the client, it neans
that the operation should not be sent to the server. For the
server, an NFS error can be returned as opposed to "droppi ng"
the request as an XDR decode error. This approach allows for

t he obsol escence of an operation while maintaining its structure
so that a future mnor version can reintroduce the operation

M nor versions may declare attributes nmandatory to NOT
i mpl erment .

M nor versions may declare flag bits or enuneration val ues as
mandatory to NOT i npl enment .

M nor versions nay downgrade features fromnandatory to
recommended, or reconmended to optional.

M nor versions may upgrade features from optional to recomended
or recomended to nmandatory.

A client and server that support minor version X nust support
m nor versions O (zero) through X-1 as well.

No new features may be introduced as mandatory in a m nor
versi on.

et al. St andar ds Track [Page 90]

RFC 3010 NFS version 4 Protocol Decenber 2000

11.

11.

This rule allows for the introduction of new functionality and
forces the use of inplenentati on experience before designating a
feature as mandatory.

13 A client MUST NOT attenpt to use a stateid, file handle, or
simlar returned object fromthe COVPOUND procedure wth minor
version X for another COVMPOUND procedure with mnor version Y,
where X I=Y.

I nternationalization

The primary issue in which NFS needs to deal with
internationalization, or 118n, is with respect to file nanes and
other strings as used within the protocol. The choice of string
representation nust allow reasonabl e nanme/string access to clients
whi ch use various | anguages. The UTF-8 encodi ng of the UCS as
defined by [1S010646] allows for this type of access and follows the
policy described in "I ETF Policy on Character Sets and Languages",

[RFC2277]. This choice is explained further in the follow ng.

1. Universal Versus Local Character Sets

[RFC1345] describes a table of 16 bit characters for many different

| anguages (the bit encodi ngs match Uni code, though of course RFC1345
is sonewhat out of date with respect to current Uni code assignments).
Each character from each | anguage has a unique 16 bit value in the 16
bit character set. Thus this table can be thought of as a universa
character set. [RFC1345] then tal ks about groupings of subsets of
the entire 16 bit character set into "Charset Tables". For exanple
one might take all the G eek characters fromthe 16 bit table (which
are consecutively allocated), and normalize their offsets to a table
that fits in 7 bits. Thus it is determned that "I ower case al pha"
is in the sane position as "upper case a" in the US-ASCI| table, and
"upper case alpha" is in the sane position as "lower case a" in the
US-ASCI | table.

These nornal i zed subset character sets can be thought of as "loca
character sets", suitable for an operating system | ocal e.

Local character sets are not suitable for the NFS protocol. Consider
someone who creates a file with a name in a Swedish character set.

I f soneone else later goes to access the file with their |ocale set
to the Swedi sh | anguage, then there are no problens. But if someone

in say the US-ASCI| |ocale goes to access the file, the file nane
will look very different, because the Swedi sh characters in the 7 bit
table will now be represented in US-ASCI| characters on the display.

It would be preferable to give the US-ASCI| user a way to display the

Shepler, et al. St andards Track [Page 91]

RFC 3010 NFS version 4 Protocol Decenber 2000

file nanme using Swedish glyphs. In order to do that, the NFS protocol
woul d have to include the locale with the file nane on each operation
to create a file.

But then what of the situation when there is a path name on the
server |iKke:

/ conponent - 1/ conponent - 2/ conponent - 3

Each component coul d have been created with a different locale. |If
one issues CREATE with multi-conponent path nane, and if sone of the
| eadi ng conponents already exist, what is to be done with the

exi sting conmponents? |Is the current locale attribute replaced with
the user’s current one? These types of situations quickly beconme too
conpl ex when there is an alternate sol ution

If the NFS version 4 protocol used a universal 16 bit or 32 bit
character set (or an encoding of a 16 bit or 32 bit character set
into octets), then the server and client need not care if the |ocale
of the user accessing the file is different than the |locale of the
user who created the file. The unique 16 bit or 32 bit encodi ng of
the character allows for determnmi nation of what | anguage the character
is fromand al so howto display that character on the client. The
server need not know what | ocal es are used.

11.2. Overview of Universal Character Set Standards

The previous section nakes a case for using a universal character
set. This section nmakes the case for using UTF-8 as the specific
uni versal character set for the NFS version 4 protocol

[RFC2279] di scusses UTF-* (UTF-8 and ot her UTF- XXX encodi ngs),
Uni code, and UCS-*. There are two standards bodi es nanagi ng
uni versal code sets:

o |ISOIEC which has the standard 10646-1
o Uni code which has the Uni code standard

Bot h standards bodi es have pledged to track each other’s assignnents
of character codes.

The following is a brief analysis of the various standards.
UCSs Uni versal Character Set. This is |ISO|EC 10646-1: "a
mul ti-octet character set called the Universal Character

Set (UCS), which enconpasses nost of the world' s witing
systens. "

Shepler, et al. St andards Track [Page 92]

RFC 3010 NFS version 4 Protocol Decenber 2000

11.

Ucs- 2 a two octet per character encoding that addresses the first
2716 characters of UCS. Currently there are no UCS
characters beyond that range.

UcCs- 4 a four octet per character encoding that pernits the
encodi ng of up to 2731 characters.

UTF UTF is an abbreviation of the term"UCS transformtion
format" and is used in the naming of various standards for
encodi ng of UCS characters as described bel ow.

UTF-1 Only historical interest; it has been renoved from 10646-1
UTF-7 Encodes the entire "repertoire"” of UCS "characters using
only octets with the higher order bit clear". [RFC2152]

descri bes UTF-7. UTF-7 acconplishes this by reserving one
of the 7bit US-ASCI| characters as a "shift" character to
i ndi cate non-US-ASCI| characters.

UTF- 8 Unli ke UTF-7, uses all 8 bits of the octets. US-ASC
characters are encoded as before unchanged. Any octet with
the high bit cleared can only nean a US-ASCI| character.
The high bit set nmeans that a UCS character is being
encoded.

UTF- 16 Encodes UCS-4 characters into UCS-2 characters using a
reserved range in UCS-2.

Uni code Uni code and UCS-2 are the sane; [RFC2279] st ates:

Up to the present time, changes in Unicode and anmendnents
to 1 SO I EC 10646 have tracked each other, so that the
character repertoires and code point assignnents have
remai ned in sync. The relevant standardization commttees
have committed to maintain this very useful synchroni sm

3. Difficulties with UCS-4, UCS-2, Unicode

Adapting existing applications, and file systens to nulti-octet
schenes |ike UCS and Uni code can be difficult. A significant anount
of code has been witten to process streanms of bytes. Also there are
many exi sting stored objects described with 7 bit or 8 bit
characters. Doubling or quadrupling the bandw dth and storage

requi rements seens |ike an expensive way to acconplish |18N

Shepl er, et al. St andar ds Track [Page 93]

RFC 3010 NFS version 4 Protocol Decenber 2000

UCS-2 and Unicode are "only" 16 bits long. That night seemto be
enough but, according to [Unicodel], 49,194 Unicode characters are
al ready assigned. According to [Unicode2] there are still nore

| anguages that need to be added.

11.4. UTF-8 and its sol utions

UTF- 8 sol ves problens for NFS that exist with the use of UCS and

Uni code. UTF-8 will encode 16 bit and 32 bit characters in a way
that will be conpact for npbst users. The encoding table fromUCS-4 to
UTF-8, as copied from[RFC2279]:

UCS-4 range (hex.) UTF- 8 octet sequence (binary)

0000 0000-0000 OO7F OXXXXXXX

0000 0080-0000 O7FF 110XXXXX LOXXXXXX

0000 0800-0000 FFFF 1110XXXX LOXXXXXX L1OXXXXXX

0001 0000-001F FFFF 11110XXX 1OXXXXXX L1OXXXXXX LOXXXXXX

0020 0000- O3FF FFFF 111110XX 1O0XXXXXX LOXXXXXX L1OXXXXXX L1OXXXXXX

0400 0000- 7FFF FFFF 1111110X 1O0XXXXXX LOXXXXXX L1OXXXXXX L1OXXXXXX
TOXXXXXX

See [RFC2279] for precise encoding and decodi ng rul es. Note because
of UTF-16, the algorithmfrom Unicode/UCS-2 to UTF-8 needs to account
for the reserved range between D800 and DFFF.

Note that the 16 bit UCS or Unicode characters require no nore than 3
octets to encode into UTF-8

Interestingly, UTF-8 has roomto handle characters larger than 31
bits, because the |eading octet of form

1111111x

is not defined. If needed, |1SO could either use that octet to

i ndicate a sequence of an encoded 8 octet character, or perhaps use
11111110 to permt the next octet to indicate an even nore expandabl e
character set.

So using UTF-8 to represent character encodi ngs neans never having to
run out of room

11. 5. Nor mal i zat i on

The client and server operating environnents may differ in their
policies and operational nethods with respect to character
normal i zati on (See [Uni codel] for a discussion of nornalization
fornms). This difference may al so exi st between applications on the
sane client. This adds to the difficulty of providing a single

Shepl er, et al. St andar ds Track [Page 94]

RFC 3010 NFS version 4 Protocol Decenber 2000

12.

normal i zation policy for the protocol that allows for maxinmal
interoperability. This issue is simlar to the character case issues
where the server nmay or may not support case insensitive file nane
mat chi ng and may or may not preserve the character case when storing
file nanes. The protocol does not mandate a particul ar behavi or but
allows for the various pernutations.

The NFS version 4 protocol does not mandate the use of a particul ar
normal i zation format this tine. A later revision of this
specification nmay specify a particular normalization form
Therefore, the server and client can expect that they nay receive
unnorrmal i zed characters within protocol requests and responses. |If
t he operating environnent requires normalization, then the

i npl enentati on nmust normalize the various UTF-8 encoded strings
within the protocol before presenting the information to an
application (at the client) or local file system (at the server).

Error Definitions
NFS error nunbers are assigned to failed operations within a conmpound

request. A conpound request contains a nunber of NFS operations that
have their results encoded in sequence in a conpound reply. The

results of successful operations will consist of an NFS4_OK status
foll owed by the encoded results of the operation. |If an NFS
operation fails, an error status will be entered in the reply and the
compound request will be term nated.

A description of each defined error follows:
NFS4 K I ndi cates the operation conpl eted successfully.

NFS4ERR_ACCES Per m ssi on deni ed. The caller does not have the
correct permssion to performthe requested
operation. Contrast this with NFS4ERR_PERM
which restricts itself to owner or privileged
user pernission failures.

NFS4ERR_BADHANDL E Il'legal NFS file handle. The file handle failed
i nternal consistency checks.

NFS4ERR_BADTYPE An attenpt was nade to create an object of a
type not supported by the server

NFS4ERR_BAD_COCKI E READDI R cookie is stale.
NFS4ERR _BAD_SEQ D The sequence nunber in a | ocking request is

nei ther the next expected nunber or the | ast
nunber processed.

Shepl er, et al. St andar ds Track [Page 95]

RFC 3010

NFS4ERR _BAD_STATEI D

NFS4ERR CLI D_I NUSE

NFS4ERR_DELAY

NFS4ERR_DENI ED

NFS4ERR _DQUOT

NFS4ERR_EXI ST

NFS4ERR_EXPI RED

NFS4ERR _FBI G

NFS4ERR_FHEXPI RED

NFS4ERR_GRACE

Shepl er, et al.

NFS version 4 Protocol Decenber 2000

A stateid generated by the current server

i nstance, but which does not designate any

| ocking state (either current or superseded)
for a current | ockowner-file pair, was used.

The SETCLI ENTI D procedure has found that a
client idis already in use by another client.

The server initiated the request, but was not
able to conplete it in a tinely fashion. The
client should wait and then try the request
with a new RPC transaction ID. For exanple
this error should be returned froma server
that supports hierarchical storage and receives
a request to process a file that has been
mgrated. In this case, the server should start
the inmmigration process and respond to client
with this error. This error may al so occur
when a necessary del egation recall makes
processing a request in a tinmely fashion

i npossi bl e.

An attenpt to lock a file is denied. Since
this nmay be a tenporary condition, the client
is encouraged to retry the lock request until
the lock is accepted.

Resource (quota) hard lint exceeded. The
user’'s resource limt on the server has been
exceeded.

File exists. The file specified already exists.

A | ease has expired that is being used in the
current procedure.

File too | arge. The operati on woul d have caused
a file to grow beyond the server’s limt.

The file handle provided is volatile and has
expired at the server.

The server is in its recovery or grace period

whi ch should natch the | ease period of the
server.

St andar ds Track [Page 96]

RFC 3010

NFS4ERR | NVAL

NFS4ERR | O

NFS4ERR | SDI R

NFS4ERR LEASE_MOVED

NFS4ERR_LOCKED

NFS4ERR_LOCK_RANGE

NFS version 4 Protocol Decenber 2000

I nval id argument or unsupported argunment for an
operation. Two exanples are attenpting a
READLI NK on an object other than a synbolic
link or attenpting to SETATTR a tine field on a
server that does not support this operation

/O error. A hard error (for exanple, a disk
error) occurred while processing the requested
operati on.

Is a directory. The caller specified a
directory in a non-directory operation.

A |l ease being renewed is associated with a file
systemthat has been migrated to a new server.

A read or wite operation was attenpted on a
| ocked file.

A lock request is operating on a sub-range of a
current lock for the | ock owner and the server
does not support this type of request.

NFS4ERR_M NOR_VERS_M SMATCH

NFSA4ERR_MLI NK

NFS4ERR_MOVED

NFS4ERR_NAVETOOLONG
NFS4ERR_NODEV

NFS4ERR_NOENT

Shepl er,

et al.

The server has received a request that
speci fi es an unsupported minor version. The
server nust return a COWPOUND4Ares with a zero
| ength operations result array.

Too many hard |inks.

The fil esystem which contains the current
filehandl e object has been rel ocated or
mgrated to another server. The client nay
obtain the new fil esystem | ocation by obtaining
the "fs_locations" attribute for the current
filehandl e. For further discussion, refer to
the section "Filesystem M gration or

Rel ocati on".

The filenane in an operation was too | ong.
No such devi ce.

No such file or directory. The file or
directory nane specified does not exist.

St andar ds Track [Page 97]

RFC 3010

NFS4ERR_NOFI LEHANDLE

NFS4ERR NOSPC

NFS4ERR_NOTDI R

NFS4ERR_NOTEMPTY

NFS4ERR NOTSUPP

NFS4ERR _NOT_SAME

NFS4ERR _NXI O

NFS4ERR_OLD_STATEI D

NFS4ERR_PERM

NFS4ERR _READDI R_NOSPC

NFS4ERR RESOURCE

NFS4ERR ROFS

Shepl er, et al.

NFS version 4 Protocol Decenber 2000

The |l ogical current file handl e value has not
been set properly. This may be a result of a
mal f ormed COMPOUND operation (i.e. no PUTFH or
PUTROOTFH before an operation that requires the
current file handle be set).

No space |left on device. The operation woul d
have caused the server’s file systemto exceed
its limt.

Not a directory. The caller specified a non-
directory in a directory operation.

An attenpt was made to renove a directory that
was not enpty.

Qperation is not supported.

This error is returned by the VERI FY operation
to signify that the attributes conpared were
not the sane as provided in the client’s
request.

/O error. No such device or address.

A stateid which designates the | ocking state
for a lockowner-file at an earlier tinme was
used.

Not owner. The operation was not allowed
because the caller is either not a privileged
user (root) or not the owner of the target of
t he operati on.

The encoded response to a READDI R request
exceeds the size limt set by the initial
request.

For the processing of the COMPOUND procedure,
the server may exhaust avail abl e resources and
can not continue processing procedures wthin
the COVPOUND operation. This error will be
returned fromthe server in those instances of
resource exhaustion related to the processing
of the COVPOUND procedure.

Read-only file system A nodifying operation
was attenpted on a read-only file system

St andar ds Track [Page 98]

RFC 3010 NFS version 4 Protocol Decenber 2000

13.

NFSA4ERR_SAME This error is returned by the NVERI FY operation
to signify that the attributes conpared were
the sanme as provided in the client’s request.

NFS4ERR _SERVERFAULT An error occurred on the server which does not
map to any of the legal NFS version 4 protoco
error values. The client should translate this
into an appropriate error. UNX clients may
choose to translate this to El O

NFS4AERR SHARE DENIED An attenpt to OPEN a file with a share
reservation has fail ed because of a share
conflict.

NFS4ERR_STALE Invalid file handle. The file handle given in
the argunments was invalid. The file referred to
by that file handle no | onger exists or access
to it has been revoked.

NFSAERR _STALE CLIENTID A clientid not recognized by the server was
used in a | ocking or SETCLIENTI D_CONFI RM
request.

NFSAERR _STALE _STATEID A stateid generated by an earlier server
i nstance was used.

NFS4ERR_SYM.I NK The current file handl e provided for a LOOKUP
is not a directory but a synbolic link. Also
used if the final conponent of the OPEN path is
a synbolic link

NFS4ERR_TOOSMALL Buffer or request is too
smal | .
NFS4ERR_WRONGSEC The security nmechani sm being used by the client

for the procedure does not match the server’s
security policy. The client should change the
security mechani sm being used and retry the
operati on.

NFS4ERR_XDEV Attenpt to do a cross-device hard link

NFS Version 4 Requests
For the NFS version 4 RPC program there are two traditional RPC
procedures: NULL and COVWOUND. All other functionality is defined as

a set of operations and these operations are defined in norna
XDR/ RPC syntax and semantics. However, these operations are

Shepl er, et al. St andar ds Track [Page 99]

RFC 3010 NFS version 4 Protocol Decenber 2000

13.

13.

encapsul ated within the COVMWOUND procedure. This requires that the
client conbine one or nore of the NFS version 4 operations into a
singl e request.

The NFS4_CALLBACK programis used to provide server to client
signaling and is constructed in a simlar fashion as the NFS version
4 program The procedures CB_NULL and CB_COVPOUND are defined in the
sane way as NULL and COMPOUND are within the NFS program The
CB_COVWPOUND request al so encapsul ates the renmai ni ng operations of the
NFS4_CALLBACK program There is no predefined RPC program nunber for
the NFS4_CALLBACK program It is up to the client to specify a
program nunber in the "transient"” programrange. The program and
port nunber of the NFS4_CALLBACK program are provi ded by the client
as part of the SETCLI ENTID operation and therefore is fixed for the
life of the client instantiation.

1. Conpound Procedure

The COVPOUND procedure provides the opportunity for better
performance within high |atency networks. The client can avoid

cunul ative latency of nultiple RPCs by conbining nultiple dependent
operations into a single COMPOUND procedure. A conpound operation
may provide for protocol sinplification by allowing the client to
conbi ne basic procedures into a single request that is custom zed for
the client’s environnent.

The CB_COVPOUND procedure precisely parallels the features of
COVMPOUND as descri bed above.

The basics of the COVMPOUND procedures construction is:

2. Evaluation of a Conmpound Request

The server will process the COVPOUND procedure by eval uating each of
the operations within the COMPOUND procedure in order. Each
conmponent operation consists of a 32 bit operation code, followed by
the argument of length determ ned by the type of operation. The
results of each operation are encoded in sequence into a reply

Shepl er, et al. St andar ds Track [Page 100]

RFC 3010 NFS version 4 Protocol Decenber 2000

13.

buffer. The results of each operation are preceded by the opcode and

a status code (nornally zero). |If an operation results in a non-zero
status code, the status will be encoded and eval uati on of the
compound sequence will halt and the reply will be returned. Note

that eval uati on stops even in the event of "non error"” conditions
such as NFS4AERR_SAME

There are no atomicity requirenents for the operations contained
within the COVWOUND procedure. The operations being eval uated as
part of a COVPOUND request nay be eval uated sinultaneously w th other
COVPOUND requests that the server receives.

It is the client’s responsibility for recovering fromany partially
conpl eted COVPOUND procedure. Partially conpleted COMPOUND
procedures may occur at any point due to errors such as
NFS4ERR_RESOURCE and NFSAERR _LONG DELAY. This may occur even given
an otherw se valid operation string. Further, a server reboot which
occurs in the niddle of processing a CO/POUND procedure may | eave the
client with the difficult task of determ ning how far COVPOUND
processi ng has proceeded. Therefore, the client should avoid overly
conpl ex COVPOUND procedures in the event of the failure of an
operation within the procedure.

Each operation assunes a "current" and "saved" filehandle that is
avail abl e as part of the execution context of the conpound request.
Operations may set, change, or return the current filehandle. The
"saved" filehandle is used for tenporary storage of a fil ehandle
val ue and as operands for the RENAME and LI NK operations.

3. Synchronous Mdifying Operations

NFS version 4 operations that nodify the file system are synchronous.
When an operation is successfully conpleted at the server, the client
can depend that any data associated with the request is now on stable
storage (the one exception is in the case of the file data in a WRITE
operation with the UNSTABLE option specified).

This inplies that any previous operations within the same conmpound
request are also reflected in stable storage. This behavior enables
the client’s ability to recover froma partially executed conpound
request which may resulted fromthe failure of the server. For
exanple, if a conpound request contains operations A and B and the
server is unable to send a response to the client, depending on the
progress the server made in servicing the request the result of both
operations may be reflected in stable storage or just operation A may
be reflected. The server nust not have just the results of operation
B in stabl e storage.

Shepler, et al. St andards Track [Page 101]

RFC 3010 NFS version 4 Protocol Decenber 2000

13.

14.

14.

14.

4. Operation Val ues
The operations encoded in the COVPOUND procedure are identified by
operation values. To avoid overlap with the RPC procedure nunbers,
operations O (zero) and 1 are not defined. Operation 2 is not
defined but reserved for future use with m nor versioning.

NFS Version 4 Procedures
1. Procedure 0: NULL - No Operation
SYNOPSI S

<nul | >

ARGUVENT

voi d;

RESULT
voi d;

DESCRI PTI ON
St andard NULL procedure. Void argunent, void response. This
procedure has no functionality associated with it. Because of
this it is sonetines used to neasure the overhead of processing a
service request. Therefore, the server should ensure that no
unnecessary work is done in servicing this procedure.

ERRORS
None.

2. Procedure 1. COVPOUND - Compound Operations

SYNOPSI S
compoundar gs -> conpoundres

ARGUVENT

uni on nfs_argop4 switch (nfs_opnumd argop) {
case <OPCODE>: <argunent >

H

Shepler, et al. St andards Track [Page 102]

RFC 3010 NFS version 4 Protocol Decenber 2000

struct COVPOUND4ar gs {

utf8string t ag;
uint 32_t m nor ver si on
nfs_argop4 argarray<>
1
RESULT
uni on nfs_resop4 switch (nfs_opnumt resop){
case <OPCODE>: <result>;
1
struct COVPOUND4res {
nfsstat4 st at us;
utf8string t ag;
nfs_resop4 resarray<>,
1
DESCRI PTI ON

The COVMPOUND procedure is used to conbine one or nmore of the NFS
operations into a single RPC request. The main NFS RPC program
has two main procedures: NULL and COMPOUND. All other operations
use the COVPOUND procedure as a w apper.

The COVPOUND procedure is used to conbine individual operations
into a single RPC request. The server interprets each of the
operations in turn. |If an operation is executed by the server and
the status of that operation is NFS4_OK, then the next operation
in the COWOUND procedure is executed. The server continues this
process until there are no nore operations to be executed or one
of the operations has a status val ue other than NFS4_CK

In the processing of the COVWOUND procedure, the server may find
that it does not have the avail able resources to execute any or
all of the operations within the CO/POUND sequence. In this case,
the error NFSAERR RESOURCE wi |l be returned for the particul ar
operation within the COMWPOUND procedure where the resource
exhaustion occurred. This assunes that all previous operations
within the COMPOUND sequence have been eval uated successfully.

The results for all of the eval uated operations nmust be returned
to the client.

The COMPOUND ar gurments contain a "mnorversion" field. The
initial and default value for this field is O (zero). This field
will be used by future mnor versions such that the client can
communi cate to the server what mnor version is being requested.

Shepl er, et al. St andar ds Track [Page 103]

RFC 3010 NFS version 4 Protocol Decenber 2000

If the server receives a COVWOUND procedure with a ninorversion
field value that it does not support, the server MJST return an
error of NFS4ERR_M NOR_VERS M SMATCH and a zero |ength resultdata
array.

Contained within the COWOUND results is a "status" field. |If the
results array length is non-zero, this status nust be equival ent
to the status of the last operation that was executed within the
COVPOUND procedure. Therefore, if an operation incurred an error
then the "status" value will be the sane error value as is being
returned for the operation that failed.

Note that operations, O (zero) and 1 (one) are not defined for the
COVMPOUND procedure. |If the server receives an operation array
with either of these included, an error of NFS4ERR NOTSUPP rust be
returned. Operation 2 is not defined but reserved for future
definition and use with minor versioning. |If the server receives
a operation array that contains operation 2 and the m norversion
field has a value of 0 (zero), an error of NFS4ERR NOTSUPP is
returned. |If an operation array contains an operation 2 and the
m norversion field is non-zero and the server does not support the
m nor version, the server returns an error of

NFSAERR_M NOR_VERS M SMATCH. Therefore, the

NFS4ERR_M NOR_VERS_M SMATCH error takes precedence over all other
errors.

| MPLEMENTATI ON

Note that the definition of the "tag" in both the request and
response are left to the inplenmentor. It nay be used to sunmarize
the content of the conpound request for the benefit of packet
sniffers and engi neers debuggi ng i npl ementati ons.

Since an error of any type nmay occur after only a portion of the
operati ons have been evaluated, the client nust be prepared to
recover fromany failure. |f the source of an NFS4AERR_RESOURCE
error was a conplex or lengthy set of operations, it is likely
that if the nunber of operations were reduced the server woul d be
abl e to evaluate them successfully. Therefore, the client is
responsi ble for dealing with this type of conplexity in recovery.

ERRORS

Al errors defined in the protocol

Shepl er, et al. St andar ds Track [Page 104]

RFC 3010 NFS version 4 Protocol Decenber 2000

14.2.1. Operation 3: ACCESS - Check Access Rights
SYNOPSI S

(cfh), accessreq -> supported, accessrights

ARGUVENT
const ACCESS4_READ = 0x00000001
const ACCESS4_LOOKUP = 0x00000002;
const ACCESS4_MODI FY = 0x00000004;
const ACCESS4 EXTEND = 0x00000008;
const ACCESS4 DELETE = 0x00000010;
const ACCESS4 _EXECUTE = 0x00000020;

struct ACCESS4args {
/* CURRENT_FH:. object */

uint32_t access;
1
RESULT
struct ACCESS4resok {
uint32_t support ed;
uint32_t access;

b

uni on ACCESS4res switch (nfsstat4 status) {
case NFS4_ XK

ACCESS4r esok r esok4;
defaul t:

i
DESCRI PTI ON

voi d;

ACCESS determ nes the access rights that a user, as identified by
the credentials in the RPC request, has with respect to the file
system obj ect specified by the current filehandle. The client
encodes the set of access rights that are to be checked in the bit
mask "access". The server checks the perm ssions encoded in the
bit nmask. |If a status of NFS4_OK is returned, two bit nasks are
included in the response. The first, "supported", represents the
access rights for which the server can verify reliably. The
second, "access", represents the access rights available to the
user for the filehandl e provided. On success, the current
filehandl e retains its val ue.

Shepl er, et al. St andar ds Track [Page 105]

RFC 3010

NFS version 4 Protocol Decenber 2000

Note that the supported field will contain only as nany val ues as
was originally sent in the argunments. For exanple, if the client
sends an ACCESS operation with only the ACCESS4 READ val ue set and
the server supports this value, the server will return only

ACCESS4_READ

even if it could have reliably checked other val ues.

The results of this operation are necessarily advisory in nature.
A return status of NFS4_OK and the appropriate bit set in the bit

mask does not
syst em obj ect

i mply that such access will be allowed to the file
in the future. This is because access rights can be

revoked by the server at any tine.

The followi ng access perm ssions nay be request ed:

ACCESS4_READ

ACCESS4_LOOKUP

ACCESS4_MODI FY

ACCESS4_EXTEND

ACCESS4_DELETE

ACCESS4_EXECUTE
On success, the

| MPLEMENTATI ON

Read data fromfile or read a directory.

Look up a nane in a directory (no nmeaning for non-
directory objects).

Rewite existing file data or nodify existing
directory entries.

Wite new data or add directory entries.

Del ete an existing directory entry (no neaning for
non-di rectory objects).

Execute file (no neaning for a directory).

current filehandle retains its val ue.

For the NFS version 4 protocol, the use of the ACCESS procedure

when openi ng

I n gener al

aregular file is deprecated in favor of using OPEN

it is not sufficient for the client to attenpt to

deduce access permi ssions by inspecting the uid, gid, and node
fields in the file attributes or by attenpting to interpret the
contents of the ACL attribute. This is because the server may
performuid or gid mapping or enforce additional access contro

restrictions.

It is also possible that the server may not be in

the sanme ID space as the client. In these cases (and perhaps

ot hers), the
only current

Shepl er, et al.

client can not reliably performan access check with
file attributes.

St andar ds Track [Page 106]

RFC 3010 NFS version 4 Protocol Decenber 2000

In the NFS version 2 protocol, the only reliable way to determine
whet her an operation was allowed was to try it and see if it
succeeded or failed. Using the ACCESS procedure in the NFS
version 4 protocol, the client can ask the server to indicate
whet her or not one or nore classes of operations are pernitted.
The ACCESS operation is provided to allow clients to check before
doing a series of operations which will result in an access
failure. The OPEN operation provides a point where the server can
verify access to the file object and nethod to return that
information to the client. The ACCESS operation is still useful
for directory operations or for use in the case the UNI X AP
"access" is used on the client.

The information returned by the server in response to an ACCESS
call is not permanent. |t was correct at the exact tine that the
server perforned the checks, but not necessarily afterwards. The
server can revoke access perm ssion at any tine.

The client should use the effective credentials of the user to
build the authentication information in the ACCESS request used to
determ ne access rights. It is the effective user and group
credentials that are used in subsequent read and wite operations.

Many i npl ementations do not directly support the ACCESS4_ DELETE

perm ssion. QOperating systens like UNIX will ignore the
ACCESS4 _DELETE bit if set on an access request on a non-directory
object. In these systens, delete permission on a file is

determ ned by the access permi ssions on the directory in which the
file resides, instead of being determ ned by the pernissions of
the file itself. Therefore, the mask returned enunerati ng which
access rights can be determ ned will have the ACCESS4_DELETE val ue
set to 0. This indicates to the client that the server was unable
to check that particular access right. The ACCESS4_DELETE bit in
the access mask returned will then be ignored by the client.

ERRORS

NFS4ERR ACCES
NFS4ERR_BADHANDLE
NFS4ERR_DELAY
NFS4ERR_FHEXP| RED
NFS4ERR | O
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_WRONGSEC

Shepl er, et al. St andar ds Track [Page 107]

RFC 3010 NFS version 4 Protocol Decenber 2000

14.2.2. Operation 4: CLOSE - Close File
SYNOPSI S

(cfh), seqgid, stateid -> stateid
ARGUMENT

struct CLOSE4args {
/* CURRENT_FH:. object */
seqi d4 seqid
statei d4 st at ei d;

i
RESULT

uni on CLOSE4res switch (nfsstat4 status) {
case NFS4_ XK
st at ei d4 st at ei d;
defaul t:
voi d;
1

DESCRI PTI ON

The CLOSE operation rel eases share reservations for the file as
specified by the current filehandle. The share reservations and
other state information released at the server as a result of this
CLCSE is only associated with the supplied stateid. The sequence
id provides for the correct ordering. State associated w th other
OPENs is not affected.

If record locks are held, the client SHOULD rel ease all |ocks
before issuing a CLOSE. The server MAY free all outstanding | ocks
on CLOSE but some servers may not support the CLOSE of a file that
still has record locks held. The server MJUST return failure if
any | ocks woul d exist after the CLCSE.

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON
ERRORS
NFS4ERR_BADHANDLE
NFS4ERR_BAD SEQ D

NFS4ERR _BAD_STATEI D
NFS4ERR_DELAY

Shepl er, et al. St andar ds Track [Page 108]

RFC 3010 NFS version 4 Protocol Decenber 2000

NFS4ERR_EXP| RED
NFS4ERR_FHEXP| RED
NFS4ERR_GRACE
NFS4ERR_| NVAL
NFS4ERR | SDI R
NFS4ERR_LEASE_MOVED
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_OLD_STATEI D
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_STALE_STATEI D

14.2.3. Operation 50 COMT - Commit Cached Data
SYNOPSI S
(cfh), offset, count -> verifier
ARGUMENT

struct COW T4args {
/* CURRENT_FH file */
of fset4 of f set;
count 4 count;

i
RESULT

struct COW T4resok {
verifier4d witeverf;
}

uni on COW T4res switch (nfsstat4 status) {
case NF4_OK

COWM T4r esok r esok4;
defaul t:

i
DESCRI PTI ON

voi d;

The COM T operation forces or flushes data to stable storage for
the file specified by the current file handle. The flushed data
is that which was previously witten with a WRI TE operati on which
had the stable field set to UNSTABLEA4.

Shepl er, et al. St andar ds Track [Page 109]

RFC 3010 NFS version 4 Protocol Decenber 2000

The of fset specifies the position within the file where the flush
is to begin. An offset value of 0 (zero) neans to flush data
starting at the beginning of the file. The count specifies the
nunber of bytes of data to flush. |If count is O (zero), a flush
fromoffset to the end of the file is done.

The server returns a wite verifier upon successful conpletion of
the COM T. The wite verifier is used by the client to deternine
if the server has restarted or rebooted between the initial

WRI TE(s) and the COM T. The client does this by conparing the
wite verifier returned fromthe initial wites and the verifier
returned by the COWM T procedure. The server nust vary the val ue
of the wite verifier at each server event or instantiation that
may lead to a |l oss of unconmitted data. Most comonly this occurs
when the server is rebooted; however, other events at the server
may result in uncomitted data | oss as well.

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON

The COW T procedure is simlar in operation and semantics to the
POSI X fsync(2) systemcall that synchronizes a file's state with
the disk (file data and netadata is flushed to disk or stable
storage). COMT perfornms the sane operation for a client,
flushing any unsynchroni zed data and netadata on the server to the
server’s disk or stable storage for the specified file. Like
fsync(2), it may be that there is sonme nodified data or no

nodi fied data to synchronize. The data nmay have been synchronized
by the server’s normal periodic buffer synchronization activity.
COM T should return NFS4_CK, unless there has been an unexpected
error.

COMT differs fromfsync(2) in that it is possible for the client
to flush a range of the file (nost likely triggered by a buffer-
recl amati on schene on the client before file has been completely
witten).

The server inplenentation of COMT is reasonably sinple. |[If the
server receives a full file COM T request, that is starting at
offset 0 and count O, it should do the equivalent of fsync()'ing
the file. Qherwise, it should arrange to have the cached data in
the range specified by offset and count to be flushed to stable
storage. In both cases, any netadata associated with the file
nmust be flushed to stable storage before returning. It is not an
error for there to be nothing to flush on the server. This means
that the data and netadata that needed to be flushed have already
been flushed or lost during the | ast server failure.

Shepl er, et al. St andar ds Track [Page 110]

RFC 3010 NFS version 4 Protocol Decenber 2000

The client inplenentation of COMT is a little nore conpl ex.
There are two reasons for wanting to conmit a client buffer to
stable storage. The first is that the client wants to reuse a
buffer. In this case, the offset and count of the buffer are sent
to the server in the COWM T request. The server then flushes any
cached data based on the offset and count, and flushes any

nmet adat a associated with the file. It then returns the status of
the flush and the wite verifier. The other reason for the client
to generate a COM T is for a full file flush, such as may be done
at close. In this case, the client would gather all of the
buffers for this file that contain uncommtted data, do the COWM T
operation with an offset of 0 and count of 0, and then free all of
those buffers. Any other dirty buffers would be sent to the
server in the normal fashion

After a buffer is witten by the client with the stable paraneter
set to UNSTABLE4, the buffer nust be considered as nodified by the
client until the buffer has either been flushed via a COWM T
operation or witten via a WRI TE operation with stable paraneter
set to FILE SYNC4 or DATA SYNCA. This is done to prevent the
buffer from being freed and reused before the data can be flushed
to stable storage on the server

When a response is returned fromeither a WRITE or a COWM T
operation and it contains a wite verifier that is different than
previously returned by the server, the client will need to
retransmit all of the buffers containing unconmtted cached data
to the server. Howthis is to be done is up to the inplenentor
If there is only one buffer of interest, then it should probably
be sent back over in a WRITE request with the appropriate stable
parameter. |If there is nore than one buffer, it mght be
worthwhile retransmtting all of the buffers in WRI TE requests
with the stable paraneter set to UNSTABLE4 and then retransmtting
the COWM T operation to flush all of the data on the server to
stable storage. The timing of these retransmissions is left to
the i npl enentor.

The above description applies to page-cache-based systens as well

as buffer-cache-based systens. |n those systens, the virtua
nmenory systemwill need to be nodified instead of the buffer
cache.

ERRORS

NFS4ERR ACCES
NFS4ERR_BADHANDLE
NFS4ERR_FHEXP| RED
NFS4ERR | O

Shepler, et al. St andards Track [Page 111]

RFC 3010

NFS4ERR | SDI R
NFS4ERR_LOCKED
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_RESOURCE
NFS4ERR_ROFS
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_WRONGSEC

14.2.4. Operation 6: CREATE -

SYNOPSI S

NFS version 4 Protocol

Create a Non-Regular File bject

(cfh), name, type -> (cfh), change_info

ARGUVENT

uni on createtyped4 switch (nfs_ftyped type) {

case NF4LNK:
| i nkt ext 4
case NF4BLK:
case NF4CHR:
specdat a4
case NF4SQOCK
case NF4FI FO
case NF4D R
voi d;
}

struct CREATE4args {

/* CURRENT_FH:

component 4
createtyped

i
RESULT

struct CREATE4resok {
change_i nf 04
3

| i nkdat a;

devdat a;

directory for creation */
obj nane;
obj type

ci nf o;

uni on CREATE4res switch (nfsstat4 status) {

case NFS4_ XK

CREATEA4r esok resok4;

defaul t:

b

voi d;

Shepl er, et al.

St andards Track

Decenber

2000

[Page 112]

RFC 3010 NFS version 4 Protocol Decenber 2000

DESCRI PTI ON

The CREATE operation creates a non-regular file object in a
directory with a given nane. The OPEN procedure MJST be used to
create a regular file.

The obj nanme specifies the name for the new object. |If the objnane
has a length of 0 (zero), the error NFS4ERR I NVAL will be
returned. The objtype determines the type of object to be
created: directory, symink, etc.

If an object of the same nanme already exists in the directory, the
server will return the error NFS4ERR_EXI ST.

For the directory where the new fil e object was created, the
server returns change_info4 information in cinfo. Wth the atomc
field of the change_info4 struct, the server will indicate if the
before and after change attributes were obtained atomcally with
respect to the file object creation.

If the objnanme has a length of 0 (zero), or if objname does not
obey the UTF-8 definition, the error NFS4ERR INVAL wi || be
r et ur ned.

The current filehandle is replaced by that of the new object.
| MPLEMENTATI ON

If the client desires to set attribute values after the create, a
SETATTR operation can be added to the COVPOUND request so that the
appropriate attributes will be set.

ERRORS

NFS4ERR ACCES
NFS4ERR_BADHANDLE
NFS4ERR_BADTYPE
NFS4ERR_DQUOT
NFS4ERR_EXI ST
NFS4ERR_FHEXP| RED
NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR_MOVED
NFS4ERR_NAVETOOLONG
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOSPC
NFS4ERR_NOTDI R
NFS4ERR_NOTSUPP

Shepl er, et al. St andar ds Track [Page 113]

RFC 3010 NFS version 4 Protocol Decenber 2000

NFS4ERR RESOURCE
NFS4ERR_ROFS
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_WRONGSEC

14.2.5. Qperation 7: DELEGPURGE - Purge Del egations Awaiting Recovery
SYNOPSI S

clientid ->

ARGUVENT
struct DELEGPURCE4args {
clientid4 clientid;
H
RESULT
struct DELEGPURCE4res {
nfsstat4 st at us;
b
DESCRI PTI ON

Purges all of the delegations awaiting recovery for a given
client. This is useful for clients which do not commt del egation
information to stable storage to indicate that conflicting
requests need not be del ayed by the server awaiting recovery of

del egation infornmation

This operation should be used by clients that record del egation
i nformati on on stable storage on the client. In this case,
DELEGPURCE shoul d be issued inmedi ately after doing del egation
recovery on all delegations knowto the client. Doing so wll
notify the server that no additional delegations for the client
will be recovered allowing it to free resources, and avoid

del ayi ng other clients who nake requests that conflict with the
unrecovered del egations. The set of del egations known to the
server and the client may be different. The reason for this is
that a client may fail after making a request which resulted in
del egation but before it received the results and comiitted them
to the client’s stable storage.

ERRORS

NFS4ERR RESOURCE

Shepler, et al. St andards Track [Page 114]

RFC 3010 NFS version 4 Protocol Decenber 2000
NFS4ERR_SERVERFAULT
NFS4ERR_STALE CLI ENTI D
14.2.6. Operation 8: DELEGRETURN - Return Del egation
SYNOPSI S

stateid ->

ARGUVENT
struct DELEGRETURN4args {
statei d4 st at ei d;
b
RESULT
struct DELEGRETURMN4res ({
nfsstat4 st at us;
b
DESCRI PTI ON

Returns the del egation represented by the given stateid.
ERRORS
NFS4ERR _BAD_STATEI D
NFSAERR_OLD_STATEI D
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFSA4ERR_STALE STATEI D
14.2.7. Operation 9: CETATTR - Get Attributes
SYNOPSI S
(cfh), attrbits -> attrbits, attrvals
ARGUMENT
struct GETATTR4args {
/* CURRENT_FH. directory or file */
bi t map4 attr_request;

i
RESULT

Shepl er, et al. St andar ds Track [Page 115]

RFC 3010 NFS version 4 Protocol Decenber 2000

struct GETATTR4resok {
fattr4 obj _attributes;
1

uni on GETATTR4res switch (nfsstat4 status) {
case NFS4_ XK
CETATTRA4r esok resok4;
defaul t:
voi d;
1

DESCRI PTI ON

The GETATTR operation will obtain attributes for the file system
obj ect specified by the current filehandle. The client sets a bit
in the bitmap argument for each attribute value that it would |ike
the server to return. The server returns an attribute bitnap that
indicates the attribute values for which it was able to return,
foll owed by the attribute values ordered | owest attribute nunber
first.

The server nust return a value for each attribute that the client
requests if the attribute is supported by the server. |If the
server does not support an attribute or cannot approxinmate a
useful value then it nust not return the attribute val ue and nust
not set the attribute bit in the result bitmap. The server mnust
return an error if it supports an attribute but cannot obtain its
value. In that case no attribute values will be returned.

Al servers nust support the mandatory attributes as specified in
the section "File Attributes".

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON
ERRCRS

NFS4ERR ACCES
NFS4ERR_BADHANDLE
NFS4ERR_DELAY
NFS4ERR_FHEXP| RED
NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT

Shepl er, et al. St andar ds Track [Page 116]

RFC 3010 NFS version 4 Protocol Decenber 2000
NFSA4ERR_STALE
NFS4ERR_WRONGSEC
14.2.8. Operation 10: GETFH - CGet Current Filehandl e
SYNOPSI S
(cfh) -> filehandle
ARGUMENT

/* CURRENT_FH. */
voi d;

RESULT

struct GETFH4resok {
nfs_fh4 obj ect;
3

uni on GETFH4res switch (nfsstat4 status) {
case NFS4_ XK
GETFH4r esok r esok4;
defaul t:
voi d;
1

DESCRI PTI ON
This operation returns the current filehandl e val ue.
On success, the current filehandle retains its val ue.
| MPLEMENTATI ON
Operations that change the current filehandle Iike LOOKUP or
CREATE do not automatically return the new filehandle as a result.
For instance, if a client needs to | ookup a directory entry and
obtain its filehandl e then the follow ng request is needed.
PUTFH (directory filehandle)
LOOKUP (entry narme)
GETFH
ERRORS

NFS4AERR_BADHANDLE
NFSAERR_FHEXPI RED

Shepler, et al. St andards Track [Page 117]

RFC 3010 NFS version 4 Protocol Decenber

NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_WRONGSEC

14.2.9. Operation 11: LINK - Create Link to a File
SYNOPSI S
(sfh), (cfh), newnane -> (cfh), change_info
ARGUMENT
struct LI NK4args {

/* SAVED FH:. source object */
/* CURRENT_FH. target directory */

conponent 4 newnane;
1
RESULT
struct LI NK4resok {
change_i nf 04 ci nf o;
1
union LINK4res switch (nfsstat4 status) {
case NFS4_ XK
LI NK4r esok resok4;
defaul t:
voi d;
1
DESCRI PTI ON

The LINK operation creates an additional newnanme for the file
represented by the saved fil ehandl e, as set by the SAVEFH

2000

operation, in the directory represented by the current fil ehandle.

The existing file and the target directory nust reside wthin
same file systemon the server. On success, the current
filehandle will continue to be the target directory.

For the target directory, the server returns change_info4

t he

information in cinfo. Wth the atomic field of the change_info4
struct, the server will indicate if the before and after change

attributes were obtained atomically with respect to the link
creation.

Shepl er, et al. St andar ds Track [Page

118]

RFC 3010 NFS version 4 Protocol Decenber 2000

If the newnane has a length of 0 (zero), or if newnane does not
obey the UTF-8 definition, the error NFS4ERR_INVAL wi || be
r et ur ned.

| MPLEMENTATI ON

Changes to any property of the "hard" linked files are reflected
inall of the linked files. Wen alink is nmade to a file, the
attributes for the file should have a value for numMinks that is
one greater than the value before the LINK operation

The comments under RENAME regardi ng object and target residing on
the same file systemapply here as well. The conments regarding
the target nane applies as well.

Note that synbolic links are created with the CREATE operation
ERRORS

NFSAERR_ACCES NFS4ERR_BADHANDLE NFS4ERR _DELAY NFS4ERR_DQUOT
NFSAERR_EXI ST NFS4ERR_FHEXPI RED NFS4ERR | NVAL NFS4ERR | O
NFSAERR | SDI R NFS4ERR_M_I NK NFS4ERR_MOVED NFS4ERR_NAMETOOLONG
NFSAERR_NOFI LEHANDLE NFS4ERR_NOSPC NFS4ERR_NOTDI R NFS4ERR_NOTSUPP
NFSAERR _RESOURCE NFSAERR _ROFS NFS4ERR_SERVERFAULT NFS4ERR_STALE
NFSAERR_VWRONGSEC NFS4ERR_XDEV

14.2.10. Operation 12: LOCK - Create Lock

SYNOPSI S
(cfh) type, seqid, reclaim stateid, offset, length -> stateid,
access
ARGUMENT
enum nfs4_| ock_type {
READ LT =1,
WRI TE_LT = 2,
READW LT = 3, /* blocking read */
WRI TEW LT =4 /* blocking wite */ };

struct LOCK4args {
[* CURRENT_FH. file */
nfs | ock_type4 |ocktype;

seqi d4 seqi d;
bool reclaim
st at ei d4 stateid;
of fset4 of f set;

Shepl er, et al. St andar ds Track [Page 119]

RFC 3010 NFS version 4 Protocol Decenber 2000

| engt h4 l ength; };
RESULT

struct LOCK4deni ed {
nfs_| ockowner4 owner;
of fset4 of f set;
| engt h4 l ength; };

uni on LOCK4res switch (nfsstat4 status) {
case NFS4_ XK
statei d4 st at ei d;
case NFS4ERR _DEN ED
LOCK4deni ed deni ed;
defaul t:
voi d; };

DESCRI PTI ON

The LOCK operation requests a record |ock for the byte range
specified by the offset and | ength paraneters. The lock type is
al so specified to be one of the nfs4 lock types. |If thisis a
reclai mrequest, the reclaimparanmeter will be TRUE

Bytes in a file may be | ocked even if those bytes are not
currently allocated to the file. To lock the file froma specific
of fset through the end-of-file (no matter how long the file
actually is) use a length field with all bits set to 1 (one). To
lock the entire file, use an offset of O (zero) and a length with
all bits set to 1. A length of 0 is reserved and should not be
used.

In the case that the lock is denied, the owner, offset, and |length
of a conflicting | ock are returned.

On success, the current filehandle retains its val ue.

| MPLEMENTATI ON
If the server is unable to determ ne the exact offset and | ength
of the conflicting |ock, the sane offset and length that were
provided in the argunments should be returned in the denied
results. The File Locking section contains a full description of
this and the other file | ocking operations.

ERRORS

NFSAERR_ACCES NFS4ERR_BADHANDLE NFS4AERR _BAD SEQ D

Shepl er, et al. St andar ds Track [Page 120]

RFC 3010 NFS version 4 Protocol Decenber 2000

NFSAERR _BAD STATEI D NFS4ERR _DELAY NFSAERR _DENI ED NFS4AERR_EXPI RED
NFSAERR_FHEXPI RED NFS4ERR_GRACE NFS4ERR | NVAL NFS4ERR | SDI R
NFSAERR_LEASE_MOVED NFS4ERR _LOCK_RANGE NFS4ERR_MOVED
NFSAERR_NOFI LEHANDLE NFSAERR _OLD STATEI D NFS4ERR _RESOURCE
NFSAERR_SERVERFAULT NFS4ERR _STALE NFSAERR _STALE_CLI ENTI D
NFSAERR_STALE_STATEI D NFS4ERR_WRONGSEC

14.2.11. Operation 13: LOCKT - Test For Lock
SYNOPSI S

(cfh) type, owner, offset, length -> {void, NFS4ERR _DEN ED - >
owner }

ARGUVENT

struct LOCKT4args {
/* CURRENT_FH file */
nfs | ock_type4 |ocktype;
nfs_| ockowner4 owner;
of fset 4 of f set;
| engt h4 l ength; };

RESULT

uni on LOCKT4res switch (nfsstat4 status) {
case NFS4ERR _DEN ED
LOCK4deni ed deni ed;
case NFS4_ XK
voi d;
def aul t:
void; };
DESCRI PTI ON
The LOCKT operation tests the lock as specified in the argunents.
If a conflicting |ock exists, the owner, offset, and | ength of the
conflicting lock are returned; if no lock is held, nothing other
than NFS4_CK is returned.
On success, the current filehandle retains its val ue.
| MPLEMENTATI ON
If the server is unable to deternine the exact offset and | ength

of the conflicting |ock, the sane offset and length that were
provided in the argunents should be returned in the denied

Shepler, et al. St andards Track [Page 121]

RFC 3010 NFS version 4 Protocol Decenber 2000

results. The File Locking section contains further discussion of
the file | ocking mechani sns.

LOCKT uses nfs_| ockowner4 instead of a stateid4, as LOCK does, to
identify the owner so that the client does not have to open the
file to test for the existence of a |ock

ERRORS

NFS4ERR_ACCES
NFS4ERR_BADHANDLE
NFS4ERR_DELAY
NFS4ERR_DENI ED
NFS4ERR_FHEXP| RED
NFS4ERR_GRACE
NFS4ERR_| NVAL
NFS4ERR | SDI R
NFS4ERR_LEASE_MOVED
NFS4ERR_LOCK_RANGE
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_STALE_CLI ENTI D
NFS4ERR_WRONGSEC

14.2.12. Operation 14: LOCKU - Unlock File
SYNOPSI S
(cfh) type, seqid, stateid, offset, length -> stateid
ARGUMENT
struct LOCKWargs {

[* CURRENT_FH. file */
nfs | ock_type4 |ocktype;

seqi d4 seqi d;
st at ei d4 stateid;
of fset4 of f set;
| engt h4 | engt h;
H
RESULT

uni on LOCKU4res switch (nfsstat4 status) {
case NFS4_OK:

Shepler, et al. St andards Track [Page 122]

RFC 3010 NFS version 4 Protoco
statei d4 stateid;
def aul t:
voi d;
}s
DESCRI PTI ON

Decenber 2000

The LOCKU operation unlocks the record | ock specified by the

par aneters
On success,
| MPLEMENTATI ON

The File Locking section contains a full
the other file | ocking procedures.

ERRORS

NFS4ERR_ACCES
NFS4ERR_BADHANDLE
NFS4ERR_BAD_SEQ D
NFS4ERR_BAD_STATEI D
NFS4ERR_EXPI RED
NFS4ERR_FHEXP| RED
NFS4ERR_GRACE
NFS4ERR_| NVAL
NFS4ERR_LOCK_RANGE
NFS4ERR_LEASE_MOVED
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_OLD_STATEI D
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_STALE_CLI ENTI D
NFS4ERR_STALE_STATEI D

the current filehandle retains its val ue.

description of this and

14.2.13. Operation 15: LOOKUP - Lookup Fil enane
SYNOPSI S
(cfh), filenames -> (cfh)
ARGUMENT

struct LOOKUP4args {
/* CURRENT_FH:. directory */

Shepl er, et al. St andar ds Track

[Page 123]

RFC 3010 NFS version 4 Protocol Decenber 2000

pat hnane4 pat h;
1

RESULT

struct LOOKUP4res {
/* CURRENT_FH. object */
nfsstat4 st at us;

}s
DESCRI PTI ON

This operation LOOKUPs or finds a file systemobject starting from
the directory specified by the current filehandle. LOOKUP

eval uates the pathname contained in the array of nanes and obtains
a new current filehandle fromthe final nanme. All but the final
nane in the list nust be the nanes of directories.

I f the pathname cannot be eval uated either because a conponent
does not exist or because the client does not have permi ssion to
eval uate a conponent of the path, then an error will be returned
and the current filehandle will be unchanged.

If the path is a zero length array, if any conponent does not obey
the UTF-8 definition, or if any conmponent in the path is of zero
l ength, the error NFS4AERR_I NVAL wi || be returned.

| MPLEMENTATI ON

If the client prefers a partial evaluation of the path then a
sequence of LOOKUP operations can be substituted e.g.

PUTFH (directory filehandle)
LOOKUP "pub" "foo" "bar"
GETFH
or, if the client wishes to obtain the internedi ate fil ehandl es

PUTFH (directory filehandle)

LOOKUP " pub®
GETFH
LOOKUP " f 00"
GETFH
LOOKUP " bar "
GETFH

Shepler, et al. St andards Track [Page 124]

RFC 3010 NFS version 4 Protocol Decenber 2000

NFS version 4 servers depart fromthe semantics of previous NFS
versions in allow ng LOOKUP requests to cross nountpoints on the
server. The client can detect a nountpoint crossing by conparing
the fsid attribute of the directory with the fsid attribute of the

directory | ooked up. |If the fsids are different then the new
directory is a server nountpoint. Unix clients that detect a
nount poi nt crossing will need to mount the server’s fil esystem

This needs to be done to nmaintain the file object identity
checki ng mechani sms common to Uni x clients.

Servers that limt NFS access to "shares" or "exported"
filesystens should provide a pseudo-filesysteminto which the
exported filesystens can be integrated, so that clients can browse
the server’s nane space. The clients view of a pseudo fil esystem
will be limted to paths that |l ead to exported fil esystens.

Not e: previous versions of the protocol assigned special semantics
to the nanes "." and ".." NFS version 4 assigns no speci al
semantics to these nanmes. The LOOKUPP operator must be used to

| ookup a parent directory.

Note that this procedure does not follow synbolic Iinks. The
client is responsible for all parsing of filenanmes including
filenames that are nodified by synmbolic |inks encountered during
the | ookup process.

If the current file handle supplied is not a directory but a
synmbolic link, the error NFSAERR SYMLINK is returned as the error
For all other non-directory file types, the error NFS4ERR NOTDI R
is returned.

ERRORS

NFS4ERR_ACCES
NFS4ERR_BADHANDLE
NFS4ERR_FHEXP| RED
NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR_MOVED
NFS4ERR_NAVETOOLONG
NFS4ERR_NOENT
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOTDI R
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_SYMLI NK
NFS4ERR_WRONGSEC

Shepl er, et al. St andar ds Track [Page 125]

RFC 3010 NFS version 4 Protocol Decenber 2000

14.2.14. Operation 16: LOOKUPP - Lookup Parent Directory
SYNOPSI S
(cfh) -> (cfh)
ARGUMENT

/* CURRENT_FH. object */
voi d;

RESULT

struct LOOKUPP4res {
/* CURRENT_FH:. directory */
nfsstat4 st at us;

}s
DESCRI PTI ON

The current filehandle is assuned to refer to a regular directory
or a named attribute directory. LOOKUPP assigns the filehandle
for its parent directory to be the current filehandle. If there
is no parent directory an NFSAERR _ENCENT error nust be returned.
Therefore, NFSAERR ENCENT wi Il be returned by the server when the
current filehandle is at the root or top of the server’s file
tree.

| MPLEMENTATI ON
As for LOOKUP, LOCKUPP will also cross nountpoints.

If the current filehandle is not a directory or named attribute
directory, the error NFS4ERR_NOTDIR i s returned.

ERRORS

NFS4ERR_ACCES
NFS4ERR_BADHANDLE
NFS4ERR_FHEXP| RED
NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR_MOVED
NFS4ERR_NOENT
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOTDI R
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT

Shepl er, et al. St andar ds Track [Page 126]

RFC 3010 NFS version 4 Protocol Decenber 2000
NFS4ERR_STALE
NFS4ERR_WRONGSEC
14.2.15. COperation 17: NVERIFY - Verify Difference in Attributes
SYNOPSI S
(cfh), fattr -> -
ARGUMENT

struct NVERI FY4args ({
/* CURRENT_FH. object */

fattr4 obj _attri butes;
1
RESULT
struct NVERI FY4res {
nfsstat4 st at us;
1
DESCRI PTI ON

This operation is used to prefix a sequence of operations to be
performed if one or nore attributes have changed on sone
filesystemobject. |If all the attributes match then the error
NFSAERR_SAME nust be returned.

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON

This operation is useful as a cache validation operator. |If the
obj ect to which the attributes bel ong has changed then the
foll ow ng operations may obtain new data associated with that
object. For instance, to check if a file has been changed and
obtain new data if it has

PUTFH (public)

LOOKUP "pub" "foo" "bar"
NVERI FY attrbits attrs
READ 0 32767

In the case that a recomrended attribute is specified in the
NVERI FY operation and the server does not support that attribute
for the file systemobject, the error NFS4ERR NOTSUPP i s returned
to the client.

Shepler, et al. St andards Track [Page 127]

RFC 3010

ERRORS

NFS4ERR_ACCES
NFS4ERR_BADHANDLE
NFS4ERR_DELAY
NFS4ERR_FHEXP| RED
NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDL
NFS4ERR_NOTSUPP
NFS4ERR_RESOURCE
NFS4ERR_SAME

NFSAERR_SERVERFAULT

NFS4ERR_STALE
NFS4ERR_WRONGSEC

14. 2. 16.
SYNOPSI S

(cth),

stateid, cinfo, rflags,

ARGUVENT

struct OPEMNargs {
open_cl ai mt
openf | ag4
nfs_| ockowner 4
seqi d4
ui nt 32_t
ui nt 32_t

b

enum cr eat enode4 {
UNCHECKED4
GUARDED4
EXCLUSI VE4

H

uni on
case
case

creat ehow4 switch
UNCHECKED4
GUARDED4
fattr4
EXCLUSI VE4:
verifier4d

case

H

Shepl er, et al.

Operation 18: OPEN - Open a Regul ar

cl aim openhow, owner,

NFS version 4 Protocol Decenber

E

File

seqi d, access, deny -> (cfh),
open_confirm del egati on

claim
openhow,
owner ;

seqi d;
share_access;
shar e_deny;

noan
NP O

(createnoded node) {

Createattrs;

createverf;

St andards Track

2000

[Page 128]

RFC 3010 NFS version 4 Protocol Decenber 2000

enum opent yped {
OPEN4_NOCREATE
OPEN4_CREATE

H

uni on openfl ag4 switch (opentype4 opentype) {
case OPEN4A_CREATE
cr eat ehow4 how,
defaul t:
voi d;
1

/* Next definitions used for OPEN del egation */
enum limt_by4 {

NFS_LIM T_SI ZE =1,
NFS_LI M T_BLOCKS =2
/* others as needed */
1
struct nfs_nodified limt4 {
ui nt 32_t num bl ocks;
ui nt 32_t byt es_per bl ock
1

union nfs_space limt4 switch (limt_by4 linmtby) {
/* limt specified as file size */
case NFS_LIMT_SI ZE
ui nt 64_t filesize;
/* limt specified by nunber of blocks */
case NFS_LI M T_BLOCKS:
nfs_nodified limt4 nod_Dbl ocks;
.

enum open_del egati on_type4 {
OPEN_DELEGATE_NONE
OPEN_DELEGATE_READ
OPEN_DELEGATE_WRI TE

noan
N RO

H

enum open_cl ai mtype4d {
CLAI M_NULL
CLAI M_PREVI QUS
CLAI M_DELEGATE_CUR
CLAI M_DELEGATE_PREV

wNhNhEFk O

H

struct open_cl ai m del egate_cur4 {
pat hnane4 file;

Shepl er, et al. St andar ds Track [Page 129]

RFC 3010 NFS version 4 Protocol Decenber 2000

st at ei d4 del egat e_st at ei d;
b
uni on open_claimd switch (open_claimtyped claim ({
/*
* No special rights to file. Ordinary OPEN of the specified file.
*/

case CLAI M NULL:
/* CURRENT_FH. directory */
pat hnane4 file;

/*
* Right to the file established by an open previous to server
* reboot. File identified by filehandl e obtained at that tine
* rather than by nane.
*/
case CLAI M _PREVI QUS
/* CURRENT_FH. file being reclainmed */
uint32_t del egat e_t ype;

/*
* Right to file based on a del egation granted by the server
* File is specified by nane.
*/
case CLAlI M DELEGATE_CUR
/* CURRENT_FH. directory */
open_cl ai m del egate_cur4 del egat e_cur _i nf o;

/* Right to file based on a delegation granted to a previous boot
* instance of the client. File is specified by nane.
*/
case CLAI M DELEGATE_PREV:
/* CURRENT_FH. directory */

pat hnane4 file_del egate_prev;
b
RESULT
struct open_read_del egation4d {
statei d4 stateid; /* Stateid for del egation*/
bool recal | ; /* Pre-recalled flag for

del egati ons obt ai ned
by reclaim
(CLAI M_PREVI QUS) */

nf sace4 per m ssi ons; /* Defines users who don’t
need an ACCESS call to
open for read */

Shepl er, et al. St andar ds Track [Page 130]

RFC 3010 NFS version 4 Protocol Decenber 2000

struct open_wite_del egationd {

statei d4 stateid; /* Stateid for del egation*/

bool recal | ; /* Pre-recalled flag for
del egati ons obt ai ned
by reclaim
(CLAI M_PREVI QUS) */

nfs_space_ limt4 space_ linit; /* Defines condition that
the client nust check to
determ ne whet her the
file needs to be flushed
to the server on close.
*/

nf sace4 per m ssi ons; /* Defines users who don’t
need an ACCESS call as
part of a del egated
open. */

H

uni on open_del egati on4
switch (open_del egation_type4 del egation_type) {
case OPEN_DELEGATE_NONE:
voi d;
case OPEN_DELEGATE_READ:
open_read_del egati on4 read,
case OPEN _DELEGATE_WRI TE
open_wite_del egationd wite;

H

const OPENA_RESULT_M_OCK = 0x00000001
const OPENA_RESULT_CONFI RM= 0x00000002;

struct OPENresok {

st at ei d4 st at ei d; [* Stateid for open */
change_i nf 04 ci nf o; /* Directory Change Info */
ui nt 32_t rflags; /* Result flags */
verifierd open_confirm /* OPEN_CONFI RM verifier */
open_del egati on4 del egati on; /* Info on any open

del egation */

H

uni on OPENdres switch (nfsstat4 status) {
case NFS4_ XK
/* CURRENT_FH:. opened file */
OPEN4r esok resok4;
defaul t:
voi d;
1

Shepler, et al. St andards Track [Page 131]

RFC 3010 NFS version 4 Protocol Decenber 2000

WARNI NG TO CLI ENT | MPLEMENTORS

OPEN resenmbles LOOKUP in that it generates a filehandle for the
client to use. Unlike LOOKUP though, OPEN creates server state on
the filehandle. In normal circunstances, the client can only
release this state with a CLOSE operation. CLOSE uses the current
filehandl e to determine which file to close. Therefore the client
MUST foll ow every OPEN operation with a GETFH operation in the
same COVPOUND procedure. This will supply the client with the
filehandl e such that CLOSE can be used appropriately.

Simply waiting for the I ease on the file to expire is insufficient
because the server nay naintain the state indefinitely as long as
anot her client does not attenpt to nake a conflicting access to
the sanme file.

DESCRI PTI ON

The OPEN operation creates and/or opens a regular file in a
directory with the provided name. |If the file does not exist at
the server and creation is desired, specification of the method of
creation is provided by the openhow paranmeter. The client has the
choi ce of three creation nethods: UNCHECKED, GUARDED, or

EXCLUSI VE.

UNCHECKED neans that the file should be created if a file of that
name does not exist and encountering an existing regular file of
that nane is not an error. For this type of create, createattrs
specifies the initial set of attributes for the file. The set of
attributes may includes any witable attribute valid for regul ar
files. Wen an UNCHECKED create encounters an existing file, the
attributes specified by createattrs is not used, except that when
an object_size of zero is specified, the existing file is
truncated. |f GUARDED is specified, the server checks for the
presence of a duplicate object by nane before performing the
create. |If a duplicate exists, an error of NFS4ERR _EXI ST is
returned as the status. |If the object does not exist, the request
is performed as described for UNCHECKED

EXCLUSI VE specifies that the server is to foll ow excl usive
creation semantics, using the verifier to ensure exclusive
creation of the target. The server should check for the presence
of a duplicate object by nane. |f the object does not exist, the
server creates the object and stores the verifier with the object.
If the object does exist and the stored verifier matches the
client provided verifier, the server uses the existing object as
the newy created object. |If the stored verifier does not match

Shepler, et al. St andards Track [Page 132]

RFC 3010 NFS version 4 Protocol Decenber 2000

then an error of NFS4ERR EXIST is returned. No attributes may be
provided in this case, since the server may use an attribute of
the target object to store the verifier

For the target directory, the server returns change_info4
information in cinfo. Wth the atomic field of the change_info4

struct, the server will indicate if the before and after change
attributes were obtained atomcally with respect to the link
creation.

Upon successful creation, the current filehandle is replaced by
that of the new object.

The OPEN procedure provides for DOS SHARE capability with the use
of the access and deny fields of the OPEN argunents. The client
specifies at OPEN the required access and deny nodes. For clients
that do not directly support SHAREs (i.e. Unix), the expected deny
value is DENY_NONE. In the case that there is a existing SHARE
reservation that conflicts with the OPEN request, the server
returns the error NFS4ERR DENI ED. For a conpl ete SHARE request,
the client nust provide values for the owner and seqid fields for
the OPEN argunment. For additional discussion of SHARE semantics
see the section on ’'Share Reservations’.

In the case that the client is recovering state froma server
failure, the reclaimfield of the OPEN argunent is used to signify
that the request is nmeant to reclaimstate previously held.

The "claim field of the OPEN argument is used to specify the file
to be opened and the state information which the client clains to

possess. There are four basic claimtypes which cover the various
situations for an OPEN. They are as foll ows:

CLAI M_NULL
For the client, this is a new OPEN
request and there is no previous state
associate with the file for the client.

CLAI M_PREVI QUS
The client is claining basic OPEN state
for a file that was held previous to a
server reboot. Generally used when a
server is returning persistent file
handl es; the client may not have the
file nane to reclai mthe OPEN

Shepl er, et al. St andar ds Track [Page 133]

RFC 3010 NFS version 4 Protocol Decenber 2000

CLAI M_DELEGATE_CUR
The client is claimng a delegation for
OPEN as granted by the server
CGenerally this is done as part of
recalling a del egation

CLAI M_DELEGATE_PREV
The client is clainmng a del egation
granted to a previous client instance;
used after the client reboots.

For OPEN requests whose claimtype is other than CLAI M PREVI QUS
(i.e. requests other than those devoted to reclainng opens after
a server reboot) that reach the server during its grace or |ease
expiration period, the server returns an error of NFS4ERR _GRACE

For any OPEN request, the server may return an open del egation
which allows further opens and closes to be handled locally on the
client as described in the section Open Del egation. Note that

del egation is up to the server to decide. The client should never
assunme that delegation will or will not be granted in a particular
i nstance. It should always be prepared for either case. A
partial exception is the reclaim(CLAI M PREVIOQJUS) case, in which a
del egation type is clained. In this case, delegation will always
be granted, although the server may specify an imediate recall in
the del egation structure.

The rflags returned by a successful OPEN all ow the server to
return i nformation governing how the open file is to be handl ed.
OPENA_RESULT_M.OCK indicates to the caller that nmandatory | ocking
isin effect for this file and the client should act appropriately
with regard to data cached on the client. OPEN4A_RESULT_CONFI RM

i ndi cates that the client MJST execute an OPEN_CONFI RM operati on
bef ore using the open file.

If the file is a zero length array, if any conponent does not obey
the UTF-8 definition, or if any conmponent in the path is of zero
l ength, the error NFSAERR_I NVAL wi || be returned.

When an OPEN is done and the specified | ockowner already has the
resulting filehandl e open, the result is to "OR' together the new
share and deny status together with the existing status. In this
case, only a single CLOSE need be done, even though nmultiple
OPEN s were conpl et ed.

Shepl er, et al. St andar ds Track [Page 134]

RFC 3010 NFS version 4 Protocol Decenber 2000

| MPLEMENTATI ON

The OPEN procedure contains support for EXCLUSIVE create. The
mechanismis simlar to the support in NFS version 3 [RFC1813].
As in NFS version 3, this nechani sm provides reliable exclusive
creation. Exclusive create is invoked when the how paraneter is
EXCLUSIVE. In this case, the client provides a verifier that can
reasonably be expected to be unique. A conbination of a client
identifier, perhaps the client network address, and a uni que
nunber generated by the client, perhaps the RPC transaction
identifier, may be appropriate.

If the object does not exist, the server creates the object and
stores the verifier in stable storage. For file systens that do
not provide a nechanismfor the storage of arbitrary file
attributes, the server may use one or nore elenments of the object
neta-data to store the verifier. The verifier nust be stored in
stabl e storage to prevent erroneous failure on retransni ssion of
the request. It is assunmed that an exclusive create is being
perfornmed because exclusive semantics are critical to the
application. Because of the expected usage, exclusive CREATE does
not rely solely on the normally volatile duplicate request cache
for storage of the verifier. The duplicate request cache in

vol atil e storage does not survive a crash and may actually flush
on a long network partition, opening failure windows. 1In the UN X
local file system environnent, the expected storage |ocation for
the verifier on creation is the neta-data (tine stanps) of the
obj ect. For this reason, an exclusive object create nay not
include initial attributes because the server would have nowhere
to store the verifier

If the server can not support these exclusive create semantics,
possi bly because of the requirenment to commt the verifier to
stable storage, it should fail the OPEN request with the error,
NFS4ERR_NOTSUPP.

Duri ng an excl usi ve CREATE request, if the object already exists,
the server reconstructs the object’s verifier and conpares it with
the verifier in the request. If they match, the server treats the
request as a success. The request is presuned to be a duplicate of
an earlier, successful request for which the reply was | ost and
that the server duplicate request cache nechani smdid not detect.
If the verifiers do not match, the request is rejected with the
stat us, NFS4ERR_EXI ST.

Once the client has performed a successful exclusive create, it

nmust issue a SETATTR to set the correct object attributes. Unti
it does so, it should not rely upon any of the object attributes,

Shepl er, et al. St andar ds Track [Page 135]

RFC 3010 NFS version 4 Protocol Decenber 2000

since the server inplenentation may need to overl oad object neta-
data to store the verifier. The subsequent SETATTR nust not occur
in the same COVWPOUND request as the OPEN. This separation will
guarantee that the exclusive create mechanismw |l continue to
function properly in the face of retransm ssion of the request.

Use of the GUARDED attribute does not provide exactly-once
semantics. In particular, if areply is lost and the server does
not detect the retransm ssion of the request, the procedure can
fail with NFS4ERR _EXI ST, even though the create was perforned
successful ly.

For SHARE reservations, the client nmust specify a value for access
that is one of READ, WRITE, or BOTH. For deny, the client nust
specify one of NONE, READ, WRITE, or BOTH. If the client fails to
do this, the server must return NFS4ERR_| NVAL.

If the final conponent provided to OPEN is a synbolic link, the
error NFS4ERR SYMLINK will be returned to the client. If an

i nt ermedi at e conponent of the pathnane provided to OPEN is a
synmbolic link, the error NFSAERR NOTDIR wi || be returned to the
client.

ERRORS

NFS4ERR_ACCES
NFS4ERR_BAD_SEQ D
NFS4ERR_DELAY
NFS4ERR_DQUOT
NFS4ERR_EXI ST
NFS4ERR_FHEXP| RED
NFS4ERR_GRACE
NFS4ERR | O

NFS4ERR_| SDI R
NFS4ERR_LEASE_MOVED
NFS4ERR_MOVED
NFS4ERR_NAMETOOLONG
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOSPC
NFS4ERR_NOTDI R
NFS4ERR_NOTSUPP
NFS4ERR_RESOURCE
NFS4ERR_ROFS
NFS4ERR_SERVERFAULT
NFS4ERR_SHARE_DENI ED
NFS4ERR_STALE_CLI ENTI D
NFS4ERR_SYMLI NK

Shepl er, et al. St andar ds Track [Page 136]

RFC 3010 NFS version 4 Protocol Decenber 2000

14.2.17. Operation 19: OPENATTR - Open Naned Attribute Directory
SYNOPSI S
(cfh) -> (cfh)
ARGUMENT

/* CURRENT_FH. file or directory */
voi d;

RESULT

struct OPENATTR4res {
/* CURRENT_FH. nanme attr directory*/
nfsstat4 st at us;

b
DESCRI PTI ON

The OPENATTR operation is used to obtain the filehandl e of the
naned attribute directory associated with the current filehandle.
The result of the OPENATTR will be a filehandle to an object of
type NFAATTRDIR. Fromthis filehandl e, READDI R and LOOKUP
procedures can be used to obtain filehandl es for the various naned
attributes associated with the original file system object.

Fi |l ehandl es returned within the naned attribute directory wll
have a type of NFANAMEDATTR.

| MPLEMENTATI ON

If the server does not support named attributes for the current
filehandl e, an error of NFS4ERR NOTSUPP will be returned to the
client.

ERRORS

NFS4ERR_ACCES
NFS4ERR_BADHANDLE
NFS4ERR_DELAY
NFS4ERR_FHEXP| RED
NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR_MOVED
NFS4ERR_NOENT
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOTSUPP
NFS4ERR_RESOURCE

Shepl er, et al. St andar ds Track [Page 137]

RFC 3010 NFS version 4 Protocol Decenber 2000

NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_WRONGSEC

14.2.18. Operation 20: OPEN_CONFI RM - Confirm Qpen
SYNOPSI S
(cfh), seqid, open_confirm> stateid
ARGUVENT
struct OPEN_CONFI RMAar gs {
/* CURRENT_FH. opened file */
seqi d4 seqi d;
verifierd open_confirm /* OPEN_CONFI RM verifier */
3
RESULT
struct OPEN_CONFI RMAr esok {
statei d4 st at ei d;
3

uni on OPEN_CONFI RMAres switch (nfsstat4 status) {
case NFS4_ XK

OPEN_CONFI RM4r esok r esok4;
defaul t:
voi d;
}
DESCRI PTI ON

This operation is used to confirmthe sequence id usage for the
first time that a nfs_| ockowner is used by a client. The OPEN
operation returns a opaque confirmation verifier that is then
passed to this operation along with the next sequence id for the
nfs_ | ockowner. The sequence id passed to the OPEN_CONFI RM nust be
1 (one) greater than the seqid passed to the OPEN operation from

whi ch the open_confirmval ue was obtained. |If the server receives
an unexpected sequence id with respect to the original open, then
the server assunes that the client will not confirmthe original

OPEN and all state associated with the original OPEN is rel eased
by the server.

On success, the current filehandle retains its val ue.

Shepl er, et al. St andar ds Track [Page 138]

RFC 3010 NFS version 4 Protocol Decenber 2000

| MPLEMENTATI ON

A given client m ght generate many nfs_|l ockowner data structures
for a given clientid. The client will periodically either dispose
of its nfs_lockowners or stop using themfor indefinite periods of
time. The latter situation is why the NFS version 4 protocol does
not have a an explicit operation to exit an nfs_l ockowner: such an
operation is of no use in that situation. Instead, to avoid
unbounded nenory use, the server needs to inplement a strategy for
di sposi ng of nfs_l ockowners that have no current |ock, open, or

del egation state for any files and have not been used recently.
The time period used to deternine when to di spose of

nfs_| ockowners is an inplenmentation choice. The tine period
shoul d certainly be no less than the | ease tine plus any grace
period the server wi shes to inplenment beyond a | ease tine. The
OPEN_CONFI RM operation allows the server to safely dispose of
unused nfs_| ockowner data structures.

In the case that a client issues an OPEN operation and the server
no longer has a record of the nfs_| ockowner, the server needs
ensure that this is a new OPEN and not a replay or retransm ssion

A lazy server inplenmentation mght require confirmation for every
nfs_| ockowner for which it has no record. However, this is not
necessary until the server records the fact that it has di sposed
of one nfs_|l ockowner for the given clientid.

The server must hold unconfirmed OPEN state until one of three
events occur. First, the client sends an OPEN_CONFI RM r equest
with the appropriate sequence id and confirmation verifier within
the | ease period. 1In this case, the OPEN state on the server goes
to confirnmed, and the nfs_|l ockowner on the server is fully

est abl i shed.

Second, the client sends another OPEN request with a sequence id
that is incorrect for the nfs_|l ockowner (out of sequence). In
this case, the server assunes the second OPEN request is valid and
the first one is a replay. The server cancels the OPEN state of
the first OPEN request, establishes an unconfirned OPEN state for
the second OPEN request, and responds to the second OPEN request
with an indication that an OPEN_CONFI RM i s needed. The process
then repeats itself. Wile there is a potential for a denial of
service attack on the client, it is mtigated if the client and
server require the use of a security flavor based on Kerberos V5,
LI PKEY, or sone other flavor that uses cryptography.

Shepl er, et al. St andar ds Track [Page 139]

RFC 3010 NFS version 4 Protocol Decenber 2000

What if the server is in the unconfirmed OPEN state for a given
nfs_|l ockowner, and it receives an operation on the nfs_| ockowner
that has a stateid but the operation is not OPEN, or it is
OPEN_CONFI RM but with the wong confirmation verifier? Then, even
if the seqid is correct, the server returns NFS4AERR BAD STATEI D
because the server assunes the operation is a replay: if the
server has no established OPEN state, then there is no way, for
exanpl e, a LOCK operation could be valid.

Third, neither of the two aforenmenti oned events occur for the
nfs_| ockowner within the lease period. In this case, the OPEN
state is cancell ed and disposal of the nfs_| ockowner can occur.

ERRORS

NFS4ERR_BADHANDLE
NFS4ERR_BAD_SEQ D
NFS4ERR_EXPI RED
NFS4ERR_FHEXP| RED
NFS4ERR_GRACE
NFS4ERR_| NVAL
NFS4ERR_MOVED
NFS4ERR_NOENT
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOTSUPP
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_WRONGSEC

14.2.19. Operation 21: OPEN_DOMNGRADE - Reduce Open File Access

SYNOPSI S

(cfh), stateid, seqid, access, deny -> stateid

ARGUVENT

struct OPEN_DOAWNGRADE4ar gs {

/* CURRENT_FH. opened file */

statei d4 st at ei d;
seqi d4 seqi d;
ui nt 32_t shar e_access;
uint32_t shar e_deny;
3
RESULT

Shepl er, et al. St andar ds Track [Page 140]

RFC 3010 NFS version 4 Protocol Decenber 2000

struct OPEN_DOANNGRADE4r esok {
statei d4 st at ei d;
¥

uni on OPEN_DOWNGRADE4res switch(nfsstat4 status) {
case NFS4_ XK
OPEN_DOWNGRADEA4T esok r esok4;
defaul t:
voi d;
1

This operation is used to adjust the access and deny bits for a given
open. This is necessary when a given | ockowner opens the sanme file
multiple tines with different access and deny flags. In this
situation, a close of one of the open’s may change the appropriate
access and deny flags to renpve bits associated with open’s no | onger
in effect.

The access and deny bits specified in this operation replace the
current ones for the specified open file. |If either the access or
the deny node specified includes bits not in effect for the open, the
error NFS4ERR_|I NVAL should be returned. Since access and deny bits
are subsets of those already granted, it is not possible for this
request to be denied because of conflicting share reservations.
On success, the current filehandle retains its val ue.
ERRORS
NFS4ERR_BADHANDLE NFSA4ERR_BAD SEQ D NFSAERR BAD _STATEI D
NFSA4ERR_EXPI RED NFSAERR _FHEXPI RED NFSAERR | NVAL NFS4ERR_MOVED
NFS4ERR_NCFI LEHANDLE NFS4ERR _OLD _STATEI D NFS4ERR _RESOURCE
NFSA4ERR_SERVERFAULT NFSAERR _STALE NFSAERR STALE _STATEI D
14.2.20. Operation 22: PUTFH - Set Current Filehandle
SYNOPSI S
filehandl e -> (cfh)
ARGUMENT

struct PUTFH4args {
nfs4 fh obj ect; };

RESULT

struct PUTFH4res {

Shepler, et al. St andards Track [Page 141]

RFC 3010 NFS version 4 Protocol Decenber 2000

/* CURRENT_FH. */
nf sst at 4 status; };

DESCRI PTI ON

Repl aces the current filehandle with the filehandl e provided as an
argunent .

| MPLEMENTATI ON

Commonly used as the first operator in an NFS request to set the
context for follow ng operations.

ERRORS

NFS4ERR_BADHANDLE
NFS4ERR_FHEXP| RED
NFS4ERR_MOVED
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_WRONGSEC

14.2.21. Operation 23: PUTPUBFH - Set Public Filehandle
SYNOPSI S
- -> (cfh)
ARGUMENT
voi d;
RESULT
struct PUTPUBFH4res {
/* CURRENT_FH:. public fh */
nfsstat4 st at us;
1
DESCRI PTI ON
Repl aces the current filehandle with the fil ehandl e that
represents the public filehandle of the server’s nane space. This

filehandl e may be different fromthe "root" filehandl e which may
be associated with sonme other directory on the server

Shepler, et al. St andards Track [Page 142]

RFC 3010 NFS version 4 Protocol Decenber 2000

| MPLEMENTATI ON

Used as the first operator in an NFS request to set the context
for foll ow ng operations.

ERRORS
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_WRONGSEC
14.2.22. Operation 24: PUTROOTFH - Set Root Fil ehandl e
SYNOPSI S
- -> (cfh)
ARGUMENT
voi d;
RESULT
struct PUTROOTFH4res {

/* CURRENT_FH: root fh */
nfsstat4 st at us;

b

DESCRI PTI ON
Repl aces the current filehandle with the fil ehandl e that
represents the root of the server’s name space. Fromthis
filehandl e a LOOKUP operation can | ocate any other filehandle on
the server. This filehandle may be different fromthe "public"

filehandl e which may be associated with some other directory on
t he server.

| MPLEMENTATI ON

Commonly used as the first operator in an NFS request to set the
context for follow ng operations.

ERRORS
NFS4ERR RESOURCE

NFS4ERR_SERVERFAULT
NFS4ERR_WRONGSEC

Shepl er, et al. St andar ds Track [Page 143]

RFC 3010 NFS version 4 Protocol Decenber 2000

14.2.23. Operation 25: READ - Read fromFile
SYNOPSI S
(cfh), offset, count, stateid -> eof, data
ARGUMENT

struct READargs {
[* CURRENT_FH. file */

st at ei d4 stateid;
of fset4 of f set;
count 4 count ;

H

RESULT

struct READ4resok {
bool eof ;
opaque dat a<>;

H

uni on READ4res switch (nfsstat4 status) {
case NFS4_ XK
READAr esok resok4;
defaul t:
voi d;
1

DESCRI PTI ON

The READ operation reads data fromthe regular file identified by
the current fil ehandle.

The client provides an offset of where the READ is to start and a
count of how many bytes are to be read. An offset of O (zero)
neans to read data starting at the beginning of the file. If

of fset is greater than or equal to the size of the file, the
status, NFS4_OK, is returned with a data length set to 0 (zero)
and eof is set to TRUE. The READ is subject to access perm ssions
checki ng.

If the client specifies a count value of 0 (zero), the READ
succeeds and returns O (zero) bytes of data again subject to
access pernissions checking. The server may choose to return
fewer bytes than specified by the client. The client needs to
check for this condition and handl e the condition appropriately.

Shepl er, et al. St andar ds Track [Page 144]

RFC 3010 NFS version 4 Protocol Decenber 2000

The stateid value for a READ request represents a val ue returned
froma previous record lock or share reservation request. Used by
the server to verify that the associated lock is still valid and
to update lease tinmeouts for the client.

If the read ended at the end-of-file (formally, in a correctly
formed READ request, if offset + count is equal to the size of the
file), or the read request extends beyond the size of the file (if
offset + count is greater than the size of the file), eof is
returned as TRUE, otherwise it is FALSE. A successful READ of an
enpty file will always return eof as TRUE

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON

It is possible for the server to return fewer than count bytes of
data. |If the server returns less than the count requested and eof
set to FALSE, the client should issue another READ to get the
remai ning data. A server may return less data than requested
under several circunstances. The file may have been truncated by
another client or perhaps on the server itself, changing the file
size fromwhat the requesting client believes to be the case.
This woul d reduce the actual anobunt of data available to the
client. It is possible that the server may back off the transfer
si ze and reduce the read request return. Server resource
exhaustion may al so occur necessitating a smaller read return

If the file is |ocked the server will return an NFS4ERR_LOCKED

error. Since the lock may be of short duration, the client may
choose to retransmt the READ request (with exponential backoff)
until the operation succeeds.

ERRORS

NFS4ERR_ACCES
NFS4ERR_BADHANDLE
NFS4ERR_BAD_STATEI D
NFS4ERR_DELAY
NFS4ERR_DENI ED
NFS4ERR_EXP| RED
NFS4ERR_FHEXP| RED
NFS4ERR_GRACE
NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR_LOCKED
NFS4ERR_LEASE_MOVED
NFS4ERR_MOVED

Shepl er, et al. St andar ds Track [Page 145]

RFC 3010 NFS version 4 Protocol Decenber 2000

NFS4ERR_NOFI LEHANDLE
NFS4ERR_NXI O
NFS4ERR_OLD_STATEI D
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_STALE_STATEI D
NFS4ERR_WRONGSEC

14.2.24. QOperation 26: READDIR - Read Directory
SYNOPSI S

(cfh), cookie, cookieverf, dircount, maxcount, attrbits ->
cooki everf { cookie, filenane, attrbits, attributes }

ARGUVENT

struct READDI Rdargs {
/* CURRENT_FH:. directory */

nfs_cooki e4 cooki e;
verifier4d cooki everf;
count 4 di rcount;
count 4 maxcount ;
bi t map4 attr_request;

}s

RESULT

struct entry4 {
nfs_cooki e4 cooki e;
conponent 4 name;
fattr4 attrs;
entry4 *nextentry;

}s

struct dirlist4d {
entry4 *entries;
bool eof ;

}s

struct READDI R4resok {
verifier4d cooki everf;
dirlist4 reply;

}s

uni on READDI Rdres switch (nfsstat4 status) {

Shepl er, et al. St andar ds Track [Page 146]

RFC 3010 NFS version 4 Protocol Decenber 2000

case NF4_ K
READDI R4r esok resok4;
def aul t:
voi d;
H

DESCRI PTI ON

The READDI R operation retrieves a variable nunber of entries from
a file systemdirectory and returns client requested attributes
for each entry along with information to allow the client to
request additional directory entries in a subsequent READD R

The argunments contain a cookie value that represents where the
READDI R shoul d start within the directory. A value of 0 (zero)
for the cookie is used to start reading at the beginning of the
directory. For subsequent READDI R requests, the client specifies
a cookie value that is provided by the server on a previous
READDI R r equest .

The cooki everf val ue should be set to 0 (zero) when the cookie
value is 0 (zero) (first directory read). On subsequent requests,
it should be a cookieverf as returned by the server. The

cooki everf nust match that returned by the READDIR in which the
cooki e was acqui red.

The dircount portion of the argunent is a hint of the nmaxi num
nunber of bytes of directory information that should be returned.
This value represents the length of the nanmes of the directory
entries and the cookie value for these entries. This length
represents the XDR encoding of the data (names and cooki es) and
not the length in the native format of the server. The server nmay
return | ess dat a.

The maxcount val ue of the argunment is the maxi mum nunber of bytes
for the result. This nmaxi num size represents all of the data
bei ng returned and includes the XDR overhead. The server may
return less data. |If the server is unable to return a single
directory entry within the naxcount linit, the error
NFS4ERR_READDI R_NOSPC wi || be returned to the client.

Finally, attrbits represents the list of attributes to be returned
for each directory entry supplied by the server

On successful return, the server’s response will provide a list of
directory entries. Each of these entries contains the nane of the
directory entry, a cookie value for that entry, and the associ ated
attri butes as requested.

Shepl er, et al. St andar ds Track [Page 147]

RFC 3010 NFS version 4 Protocol Decenber 2000

The cookie value is only neaningful to the server and is used as a
"bookmar k" for the directory entry. As nentioned, this cookie is
used by the client for subsequent READDI R operations so that it
may continue reading a directory. The cookie is sinilar in
concept to a READ offset but should not be interpreted as such by

the client. ldeally, the cookie value should not change if the
directory is nodified since the client may be caching these
val ues.

In some cases, the server may encounter an error while obtaining

the attributes for a directory entry. Instead of returning an
error for the entire READDI R operation, the server can instead
return the attribute 'fattr4_rdattr_error’. Wth this, the server

is able to comunicate the failure to the client and not fail the
entire operation in the instance of what might be a transient
failure. Obviously, the client nust request the
fattr4_rdattr_error attribute for this nethod to work properly.

If the client does not request the attribute, the server has no
choice but to return failure for the entire READDI R operation

For sone file systemenvironnents, the directory entries "." and
".." have special neaning and in other environments, they may
not. |If the server supports these special entries within a
directory, they should not be returned to the client as part of
the READDIR response. To enable sone client environments, the
cookie values of 0, 1, and 2 are to be considered reserved. Note
that the Unix client will use these val ues when conbi ning the
server’'s response and | ocal representations to enable a fully
formed Unix directory presentation to the application

For READDI R arguments, cookie values of 1 and 2 should not be used
and for READDIR results cookie values of 0, 1, and 2 shoul d not
r et ur ned.
On success, the current filehandle retains its val ue.
| MPLEMENTATI ON
The server’'s file systemdirectory representations can differ

greatly. A client’s programm ng interfaces nmay al so be bound to
the [ocal operating environnent in a way that does not translate

well into the NFS protocol. Therefore the use of the dircount and
maxcount fields are provided to allowthe client the ability to
provi de guidelines to the server. |If the client is aggressive

about attribute collection during a READDIR, the server has an
idea of howto Iinmt the encoded response. The dircount field
provi des a hint on the nunber of entries based solely on the nanes
of the directory entries. Since it is a hint, it nay be possible

Shepl er, et al. St andar ds Track [Page 148]

RFC 3010 NFS version 4 Protocol Decenber 2000

that a dircount value is zero. |In this case, the server is free
to ignore the dircount value and return directory information
based on the specified naxcount val ue.

The cooki everf may be used by the server to hel p manage cookie

val ues that may becone stale. It should be a rare occurrence that
a server is unable to continue properly reading a directory with
the provided cooki e/ cookieverf pair. The server should nake every
effort to avoid this condition since the application at the client
may not be able to properly handle this type of failure.

The use of the cookieverf will also protect the client from using
READDI R cooki e val ues that may be stale. For exanple, if the file
system has been nigrated, the server nay or may not be able to use
t he sane cookie values to service READDI R as the previous server
used. Wth the client providing the cookieverf, the server is
able to provide the appropriate response to the client. This
prevents the case where the server may accept a cooki e val ue but
the underlying directory has changed and the response is invalid
fromthe client’s context of its previous READD R

Since sone servers will not be returning "." and ".." entries as
has been done with previous versions of the NFS protocol, the
client that requires these entries be present in READDI R responses
nmust fabricate them

ERRORS

NFS4ERR_ACCES
NFS4ERR_BADHANDLE
NFS4ERR_BAD_COCKI E
NFS4ERR_DELAY
NFS4ERR_FHEXP| RED
NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOTDI R
NFS4ERR_NOTSUPP
NFS4ERR_READDI R_NOSPC
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_TOOSMALL
NFS4ERR_WRONGSEC

Shepl er, et al. St andar ds Track [Page 149]

RFC 3010 NFS version 4 Protocol Decenber 2000

14.2.25. CQOperation 27: READLINK - Read Synbolic Link
SYNOPSI S
(cfh) -> Iinktext
ARGUMENT

/* CURRENT_FH: symink */
voi d;

RESULT

struct READLI NK4resok {
| i nkt ext4 i nk;
}s

uni on READLI NK4res switch (nfsstat4 status) {
case NFS4_ XK
READL| NK4r esok resok4;
defaul t:
voi d;
1

DESCRI PTI ON

READLI NK reads the data associated with a synbolic |ink. The data
is a UTF-8 string that is opaque to the server. That is, whether
created by an NFS client or created locally on the server, the
data in a synbolic link is not interpreted when created, but is
sinply stored.

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON

A synbolic link is nomnally a pointer to another file. The data
is not necessarily interpreted by the server, just stored in the
file. 1t is possible for a client inplenentation to store a path
name that is not neaningful to the server operating systemin a
synmbolic link. A READLINK operation returns the data to the
client for interpretation. If different inplenentations want to
share access to synbolic links, then they nust agree on the
interpretation of the data in the synbolic |ink

The READLI NK operation is only allowed on objects of type NF4ALNK

The server should return the error, NFS4ERR INVAL, if the object
is not of type, NF4LNK

Shepl er, et al. St andar ds Track [Page 150]

RFC 3010 NFS version 4 Protocol Decenber 2000

ERRORS

NFS4ERR_ACCES
NFS4ERR_BADHANDLE
NFS4ERR_DELAY
NFS4ERR_FHEXP| RED
NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOTSUPP
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_WRONGSEC

14.2.26. QOperation 28: REMOVE - Renove Fil esystem Qbj ect
SYNOPSI S
(cfh), filename -> change_info
ARGUMENT
struct REMOVE4args {

/* CURRENT_FH:. directory */
conponent 4 target;

}s
RESULT

struct REMOVE4resok {
change_i nf 04 ci nf o;
}

uni on REMOVE4res switch (nfsstat4 status) {
case NFS4_ XK
REMOVE4r esok resok4;
defaul t:
voi d;
}

DESCRI PTI ON
The REMOVE operation renoves (deletes) a directory entry named by

filename fromthe directory corresponding to the current
filehandle. If the entry in the directory was the |ast reference

Shepler, et al. St andards Track [Page 151]

RFC 3010 NFS version 4 Protocol Decenber 2000

to the corresponding file system object, the object may be
destroyed.

For the directory where the fil enane was renoved, the server
returns change_info4 information in cinfo. Wth the atomc field
of the change_info4 struct, the server will indicate if the before
and after change attributes were obtained atomically with respect
to the renoval

If the target has a length of 0 (zero), or if target does not obey
the UTF-8 definition, the error NFS4ERR I NVAL wi |l be returned.

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON

NFS versions 2 and 3 required a different operator RVDI R for
directory renmoval . NFS version 4 REMOVE can be used to del ete any
directory entry independent of its file type.

The concept of last reference is server specific. However, if the
num inks field in the previous attributes of the object had the
value 1, the client should not rely on referring to the object via
a file handle. Likew se, the client should not rely on the
resources (disk space, directory entry, and so on) formerly

associ ated with the object beconing i mediately avail abl e. Thus,

if aclient needs to be able to continue to access a file after
using REMOVE to remove it, the client should take steps to nmake
sure that the file will still be accessible. The usual mechani sm
used is to RENAME the file fromits old name to a new hidden nane.

ERRORS

NFS4ERR_ACCES
NFS4ERR_BADHANDLE
NFS4ERR_DELAY
NFS4ERR_FHEXP| RED
NFS4ERR | O
NFS4ERR_MOVED
NFS4ERR_NAVETOOLONG
NFS4ERR_NOENT
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOTDI R
NFS4ERR_NOTEMPTY
NFS4ERR_NOTSUPP
NFS4ERR_RESOURCE
NFS4ERR_ROFS
NFS4ERR_SERVERFAULT

Shepler, et al. St andards Track [Page 152]

RFC 3010 NFS version 4 Protocol Decenber 2000
NFS4ERR_STALE
NFS4ERR_WRONGSEC
14.2.27. Operation 29: RENAME - Renane Directory Entry
SYNOPSI S

(sfh), oldnane (cfh), newnane -> source_change_i nfo,
target _change_info

ARGUVMENT

struct RENAME4args {
/* SAVED FH. source directory */

component 4 ol dnane;
/* CURRENT_FH. target directory */
conmponent 4 newnane;

1

RESULT

struct RENAME4resok {
change_i nf 04 sour ce_ci nf o;
change_i nf 04 target _cinfo;

H

uni on RENAME4res switch (nfsstat4 status) {
case NFS4_ XK
RENANME4r esok resok4;
defaul t:
voi d;
1

DESCRI PTI ON

The RENAME operation renanmes the object identified by oldname in
the source directory corresponding to the saved fil ehandl e, as set
by the SAVEFH operation, to newnane in the target directory
corresponding to the current filehandle. The operation is
required to be atomic to the client. Source and target
directories nmust reside on the sane file systemon the server. On
success, the current filehandle will continue to be the target
directory.

If the target directory already contains an entry with the nane,
newname, the source object nust be conpatible with the target:
either both are non-directories or both are directories and the
target nust be enpty. |If conpatible, the existing target is

Shepl er, et al. St andar ds Track [Page 153]

RFC 3010 NFS version 4 Protocol Decenber 2000

renoved before the renane occurs. |f they are not conpatible or
if the target is a directory but not enpty, the server will return
the error, NFS4ERR_EXI ST.

I f ol dname and newnanme both refer to the sane file (they mght be
hard |inks of each other), then RENAME shoul d perform no action
and return success.

For both directories involved in the RENAVE, the server returns
change_info4 information. Wth the atomic field of the
change_info4 struct, the server will indicate if the before and
after change attributes were obtained atomically with respect to
the renane.

If the ol dname or newnane has a length of 0 (zero), or if ol dname
or newnane does not obey the UTF-8 definition, the error
NFS4ERR | NVAL wi || be returned.

| MPLEMENTATI ON

The RENAME operation nust be atomic to the client. The statenent
"source and target directories nust reside on the same file system
on the server"” means that the fsid fields in the attributes for
the directories are the same. If they reside on different file
systens, the error, NFS4ERR XDEV, is returned.

A filehandle may or may not becone stale or expire on a renane.
However, server inplenentors are strongly encouraged to attenpt to
keep file handles from becom ng stale or expiring in this fashion

On sone servers, the fil enanes, and "..", are illegal as

ei ther ol dname or newnane. In addition, neither ol dnane nor
newnane can be an alias for the source directory. These servers
Will return the error, NFSAERR I NVAL, in these cases.

ERRORS

NFS4ERR_ACCES
NFS4ERR_BADHANDLE
NFS4ERR_DELAY
NFS4ERR_DQUOT
NFS4ERR_EXI ST
NFS4ERR_FHEXP| RED
NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR_| SDI R
NFS4ERR_MOVED
NFS4ERR_NAVMETOOLONG

Shepl er, et al. St andar ds Track [Page 154]

RFC 3010 NFS version 4 Protocol Decenber 2000

NFS4ERR_NOENT
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOSPC
NFS4ERR_NOTDI R
NFS4ERR_NOTEMPTY
NFS4ERR_NOTSUPP
NFS4ERR_RESOURCE
NFS4ERR_ROFS
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_WRONGSEC
NFS4ERR_XDEV

14.2.28. Operation 30: RENEW- Renew a Lease
SYNOPSI S

stateid -> ()

ARGUNVENT
struct RENEWlargs {
st at ei d4 st at ei d;
1
RESULT
struct RENEWIres {
nfsstat4 st at us;
1
DESCRI PTI ON
The RENEW operation is used by the client to renew | eases which it
currently holds at a server. |In processing the RENEWrequest, the
server renews all |eases associated with the client. The

associ ated | eases are determined by the client id provided via the
SETCLI ENTI D procedure.

The stateid for RENEWnay not be one of the special stateids
consisting of all bits O (zero) or all bits 1.

| MPLEMENTATI ON
ERRORS

NFSAERR_BAD_STATEI D
NFSAERR_EXPI RED

Shepl er, et al. St andar ds Track [Page 155]

RFC 3010 NFS version 4 Protocol Decenber 2000

NFS4ERR_GRACE
NFS4ERR_| NVAL
NFS4ERR_LEASE_MOVED
NFS4ERR_MOVED
NFS4ERR_OLD_STATEI D
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE_STATEI D
NFS4ERR_WRONGSEC

14.2.29. CQOperation 31: RESTOREFH - Restore Saved Fil ehandl e
SYNOPSI S
(sfh) -> (cfh)
ARGUMENT

/* SAVED FH. */
voi d;

RESULT

struct RESTOREFH4res {
/* CURRENT_FH. val ue of saved fh */
nfsstat4 st at us;

}s
DESCRI PTI ON

Set the current filehandle to the value in the saved fil ehandl e.
If there is no saved filehandle then return an error
NFS4ERR_NOFI LEHANDLE

| MPLEMENTATI ON

Operations |ike OPEN and LOOKUP use the current filehandle to
represent a directory and replace it with a new fil ehandl e.
Assum ng the previous filehandl e was saved with a SAVEFH oper at or
the previous filehandl e can be restored as the current filehandl e.
This is commonly used to obtain post-operation attributes for the
directory, e.g.

PUTFH (directory fil ehandl e)

SAVEFH

GETATTR attrbits (pre-op dir attrs)
CREATE optbits "foo" attrs

GETATTR attrbits (file attributes)

Shepl er, et al. St andar ds Track [Page 156]

RFC 3010 NFS version 4 Protocol Decenber 2000

RESTOREFH
GETATTR attrbits (post-op dir attrs)

ERRORS
NFS4ERR_BADHANDLE
NFS4ERR_FHEXPI RED
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_WRONGSEC

14.2.30. Operation 32: SAVEFH - Save Current Filehandle

SYNOPSI S
(cfh) -> (sfh)

ARGUMENT

/* CURRENT_FH. */
voi d;

RESULT

struct SAVEFH4res {
/* SAVED FH. value of current fh */

nfsstat4 st at us;
1
DESCRI PTI ON
Save the current filehandle. |If a previous filehandl e was saved

then it is no |longer accessible. The saved filehandl e can be
restored as the current filehandle with the RESTOREFH operat or.

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON
ERRORS

NFS4ERR_BADHANDL E

NFS4ERR_FHEXPI RED

NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE

Shepl er, et al. St andar ds Track [Page 157]

RFC 3010

NFS4ERR RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_WRONGSEC

NFS version 4 Protocol

Decenber 2000

14.2.31. Operation 33: SECINFO - Cbtain Avail able Security
SYNOPSI S
(cfh), name -> { secinfo }
ARGUMENT

struct SECI NFO4args {
/* CURRENT_FH. */
conponent 4 nane;

}s
RESULT

enum rpc_gss_svc_t {
RPC_GSS_SVC _NONE
RPC_GSS_SVC | NTEGRI TY
RPC_GSS_SVC PRI VACY

non
N

1
struct rpcsec_gss_info {
sec_oi d4

qop4
rpc_gss_svc_t

oi d;
qop;
service;

H

struct secinfo4 {
uint32_t flavor;

opaque flavor _info<>; [* nul

for AUTH SYS, AUTH NONE;

contains rpcsec_gss_info for
RPCSEC_GSS. */

1
typedef secinfo4 SECI NFO4r esok<>

uni on SECI NFO4res switch (nfsstat4 status) {

case NFS4_ XK
SECI NFO4r esok resok4;
def aul t:

H

voi d;

Shepl er, et al. St andar ds Track

[Page 158]

RFC 3010 NFS version 4 Protocol Decenber 2000

DESCRI PTI ON

The SECI NFO operation is used by the client to obtain a Iist of
valid RPC authentication flavors for a specific file handle, file

nane pair. The result will contain an array which represents the
security nechani snms available. The array entries are represented
by the secinfo4 structure. The field "flavor’ will contain a

val ue of AUTH_NONE, AUTH _SYS (as defined in [RFC1831]), or
RPCSEC _GSS (as defined in [RFC2203]).

For the flavors, AUTH NONE, and AUTH _SYS no additional security
information is returned. For a return value of RPCSEC GSS, a
security triple is returned that contains the mechani smobject id
(as defined in [RFC2078]), the quality of protection (as defined
in [RFC2078]) and the service type (as defined in [RFC2203]). It
is possible for SECINFO to return nultiple entries with flavor
equal to RPCSEC GSS with different security triple val ues.

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON

The SECI NFO operation is expected to be used by the NFS client
when the error value of NFS4AERR WRONGSEC i s returned from anot her
NFS operation. This signifies to the client that the server’s
security policy is different fromwhat the client is currently
using. At this point, the client is expected to obtain a |list of
possi bl e security flavors and choose what best suits its policies.

It is recoomended that the client issue the SECINFO call protected
by a security triple that uses either rpc_gss_svc_integrity or
rpc_gss_svc_privacy service. The use of rpc_gss_svc_none woul d
all ow an attacker in the niddle to nodify the SECI NFO results such
that the client mght select a weaker algorithmin the set all owed
by server, making the client and/or server vulnerable to further
att acks.

ERRORS

NFS4ERR_BADHANDLE
NFS4ERR_FHEXP| RED
NFS4ERR_MOVED
NFS4ERR_NAVMETOOLONG
NFS4ERR_NOENT
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOTDI R
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT

Shepl er, et al. St andar ds Track [Page 159]

RFC 3010 NFS version 4 Protocol Decenber 2000
NFS4ERR_STALE
NFS4ERR_WRONGSEC
14.2.32. Operation 34: SETATTR - Set Attributes
SYNOPSI S
(cfh), attrbits, attrvals -> -
ARGUMENT

struct SETATTR4args {
/* CURRENT_FH. target object */

st at ei d4 st at ei d;
fattr4 obj _attri butes;
1
RESULT
struct SETATTR4res {
nfsstat4 st at us;
bi t map4 attrsset;
1
DESCRI PTI ON

The SETATTR operation changes one or nore of the attributes of a
file systemobject. The new attributes are specified with a
bitmap and the attributes that follow the bitmap in bit order

The stateid is necessary for SETATTRs that change the size of a
file (mdify the attribute object_size). This stateid represents
a record lock, share reservation, or del egation which nust be
valid for the SETATTR to nodify the file data. A valid stateid
woul d al ways be specified. Wen the file size is not changed, the
special stateid consisting of all bits 0 (zero) should be used.

On either success or failure of the operation, the server will
return the attrsset bitnask to represent what (if any) attributes
were successfully set.
On success, the current filehandle retains its val ue.

| MPLEMENTATI ON
The file size attribute is used to request changes to the size of

a file. Avalue of 0 (zero) causes the file to be truncated, a
val ue less than the current size of the file causes data from new

Shepl er, et al. St andar ds Track [Page 160]

RFC 3010 NFS version 4 Protocol Decenber 2000

size to the end of the file to be discarded, and a size greater
than the current size of the file causes logically zeroed data
bytes to be added to the end of the file. Servers are free to

i mpl ement this using holes or actual zero data bytes. Cients
shoul d not make any assunptions regarding a server’s

i mpl ementation of this feature, beyond that the bytes returned
will be zeroed. Servers nust support extending the file size via
SETATTR

SETATTR i s not guaranteed atomic. A failed SETATTR may partially
change a file's attributes.

Changing the size of a file with SETATTR i ndirectly changes the
time_nodify. A client nust account for this as size changes can
result in data del etion

If server and client tinmes differ, prograns that conpare client
time to file tines can break. A tinme naintenance protocol should
be used to limit client/server tine skew.

If the server cannot successfully set all the attributes it mnust
return an NFS4ERR I NVAL error. |If the server can only support 32
bit offsets and sizes, a SETATTR request to set the size of a file
to larger than can be represented in 32 bits will be rejected with
this sanme error.

ERRORS

NFS4ERR_ACCES
NFS4ERR_BADHANDLE
NFS4ERR_BAD_STATEI D
NFS4ERR_DELAY
NFS4ERR_DENI ED
NFS4ERR_DQUOT
NFS4ERR_EXPI RED
NFS4ERR_FBI G
NFS4ERR_FHEXP| RED
NFS4ERR_GRACE
NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOSPC
NFS4ERR_NOTSUPP
NFS4ERR_OLD_STATEI D
NFS4ERR_PERM
NFS4ERR_RESOURCE
NFS4ERR_ROFS

Shepler, et al. St andards Track [Page 161]

RFC 3010 NFS version 4 Protocol Decenber 2000

NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_STALE STATEI D
NFS4ERR_WRONGSEC
14.2.33. Operation 35: SETCLIENTID - Negotiate Cientid
SYNOPSI S
client, callback -> clientid, setclientid_confirm

ARGUVENT

struct SETCLI ENTI D4args {
nfs_client_id4 client;

cb_client4 cal | back
}s
RESULT
struct SETCLI ENTI D4r esok {
clientid4 clientid;
verifier4d setclientid_confirm

H

uni on SETCLI ENTI D4res switch (nfsstat4 status) {
case NFS4_ XK

SETCLI ENTI D4r esok resok4;
case NFS4ERR CLI D_I NUSE:
clientaddr4 client _using;
def aul t:
voi d;
}s
DESCRI PTI ON

The SETCLI ENTI D operation introduces the ability of the client to
notify the server of its intention to use a particular client
identifier and verifier pair. Upon successful conpletion the
server will return a clientid which is used in subsequent file

| ocki ng requests and a confirmation verifier. The client will use
t he SETCLI ENTI D_CONFI RM operation to return the verifier to the
server. At that point, the client may use the clientid in
subsequent operations that require an nfs_| ockowner

Shepler, et al. St andards Track [Page 162]

RFC 3010 NFS version 4 Protocol Decenber 2000

The cal | back information provided in this operation will be used
if the client is provided an open delegation at a future point.

Therefore, the client nust correctly reflect the program and port
nunbers for the call back programat the tine SETCLIENTID is used.

| MPLEMENTATI ON

The server takes the verifier and client identification supplied
inthe nfs_client_id4 and searches for a match of the client
identification. |If no match is found the server saves the
principal/uid information along with the verifier and client
identification and returns a unique clientid that is used as a
shorthand reference to the supplied information

If the server finds matching client identification and a
corresponding match in principal/uid, the server rel eases al
| ocking state for the client and returns a new clientid.

The principal, or principal to user-identifier mapping is taken
fromthe credential presented in the RPC. As nentioned, the

server will use the credential and associated principal for the
mat ching with existing clientids. |If the client is a traditional
host -based client Iike a Unix NFS client, then the credenti al
presented may be the host credential. |If the client is a user

| evel client or lightweight client, the credential used may be the
end user’s credential. The client should take care in choosing an

appropriate credential since denial of service attacks could be
attenpted by a rogue client that has access to the credential

ERRORS
NFS4ERR_CLI D_| NUSE
NFS4ERR | NVAL
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
14.2.34. QOperation 36: SETCLIENTID CONFIRM - Confirmdientid
SYNOPSI S
setclientid_confirm-> -

ARGUVENT

struct SETCLI ENTI D_CONFI RMdar gs {
verifier4d setclientid_confirm
}s

Shepl er, et al. St andar ds Track [Page 163]

RFC 3010 NFS version 4 Protocol Decenber 2000

RESULT
struct SETCLI ENTI D_CONFI RMAr es {
nfsstat4 st at us;
H
DESCRI PTI ON

This operation is used by the client to confirmthe results froma
previous call to SETCLIENTID. The client provides the server
supplied (froma SETCLI ENTID response) opaque confirmation
verifier. The server responds with a sinple status of success or
failure

| MPLEMENTATI ON

The client nmust use the SETCLI ENTI D_CONFI RM operation to confirm
its use of client identifier. |If the server is holding state for
a client which has presented a new verifier via SETCLIENTID, then
the state will not be released, as described in the section
"Client Failure and Recovery", until a valid SETCLI ENTI D_CONFI RM
is received. Upon successful confirmation the server will rel ease
the previous state held on behalf of the client. The server
shoul d choose a confirmation cookie value that is reasonably

uni que for the client.

ERRORS
NFS4ERR_CLI D_I NUSE
NFS4ERR | NVAL
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE CLI ENTI D
14.2.35. Operation 37: VERIFY - Verify Sane Attributes
SYNOPSI S
(cfh), fattr -> -
ARGUMENT
struct VERI FY4args {
/* CURRENT_FH. object */

fattr4 obj _attri butes;
1

Shepl er, et al. St andar ds Track [Page 164]

RFC 3010 NFS version 4 Protocol Decenber 2000

RESULT
struct VERI FY4res {
nfsstat4 st at us;
H
DESCRI PTI ON

The VERI FY operation is used to verify that attributes have a
val ue assuned by the client before proceeding with foll ow ng
operations in the conpound request. |If any of the attributes do
not match then the error NFS4ERR_NOT_SAME nust be returned. The
current filehandle retains its value after successful conpletion
of the operation

| MPLEMENTATI ON

One possible use of the VERI FY operation is the foll ow ng conpound
sequence. Wth this the client is attenpting to verify that the

file being renoved will match what the client expects to be
renoved. This sequence can hel p prevent the unintended del etion
of a file.

PUTFH (directory fil ehandl e)
LOCKUP (file nane)

VERI FY (filehandle == fh)
PUTFH (directory fil ehandl e)
REMOVE (file nane)

Thi s sequence does not prevent a second client fromrenoving and
creating a new file in the mddle of this sequence but it does
hel p avoid the unintended result.

In the case that a recomended attribute is specified in the

VERI FY operation and the server does not support that attribute
for the file systemobject, the error NFS4ERR NOTSUPP i s returned
to the client.

ERRORS

NFS4ERR_ACCES
NFS4ERR_BADHANDLE
NFS4ERR_DELAY
NFS4ERR_FHEXPI RED
NFS4ERR_| NVAL
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOTSUPP

Shepl er, et al. St andar ds Track [Page 165]

RFC 3010 NFS version 4 Protocol Decenber 2000

NFS4ERR_NOT_SAVE
NFS4ERR_RESOURCE
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_WRONGSEC

14.2.36. Operation 38: WRITE - Wite to File
SYNOPSI S

(cfh), offset, count, stability, stateid, data -> count,
verifier

ARGUVENT

enum st abl e_how4 {
UNSTABLE4
DATA SYNC4
FI LE_SYNC4

noan
NP O

H

struct WRI TE4args {
[* CURRENT_FH. file */

st at ei d4 stateid;
of fset4 of f set;
st abl e_how4 st abl e;
opaque dat a<>;

}s

RESULT

struct WRI TE4resok {
count 4 count ;
st abl e_how4 commi tted;
verifier4d witeverf;

H

uni on WRI TE4res switch (nfsstat4 status) {
case NFS4_ XK
VRl TE4r esok resok4;
defaul t:
voi d;
1

Shepl er, et al. St andar ds Track

comm tted,

[Page 166]

RFC 3010 NFS version 4 Protocol Decenber 2000

DESCRI PTI ON

The WRI TE operation is used to wite data to a regular file. The
target file is specified by the current filehandle. The offset
specifies the of fset where the data should be witten. An offset
of O (zero) specifies that the wite should start at the begi nning
of the file. The count represents the nunmber of bytes of data
that are to be witten. |If the count is O (zero), the WRITE wi ||
succeed and return a count of O (zero) subject to perm ssions
checking. The server may choose to wite fewer bytes than
requested by the client.

Part of the wite request is a specification of howthe wite is
to be performed. The client specifies with the stable paraneter
the method of how the data is to be processed by the server. |If
stable is FILE_SYNC4, the server nust commrit the data witten plus
all file systemnetadata to stable storage before returning
results. This corresponds to the NFS version 2 protocol

semantics. Any other behavior constitutes a protocol violation.

If stable is DATA SYNC4, then the server nmust commit all of the
data to stable storage and enough of the netadata to retrieve the
data before returning. The server inplementor is free to

i mpl ement DATA_SYNCA in the same fashion as FILE SYNC4, but with a
possi bl e performance drop. |If stable is UNSTABLE4, the server is
free to cormmit any part of the data and the netadata to stable
storage, including all or none, before returning a reply to the
client. There is no guarantee whether or when any unconmtted data

wi Il subsequently be comritted to stable storage. The only
guar antees nade by the server are that it will not destroy any
data wi t hout changing the value of verf and that it will not

commit the data and netadata at a | evel |ess than that requested
by the client.

The stateid returned froma previous record | ock or share
reservation request is provided as part of the argunent. The
stateid is used by the server to verify that the associated | ock
is still valid and to update |ease tinmeouts for the client.

Upon successful conpletion, the following results are returned.
The count result is the nunber of bytes of data witten to the
file. The server may wite fewer bytes than requested. If so, the
actual nunber of bytes witten starting at location, offset, is

r et ur ned.

The server also returns an indication of the |evel of conm tnent
of the data and netadata via commtted. |If the server comitted
all data and netadata to stable storage, comitted shoul d be set
to FILE_SYNCA. If the level of commtnment was at |east as strong

Shepl er, et al. St andar ds Track [Page 167]

RFC 3010 NFS version 4 Protocol Decenber 2000

as DATA SYNC4, then conmmitted should be set to DATA SYNCA.

O herwi se, commtted nust be returned as UNSTABLE4. If stable was
FILE4A_SYNC, then committed nust al so be FILE_SYNC4: anything el se
constitutes a protocol violation. If stable was DATA SYNC4, then
committed nay be FILE SYNC4 or DATA SYNC4: anything el se
constitutes a protocol violation. If stable was UNSTABLE4, then
commtted nay be either FILE SYNC4, DATA SYNC4, or UNSTABLEA4.

The final portion of the result is the wite verifier, verf. The
wite verifier is a cookie that the client can use to determne
whet her the server has changed state between a call to WRITE and a
subsequent call to either WRITE or COM T. This cookie nust be
consi stent during a single instance of the NFS version 4 protocol
servi ce and must be uni qgue between instances of the NFS version 4
protocol server, where unconmitted data nay be | ost.

If aclient wites data to the server with the stable argunent set
to UNSTABLE4 and the reply yields a committed response of
DATA_SYNCA or UNSTABLE4, the client will follow up sone tine in
the future with a COWM T operation to synchroni ze out standi ng
asynchronous data and netadata with the server’s stabl e storage,
barring client error. It is possible that due to client crash or
other error that a subsequent COWM T will not be received by the
server.

On success, the current filehandle retains its val ue.
| MPLEMENTATI ON

It is possible for the server to wite fewer than count bytes of
data. In this case, the server should not return an error unl ess
no data was witten at all. |f the server wites |ess than count
bytes, the client should issue another WRITE to wite the
renmai ni ng dat a.

It is assunmed that the act of witing data to a file will cause
the time_nodified of the file to be updated. However, the
time_nodified of the file should not be changed unless the
contents of the file are changed. Thus, a WRITE request with
count set to O should not cause the tinme_nodified of the file to
be updat ed.

The definition of stable storage has been historically a point of
contention. The follow ng expected properties of stable storage
may help in resolving design issues in the inplenmentation. Stable
storage i s persistent storage that survives:

Shepl er, et al. St andar ds Track [Page 168]

RFC 3010 NFS version 4 Protocol Decenber 2000

1. Repeated power failures.
2. Hardware failures (of any board, power supply, etc.).
3. Repeated software crashes, including reboot cycle.

This definition does not address failure of the stable storage
nodul e itself.

The verifier is defined to allow a client to detect different

i nstances of an NFS version 4 protocol server over which cached,
uncommitted data may be lost. In the nost |ikely case, the
verifier allows the client to detect server reboots. This
information is required so that the client can safely determ ne
whet her the server could have | ost cached data. |If the server
fails unexpectedly and the client has uncomitted data from
previous WRI TE requests (done with the stable argunment set to
UNSTABLE4 and in which the result conmitted was returned as
UNSTABLE4 as well) it may not have flushed cached data to stable
storage. The burden of recovery is on the client and the client
will need to retransnit the data to the server.

A suggested verifier would be to use the tine that the server was
booted or the tinme the server was |ast started (if restarting the
server without a reboot results in |ost buffers).

The committed field in the results allows the client to do nore

ef fective caching. |If the server is comrtting all WRITE requests
to stable storage, then it should return with committed set to

FI LE_SYNC4, regardless of the value of the stable field in the
argunments. A server that uses an NVRAM accel erator may choose to

i mpl ement this policy. The client can use this to increase the

ef fecti veness of the cache by discarding cached data that has

al ready been committed on the server.

Some i npl enentations may return NFS4ERR _NOSPC i nstead of
NFSAERR _DQUOT when a user’s quota is exceeded.

ERRORS

NFS4ERR_ACCES
NFS4ERR_BADHANDLE
NFS4ERR_BAD_STATEI D
NFS4ERR_DELAY
NFS4ERR_DENI ED
NFS4ERR_DQUOT
NFS4ERR_EXPI RED
NFS4ERR_FBI G
NFS4ERR_FHEXP| RED
NFS4ERR_GRACE

Shepl er, et al. St andar ds Track [Page 169]

RFC 3010 NFS version 4 Protocol Decenber 2000

15.

15.

NFS4ERR_| NVAL
NFS4ERR | O
NFS4ERR_LEASE_MOVED
NFS4ERR_LOCKED
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE
NFS4ERR_NOSPC
NFS4ERR_OLD_STATEI D
NFS4ERR_RESOURCE
NFS4ERR_ROFS
NFS4ERR_SERVERFAULT
NFS4ERR_STALE
NFS4ERR_STALE_STATEI D
NFS4ERR_WRONGSEC

NFS Version 4 Call back Procedures
The procedures used for callbacks are defined in the follow ng
sections. In the interest of clarity, the terns "client" and
"server" refer to NFS clients and servers, despite the fact that for
an individual callback RPC, the sense of these terns would be
preci sely the opposite.
1. Procedure 0: CB_NULL - No Qperation
SYNOPSI S

<nul | >
ARGUMENT

voi d;
RESULT

voi d;
DESCRI PTI ON

Standard NULL procedure. Void argunent, void response. Even

though there is no direct functionality associated with this

procedure, the server will use CB NULL to confirmthe existence of

a path for RPCs fromserver to client.

ERRORS

None.

Shepl er, et al. St andar ds Track [Page 170]

RFC 3010 NFS version 4 Protocol Decenber

15.2. Procedure 1: CB_COVPOUND - Conpound Qperations
SYNOPSI S

compoundar gs -> conpoundres

ARGUMENT
enum nfs_cb_opnumd {
OP_CB_GETATTR = 3,
OP_CB_RECALL =4 };
uni on nfs_cb_argop4 switch (unsigned argop) ({
case OP_CB CETATTR CB_GETATTR4ar gs opchgetattr;
case OP_CB RECALL: CB_RECALL4args opcbrecall; };
struct CB_COVPOUND4args {
utf8string tag;
uint 32_t ni norver si on;

nfs_chb_argop4 argarray<>;, };

RESULT
union nfs_cb _resop4 switch (unsigned resop){
case OP_CB GETATTR CB GETATTR4res opcbgetattr;
case OP_CB _RECALL: CB_RECALLA4res opcbrecal | ; };

struct CB_COVMPOUNDAres {
nfsstat4 status;
utf8string tag;
nfs_chb_resop4 resarray<>; };

DESCRI PTI ON

2000

The CB_COVPOUND procedure is used to conbine one or nore of the
cal | back procedures into a single RPC request. The main call back

RPC program has two mai n procedures: CB _NULL and CB_COVPOUND.
ot her operations use the CB_COWOUND procedure as a w apper.

In the processing of the CB_COVPOUND procedure, the client may

Al

find that it does not have the avail able resources to execute any
or all of the operations within the CB_COMPOUND sequence. In this

case, the error NFS4ERR RESOURCE will be returned for the

particul ar operation within the CB_COVPOUND procedure where the

resource exhaustion occurred. This assunes that all previous

operations within the CB_COVWOUND sequence have been eval uat ed

successful ly.

Shepler, et al. St andards Track [Page 171]

RFC 3010 NFS version 4 Protocol Decenber 2000

Contained within the CB_ COVWOUND results is a 'status’ field.
This status nmust be equivalent to the status of the |ast operation
that was executed within the CB_COMPOUND procedure. Therefore, if

an operation incurred an error then the 'status’ value will be the
sanme error value as is being returned for the operation that
fail ed.

| MPLEMENTATI ON

The CB_COVPOUND procedure is used to conbine individual operations
into a single RPC request. The client interprets each of the
operations in turn. |If an operation is executed by the client and
the status of that operation is NFS4_OK, then the next operation
in the CB_COVWPOUND procedure is executed. The client continues
this process until there are no nore operations to be executed or
one of the operations has a status value other than NFS4_OK

ERRORS

NFS4ERR_BADHANDLE
NFS4ERR_BAD_STATEI D
NFS4ERR_RESOURCE

15.2.1. Operation 3: CB _CGETATTR - Get Attributes
SYNOPSI S
fh, attrbits -> attrbits, attrvals
ARGUMENT
struct CB_GETATTR4args {
nfs fha fh;

bit map4 attr_request;

}s
RESULT

struct CB_GETATTR4resok {
fattr4 obj_attributes;
1

uni on CB_CGETATTR4res switch (nfsstat4 status) {
case NFS4_ XK
CB_GETATTRAr esok resok4;
def aul t:
voi d;
1

Shepler, et al. St andards Track [Page 172]

RFC 3010 NFS version 4 Protocol Decenber 2000

15.

DESCRI PTI ON
The CB_CGETATTR operation is used to obtain the attributes nodified
by an open delegate to allow the server to respond to GETATTR
requests for a file which is the subject of an open del egation

If the handl e specified is not one for which the client holds a
wite open del egation, an NFS4ERR BADHANDLE error is returned.

| MPLEMENTATI ON
The client returns attrbits and the associated attri bute val ues
only for attributes that it may change (change, tine_nodify,
obj ect _si ze) .

ERRORS

NFS4ERR_BADHANDLE
NFS4ERR_RESOURCE

2.2. Operation 4: CB _RECALL - Recall an Open Del egation
SYNOPSI S

stateid, truncate, fh -> status

ARGUVENT
struct CB_RECALL4args {
st at ei d4 stateid;
bool truncate;
nfs_fh4 fh;
H
RESULT
struct CB_RECALL4res {
nfsstat4 st at us;
H
DESCRI PTI ON

The CB_RECALL operation is used to begin the process of recalling
an open delegation and returning it to the server

Shepl er, et al. St andar ds Track [Page 173]

RFC 3010 NFS version 4 Protocol Decenber 2000

16.

17.

17.

The truncate flag is used to optinize recall for a file which is
about to be truncated to zero. Wen it is set, the client is
freed of obligation to propagate nodified data for the file to the
server, since this data is irrelevant.

If the handl e specified is not one for which the client holds an
open del egati on, an NFS4AERR BADHANDLE error is returned.

If the stateid specified is not one corresponding to an open
del egation for the file specified by the filehandle, an
NFSAERR _BAD STATEI D i s returned.

| MPLEMENTATI ON

The client should reply to the call back i mediately. Replying
does not conplete the recall. The recall is not conplete until
the del egation is returned using a DELEGRETURN

ERRORS

NFS4ERR_BADHANDLE
NFS4ERR_BAD_STATEI D
NFS4ERR_RESOURCE

Security Considerations

The maj or security feature to consider is the authentication of the
user maki ng the request of NFS service. Consideration should also be
given to the integrity and privacy of this NFS request. These
specific issues are discussed as part of the section on "RPC and
Security Flavor".

| ANA Consi der ati ons
1. Nanmed Attribute Definition

The NFS version 4 protocol provides for the association of naned
attributes to files. The nanme space identifiers for these attributes
are defined as string nanes. The protocol does not define the

speci fic assignment of the nane space for these file attributes; the
application devel oper or systemvendor is allowed to define the
attribute, its semantics, and the associated name. Even though this
nane space will not be specifically controlled to prevent collisions,
the application devel oper or systemvendor is strongly encouraged to
provi de the nane assignnent and associ ated semantics for attributes
via an Informational RFC. This will provide for interoperability
where comon interests exist.

Shepl er, et al. St andar ds Track [Page 174]

RFC 3010 NFS version 4 Protocol Decenber 2000

18.

RPC definition file

/*
Copyright (C) The Internet Society (1998, 1999, 2000).
* Al Rights Reserved.

*/

/*
nfs4_prot.x

*

*/

%tpragma ident "@#)nfs4_prot.x 1.97 00/ 06/ 12"

/*

* Basic typedefs for RFC 1832 data type definitions

*/

typedef int int32_t;

t ypedef unsigned int uint32_t;

t ypedef hyper int64_t;

t ypedef unsi gned hyper uint64_t;

/*

* Sizes

*/

const NFS4_FHSI ZE = 128;

const NFS4_VERI FI ER_SI ZE = 8;

/*

* File types

*/

enum nfs_ftyped {
NF4REG = 1, /* Regular File */
NF4DI R = 2, * Directory */
NF4BLK = 3, * Special File - block device */
NF4CHR = 4, /* Special File - character device */
NF4LNK = 5, * Synbolic Link */
NF4SOCK = 6, * Special File - socket */
NF4FI FO =7, /* Special File - fifo */
NF4ATTRDI R = 8, /* Attribute Directory */
NF4ANAMEDATTR =9 /* Named Attribute */

1

/*

* Error status

*/

enum nfsstat4 {
NFS4_OK = 0,

Shepl er, et al. St andar ds Track [Page 175]

RFC 3010

Shepl er,

NFS ver si on

NFS4ERR_PERM
NFS4ERR_NOENT
NFS4ERR | O

NFS4ERR _NXI O
NFS4ERR_ACCES
NFS4ERR_EXI ST
NFS4ERR_XDEV
NFS4ERR_NODEV
NFS4ERR_NOTDI R
NFS4ERR | SDI R
NFS4ERR_| NVAL
NFS4ERR _FBI G
NFS4ERR_NOSPC
NFS4ERR_ROFS
NFS4ERR_MLI NK
NFS4ERR_NAVETOOLONG
NFS4ERR_NOTEMPTY
NFS4ERR_DQUOT
NFS4ERR_STALE
NFS4ERR_BADHANDLE
NFS4ERR_BAD_COOKI E
NFS4ERR_NOTSUPP
NFS4ERR_TOOSMALL
NFS4ERR_SERVERFAULT
NFS4ERR_BADTYPE
NFS4ERR_DELAY
NFS4ERR_SAME
NFS4ERR_DENI ED
NFS4ERR_EXP| RED
NFS4ERR_LOCKED
NFS4ERR_GRACE
NFS4ERR_FHEXP| RED
NFS4ERR_SHARE_DENI ED
NFS4ERR_WRONGSEC
NFS4ERR _CLI D_I NUSE
NFS4ERR_RESOURCE
NFS4ERR_MOVED
NFS4ERR_NOFI LEHANDLE

4 Prot ocol Decenber 2000

69,

70,

10001,

10003,

10004,

10005,

10006,

10007,

10008,

10009, /* nverify says attrs sane */
10010, /* | ock unavail abl e */
10011,/* Il ock | ease expired */
10012,/* 1/O failed due to lock */
10013,/* in grace period */
10014,/* file handl e expired */
10015, /* share reserve denied */
10016,/* wong security flavor */
10017,/* clientid in use */
10018, /* resource exhaustion */
10019,/* filesystemrel ocated */
10020,/* current FH is not set */

NFS4ERR_M NOR_VERS_M SMATCH = 10021,/* minor vers not supp */

NFS4ERR_STALE_CLI ENTI D

NFS4ERR_STALE_STATEI D
NFS4ERR_OLD_STATEI D
NFS4ERR_BAD_STATEI D
NFS4ERR_BAD_SEQ D
NFS4ERR_NOT_SANME
NFS4ERR_LOCK_RANGE

10022,
10023,
10024,
10025,
10026,
10027,/* verify - attrs not same */
10028,

NFSA4ERR_SYM.I NK 10029,
NFS4ERR_READDI R_NOSPC 10030,
et al. St andards Track [Page 176]

RFC 3010 NFS version 4 Protoco
NFS4ERR_LEASE_MOVED = 10031
1
/ *
* Basic data types
*/
t ypedef uint32_t bi t map4<>
t ypedef uint64_t of f set 4;
t ypedef uint32_t count 4;
t ypedef uint64_t | engt h4;
t ypedef uint64_t clientid4;
t ypedef uint64_t st at ei d4;
t ypedef uint32_t seqi d4;
t ypedef opaque ut f 8string<>;
typedef utf8string component 4;
t ypedef conponent4 pat hname4<>;
t ypedef uint64_t nfs_I ocki d4;
t ypedef uint64_t nf s_cooki e4;
typedef utf8string I i nkt ext 4;
t ypedef opaque sec_oi d4<>;
t ypedef uint32_t qop4;
t ypedef uint32_t node4;
t ypedef uint64_t changei d4;
t ypedef opaque verifier4[NFS4_VERI Fl ER_SI ZE] ;
/ *
* Ti meval
*/
struct nfstined4 {
int64_t seconds;
ui nt 32_t nseconds;
1

enum ti nme_how4 {
SET_TO SERVER TI ME4
SET_TO CLI ENT_TI ME4

b

uni on settinmed switch (tine_how4 set it) {
case SET_TO CLI ENT_TI ME4:

nfstime4 tine;
defaul t:
voi d;
i
/*
* File access handl e
*/

Shepl er, et al. St andar ds Track

Decenber 2000

[Page 177]

RFC 3010 NFS version 4 Protocol Decenber 2000

t ypedef opaque nfs_fh4<NFS4_FHSI ZE>;

/*
* File attribute definitions
*/
/*
* FSID structure for maj or/mnor
*/
struct fsid4 {
ui nt64_t maj or;
ui nt64_t nm nor;
3
/*
* Filesystem | ocations attribute for relocation/mgration
*/
struct fs_locationd {
ut f8string server <>;
pat hnane4 r oot pat h;
3
struct fs_locations4 {
pat hnane4 fs_root;
fs_location4d | ocati ons<>
3
/*
* Various Access Control Entry definitions
*/
/*

* Mask that indicates which Access Control Entries are supported.
* Values for the fattr4_acl support attribute.
*/

const ACL4_SUPPORT_ALLOW ACL = 0x00000001

const ACL4_SUPPORT_DENY_ACL = 0x00000002;

const ACL4_SUPPORT_AUDI T_ACL = 0x00000004;

const ACL4_SUPPORT_ALARM ACL = 0x00000008;

t ypedef uint32_t acet ype4;

/*

* acetype4d val ues, others can be added as needed.

*/

const ACE4_ACCESS ALLOWED ACE_TYPE = 0x00000000

Shepl er, et al. St andar ds Track [Page 178]

Shepl er, et al. St andar ds Track

RFC 3010 NFS version 4 Protocol
const ACE4_ACCESS DEN ED _ACE_TYPE = 0x00000001;
const ACE4_SYSTEM AUDI T_ACE_TYPE = 0x00000002;
const ACE4_SYSTEM ALARM ACE_TYPE = 0x00000003;
/*
* ACE fl ag
*/
typedef uint32_t acefl ag4;
/*
* ACE fl ag val ues
*/
const ACE4_FI LE_| NHERI T_ACE = 0x00000001;
const ACE4_DI RECTORY_I NHERI T_ACE = 0x00000002;
const ACE4_NO PROPAGATE_| NHERI T_ACE = 0x00000004;
const ACE4 | NHERI T_ONLY_ACE = 0x00000008;
const ACE4_SUCCESSFUL_ACCESS ACE_FLAG = 0x00000010;
const ACE4_FAI LED ACCESS ACE_FLAG = 0x00000020;
const ACE4_| DENTI FI ER_GROUP = 0x00000040;
/*
* ACE mask
*/
t ypedef uint32_t acenask4;
/*
* ACE mask val ues
*/
const ACE4_READ DATA = 0x00000001;
const ACE4_LI ST_DI RECTORY = 0x00000001;
const ACE4_WRI TE_DATA = 0x00000002;
const ACE4_ADD FI LE = 0x00000002;
const ACE4_APPEND_DATA = 0x00000004;:
const ACE4_ADD SUBDI RECTORY = 0x00000004;
const ACE4_READ NAMED ATTRS = 0x00000008;
const ACE4_WRI TE_NAMVED ATTRS = 0x00000010;
const ACE4_EXECUTE = 0x00000020;
const ACE4_DELETE CH LD = 0x00000040;
const ACE4_READ _ATTRI BUTES = 0x00000080;
const ACE4_WRI TE_ATTRI BUTES = 0x00000100;
const ACE4_DELETE = 0x00010000;
const ACE4_READ _ACL = 0x00020000;
const ACE4_WRI TE_ACL = 0x00040000;
const ACE4_WRI TE_OMNNER = 0x00080000;
const ACE4_SYNCHRON ZE = 0x00100000;

Decenber 2000

[Page 179]

RFC 3010 NFS version 4 Protocol Decenber 2000

ACE4_GENERI C_READ -- defined as conbination of
ACE4_READ ACL |
ACE4_READ DATA |
ACE4_READ ATTRI BUTES |
ACE4_SYNCHRONI ZE

* X X X X X X

/

const ACE4_GENERI C_READ = 0x00120081;

~

* 0% X X X X X X X

ACE4 _GENERI C WRI TE -- defined as conbi nati on of
ACE4_READ ACL |
ACE4_W\RI TE_DATA |
ACE4_WRI TE_ATTRI BUTES |
ACE4_WRI TE_ACL |
ACE4_APPEND_DATA |
ACE4_SYNCHRONI ZE
/

const ACE4_GENERI C WRI TE = 0x00160106;

ACE4_GENERI C_EXECUTE -- defined as conbi nati on of
ACE4_READ ACL
ACE4_READ _ATTRI BUTES
ACE4_EXECUTE
ACE4_SYNCHRONI ZE

* X X X X

*

*/
const ACE4_CENERI C_EXECUTE = 0x001200A0;

/*

* Access Control Entry definition
*/

struct nfsace4d {

acetype4 type;
acefl ag4 flag;
acenmask4 access_nask
ut f8string who;

b

/*

* Special data/attribute associated with
* file types NF4BLK and NF4CHR.

*/

struct specdatad {

Shepl er, et al. St andar ds Track [Page 180]

RFC 3010

b
/*

ui nt 32_t
ui nt 32_t

NFS version 4 Protocol

specdat al;
specdat a2;

* Values for fattr4 fh_expire_type

*/
const
const
const
const
const

t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef

t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef

FH4_PERSI STENT
FH4_NOEXPI RE_W TH_OPEN
FH4_VOLATI LE_ANY
FH4_VOL_M GRATI ON
FH4_VOL_RENANME

bi t map4
nfs_ftyped
uint32_t
changei d4
ui nt64_t
bool

bool

bool
fsid4
bool
uint32_t
nf sstat4

nf sace4
uint32_t
bool
bool
bool
bool
bool

ui nt64_t
ui nt64_t
nfs_fh4
ui nt64_t
ui nt64_t
fs_locations4
bool
bool

ui nt64_t
uint32_t
uint32_t
ui nt64_t
ui nt64_t
utf8string

Shepl er, et al.

0x00000000;
0x00000001;
0x00000002;
0x00000004;
0x00000008;

fattr4_supported_attrs;
fattr4_type
fattr4_fh_expire_type;
fattr4_change;
fattr4_si ze;
fattr4_l i nk_support;
fattr4_sym i nk_support;
fattr4_naned_attr;
fattr4_fsid;

fattr4_uni que_handl es;
fattr4_| ease_ti ne;
fattr4 rdattr_error;

fattr4_acl <>;
fattr4_acl support;
fattr4_archive;
fattr4_cansetti ne;
fattr4_case_insensitive
fattr4_case_preserving;
fattr4_chown_restricted;
fattr4 _fileid;
fattr4_files_avail;
fattr4_fil ehandl e;
fattrd_files_free;
fattr4 files_total
fattr4 _fs_l ocations;
fattr4_hi dden;
fattr4_honbgeneous;
fattr4_maxfil esi ze;
fattr4_maxlink;
fattr4_naxnane;
fattr4_naxread;
fattr4_maxwite
fattr4_ni netype

St andards Track

Decenber

[Page

2000

181]

RFC 3010

t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef

/ *

node4

bool

ui nt 32_t

utf8string
utf8string

ui nt64_t
ui nt64_t
ui nt64_t

specdat a4

ui nt64_t
ui nt64_t
ui nt64_t
ui nt64_t

bool

nfsti
setti
nfsti
nfsti
nfsti
nfsti
nfsti
setti

me4
me4
me4
me4
me4
me4
me4
me4

NFS version 4 Protocol

fattr4_node;
fattr4_no_trunc;
fattr4_num i nks;
fattr4_owner;
fattr4_owner _group

fattr4_quota_avail _hard;
fattr4_quota_avail _soft;

fattr4_quot a_used;
fattr4_rawdev;
fattr4_space_avail ;
fattr4_space_free;
fattr4_space_total
fattr4_space_used;
fattr4_system
fattr4_tine_access;

fattr4_tine_access_set;

fattr4_tinme_backup
fattr4_tine_create;
fattr4_tine_delta;
fattr4_tine_met adat a;
fattr4_tinme_nodify;

fattr4_tinme_nodi fy_set;

* Mandatory Attributes

*/

const FATTR4_SUPPORTED_ATTRS

const
const
const
const
const
const
const
const
const
const
const

/ *

FATTRA_TYPE
FATTRA_FH_EXPl RE_TYPE
FATTR4_CHANGE
FATTR4_SI ZE

FATTRA_LI NK_SUPPORT
FATTR4_SYM.I NK_SUPPORT
FATTRA_NAMED ATTR
FATTR4_FSI D

FATTR4_UNI QUE_HANDLES
FATTR4_LEASE_TI ME
FATTR4_RDATTR_ERROR

* Recommended Attri butes

*/
const
const
const
const
const

Shepl er,

FATTR4_ACL
FATTR4_ACLSUPPCRT
FATTR4_ARCHI VE
FATTR4_CANSETTI ME
FATTR4_CASE_| NSENSI TI VE

et al.

CoONONRONRO

12;
13;
14,
15;
16;

St andards Track

Decenber

[Page

2000

182]

RFC 3010

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

| *
*/

struct fattr4 {

NFS version 4 Protocol
FATTR4_CASE_PRESERVI NG = 17;
FATTR4_CHOWN_RESTRI CTED = 18;
FATTR4_FI LEHANDLE = 19;
FATTR4_FI LEI D = 20;
FATTR4A_FI LES_AVAI L = 21;
FATTR4A_FI LES_FREE = 22;
FATTR4A_FI LES_TOTAL = 23;
FATTR4_FS_LOCATI ONS = 24;
FATTR4_H DDEN = 25;
FATTR4_HOMOGENEQUS = 26;
FATTR4A_MAXFI LESI ZE = 27;
FATTR4A_MAXLI NK = 28;
FATTR4_MAXNAME = 29;
FATTR4_MAXREAD = 30;
FATTR4_NMAXVIRI TE = 31;
FATTR4_M METYPE = 32;
FATTR4_MODE = 33;
FATTR4_NO TRUNC = 34;
FATTR4A_NUMLI NKS = 35;
FATTR4A_OMNNER = 36;
FATTR4A_OANER_GROUP = 37;
FATTR4A_QUOTA AVAIL_HARD = 38;
FATTR4A_QUOTA AVAIL_SOFT = 39;
FATTR4_QUOTA USED = 40;
FATTR4_RAVDEV = 41;
FATTR4_SPACE_AVAI L = 42;
FATTR4_SPACE_FREE = 43;
FATTR4_SPACE_TOTAL = 44;
FATTR4_SPACE_USED = 45;
FATTR4_SYSTEM = 46;
FATTR4_TI ME_ACCESS = 47;
FATTR4_TI ME_ACCESS SET = 48;
FATTR4_TI ME_BACKUP = 49;
FATTR4_TI ME_CREATE = 50;
FATTR4_TI ME_DELTA = 51;
FATTR4_TI ME_METADATA = 52;
FATTR4_TI ME_MODI FY = 53;
FATTR4_TI ME_MODI FY_SET = 54,

typedef opaque attrlist4<>;
* File attribute container
bi t map4 at tr mask;
attrlist4 attr_val s;
et al. St andards Track

Shepl er,

Decenber 2000

[Page 183]

RFC 3010 NFS version 4 Protocol Decenber 2000

1
/*
* Change info for the client
*/
struct change_info4 {
bool at omi c;
changei d4 bef ore;
changei d4 after;
1

struct clientaddr4 {
/* see struct rpcb in RFC 1833 */

string r_netid<>; /* network id */
string r_addr<>; /* universal address */
3
/*
* Cal |l back programinfo as provided by the client
*/
struct cb _client4 {
unsi gned i nt cb_program
clientaddr4 cb_l ocati on;
3
/*
* Client ID
*/
struct nfs_client _id4 {
verifier4d verifier;
opaque i d<>;
3
struct nfs_I ockowner4 {
clientid4 clientid;
opaque owner <>;
3
enum nfs_| ock_type4d {
READ LT =1,
WRI TE LT = 2,
READW LT = 3, /* blocking read */
VWRI TEW LT =4 /* blocking wite */
3
/*
* ACCESS: Check access perm ssion
*/

Shepl er, et al. St andar ds Track [Page 184]

RFC 3010 NFS version 4 Protocol Decenber 2000

const ACCESS4_READ = 0x00000001
const ACCESS4_LOOKUP = 0x00000002;
const ACCESS4_MODI FY = 0x00000004;
const ACCESS4 EXTEND = 0x00000008;
const ACCESS4 DELETE = 0x00000010;
const ACCESS4 _EXECUTE = 0x00000020;

struct ACCESS4args {
/* CURRENT_FH: object */

uint32_t access;

1

struct ACCESS4resok {
uint32_t support ed;
uint32_t access;

1

uni on ACCESS4res switch (nfsstat4 status) {
case NFS4_ XK
ACCESS4r esok r esok4;

defaul t:
voi d;
i
/*
* CLOSE: Close a file and rel ease share | ocks
*/

struct CLOSE4args {
/* CURRENT_FH: object */
seqi d4 seqi d;
statei d4 st at ei d;

b

uni on CLOSE4res switch (nfsstat4 status) {
case NFS4_ XK

st at ei d4 st at ei d;
defaul t:
voi d;
1
/*
* COWM T: Commit cached data on server to stable storage
*/

struct COW T4args {
/* CURRENT_FH file */
of fset4 of f set;
count 4 count;

Shepl er, et al. St andar ds Track [Page 185]

RFC 3010 NFS version 4 Protocol Decenber 2000

struct COW T4resok {
verifier4d witeverf;
}

uni on COW T4res switch (nfsstat4 status) {
case NF4_OXK
COWM T4r esok r esok4;

defaul t:
voi d;
b
/*
* CREATE: Create a file
*/

uni on createtyped4 switch (nfs_ftyped type) {
case NF4LNK:

i nkt ext 4 I i nkdat a;
case NF4BLK:
case NF4CHR:

specdat a4 devdat a;

case NF4SCOCK:
case NF4FI FO
case NF4D R
voi d;

i

struct CREATE4args {
/* CURRENT_FH. directory for creation */

component 4 obj nane;

createtyped obj type;
3
struct CREATE4resok {

change_i nf 04 ci nfo;
3

uni on CREATE4res switch (nfsstat4 status) {
case NF4_OK:

CREATE4r esok resok4;
defaul t:

b

/*

* DELEGPURGE: Purge Del egations Awaiting Recovery
*/

struct DELEGPURCE4args {

voi d;

Shepl er, et al. St andar ds Track [Page 186]

RFC 3010 NFS version 4 Protocol Decenber 2000

clientid4 clientid;
b
struct DELEGPURCE4res {
nfsstat4 st at us;
b
/*
* DELEGRETURN: Return a del egation
*/
struct DELEGRETURN4args {
statei d4 st at ei d;
b
struct DELEGRETURMN4res ({
nfsstat4 st at us;
b
/*
* GETATTR Get file attributes
*/

struct GETATTR4args {
/* CURRENT_FH. directory or file */

bi t map4 attr_request;
1
struct GETATTR4resok {

fattr4 obj _attributes;
1

uni on GETATTR4res switch (nfsstat4 status) {
case NF4_OK
GETATTR4r esok resok4;

defaul t:
voi d;
b
/*
* GETFH Get current fil ehandl e
*/
struct GETFH4resok {
nfs_fh4 obj ect;
b

uni on GETFH4res switch (nfsstat4 status) {
case NF4_OK:

GETFH4r esok r esok4;
defaul t:

Shepl er, et al. St andar ds Track [Page 187]

RFC 3010 NFS version 4 Protocol Decenber 2000

voi d;
1
/*
* LINK: Create link to an object
*/

struct LINK4args {
/* SAVED FH. source object */
/* CURRENT_FH. target directory */

conponent 4 newnamne;
1
struct LI NK4resok {

change_i nf o4 ci nf o;
1

uni on LINK4res switch (nfsstat4 status) {
case NFS4_ XK

LI NK4r esok resok4;
defaul t:

b

/*
* LOCK/ LOCKT/ LOCKU: Record | ock managenent
*/
struct LOCK4args {
/* CURRENT_FH file */
nfs | ock _typed4 | ocktype;

voi d;

seqi d4 seqi d;

bool reclaim
statei d4 st at ei d;
of fset4 of f set;
| engt h4 | engt h;

b

struct LOCK4deni ed {
nfs_| ockowner4 owner;
of fset4 of f set;
| engt h4 | engt h;

b

uni on LOCK4res switch (nfsstat4 status) {
case NFS4_ XK
st at ei d4 st at ei d;
case NFS4ERR _DENI ED
LOCK4deni ed deni ed;
defaul t:

Shepl er, et al. St andar ds Track [Page 188]

RFC 3010 NFS version 4 Protocol Decenber 2000

voi d;

b

struct LOCKT4args {
/* CURRENT_FH file */
nfs | ock_typed4 | ocktype;
nfs_| ockowner4 owner;
of fset4 of f set;
| engt h4 | engt h;

b

uni on LOCKT4res switch (nfsstat4 status) {
case NFS4ERR _DENI ED
LOCK4deni ed deni ed;
case NFS4_ XK
voi d;
defaul t:

1
struct LOCKWargs {

/* CURRENT_FH file */
nfs | ock_typed4 | ocktype;

voi d;

seqi d4 seqi d;

statei d4 st at ei d;
of fset4 of f set;
| engt h4 | engt h;

b

uni on LOCKU4res switch (nfsstat4 status) {
case NFS4_COK:

st at ei d4 st at ei d;
defaul t:
voi d;
b
/*
* LOOKUP: Lookup filename
*/

struct LOOKUP4args {
/* CURRENT_FH. directory */
pat hnane4 pat h;

b

struct LOOKUP4res {
/* CURRENT_FH: object */
nfsstat4 st at us;

b

Shepl er, et al. St andar ds Track [Page 189]

RFC 3010 NFS version 4 Protocol Decenber 2000

/*
* LOOKUPP: Lookup parent directory
*/
struct LOOKUPP4res ({
/* CURRENT_FH. directory */

nfsstat4 st at us;
b
/*
* NVERIFY: Verify attributes different
*/

struct NVERI FY4args {
/* CURRENT_FH: object */

fattr4 obj _attributes;
1
struct NVERI FY4res {
nfsstat4 st at us;
1
/*
* Various definitions for OPEN
*/
enum cr eat ennde4 {
UNCHECKED4 = 0,
GUARDED4 = 1,
EXCLUSI VE4 =2
1

uni on createhow4 switch (createnpded4 node) ({
case UNCHECKEDA:
case GUARDEDA:

fattr4 createattrs;
case EXCLUSI VE4:
verifier4d createverf;

b

enum opent ype4d {
OPEN4_NOCREATE
OPEN4_CREATE

b

uni on openflag4 switch (opentype4 opentype) {
case OPENA_CREATE:

cr eat ehow4d how;
defaul t:

b

voi d;

Shepl er, et al. St andar ds Track [Page 190]

RFC 3010 NFS version 4 Protocol Decenber 2000

/* Next definitions used for OPEN del egation */
enum |l imt_by4 {

NFS LIM T_SI ZE =1,
NFS_LI M T_BLOCKS =2
/* others as needed */
1
struct nfs_nmodified linmt4 {
uint32_t num bl ocks;
uint32_t byt es_per bl ock;
1

union nfs_space_ limt4 switch (limt_by4 limtby) {
/* limt specified as file size */
case NFS_LIM T_SI ZE:
ui nt 64_t filesize;
/* limt specified by nunber of blocks */
case NFS_LI M T_BLCOCKS:
nfs nodified lint4 nmod_Dbl ocks;
b

/*
* Share Access and Deny constants for open argunent
*/

const OPENA_SHARE ACCESS READ = 0x00000001;
const OPENA_SHARE ACCESS WRI TE = 0x00000002;
const OPEN4_SHARE ACCESS BOTH = 0x00000003;
const OPEN4_SHARE DENY_NONE = 0x00000000;
const OPEN_SHARE DENY_READ = 0x00000001;
const OPENA_SHARE DENY_WRI TE = 0x00000002;
const OPEN4_SHARE DENY_ BOTH = 0x00000003;
enum open_del egati on_typed {
OPEN_DELEGATE_NONE = 0,
OPEN_DELEGATE_READ =1,
OPEN_DELEGATE_WRI TE =2
1
enum open_cl ai mtype4 {
CLAI M_NULL =0,
CLAI M_PREVI QUS =1,
CLAI M_DELEGATE_CUR = 2,
CLAI M_DELEGATE_PREV =3
1
struct open_cl ai mdel egate_cur4 {

pat hnane4 file;

Shepler, et al. St andards Track [Page 191]

RFC 3010 NFS version 4 Protocol Decenber 2000

statei d4 del egat e_st at ei d;
3
uni on open_claimt switch (open_claimtyped claim {
/*
* No special rights to file. Odinary OPEN of the specified file.
*/

case CLAI M _NULL:
/* CURRENT_FH. directory */
pat hnane4 file;

~

* X X X X

Right to the file established by an open previous to server
reboot. File identified by fil ehandl e obtained at that tinme
rat her than by nane.

/

case CLAI M _PREVI QUS
/* CURRENT_FH. file being reclainmed */
uint32_t del egat e_t ype;

/*
* Right to file based on a del egation granted by the server.
* File is specified by name.
*/
case CLAI M DELEGATE_CUR
/* CURRENT_FH. directory */
open_cl ai m del egate_cur4 del egate_cur _i nfo;

/* Right to file based on a del egation granted to a previous boot
* instance of the client. File is specified by namne.
*/
case CLAI M DELEGATE_PREV:
/* CURRENT_FH:. directory */

pat hnane4 file_del egate_prev;
1
/*
* OPEN: Open a file, potentially receiving an open del egation
*/
struct OPEMNargs {
open_cl ai m claim
openfl ag4 openhow;
nfs_| ockowner4 owner;
seqi d4 seqi d;
ui nt 32_t shar e_access;
uint32_t shar e_deny;
1

Shepler, et al. St andards Track [Page 192]

RFC 3010 NFS version 4 Protocol Decenber 2000

struct open_read_del egationd {

statei d4 st at ei d; /* Stateid for del egation*/

bool recal | ; /* Pre-recalled flag for
del egati ons obt ai ned
by reclaim
(CLAI M_PREVI QUS) */

nf sace4 perm ssi ons; /* Defines users who don’t
need an ACCESS call to
open for read */

b

struct open_wite_del egationd {

statei d4 st at ei d; /* Stateid for del egation */

bool recal | ; /* Pre-recalled flag for
del egati ons obt ai ned
by reclaim
(CLAI M_PREVI QUS) */

nfs_space_ |limt4 space |imt; /* Defines condition that
the client nust check to
det er mi ne whet her the
file needs to be flushed
to the server on close.
*/

nf sace4 per m ssi ons; /* Defines users who don’t
need an ACCESS call as
part of a del egated
open. */

b

uni on open_del egati on4
switch (open_del egati on_type4 del egation_type) {
case OPEN_DELEGATE_NONE
voi d;
case OPEN_DELEGATE_READ:
open_read_del egati on4 read,
case OPEN _DELEGATE_WRI TE
open_write_del egationd4d wite;

1
/*
* Result flags
*/
/* Mandatory locking is in effect for this file. */
const OPENA_RESULT_M_OCK = 0x00000001
/* Cient rmust confirm open */
const OPEN4_RESULT_CONFI RM = 0x00000002;

struct OPEN4resok {

Shepl er, et al. St andar ds Track [Page 193]

RFC 3010 NFS version 4 Protocol Decenber 2000

statei d4 st at ei d; /* Stateid for open */
change_i nf o4 ci nf o; /* Directory Change Info */
uint32_t rflags; /* Result flags */
verifierd open_confirm /* OPEN_CONFI RM verifier */
open_del egati on4 del egati on; /* Info on any open

del egation */

b

uni on OPENdres switch (nfsstat4 status) {
case NF4_OXK
/* CURRENT_FH. opened file */

OPEMr esok resok4;
def aul t:
voi d;
3
/*
* OPENATTR open naned attributes directory
*/

struct OPENATTR4res {
/* CURRENT_FH. nanme attr directory*/

nfsstat4 st at us;
¥
/*
* OPEN_CONFI RM confirm the open
*/

struct OPEN_CONFI RMAar gs {
/* CURRENT_FH:. opened file */

seqi d4 seqi d;

verifierd open_confirm /* OPEN_CONFI RM verifier */
3
struct OPEN_CONFI RMAr esok {

statei d4 stateid;
3

uni on OPEN_CONFI RMAres switch (nfsstat4 status) {
case NF4_OK:

OPEN_CONFI RM4r esok r esok4;
defaul t:
voi d;
1
/*
* OPEN_DOWMNGRADE: downgrade the access/deny for a file
*/

struct OPEN_DOANGRADE4ar gs {

Shepl er, et al. St andar ds Track [Page 194]

RFC 3010 NFS version 4 Protocol Decenber 2000

/* CURRENT_FH. opened file */

statei d4 st at ei d;

seqi d4 seqi d;

ui nt 32_t shar e_access;

ui nt 32_t shar e_deny;
3
struct OPEN_DOANNGRADE4r esok {

statei d4 stateid;

3

uni on OPEN_DOWNGRADE4res switch(nfsstat4 status) {
case NF4 XK
OPEN_DOWNGRADE4r esok r esok4;

defaul t:
voi d;

b
/*

* PUTFH Set current fil ehandl e

*/
struct PUTFH4args {

nfs_fh4 obj ect;

b

struct PUTFH4res {
/* CURRENT_FH. */

nfsstat4 st at us;
b
/*
* PUTPUBFH:. Set public fil ehandle
*/

struct PUTPUBFH4res {
/* CURRENT_FH. public fh */

nfsstat4 st at us;
i
/*
* PUTROOTFH: Set root fil ehandl e
*/

struct PUTROOTFH4res {
/* CURRENT_FH. root fh */
nfsstat4 st at us;

b

/*
* READ: Read fromfile

Shepl er, et al. St andar ds Track [Page 195]

RFC 3010 NFS version 4 Protocol Decenber 2000

*/
struct READargs {
/* CURRENT_FH file */

statei d4 st at ei d;
of fset4 of f set;
count 4 count;
}
struct READ4resok {
bool eof ;
opaque dat a<>;
}

uni on READ4Ares switch (nfsstat4 status) {
case NFS4_ XK

READ4r esok r esok4;
defaul t:
voi d;
b
/*
* READDIR. Read directory
*/

struct READDI R4args {
/* CURRENT_FH. directory */

nfs_cooki e4 cooki e;
verifier4d cooki everf;
count 4 di rcount;
count 4 maxcount ;
bi t map4 attr_request;

}

struct entry4 {
nfs_cooki e4 cooki e;
conponent 4 nane;
fattr4 attrs;
entry4 *nextentry;

}

struct dirlist4d {
entry4 *entries;
bool eof ;

}

struct READDI R4resok {
verifier4d cooki everf;
dirlist4 reply;

}

Shepl er, et al. St andar ds Track [Page 196]

RFC 3010 NFS version 4 Protocol Decenber 2000

uni on READDI R4res switch (nfsstat4 status) {
case NF4_OK:
READDI R4r esok resok4;
defaul t:
voi d;
1

/*
* READLI NK: Read synbolic |ink
*/
struct READLI NK4resok {
| i nktext4 i nk;
3

uni on READLI NK4res switch (nfsstat4 status) {
case NF4_OK:
READLI NK4r esok resok4;

defaul t:
voi d;
1
/*
* REMOVE: Renpve fil esystem object
*/

struct REMOVE4args {
/* CURRENT_FH. directory */

conponent 4 target;
1
struct REMOVE4resok {

change_i nf o4 ci nf o;
1

uni on REMOVE4res switch (nfsstat4 status) {
case NF4_OK
REMOVE4r esok r esok4;

defaul t:
voi d;
1
/*
* RENAME: Renane directory entry
*/

struct RENAME4args {
/* SAVED FH. source directory */
conmponent 4 ol dnane;
/* CURRENT_FH. target directory */

Shepl er, et al. St andar ds Track [Page 197]

RFC 3010 NFS version 4 Protocol Decenber 2000

conponent 4 newnane;
1
struct RENAME4resok {
change_i nf o4 sour ce_ci nf o;
change_i nf o4 target _cinfo;
1

uni on RENAMVE4res switch (nfsstat4 status) {
case NF4_OXK
RENANME4r esok r esok4;
defaul t:
voi d;
1

/*
* RENEW Renew a Lease
*/
struct RENEWlargs {
statei d4 st at ei d;
b

struct RENEWIres ({
nfsstat4 st at us;
b

/*
* RESTOREFH. Restore saved fil ehandl e
*/

struct RESTOREFH4res {
/* CURRENT_FH. val ue of saved fh */

nfsstat4 st at us;
b
/*
* SAVEFH Save current fil ehandl e
*/

struct SAVEFH4res {
/* SAVED FH. value of current fh */

nfsstat4 st at us;
1
/*
* SECI NFO Obtain Avail able Security Mechanisns
*/

struct SECI NFO4args {

Shepl er, et al. St andar ds Track [Page 198]

RFC 3010 NFS version 4 Protocol Decenber 2000

/* CURRENT_FH. */

conponent 4 nane;
1
/ *
* From RFC 2203
*/
enum rpc_gss_svc_t {
RPC_GSS_SVC _NONE = 1,
RPC GSS SVC INTEGRITY = 2,
RPC_GSS_SVC PRI VACY =3
1
struct rpcsec_gss_info {
sec_oi d4 oi d;
qop4 qop;
rpc_gss_svc_t servi ce;
1
struct secinfo4 {
uint32_t flavor;
/[* null for AUTH_SYS, AUTH_NONE;
contains rpcsec_gss_info for
RPCSEC _GSS. */
opaque flavor _i nf o<>;
1

t ypedef seci nfo4 SECI NFO4r esok<>;

uni on SECI NFO4res switch (nfsstat4 status) {
case NF4_OK
SECI NFO4r esok resok4;
defaul t:

b

/*
* SETATTR Set attributes
*/
struct SETATTR4args {
/* CURRENT_FH: target object */

voi d;

statei d4 st at ei d;

fattr4 obj _attributes;
b
struct SETATTR4res {

nfsstat4 st at us;

Shepl er, et al. St andar ds Track [Page 199]

RFC 3010 NFS version 4 Protocol Decenber 2000

bi t map4 attrsset;
1
/*
* SETCLI ENTI D
*/

struct SETCLI ENTI D4args {
nfs_client_id4 client;

cb _client4 cal | back;
}
struct SETCLI ENTI D4r esok {

clientid4 clientid;

verifier4d setclientid_confirm
}

uni on SETCLI ENTI D4res switch (nfsstat4 status) {
case NF4_ XK
SETCLI ENTI D4r esok r esok4;
case NFS4ERR CLI D_I NUSE:
clientaddr4 cl i ent _using;
defaul t:
voi d;
1

struct SETCLI ENTI D_CONFI RMdar gs {
verifier4d setclientid_confirm
}

struct SETCLI ENTI D_CONFI RMAres {
nfsstat4 st at us;
b

/*
* VERIFY: Verify attributes sane
*/
struct VERI FY4args {
/* CURRENT_FH: object */

fattr4 obj _attributes;
1
struct VERI FY4res {
nfsstat4 st at us;
1
/*
* WRITE: Wite to file
*/

Shepl er, et al. St andar ds Track [Page 200]

RFC 3010

enum st abl e_how4 {
UNSTABLE4
DATA SYNC4
FI LE_SYNC4

b

struct WRI TE4args {
/ * CURRENT_FH:
statei d4
of fset4
st abl e_how4
opaque

b

struct WRI TE4resok {
count 4
st abl e_how4
verifierd

b

uni on WRI TE4res switch (nfsstat4 status) {

case NFS4_ XK
VRl TE4r esok
defaul t:

b
/*

* (Qperation arrays
*/

voi d;

enum nfs_opnumd {
OP_ACCESS
OP_CLGSE
oP_COWM T
OP_CREATE
OP_DELEGPURCE
OP_DELEGRETURN
OP_CETATTR
OP_CETFH
OP_LINK
OP_LOCK
OP_LOCKT
OP_LOCKU
OP_LOOKUP
OP_LOOKUPP
OP_NVERI FY
OP_CPEN

Shepl er, et al.

NFS

TRRTINT
NP O

file */
st at ei d;
of f set;
st abl e;
dat a<>;

count ;
comm tted;
witeverf;

r esok4;

St andards Track

version 4 Protoco

Decenber 2000

[Page 201]

RFC 3010

b

uni on
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

Shepl er,

NFS version 4 Protocol Decenber 2000

OP_OPENATTR
OP_OPEN_CONFI RM

OP_OPEN_DOWNGRADE

OP_PUTFH
OP_PUTPUBFH
OP_PUTROOTFH
OP_READ
OP_READDI R
OP_READLI NK
OP_REMOVE
OP_RENAVE
OP_RENEW
OP_RESTOREFH
OP_SAVEFH
OP_SECI NFO
OP_SETATTR
OP_SETCLI ENTI D

OP_SETCLI ENTI D_CONFI RM

OP_VERI FY
OP_WRI TE

nfs_argop4 switch
OP_ACCESS
OP_CLOSE
OP_COW T:
OP_CREATE:
OP_DELEGPURGE
OP_DELEGRETURN:
OP_GETATTR:
OP_GETFH:

OP_LI NK:
OP_LOCK:
OP_LQOCKT:
OP_LOCKU:
OP_LOOKUP:

OP_L OOKUPP:
OP_NVERI FY:
OP_OPEN:
OP_OPENATTR:
OP_OPEN_CONFI RM
OP_OPEN_DOWNGRADE
OP_PUTFH:
OP_PUTPUBFH;
OP_PUTROOTFH
OP_READ:
OP_READDI R:
OP_READLI NK:

et al.

19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38

(nfs_opnumd argop) {

ACCESS4ar gs opaccess;

CLOSE4ar gs opcl ose;

COW T4ar gs opconmnit;

CREATE4ar gs opcr eat e;

DELEGPURCE4ar gs opdel egpur ge;

DELEGRETURN4ar gs opdel egreturn;

CETATTR4args opgetattr;

voi d;

LI NK4ar gs opl i nk;

LOCK4ar gs opl ock;

LOCKT4ar gs opl ockt ;

LOCKWar gs opl ocku;

LOOKUP4ar gs opl ookup

voi d;

NVERI FY4ar gs opnverify;

OPENdar gs opopen;

voi d;

OPEN_CONFI RMdar gs opopen_confirm
OPEN_DOWNGRADE4ar gs opopen_downgr ade;

PUTFH4ar gs opputf h;

voi d;

voi d;

READ4ar gs opr ead;

READDI R4ar gs opr eaddir;

voi d;

St andards Track [Page 202]

RFC 3010

case
case
case
case
case
case
case
case
case

case
case

}

uni on
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

Shepl er,

OP_REMOVE:
OP_RENAVME
OP_RENEW
OP_RESTOREFH:
OP_SAVEFH;
OP_SECI NFO:
OP_SETATTR:
OP_SETCLI ENTI Dt

OP_SETCLI ENTI D_CONFI RM

OP_VERI FY:
OP_WRI TE:

nfs_resop4 switch

OP_ACCESS
OP_CLOSE
OP_COW T:
OP_CREATE:
OP_DELEGPURGE
OP_DELEGRETURN:
OP_CGETATTR:
OP_CETFH
OP_LI NK:
OP_LOCK:
OP_LQOCKT:
OP_LOCKU
OP_LOOKUP:
OP_L OOKUPP:
OP_NVERI FY:
OP_OPEN:
OP_OPENATTR:

OP_OPEN_CONFI RM

OP_OPEN_DOWNGRADE:

OP_PUTFH
OP_PUTPUBFH:
OP_PUTROOTFH:
OP_READ:
OP_READDI R:
OP_READLI NK
OP_REMOVE:
OP_RENAVME
OP_RENEW
OP_RESTOREFH
OP_SAVEFH:
OP_SECI NFO.
OP_SETATTR:
OP_SETCLI ENTI D:

et al.

NFS version 4 Protocol

Decenber

REMOVE4ar gs oprenove

RENAME4ar gs opr enane;

RENEWlar gs opr enew;,

voi d;

voi d;

SECI NFO4ar gs opseci nf o;

SETATTR4ar gs opsetattr;

SETCLI ENTI D4ar gs opsetclienti d;

SETCLI ENTI D_CONFI R\VAar gs
opsetclientid_confirm

VERI FY4ar gs opverify;

VI TE4args opwite

(nfs_opnumt resop){
ACCESS4r es opaccess;

CLOSE4r es opcl ose;

COW T4res opconmit;
CREATE4r es opcreat e;
DELEGPURGEAr es opdel egpur ge;
DELEGRETURN4r es opdel egr et urn;
CETATTRAres opgetattr;
GETFH4r es opget f h;

LI NK4res oplink

LOCK4r es opl ock;

LOCKT4r es opl ockt;

LOCKUW4r es opl ocku

LOCKUP4r es opl ookup;
LOCKUPP4r es opl ookupp;

NVERI FY4res opnverify;
OPEN4r es opopen

OPENATTR4r es opopenattr;
OPEN_CONFI RMAr es opopen_confi rm

2000

OPEN_DOWNGRADEA4r es opopen_downgr ade;

PUTFH4r es opput f h;
PUTPUBFH4r es opput pubf h;
PUTROOTFH4r es opputrootf h;
READAr es opr ead;
READDI R4r es opreaddir;
READLI NK4r es opreadl i nk
REMOVE4r es oprenpve
RENAME4r es opr enane;
RENEWAr es opr enew,
RESTOREFH4r es opr est or ef h;
SAVEFH4r es opsavef h;

SECI NFO4r es opseci nf o;
SETATTRAres opsetattr;
SETCLI ENTI D4res opsetclienti d;

St andar ds Track [Page

203]

RFC 3010 NFS version 4 Protocol Decenber 2000

case OP_SETCLI ENTI D_CONFI RM SETCLI ENTI D_CONFI RMATr es
opsetclientid_confirm

case OP_VERI FY: VERI FY4res opverify;
case OP_WRI TE: WRI TE4res opwite;
1
struct COVPOUND4ar gs {
ut f8string t ag;
uint32_t m nor ver si on;
nfs_argop4 argarray<>;
1

struct COVPOUND4res {
nfsstat4 status;

ut f8string t ag;
nfs_resop4 resarray<>;
1
/*
* Renote file service routines
*/

pr ogr am NFS4_PROGRAM {
version NFS_ V4 {

voi d
NFSPROC4_NULL(voi d) = 0;
COVPOUNDAT es
NFSPROC4_ COMPOUND(COMPOUND4ar gs) = 1;
Y =4
} = 100003;
/*
* NFS4 Cal | back Procedure Definitions and Program
*/
/*
* CB_GETATTR Get Current Attributes
*/
struct CB_GETATTR4args {
nfs _fh4 fh;

bitmap4 attr_request;

b

struct CB_GETATTR4resok {
fattr4 obj_attributes;

Shepl er, et al. St andar ds Track [Page 204]

RFC 3010 NFS version 4 Protocol Decenber 2000

b

uni on CB_CETATTR4res switch (nfsstat4 status) {
case NF4_OK:

CB_CGETATTR4r esok r esok4;
def aul t:
voi d;
3
/*
* CB_RECALL: Recall an Open Del egation
*/
struct CB_RECALL4args {
statei d4 st at ei d;
bool truncate;
nfs_fh4 fh;
3
struct CB_RECALL4res {
nfsstat4 st at us;
3
/*
* Various definitions for CB_COVPOUND
*/
enum nfs_cb_opnund {
OP_CB_GETATTR = 3,
OP_CB_RECALL =4
3
uni on nfs_cb_argop4 switch (unsigned argop) {
case OP_CB_CETATTR CB_GETATTR4ar gs opchgetattr;
case OP_CB_RECALL: CB_RECALL4args opcbrecall;
3
union nfs_cb_resop4 switch (unsigned resop){
case OP_CB GETATTR CB _GETATTR4res opcbgetattr;
case OP_CB_RECALL: CB_RECALL4res opcbrecal | ;
3
struct CB_COVPOUND4args {
ut f8string t ag;
uint32_t nm norver si on;

nfs_cb_argop4 argarray<>,

b

struct CB_COVPOUNDAres ({
nfsstat4 status;

Shepl er, et al. St andar ds Track [Page 205]

RFC 3010

b

/ *

NFS version 4 Protocol Decenber 2000

ut f8string t ag;

nfs_

cb_resop4 resarray<>;

* Program nunmber is in the transient range since the client
| assign the exact transient program nunber and provide
* that to the server via the SETCLI ENTI D operation

* Wil

*/

program NFS4_CALLBACK {
version NFS _CB {

} =

voi d
CB_NULL(void) = 0;
CB_COMPOUNDATr es
CB_COVPOUND(CB_ COMPQUND4ar gs) = 1;
1

} = 40000000;

19. Bibliography

[Fl oyd]

[Gray]

[1 SOL0646]

[Juszczak]

Shepl er,

et al.

S. Floyd, V. Jacobson, "The Synchronization of Periodic
Routi ng Messages," | EEE/ ACM Transacti ons on Net wor ki ng,
2(2), pp. 122-136, April 1994.

C. Gay, D Cheriton, "Leases: An Efficient Fault-

Tol erant Mechanismfor Distributed File Cache

Consi stency, " Proceedi ngs of the Twelfth Synposi um on
Operating Systens Principles, p. 202-210, Decenber 1989.

"1 SO | EC 10646-1: 1993. International Standard --
Information technology -- Universal Miltiple-COctet Coded
Character Set (UCS) -- Part 1: Architecture and Basic
Mul tilingual Plane.”

Juszczak, Chet, "lnproving the Perfornmance and
Correctness of an NFS Server," USEN X Conference
Proceedi ngs, USEN X Associ ati on, Berkeley, CA, June
1990, pages 53-63. Describes reply cache inplenentation
that avoids work in the server by handling duplicate
requests. Mre inportant, though listed as a side-
effect, the reply cache aids in the avoi dance of
destructive non-i denpotent operation re-application --

i mprovi ng correctness.

St andar ds Track [Page 206]

RFC 3010 NFS version 4 Protocol Decenber 2000

[Kazar] Kazar, M chael Leon, "Synchronization and Caching |ssues
in the Andrew File System ™ USEN X Conference
Proceedi ngs, USEN X Associ ati on, Berkeley, CA Dallas
Wnter 1988, pages 27-36. A description of the cache
consi stency schene in AFS. Contrasted with other
distributed file systens.

[Mackl en Mackl em Rick, "Lessons Learned Tuni ng the 4.3BSD Reno
| mpl enent ati on of the NFS Protocol,"” Wnter USEN X
Conf erence Proceedi ngs, USEN X Associ ati on, Berkel ey,
CA, January 1991. Describes performance work in tuning
the 4.3BSD Reno NFS inpl enentation. Describes
performance i nprovenent (reduced CPU | oadi ng) through
el i m nation of data copi es.

[Mogul] Mogul , Jeffrey C., "A Recovery Protocol for Spritely
NFS," USEN X Fil e System Wirkshop Proceedi ngs, Ann
Arbor, M, USEN X Associ ation, Berkeley, CA My 1992.
Second paper on Spritely NFS proposes a | ease-based
scheme for recovering state of consistency protocol

[Nowi cKi] Nowi cki, Bill, "Transport Issues in the Network File
System " ACM SI GCOW newsl etter Computer Comruni cation
Review, April 1989. A brief description of the basis
for the dynamic retransm ssion worKk.

[Paw owski] Paw owski, Brian, Ron Hi xon, Mark Stein, Joseph
Tunmi naro, "Network Conputing in the UNI X and | BM
Mai nfranme Environnent,"” Uniforum ‘89 Conf. Proc.
(1989) Description of an NFS server inplenmentation for
I BM's WS operating system

[RFC1094] Sun M crosystens, Inc., "NFS: Network File System
Prot ocol Specification", RFC 1094, March 1989.

[RFC1345] Si nonsen, K., "Character Menonics & Character Sets”
RFC 1345, June 1992.

[RFC1700] Reynol ds, J. and J. Postel, "Assigned Nunbers", STD 2,
RFC 1700, Cctober 1994.

[RFC1813] Cal | aghan, B., Pawl owski, B. and P. Staubach, "NFS
Version 3 Protocol Specification", RFC 1813, June 1995.

[RFC1831] Srinivasan, R, "RPC. Renpote Procedure Call Protocol
Specification Version 2", RFC 1831, August 1995.

Shepl er, et al. St andar ds Track [Page 207]

RFC 3010

[RFC1832]

[RFC1833]

[RFC2025]

[RFC2054]

[RFC2055]

[RFC2078]

[RFC2152]

[RFC2203]

[RFC2277]

[RFC2279]

[RFC2623]

[RFC2624]

[RFC2847]

[Sandber g]

Shepl er, et al.

NFS version 4 Protocol Decenber 2000

Srinivasan, R, "XDR External Data Representation
St andard", RFC 1832, August 1995.

Srinivasan, R, "Binding Protocols for ONC RPC Version
2", RFC 1833, August 1995.

Adans, C., "The Sinple Public-Key GSS-API Mechani sm
(SPKM ", RFC 2025, Cctober 1996.

Cal | aghan, B., "WbNFS Cient Specification", RFC 2054,
Cct ober 1996.

Cal | aghan, B., "WbNFS Server Specification", RFC 2055,
Cct ober 1996.

Linn, J., "Generic Security Service Application Program
Interface, Version 2", RFC 2078, January 1997.

Goldsmth, D., "UTF-7 A Miil-Safe Transformati on For nat
of Uni code", RFC 2152, May 1997.

Eisler, M, Chiu, A and L. Ling, "RPCSEC GSS Protoco
Specification", RFC 2203, August 1995.

Al vestrand, H., "IETF Policy on Character Sets and
Languages", BCP 18, RFC 2277, January 1998.

Yergeau, F., "UTF-8, a transformation format of |SO
10646", RFC 2279, January 1998.

Eisler, M, "NFS Version 2 and Version 3 Security |ssues
and the NFS Protocol’s Use of RPCSEC GSS and Ker beros
V5", RFC 2623, June 1999.

Shepler, S., "NFS Version 4 Design Considerations", RFC
2624, June 1999.

Eisler, M, "LIPKEY - A Low Infrastructure Public Key
Mechani sm Usi ng SPKM', RFC 2847, June 2000.

Sandberg, R, D. CGoldberg, S. Kleiman, D. Walsh, B

Lyon, "Design and | nplenentation of the Sun Network

Fil esystem " USEN X Conference Proceedi ngs, USEN X
Associ ation, Berkeley, CA Summer 1985. The basic paper
descri bing the SunGS i npl ementati on of the NFS version 2
protocol, and discusses the goals, protocol
specification and trade-offs.

St andar ds Track [Page 208]

RFC 3010

[Srinivasan]

[Uni codel]

[Uni code?]

[XNFS]

Shepl er,

et al.

NFS version 4 Protocol Decenber 2000

Srinivasan, V., Jeffrey C. Mqgul, "Spritely NFS:

I mpl erent ati on and Performance of Cache Consi stency
Protocol s", WRL Research Report 89/5, Digital Equipnent
Corporation Western Research Laboratory, 100 Ham | ton
Ave., Palo Alto, CA, 94301, May 1989. This paper

anal yzes the effect of applying a Sprite-like

consi stency protocol applied to standard NFS. The issues
of recovery in a stateful environment are covered in

[Mogul].

The Uni code Consortium "The Uni code Standard, Version
3.0", Addi son-Wsl ey Devel opers Press, Reading, MA,
2000. | SBN 0-201-61633-5.

More information available at: http://ww. uni code. org/

"Unsupported Scripts" Unicode, Inc., The Unicode
Consortium P.QO Box 700519, San Jose, CA 95710-0519
USA, Septenber 1999

htt p: //ww. uni code. or g/ uni code/ st andar d/ unsupport ed. ht i

The Open G oup, Protocols for Interworking: XNFS
Version 3W The Open G oup, 1010 EI Camino Real Suite
380, Menlo Park, CA 94025, |SBN 1-85912-184-5, February
1998.

HTML version avail able: http://ww. opengroup.org

St andar ds Track [Page 209]

RFC 3010 NFS version 4 Protocol Decenber 2000

20. Authors
20.1. Editor’s Address

Spencer Shepl er

Sun M crosystens, Inc.
7808 Moonfl ower Drive
Austin, Texas 78750

Phone: +1 512-349-9376
EMai | : spencer. shepl er @un. com

20.2. Authors’ Addresses

Carl Beane
Hunti ngbird Ltd.

EMai | : beane@ws. com

Brent Cal | aghan

Sun M crosystens, |nc.
901 San Antoni o Road
Palo Alto, CA 94303

Phone: +1 650-786-5067
EMai | : brent.call aghan@un. com

M ke Eisler
5565 W1 son Road
Col orado Springs, CO 80919

Phone: +1 719-599-9026
EMai |l : m ke@i sl er.com

Davi d Noveck

Net wor k Appl i ance
375 Totten Pond Road
Wal t ham MA 02451

Phone: +1 781-895-4949
E-nmai |l : dnoveck@et app. com

Shepl er, et al. St andar ds Track [Page 210]

RFC 3010

20.

Shepl er, et al. St andar ds Track

Davi d Robi nson

Sun M crosystens, Inc.
901 San Antoni o Road
Pal o Alto, CA 94303

Phone: +1 650-786-5088
EMai | : davi d. robi nson@un. com

Robert Thurl ow

Sun M crosystens, Inc.
901 San Antoni o Road
Pal o Alto, CA 94303

Phone: +1 650-786-5096
EMai | : robert.thurl ow@un. com

3. Acknow edgenents

The aut hor thanks and acknow edges:

NFS version 4 Protocol

Decenber 2000

Neil Brown for his extensive review and comments of various drafts.

[Page 211]

RFC 3010 NFS version 4 Protocol Decenber 2000

21.

Ful I Copyright Statenent
Copyright (C) The Internet Society (2000). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
ot hers, and derivative works that comment on or otherw se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng I nternet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into |Ianguages other than
Engli sh.

The limted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknow edgenent

Fundi ng for the RFC Editor function is currently provided by the
I nternet Society.

Shepler, et al. St andards Track [Page 212]

