RFC. 813

W NDOW AND ACKNOW.EDGEMENT STRATEGY I N TCP
David D. dark
M T Laboratory for Conputer Science

Conput er Systens and Conmuni cati ons G oup
July, 1982

1. | nt r oducti on

This docunment describes inplenentation strategies to deal with two
nmechani sns in TCP, the wi ndow and t he acknow edgenent. These mechani sns
are described in the specification docunent, but it is possible, while
complying with the specification, to produce inplenentations which yield
very bad performance. Happily, the pitfalls possible in w ndow and

acknow edgenent strategies are very easy to avoid.

It is a much nore difficult exercise to verify the perfornmance of a
specification than the correctness. Certainly, we have | ess experience
in this area, and we certainly lack any wuseful formal technique.
Nonet hel ess, it is inmportant to attenpt a specification in this area,
because different inplenmentors mght otherwi se choose superficially
reasonabl e algorithms which interact poorly wth each other. This
docunment presents a particular set of algorithnms which have received
testing in the field, and which appear to work properly with each other
Wth nore experience, these algorithms nay becone part of the fornal

specification: wuntil such time their use is recomended.

2. The Mechani sns

The acknow edgenent nmechanismis at the heart of TCP. Very sinply,
when data arrives at the recipient, the protocol requires that it send
back an acknow edgenent of this data. The protocol specifies that the
bytes of data are sequentially nunbered, so that the recipient can
acknowl edge data by nam ng the highest nunbered byte of data it has
received, which also acknow edges the previous bytes (actually, it
identifies the first byte of data which it has not vyet received, but
this is a small detail). The protocol contains only a general assertion
that data should be acknow edged pronptly, but gives no nore specific
i ndi cati on as to how qui ckly an acknow edgenent nust be sent, or how

much data shoul d be acknow edged in each separate acknow edgenent.

The wi ndow nechanismis a flow control tool. Wenever appropriate,
the recipient of data returns to the sender a nunmber, which is (nore or

| ess) the size of the buffer which the receiver currently has available

for additional data. Thi s nunber of bytes, called the window, is the
maxi mum whi ch the sender is permitted to transnmit until the receiver
returns sonme additional w ndow. Sonetines, the receiver will have no
buffer space available, and will return a wi ndow val ue of zero. Under

these circunstances,the protocol requires the sender to send a small
segnment to the receiver now and then, to see if nore data is accepted.
If the wndow remains closed at zero for some substantial period, and
the sender can obtain no response from the receiver, the protocol
requires the sender to conclude that the receiver has failed, and to

close the connection. Again, there is very little per f or mance

information in the specification, describing under what circunstances
the wi ndow shoul d be increased, and how the sender should respond to

such revi sed i nformati on

A bad inplenmentation of the window algorithmcan lead to extrenely
poor performance overall. The degradations which occur in throughput
and CPU wutilizations can easily be several factors of ten, not just a
fractional increase. This particular phenonenon is specific enough that
it has been given the nanme of Silly Wndow Syndrome, or SW&. Happi | y
SW5 is easy to avoid if a fewsinple rules are observed. The nost

i mportant function of this meno is to describe SW5 so that inplenmentors

wi Il understand the general nature of the problem and to describe
algorithnms which wll prevent its occurrence. Thi s docunent al so
descri bes per f or mance enhanci ng al gorithns whi ch relate to

acknow edgenent, and discusses the way acknow edgenent and w ndow

algorithns interact as part of SW5.

3. SILLY W NDOW SYNDROME

In order to understand SW5, we nust first define two new terns.
Superficially, the window nmechanismis very sinple: there is a nunber,
called "the window', which is returned fromthe receiver to the sender
However, we nust have a nore detailed way of tal king about the neani ng
of this nunber. The receiver of data conputes a value which we wll
call the "offered w ndow'. In a sinple case, the offered w ndow
corresponds to the anount of buffer space available in the receiver
This correspondence is not necessarily exact, but is a suitable nodel

for the discussion to follow It is the offered wndow which is

actually transmitted back fromthe receiver to the sender. The sender
uses the offered window to conpute a different value, the "usable
wi ndow', which is the offered wi ndow m nus the anmpbunt of outstanding
unacknow edged data. The usable windowis less than or equal to the

of fered wi ndow, and can be nuch small er

Consider the following sinple exanple. The receiver initially
provi des an offered wi ndow of 1,000. The sender uses up this w ndow by
sending five segnents of 200 bytes each. The receiver, on processing
the first of these segnments, returns an acknow edgenment which also
contains an updated w ndow value. Let us assunme that the receiver of
the data has renoved the first 200 bytes fromthe buffer, so that the
recei ver once again has 1,000 bytes of available buffer. Therefore, the
receiver would return, as before, an offered wi ndow of 1,000 bytes. The
sender, on receipt of this first acknow edgenent, now conputes the
addi ti onal nunber of bytes which nay be sent. In fact, of the 1,000
bytes which the recipient is prepared to receive at this tinme, 800 are
already in transit, having been sent in response to the previous offered

wi ndow. In this case, the usable windowis only 200 bytes.

Let us now consider how SW5 ari ses. To continue the previous

exanpl e, assune that at sonme point, when the sender conputes a useable

wi ndow of 200 bytes, it has only 50 bytes to send wuntil it reaches a
"push” point. It thus sends 50 bytes in one segnment, and 150 bytes in
the next segnment. Sonmetinme later, this 50-byte segnment wll arrive at
the recipient, which will process and renmove the 50 bytes and once again

return an offered window of 1,000 bytes. However, the sender will now

compute that there are 950 bytes in transit in the network, so that the
useabl e wi ndow is now only 50 bytes. Thus, the sender will once again
send a 50 byte segnent, even though there 1is no longer a natura

boundary to force it.

In fact, whenever the acknow edgenment of a snall segnent cones
back, the useabl e wi ndow associated with that acknow edgenent will cause
another segment of the same small size to be sent, wuntil sone
abnormality breaks the pattern. It is easy to see how small segnents

arise, because natural boundaries in the data occasionally cause the
sender to take a conputed useable window and divide it up between two
segnent s. Once that division has occurred, there is no natural way for
t hose useabl e wi ndow al |l ocations to be reconbi ned; thus the breaking up

of the useable window into small pieces will persist.

Thus, SW5 is a degeneration in the throughput which devel ops over
time, during a long data transfer. |If the sender ever stops, as for
exanple when it runs out of data to send, the receiver will eventually
acknow edge all the outstanding data, so that the useable w ndow
computed by the sender will equal the full offered window of the
receiver. At this point the situation will have healed, and further
data transmission over the |link will occur efficiently. However, in
large file transfers, which occur without interruption, SW5 can cause
appalling performance. The network between the sender and the receiver
becones clogged with rmany small segnents, and an equal nunber of
acknowl edgenents, which in turn causes |ost segnents, which triggers

massi ve retransm ssion. Bad cases of SW5 have been seen in which the

average segnent size was one-tenth of the size the sender and receiver
were prepared to deal with, and the average nunber of retransm ssion per

successful segnments sent was five.

Happily, SWSs is trivial to avoid. The follow ng sections describe
two algorithns, one executed by the sender, and one by the receiver,
whi ch appear to elimnate SW5 conpletely. Actually, either algorithm by
itself is sufficient to prevent SW5, and thus protect a host from a
foreign inplenmentation which has failed to deal properly with this
problem The two algorithnms taken together produce an additional
reduction in CPU consunption, observed in practice to be as high as a

factor of four.

4. I nproved W ndow Al gorithmns

The receiver of data can take a very sinple step to elimnate SWS
When it disposes of a small anmount of data, it can artificially reduce
the offered wi ndow i n subsequent acknow edgenents, so that the wuseable
wi ndow conputed by the sender does not pernmit the sending of any further
dat a. At sonme later tine, when the receiver has processed a
substantially larger anpunt of inconming data, the artificial Ilimtation
on the offered w ndow can be renoved all at once, so that the sender
conmputes a sudden large junp rather than a sequence of snmall junps in

t he useabl e wi ndow.

At this level, the algorithm is quite sinple, but in order to
determ ne exactly when the wi ndow should be opened up again, it is

necessary to |ook at sone of the other details of the inplenmentation

Dependi ng on whether the windowis held artificially closed for a short
or long tinme, two problens will devel op. The one we have already
di scussed -- never closing the window artificially -- will lead to SW5

On the other hand, if the wndow is only opened infrequently, the
pi peline of data in the network between the sender and the receiver may
have enptied out while the sender was being held off, so that a delay is
i ntroduced before additional data arrives fromthe sender. This del ay
does reduce throughput, but it does not consume network resources or CPU
resources in the process, as does SW. Thus, it is in this direction
that one ought to overconpensate. For a sinple inplenmentation, a rule
of thunb that seenms to work in practice is to artificially reduce the
of fered wi ndow until the reduction constitutes one half of the avail able
space, at which point increase the window to advertise the entire space
again. In any event, one ought to nake the chunk by which the window is
opened at |east pernit one reasonably large segnent. (If the receiver
is so short of buffers that it can never advertise a |arge enough buffer
to permit at |east one large segnent, it is hopeless to expect any sort

of high throughput.)

There is an algorithmthat the sender can use to achieve the sane
ef fect described above: a very sinple and elegant rule first described
by Mchael Geenwald at MT. The sender of the data uses the offered
wi nhdow t o conpute a useabl e wi ndow, and then conpares the useable w ndow
to the offered wi ndow, and refrains fromsending anything if the ratio
of useable to offered is less than a certain fraction. Cdearly, if the
comput ed useabl e window is small conpared to the offered w ndow, this

nmeans that a substantial anount of previously sent information is still

in the pipeline from the sender to the receiver, which in turn neans
that the sender can count on being granted a |arger useable w ndow in
the future. Until the useable wi ndow reaches a certain anount, the

sender should sinply refuse to send anyt hi ng.

Si npl e experinments suggest that the exact value of the ratio is not
very inportant, but that a value of about 25 percent is sufficient to
avoid SWS and achieve reasonabl e throughput, even for nachines with a
smal | of fered w ndow. An additional enhancenent which mght help
t hroughput would be to attenpt to hold off sending until one can send a
maxi mum si ze segnment. Anot her enhancenent woul d be to send anyway, even
if the ratiois small, if the useable windowis sufficient to hold the

data avail able up to the next "push point".

This algorithmat the sender end is very sinple. Notice that it is
not necessary to set a tiner to protect against protocol |ockup when
postponing the send operation. Further acknow edgenents, as they
arrive, wll inevitably change the ratio of offered to useabl e w ndow.
(To see this, note that when all the data in the catanet pipeline has
arrived at the receiver, the resulting acknow edgenent nust yield an
of fered wi ndow and useable w ndow that equal each other.) [If the
expected acknow edgenents do not arrive, the retransni ssion nechani sm
will come into play to assure that sonething finally happens. Thus, to
add this algorithm to an existing TCP inplementation usually requires
one line of code. As part of the send algorithmit is already necessary
to conmpute the useable window fromthe offered window. It is a sinple

matter to add a line of code which, if the ratiois less than a certain

percent, sets the useable w ndowto zero. The results of SW5 are so
devastating that no sender should be wthout this sinple piece of

i nsur ance.

5. Inproved Acknow edgenment Al gorithns

In the beginning of this paper, an overly sinplistic inplenentation
of TCP was described, which led to SW6. One of the characteristics of
this inplenmentation was that the recipient of data sent a separate
acknow edgenent for every segnment that it received. This conpul sive
acknow edgenent was one of the causes of SW5, because each
acknowl edgenent provi ded sone new useabl e wi ndow, but even if one of the
algorithns described above is wused to elimnate SW5 overly frequent
acknow edgenent still has a substantial problem which is that it
greatly increases the processing tine at the sender’s end. Measurenent
of TCP inplenentations, especially on | arge operating systens, indicate
that nost of the overhead of dealing wth a segnent is not in the
processing at the TCP or IP level, but sinply in the scheduling of the
handl er which is required to deal with the segnent. A steady dribbl e of
acknow edgenents causes a high overhead in scheduling, with very little

to show for it. This waste is to be avoided if possible.

There are two reasons for pronpt acknow edgenent. Ohe is to
prevent retransmssion. W will discuss |later how to determ ne whether
unnecessary retransmssion s occurring. The ot her reason one

acknow edges pronptly is to pernmit further data to be sent. However,
the previous section makes quite clear that it is not always desirable

to send a little bit of data, even though the receiver may have room for

10

it. Therefore, one can state a general rule that under nornal
operation, the receiver of data need not, and for efficiency reasons
should not, acknowl edge the data unless either the acknow edgenent is
i ntended to produce an increased useable wi ndow, is necessary in order
to prevent retransmission or is being sent as part of a reverse
di rection segnment being sent for sone other reason. W will consider an

algorithmto achi eve these goals.

Only the recipient of the data can control the generation of
acknow edgenent s. Once an acknow edgenent has been sent fromthe
recei ver back to the sender, the sender nust process it. Al t hough the
extra overhead is incurred at the sender’'s end, it is entirely under the
receiver’s control. Therefore, we nust now describe an al gorithm which
occurs at the receiver’s end. (Obviously, the algorithm nust have the
follow ng general form sonetinmes the receiver of data, upon processing
a segnent, decides not to send an acknow edgenent now, but to postpone
the acknow edgenment until some tine in the future, perhaps by setting a
timer. The peril of this approach is that on many large operating
systens it is extrenely costly to respond to a tiner event, alnobst as
costly as to respond to an inconing segnent. Cearly, if the receiver
of the data, in order to avoid extra overhead at the sender end, spends
a great deal of tine responding to tinmer interrupts, no overall benefit
has been achieved, for efficiency at the sender end is achi eved by great
thrashing at the receiver end. W nust find an algorithmthat avoids

both of these perils.

The followi ng schene seens a good conpromi se. The receiver of data

11

will refrain from sending an acknow edgenent under certain
circunstances, in which case it nmust set a tinmer which wll cause the
acknowl edgenent to be sent later. However, the receiver should do this
only where it is a reasonable guess that some other event will intervene
and prevent the necessity of the timer interrupt. The nost obvious
event on which to depend is the arrival of another segnent. So, if a
segnent arrives, postpone sending an acknow edgenent if both of the
followng conditions hold. First, the push bit is not set in the
segnent, since it is a reasonable assunption that there is nore data
coming in a subsequent segnent. Second, there is no revised w ndow

i nformation to be sent back.

This algorithmw Il insure that the tinmer, although set, is seldom
used. The interval of the tiner is related to the expected inter-
segnent delay, which is in turn a function of the particular network
through which the data is flow ng. For the Arpanet, a reasonable
interval seens to be 200 to 300 milliseconds. Appendix A describes an

adaptive algorithmfor nmeasuring this delay.

The section on inproved w ndow al gorithns described both a receiver
algorithm and a sender algorithm and suggested that both should be
used. The reason for this is nowclear. Wile the sender algorithm is
extrenely sinple, and useful as insurance, the receiver algorithmis
required in order that this inproved acknow edgenent strategy work. I f
the receipt of every segnent causes a new wi ndow val ue to be returned,
then of necessity an acknow edgenent will be sent for every data

segnent. When, according to the strategy of the previous section, the

12

receiver deternmines to artificially reduce the offered wi ndow, that is

preci sely the circunstance under which an acknow edgenent need not be

sent. Wien the receiver wi ndow algorithm and the receiver
acknow edgenent algorithmare used together, it wll be seen that
sending an acknow edgenent will be triggered by one of the follow ng

events. First, a push bit has been received. Second, a tenporary pause
in the data streamis detected. Third, the offered w ndow has been

artificially reduced to one-half its actual val ue.

In the beginning of this section, it was pointed out that there are
two reasons why one nust acknow edge data. Qur consideration at this
poi nt has been concerned only with the first, that an acknow edgenent
must be returned as part of triggering the sending of new data. It is
al so necessary to acknow edge whenever the failure to do so would
trigger retransm ssion by the sender. Since the retransnission interva
is selected by the sender, the receiver of the data cannot naeke a
precise determnation of when the acknow edgenment nust be sent.
However, there is a rough rule the sender can wuse to avoid

retransm ssion, provided that the receiver is reasonably well behaved.

W will assune that sender of the data uses the optional algorithm
described in the TCP specification, in which the roundtrip delay is
nmeasur ed usi ng an exponential decay snoothing algorithm Retransm ssion
of a segnent occurs if the neasured delay for that segnent exceeds the
snoothed average by sonme factor. To see how retransnission m ght be
triggered, one nust consider the pattern of segnent arrivals at the

receiver. The goal of our strategy was that the sender should send off

13

a nunber of segnents in close sequence, and receive one acknow edgenent
for the whole burst. The acknow edgenment wll be generated by the
receiver at the time that the last segnent in the burst arrives at the
receiver. (To ensure the pronpt return of the acknow edgenent, the
sender could turn on the "push” bit in the |ast segnent of the burst.)

The del ay observed at the sender between the initial transm ssion of a

segnent and the receipt of the acknow edgement will include both the
network transit time, plus the holding time at the receiver. The
holding tinme wll be greatest for the first segnents in the burst, and
smal | est for the |last segnents in the burst. Thus, the snoothing
algorithm will neasure a delay which is roughly proportional to the
average roundtrip delay for all the segnents in the burst. Pr obl ens
will arise if the average delay is substantially smaller than the

maxi num delay and the smpoothing algorithm used has a very snal

threshold for triggering retransm ssion. The w dest variation between

average and naxi numdelay wll occur when network transit time is
negligible, and all delay is processing tinme. |In this case, the maxi num
will be twice the average (by sinple algebra) so the threshold that

controls retransm ssion shoul d be sonmewhat nore than a factor of two.

In practice, retransm ssion of the first segnents of a burst has
not been a problem because the delay neasured consists of the network
roundtrip delay, as well as the delay due to withhol ding t he
acknow edgenent, and the roundtrip tends to dom nate except in very |ow
roundtrip tinme situations (such as when sending to one’'s self for test
pur poses) . This low roundtrip situation can be covered very sinply by
i ncluding a m ni nrum val ue bel ow which the roundtrip estimate is not

permitted to drop.

14

In our experinents wth this algorithm retransm ssion due to
faulty calculation of the roundtrip delay occurred only once, when the
paraneters of the exponential snoothing al gorithmhad been nisadjusted
so that they were only taking into account the last two or three
segnents sent. Clearly, this will cause trouble since the last two or
three segnents of any burst are the ones whose holding time at the
receiver is mnimal, so the resulting total estimte was nuch | ower than
appropri ate. Once the paraneters of the algorithmhad been adjusted so
that the nunber of segnents taken into account was approximtely twice
the nunber of segnments in a burst of average size, with a threshold
factor of 1.5, no further retransni ssion has ever been identified due to
this problem including when sending to ourself and when sending over

hi gh del ay nets.

6. Conservative Vs. Optinistic Wndows

According to the TCP specification, the offered wi ndow is presuned
to have sone relationship to the anbunt of data which the receiver is
actually prepared to receive. However, it is not necessarily an exact
correspondence. We will use the term "conservative window' to describe
the case where the offered window is precisely no larger than the actual
buffering available. The drawback to conservative w ndow algorithnms is
that they can produce very |low throughput in |ong delay situations. It
is easy to see that the maxi mum i nput of a conservative w ndow al gorithm
is one bufferfull every roundtrip delay in the net, since the next
bufferfull cannot be |aunched until the wupdated w ndow acknow edgenent

informati on fromthe previous transm ssion has nade the roundtrip.

15

In certain cases, it my be possible to increase the overal
t hroughput of the transm ssion by increasing the offered wi ndow over the
actual buffer available at the receiver. Such a strategy we wll cal
an "optimstic w ndow' strategy. The optinistic strategy works if the
network delivers the data to the recipient sufficiently slowy that it
can process the data fast enough to keep the buffer from overfl ow ng.
If the receiver is faster than the sender, one could, with luck, permt

an infinitely optimstic window, in which the sender is sinply pernitted

to send full-speed. |If the sender is faster than the receiver, however,
and the window is too optimstic, then some segnments will cause a buffer
overflow, and wll be discarded. Therefore, the correct strategy to

i mpl ement an optinistic windowis to increase the w ndow size until
segnents start to be lost. This only works if it is possible to detect
that the segnment has been lost. In sonme cases, it is weasy to do,

because the segnent is partially processed inside the receiving host

before it is thrown away. |In other cases, overflows nay actually cause
the network interface to be clogged, which will cause the segnments to be
lost elsewhere in the net. It is inadvisable to attenpt an optimistic

wi ndow strategy unless one is certain that the algorithmcan detect the
resulting |ost segnents. However, the increase in throughput which is
possible fromoptimstic windows is quite substantial. Any systens with
smal | buffer space should seriously consider the nerit of optimstic

wi ndows.

The selection of an appropriate window algorithmis actually nore
conplicated than even the above discussion suggests. The follow ng

consi derations are not presented with the intention that they be

16

incorporated in current inplenentations of TCP, but as background for
the sophisticated designer who is attenpting to understand how his TCP
will respond to a variety of networks, with different speed and del ay
characteristics. The particular pattern of w ndows and acknow edgenents
sent fromreceiver to sender influences two characteristics of the data
bei ng sent. First, they control the average data rate. Cearly, the
average rate of the sender cannot exceed the average rate of the
receiver, or long-term buffer overflow wll occur. Second, they
i nfluence the burstiness of the data coming fromthe sender. Burstiness
has bot h advant ages and di sadvant ages. The advantage of burstiness is
that it reduces the CPU processing necessary to send the data. This
follows fromthe observed fact, especially on |large machi nes, that nost
of the <cost of sending a segnent is not the TCP or |P processing, but

the scheduling overhead of getting started.

On the other hand, the di sadvantage of burstiness is that it my
cause buffers to overflow, either in the eventual recipient, which was
di scussed above, or in an internediate gateway, a problem ignored in
this paper. The algorithnms described above attenpts to strike a bal ance
bet ween excessive burstiness, which in the extrene cases can cause
del ays because a burst is not requested soon enough, and excessive
fragnment ati on of the data stream into small segnents, which we

identified as Silly Wndow Syndrone.

Under conditions of extrene delay in the network, none of the
al gorithns descri bed above wll achi eve adequat e t hr oughput .

Conservative window algorithms have a predictable throughput Ilimt,

17

which is one windowfull per roundtrip delay. Attenpts to solve this by
optim stic window strategies nay cause buffer overflows due to the
bursty nature of the arriving data. A very sophisticated way to solve
this is for the receiver, having neasured by sone neans the roundtrip
delay and intersegnent arrival rate of the actual connection, to open
his wi ndow, not in one optim stic increment of gigantic proportion, but
in a nunber of smaller optinistic increnents, which have been carefully
spaced using a timer so that the resulting smaller bursts which arrive
are each sufficiently small to fit into the existing buffers. One could
visualize this as a nunber of requests flow ng backwards through the net
which trigger in return a nunber of bursts which flow back spaced evenly
from the sender to the receiver. The overall result is that the
recei ver uses the wi ndow nmechanismto control the burstiness of the

arrivals, and the average rate.

To nmy know edge, no such strategy has been inplenmented in any TCP.
First, we do not normally have del ays hi gh enough to require this Kkind
of treatnent. Second, the strategy described above is probably not
stable unless it is very carefully balanced. Just as buses on a single
bus route tend to bunch up, bursts which start out equally spaced could
well end up piling into each other, and formng the single |large burst
which the receiver was hoping to avoid. It is inportant to understand
this extrenme case, however, in order to wunderstand the Ilints beyond
which TCP, as normally inplenmented, with either conservative or sinple
optim stic wi ndows can be expected to deliver throughput which is a

reasonabl e percentage of the actual network capacity.

18

7. Concl usions

This paper describes three sinple algorithns for perfornmance
enhancenent in TCP, one at the sender end and two at the receiver. The
sender algorithm is to refrain fromsending if the useable w ndow is
smal |l er than 25 percent of the offered window. The receiver algorithns
are first, to artificially reduce the offered wi ndow when processi ng new
data if the resulting reduction does not represent nore than sone
fraction, say 50 percent, of the actual space available, and second, to
refrain from sending an acknow edgnent at all if two sinple conditions

hol d.

Ei ther of these algorithms will prevent the worst aspects of Silly
W ndow Syndrone, and when these algorithns are used together, they wl|
produce substantial inprovenment in CPU utilization, by elimnating the

process of excess acknow edgenents.

Prelimnary experinents wth these algorithns suggest that they
work, and work very well. Both the sender and receiver algorithns have
been shown to elimnate SW5 even when talking to fairly silly
algorithns at the other end. The Multics mailer, in particular, had
suffered substantial attacks of SW5 while sending |arge mail to a nunber
of hosts. We believe that inplenentation of the sender side algorithm
has elimnated every known case of SW5 detected in our nmailer.
I mpl ementation of the receiver side algorithm produced substanti al
i mprovenments of CPU time when Miultics was the sending system Mul tics
is a typical large operating system wth scheduling costs which are

| arge conpared to the actual processing tine for protocol handlers.

19

Tests were done sending fromMiltics to a host which inplenented the SW5
suppression algorithm and which could either refrain or not from
sendi ng acknowl edgenents on each segnment. As predicted, suppressing the
return acknow edgenents did not influence the throughput for large data
transfer at all, since the throttling effect was el sewhere. However,
the CPU tinme required to process the data at the Miultics end was cut by
a factor of four (In this experinent, the bursts of data which were
bei ng sent were approxi nately eight segnents. Thus, the nunber of

acknow edgenents in the two experinents differed by a factor of eight.)

An inportant consideration in evaluating these algorithnms is that
they must not cause the protocol inplenentations to deadl ock. Al of
the recomendations in this docunent have the characteristic that they
suggest one refrain from doing sonething even though the protocol
specification pernits one to do it. The possibility exists that if one
refrains from doi ng sonmething now one may never get to do it later, and
both ends will halt, even though it woul d appear superficially that the

transacti on can conti nue.

Formally, the idea that things continue to work is referred to as

"liveness". One of the defects of ad hoc solutions to perfornmance
problenms is the possibility that two different approaches will interact
to prevent |iveness. It is believed that the al gorithnms described in

this paper are always live, and that is one of the reasons why there is
a strong advantage in uniformuse of this particular proposal, except in

cases where it is explicitly denponstrated not to work.

The argument for liveness in these solutions proceeds as foll ows.

20

First, the sender algorithmcan only be stopped by one thing, a refusal
of the receiver to acknow edge sent data. As long as the receiver
continues to acknow edge data, the ratio of useable wi ndow to offered
wi ndow wi | | approach one, and eventually the sender nust continue to
send. However, notice that the receiver algorithmwe have advocated
i nvol ves refraining fromacknow edgi ng. Therefore, we certainly do have
a situation where inproper operation of this algorithm can prevent

| i veness.

What we nust show is that the receiver of the data, if it chooses
to refrain from acknow edging, will do so only for a short tine, and not
forever. The design of the algorithmdescribed above was intended to
achieve precisely this goal: whenever the receiver of data refrained
from sendi ng an acknow edgenent it was required to set a tinmer. The
only event that was pernitted to clear that tinmer was the receipt of
anot her segnent, which essentially reset the timer, and started it going
again. Thus, an acknow edgenent will be sent as soon as no data has
been received. This has precisely the effect desired: if the data flow
appears to be disrupted for any reason, the receiver responds by sendi ng
an up-to-date acknow edgenent. In fact, the receiver algorithmis
designed to be nore robust than this, for transmn ssion of an
acknowl edgnent is triggered by two events, either a cessation of data or
a reduction in the amount of offered window to 50 percent of the actua
val ue. This is the condition which wll normally trigger t he

transm ssion of this acknow edgenent.

21

APPENDI X A

Dynam ¢ Cal cul ati on of Acknow edgenent Del ay

The text suggested that when setting a timer to postpone the
sending of an acknow edgenment, a fixed interval of 200 to 300
mlliseconds would work properly in practice. This has not been
verified over a wide variety of network delays, and clearly if there is
a very slow net which stretches out the intersegnment arrival tinme, a
fixed interval will fail. 1In a sophisticated TCP, which is expected to
adj ust dynamical l'y (rather t han manual ly) to changing network
conditions, it would be appropriate to nmeasure this interval and respond
dynamically. The followng algorithm which has been relegated to an
Appendi x, because it has not been tested, seens sensible. Wenever a
segnment arrives which does not have the push bit on in it, start a
timer, which runs wuntil the next segnment arrives. Aver age t hese
interarrival intervals, using an exponential decay snoothing function
tuned to take into account perhaps the last ten or twenty segnents that
have conme in. Qccasionally, there will be a long interarrival period,
even for a segnment which is does not terninate a piece of data being
pushed, perhaps because a wi ndow has gone to zero or sone glitch in the
sender or the network has held up the data. Therefore, exani ne each
interarrival interval, and discard it fromthe snoothing algorithmif it
exceeds the current estimte by sonme ampunt, perhaps a ratio of two or
four times. By rejecting the larger intersegment arrival intervals, one

shoul d obtain a snmoothed estimate of the interarrival of segnents inside

22

a burst. The nunber need not be exact, since the tiner which triggers
acknow edgenent can add a fairly generous fudge factor to this wthout
causing trouble with the sender’s estimate of the retransm ssion

interval, so long as the fudge factor is constant.

