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Status of this Meno

This RFC is being distributed to nenbers of the Internet conmunity

in order to solicit comments on the Inplenmentors Guide. Wiile this
docunment may not be directly relevant to the research probl ens

of the Internet, it may be of sonme interest to a nunber of researchers
and inplenentors. Distribution of this nenmo is unlimted.

| MPLEMENTATI ON GUI DE FOR THE | SO TRANSPCORT PROTOCCL
1 Interpretation of formal description.

It is assunmed that the reader is famliar with both the forma
description technique, Estelle [I1SC85a], and the transport protocol
as described in IS 8073 [ISCB4a] and in N3756 [ SO85b].

1.1 CGeneral interpretation guide.

The devel opment of the formal description of the | SO Transport
Protocol was guided by the three foll owi ng assunpti ons.

1. A generality principle

The fornmal description is intended to express all of the behavior
that any inplenmentation is to denonstrate, while not being bound
to the way that any particular inplenentation would realize that

behavior within its operating context.

2. Preservation of the deliberate
nondeterm nismof IS 8073

The text description in the IS 8073 contains deliberate expressions
of nondeterm nismand indeterm nismin the behavior of the
transport protocol for the sake of flexibility in application.
(Nondeterminismin this context neans that the order of execution
for a set of actions that can be taken is not specified.

| ndet erni ni sm nmeans that the execution of a given action cannot be
predicted on the basis of systemstate or the executions of other
actions.)
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3. Discipline in the usage of Estelle

A given feature of Estelle was to be used only if the nature of
the mechanismto be described strongly indicates its usage,

or to adhere to the generality principle, or to retain the
nondeterm ni smof 1S 8073.

| npl ementation efficiency was not a particular goal nor was there
an attenpt to directly correlate Estell e mechanisnms and features
to inplementati on nechani sns and features. Thus, the description
does not represent optinmal behavior for the inplenmented protocol

These assunptions inply that the formal description contains higher
| evel s of abstraction than woul d be expected in a description for

a particular operating environment. Such abstraction is essenti al
because of the diversity of networks and network el ements by which
i npl erent ati on and desi gn deci sions are influenced. Even when
operating environments are essentially identical, design choice and
originality in solving a technical problemnust be all owed.

The sane behavi or nmay be expressed in many different ways. The
goal in producing the transport fornal description was to attenpt
to capture this equival ence. Sone nmechanisns of transport are not
fully described or appear to be overly conplicated because of the
adherence to the generality principle. Resolution of these
situations may require significant effort on the part of the

i npl enent or .

Since the description does not represent optinmal behavior for the

i npl enented protocol, inplenmentors should take the three assunptions
above into account when using the description to inplenent the
protocol. It may be advisable to adapt the standard description in

such a way that:

a. abstractions (such as nmodul es, channels, spontaneous
transitions and binding conments) are interpreted and realized
as nechani snms appropriate to the operating environnent and
service requirenents;

b. nodul es, transitions, functions and procedures containing
material irrelevant to the classes or options to be supported
are reduced or elimnated as needed; and

C. desired real -tine behavior is accounted for.

The use in the fornmal description of an Estelle feature (for

i nstance, "process"), does not inply that an inplenentation mnust
necessarily realize the feature by a synonynous feature of the
operating context. Thus, a nodule declared to be a "process" in an
Estel l e description need not represent a real process as seen by a
host operating system "process" in Estelle refers to the
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synchroni zation properties of a set of procedures (transitions).

Real i zations of Estelle features and mechani sns are dependent in an
essential way upon the perfornmance and service an inplenmentation is
to provide. Inplenentations for operational usage have nuch nore
stringent requirements for optimal behavior and robustness than do
i npl enent ations used for sinulated operation (e.g., correctness or
conformance testing). It is thus inportant that an operational

i npl enentation realize the abstract features and nmechani sns of a
formal description in an efficient and effective nmanner.

For operational usage, two useful criteria for interpretation of
formal nechanisns are

[1] minimzation of delays caused by the nmechani sm
itself; e.qg.,

--transit delay for a nediumthat realizes a
channel

--access delay or latency for channel medi um

--scheduling delay for tinmed transitions
(spontaneous transitions with delay cl ause)

--execution scheduling for nodul es using
exported variables (delay in accessing
vari abl e)

[2] minimzation of the "handling" required by each
i nvocation of the mechanism e.g.

--nodul e execution scheduling and cont ext
swi t chi ng

--synchroni zation or protocols for realized
channel

--predi cate eval uation for spontaneous
transitions

Spont aneous transitions represent nondeterninismand indeterm ni sm
so that uniformrealization of themin an inplenmentati on nust be
gquestioned as an inplenentation strategy. The tinme at which the
action described by a spontaneous transition will actually take

pl ace cannot be specified because of one or nore of the follow ng
situations:

a. it is not known when, relative to any specific event defining
the protocol (e.g., input network, input fromuser, tinmer
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expirations), the conditions enabling the transition wll
actual ly occur;

b. even if the enabling conditions are ultimtely determ nistic,
it is not practical to describe all the possible ways this
coul d occur, given the different ways in which inplenentations
wi || exam ne these conditions; and

C. a particular inplenentation may not be concerned with the
enabling conditions or will account for themin sonme other
way; i.e., it is irrelevant when the action takes place, if
ever.

As an exanple of a), consider the situation when splitting over the
network connection, in Cass 4, in which all of the network
connections to which the transport connection has been assigned have
all disconnected, with the transport connection still in the OPEN
state. There is no way to predict when this will happen, nor is
there any specific event signalling its occurrence. Wen it does
occur, the transport protocol machine may want to attenpt to obtain
a new networ k connection

As an exanple of b), consider that tiners may be expressed
succinctly in Estelle by transitions simlar to the foll ow ng:

fromAto B
provi ded predicate delay( timer_interval )

begi n
(* action driven by tinmeout *)
end;

But there are operations for which the tinmer period may need to
be very accurate (close to real tine) and others in which sone
delay in executing the action can be tolerated. The inplenentor
nmust deternine the optinal behavi or desired for each instance
and use an appropriate nmechanismto realize it, rather than
using a uni form approach to inplenmenting all spontaneous
transitions.

As an exanple of the situation in c), consider the closing of an
unused network connection. |If the network is such that the cost
of letting the network connection remain open is snall conpared
cost of opening it, then an inplenentation mght not want to
consi der closing the network connection until, say, the weekend.
Anot her inpl enmentation m ght decide to close the network
connection within 30 nsec after discovering that the connection
is not busy. For still another inplenentation, this could be
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nmeani ngl ess because it operates over a connectionl ess network
servi ce.

If a description has only a very few spontaneous transitions, then
it my be relatively easy to inplenment themliterally (i.e., to
schedul e and execute them as Estelle abstractly does) and not

i ncur the overhead fromexam ning all of the variables that occur

in the enabling conditions. However, the nunber and conplexity of
the enabling conditions for spontaneous transitions in the transport
description strongly suggests that an inplenentation which realizes
spontaneous transitions literally will suffer badly from such

over head.

1.2 Quide to the formal description

So that inplenmentors gain insight into interpretation of the
nmechani sns and features of the formal description of transport, the
foll ow ng paragraphs discuss the neani ngs of such nechani sns and
features as intended by the editors of the formal description.

1.2.1 Transport Protocol Entity.
1.2.1.1 Structure.

The di agram bel ow shows the general structure of the Transport
Protocol Entity (TPE) nodul e, as given in the formal description
>From an abstract operational viewpoint, the transport protocol

Machi nes (TPMs) and the Sl aves operate as child processes of the the
TPE process. Each TPM represents the endpoint actions of the
protocol on a single transport connection. The Slave represents
control of data output to the network. The internal operations of
the TPMs and the Slave are discussed below in separate sections.

This structure pernits describing multiple connections, nultiplexing
and splitting on network connections, dynam c existence of endpoints
and cl ass negotiation. In the diagram interaction points are
denoted by the synbol "O', while (Estelle) channels joining these

i nteraction points are denoted by
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The synmbol " X' represents a | ogical association through vari abl es,
and the denotations

<LLLL L L
>S>>5>>>>

V
V
V

i ndi cate the passage of data, in the direction of the synbol
vertices, by way of these associations. The acronyns TSAP and
NSAP denote Transport Service Access Point and Network Service
Access Point, respectively. The structure of the TSAPs and
NSAPs shown is discussed further on, in Parts 1.2.2.1 and
1.2.2.2.
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The structuring principles of Estelle provide a formal neans of
expressing and enforcing certain synchroni zation properties between
comuni cating processes. It nmust be stressed that the scheduling
inplied by Estelle descriptions need not and in sonme cases should
not be inplemented. The intent of the structure in the transport
formal descriptionis to state formally the synchroni zati on of
access tovariabl es shared by the transport entity and the transport
connection endpoints and to pernit expression of dynam c objects
within the entity. 1In nearly all aspects of operation except these,
it my be nore efficient in some inplenentation environnents to
permit the TPE and the TPMs to run in parallel (the Estelle

schedul ing specifically excludes the parallel operation of the TPE
and the TPMs). This is particularly true of internal nmanagenent
("housekeepi ng") actions and those actions not directly related to
conmuni cati on between the TPE and the TPMs or instantiation of TPMs.
Typi cal actions of this latter sort are: receipt of NSDUs fromthe
network, integrity checking and decodi ng of TPDUs, and network
connection managenent. Such actions coul d have been collected into
ot her nodul es for scheduling closer to that of an inplenmentation,
but surely at the risk of further conplicating the description.
Consequently, the formal description structure should be understood
as expressing rel ationshi ps anong acti ons and objects and not
explicit inplenmentation behavior.

1.2.1.2 Transport protocol entity operation.

The details of the operation of the TPE from a conceptual point of
view are given in the SYS section of the formal description
However, there are several further comments that can be nade
regardi ng the design of the TPE. The Estelle body for the TPE
nodul e has no state variable. This nmeans that any transition of
the TPE may be enabl ed and executed at any tine. Choice of
transition is determined primarily by priority. This suggests
that the semantics of the TPE transitions is that of interrupt
traps.

The TPE handl es only the T- CONNECT-request fromthe user and the TPM
handl e all other user input. Al network events are handl ed by the
TPE, in addition to resource managenent to the extent defined in the
description. The TPE al so nanages all aspects of connection
references, including reference freezing. The TPE does not
explicitly manage the CPU resource for the TPMs, since this is
inplied by the Estelle scheduling across the nodul e hierarchy.
Instantiation of TPMs is also the responsibility of the TPE, as is
TPM rel ease when the transport connection is to be closed. Once a
TPMis created, the TPE does not in general interfere with TPMs
activities, with the follow ng exceptions: the TPE may reduce credit
to a Cass 4 TPMwi thout notice; the TPE may di ssociate a Cass 4
TPM from a network connection when splitting is being used.

Conmruni cati on between the TPE and the TPMs is through a set of
exported vari abl es owned by the TPMs, and through a channel which
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passes TPDUs to be transmitted to the renote peer. This channel is
not directly connected to any network connection, so each

interaction on it carries a reference nunber indicating which network
connection is to be used. Since the reference is only a reference,
this permits usage of this mechani smwhen the network service is
connectionless, as well. The nechanismprovides flexibility for

both splitting and multipl exi ng on network connecti ons.

One mejor function that the TPE perfornms for all its TPMs is that of
initial processing of received TPDUs. First, a set of integrity
checks is nmade to deternmine if each TPDU in an NSDU i s decodabl e:

a. PDU | ength indicators and their suns are checked agai nst the
NSDU | engt h for consi stency;

b. TPDU types versus nini num header | engths for the types are
checked, so that if the TPDU can be decoded, then proper
association to TPMs can be nmade w t hout any problem

C. TPDUs are searched for checksuns and the | ocal checksumis
comput ed for any checksum found; and

d. parameter codes in variable part of headers are checked where
appl i cabl e.

These integrity checks guarantee that an NSDU passi ng the check can
be separated as necessary into TPDUs, these TPDUs can be associ ated
to the transport connections or to the Slave as appropriate and they
can be further decoded w thout error

The TPE next decodes the fixed part of the TPDU headers to determ ne
the disposition of the TPDU. The Sl ave gets TPDUs that cannot be
assigned to a TPM (spurious TPDU). New TPMs are created in response
to CR TPDUs that correspond to a TSAP for this TPE

Al'l managenent of NSAPs is done by the TPE. This consists of keeping
track of all network connections, their service quality
characteristics and their availability, informng the TPMs associ ated
with these network connections.

The TPE has no tinmer nodule as such. Timing is handl ed by using the

DELAY feature of Estelle, since this feature captures the essence of

timng w thout specifying how the actual timng is to be achieved

within the operating environment. See Part 1.2.5 for nore details.
1.2.2 Servi ce Access Points.

The service access points (SAP) of the transport entity are nodel ed
using the Estelle channel/interaction point formalism (Note: The
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term"channel” in Estelle is a keyword that denotes a set of

i nteractions which nmay be exchanged at interaction points [LIN35].
However, it is useful conceptually to think of "channel" as denoting
a communi cation path that carries the interactions between nodul es.)
The abstract service prinitives for a SAP are interactions on
channel s entering and |l eaving the TPE. The transport user is
considered to be at the end of the channel connected to the transport
SAP (TSAP) and the network service provider is considered to be at
the end of the channel connected to the network SAP (NSAP). An
interaction put into a channel by sonme nodul e can be considered to
nmove i nstantaneously over the channel onto a queue at the other end.
The sender of such an interaction no | onger has access to the
interaction once it has been put into the channel. The operation of
the system nodel ed by the formal description has been designed with
this semantics in nind, rather than the equival ent but rmuch nore
abstract Estelle semantics. (In the Estelle semantics, each
interaction point is considered to have associated with it an
unbounded queue. The "attach" and "connect" primtives bind two

i nteraction points, such that an action, inplied by the keyword
"out", at one interaction point causes a specified interaction to be
pl aced onto the queue associated with the other interaction point.)
The sections that follow discuss the TSAP and the NSAP and the way
that these SAPs are described in the formal description.

1.2.2.1 Transport Service Access Point.

The international transport standard allows for nore than one TSAP to
be associated with a transport entity, and multiple users may be
associated with a given TSAP. A situation in which this is useful is
when it is desirable to have a certain quality of service correlated
with a given TSAP. For exanple, one TSAP could be reserved for
applications requiring a high throughput, such as file transfer. The
operation of transport connections associated with this TSAP coul d
then be designed to favor throughput. Another TSAP ni ght serve users
requiring short response tine, such as terninals. Still another TSAP
coul d be reserved for encryption reasons.

In order to provide a way of referencing users associated w th TSAPs,
the user access to transport in the formal description is through an
array of Estelle interaction points. This array is indexed by a TSAP
address (T_address) and a Transport Connection Endpoint Identifier
(TCEP_id). Note that this dinensional object (TSAP) is considered
sinply to be a uniformset of abstract interfaces. The indices nust
be of (Pascal) ordinal type in Estelle. However, the actual address
structure of TSAPs may not conformeasily to such typing in an

i npl enentati on. Consequently, the indices as they appear in the
formal description should be viewed as an organi zati onal mechani sm
rather than as an explicit way of associating objects in an
operational setting. For exanple, actual TSAP addresses might be
kept in sonme kind of table, with the table index being used to
reference objects associated with the TSAP
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One particular issue concerned with realizing TSAPs is that of making
known to the users the neans of referencing the transport interface,
i.e., sonehow providing the T _addresses and TCEP_ids to the users.
This issue is not considered in any detail by either IS 7498 [I| SO84b]
or 1S 8073. Abstractly, the required reference is the

T address/ TCEP_id pair. However, this gives no insight as to how the
mechani sm coul d work. Sone approaches to this problem are di scussed
in Part 5.

Anot her issue is that of flow control on the TSAP channels. Fl ow
control is not part of the semantics for the Estelle channel, so the
probl em nust be dealt with in another way. The formal description

gi ves an abstract definition of interface flow control using Pascal
and Estelle nechanisns. This abstraction resenbl es nany actual
schenmes for flow control, but the realization of flow control will
still be dependent on the way the interface is inplenented. Part 3.2
di scusses this in nore detail

1.2.2.2 Net wor k Servi ce Access Poi nt.

An NSAP may al so have nore than one network connection associ at ed
with it. For exanple, the virtual circuits of X 25 correspond with
this notion. On the other hand, an NSAP may have no network
connection associated with it, for exanple when the service at the
NSAP is connectionless. This certainly will be the case when
transport operates on a LAN or over |IP. Consequently, although the
syntactical appearance of the NSAP in the formal description is
simlar to that for the TSAP, the semantics are essentially distinct
[ NTI 85] .

Di stinct NSAPs can correspond or not to physically distinct networks.
Thus, one NSAP coul d access X 25 service, another mnight access an

| EEE 802.3 LAN, while a third mi ght access a satellite link. On the
ot her hand, distinct NSAPs could correspond to different addresses on
the same network, with no particular rationale other than facile
managenent for the distinction. There are performance and system
design issues that arise in considering how NSAPs shoul d be nmanaged
in such situations. For exanple, if distinct NSAPs represent

di stinct networks, then a transport entity which nmust handl e al
resource managenment for the transport connections and operate these
connections as well may have troubl e keeping pace with data arriving
concurrently fromtwo LANs and a satellite link. It mght be a
better design solution to separate the managenent of the transport
connection resources fromthat of the NSAP resources and inputs, or
even to provide separate transport entities to handl e sone of the

di fferent network services, depending on the service quality to be
mai ntained. It may be hel pful to think of the (total) transport
service as not necessarily being provided by a single nonolithic
entity--several distinct entities can reside at the transport |ayer
on the sane end-system
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The issues of NSAP managenent cone primarily from connection-oriented
network services. This is because a connectionless service is either
available to all transport connections or it is available to none,
representing infinite degrees of nmultiplexing and splitting. In the
connection-oriented case, NSAP nanagenent is conplicated by

mul tiplexing, splitting, service quality considerations and the
particul ar character of the network service. These issues are

di scussed further in Part 3.4.1. In the formal description, network
connecti on managenent is carried out by neans of a record associ ated
wi th each possible connection and an array, associated with each TPM
each array nmenber corresponding to a possible network connecti on.
Since there is, on some network services, a very |arge nunber of
possi bl e network connections, it is clear that in an inplenentation
these data structures nay need to be nade dynamic rather than static.
The connection record, indexed by NSAP and NCEP_id, consists of a

Sl ave nodul e reference, virtual data connections to the TPMs to be
associated with the network connection, a data connection (out) to
the NSAP, and a data connection to the Slave. There is also a
"state" variable for keeping track of the availability of the
connection, variables for managi ng the Slave and an i nternal
reference nunber to identify the connection to TPMs. A nenber of the
networ k connection array associated with a TPM provides the TPMw th
status information on the network connection and i nput data (network)
events and TPDUs). A considerabl e anmount of managenent of the
networ k connections is provided by the formal description, including
splitting, multiplexing, service quality (when defined), interface
flow control, and concatenation of TPDUs. This managenent is carried
out solely by the transport entity, leaving the TPMs free to handl e
only the explicit transport connection issues. This nmanagenent
schenme is flexible enough that it can be sinplified and adapted to
handl e the NSAP for a connectionl ess service.

The principal issue for managenent of connectionless NSAPs is that of
buffering, particularly if the data transmi ssion rates are high, or

there is a | arge nunber of transport connections being served. It
may al so be desirable for the transport entity to nonitor the service
it is getting fromthe network. This would entail, for exanple,

periodically computing the nean transm ssion delays for adjusting
timers or to exert backpressure on the transport connections if
network access delay rises, indicating |loading. (In the fornal
description, the Sl ave processor provides a sinple form of output
buf fer managenment: when its queue exceeds a threshold, it shuts off
data fromthe TPMs associated with it. Through primtive functions,
the threshold is |oosely correlated with network behavior. However,
this mechanismis not intended to be a solution to this difficult
per f ormance problem)
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1.2.3 Transport Protocol Machi ne.

Transport Protocol Machines (TPM in the formal description are in
six classes: Ceneral, Cass 0, Cass 1, Cass 2, Cass 3 and C ass 4.
Only the CGeneral, Cass 2 and Class 4 TPMs are discussed here. The
reason for this diversity is to facilitate describing class
negotiations and to show clearly the actions of each class in the
data transfer phase. The General TPMis instantiated when a
connection request is received froma transport user or when a CR
TPDU is received froma renote peer entity. This TPMis replaced by
a cl ass-specific TPM when the connect response is received fromthe
respondi ng user or when the CC TPDU is received fromthe respondi ng
peer entity.

The CGeneral, Cass 2 and Cass 4 TPMs are discussed below in nore
detail. In an inplementation, it probably will be prudent to nerge
the Class 2 and Class 4 operations with that of the General TPM with
new vari abl es selecting the cl ass-specific operation as necessary
(see also Part 9.4 for information on obtaining Class 2 operation
froma Cass 4 inplenentation). This may sinplify and i nprove the
behavi or of the inplenented protocol overall.

1.2.3.1 General Transport Protocol Machine.

Connection negotiation and establishment for all classes can be
handl ed by the General Transport Protocol Machine. Sonme parts of the
description of this TPM are sufficiently class dependent that they
can safely be renoved if that class is not inplenented. Oher parts
are general and nust be retained for proper operation of the TPM The
General TPM handl es only connection establishnment and negotiation, so
that only CR, CC, DR and DC TPDUs are sent or received (the TPE
prevents ot her kinds of TPDUs fromreaching the General TPM.

Since the General TPMis not instantiated until a T- CONNECT-request
or a CRTPDU is received, the TPE creates a special interna
connection to the nodule’s TSAP interaction point to pass the

T- CONNECT-r equest event to the TPM This provi des automaton
conpl et eness according to the specfication of the protocol. Wen the
TPMis to be replaced by a class-specific TPM the sent or received
CCis copied to the new TPM so that negotiation information is not

| ost.

In the 1S 8073 state tables for the various classes, the mgjority of

the behavioral information for the autonmaton is contained in the

connection establishnent phase. The editors of the forma

description have retained nost of the information contained in the

state tables of IS 8073 in the description of the General TPM
1.2.3.2 Cl ass 2 Transport Protocol Machi ne.

The formal description of the Cass 2 TPMcl osely resenbl es that of
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Class 4, in many respects. This is not accidental, in that: the
conformance statenment in IS 8073 links Class 2 with Cass 4; and the
editors of the fornmal description produced the Cass 2 TPM
description by copying the Cass 4 TPM description and renpvi ng
material on tiners, checksuns, and the like that is not part of the
Class 2 operation. The suggestion of obtaining Cass 2 operation
froma Class 4 inplenentation, described in Part 9.4, is in fact
based on this adaptation.

One feature of Class 2 that does not appear in Cass 4, however, is
the option to not use end-to-end flow control. |In this node of
operation, Class 2 is essentially Class O with multiplexing. In
fact, the formal description of the Class 0 TPM was derived from
Class 2 (in IS 8073, these two classes have essentially identica
state tables). This inplies that O ass 0 operation could be obtained
fromdCass 2 by not nultiplexing, not sending DC TPDUs, el ecting not
to use flow control and terminating the network connection when a DR
TPDU i s received (expedited data cannot be used if flow control is
not used). Wen Class 2 is operated in this node, a sonewhat
different procedure is used to handle data flowinternal to the TPM
than is used when end-to-end flow control is present.

1.2.3.3 Cl ass 4 Transport Protocol Machi ne.

Dynam ¢ queues nodel the buffering of TPDUs in both the Cass 4 and
Class 2 TPMs. This provides a nore general nodel of inplenmentations
than does the fixed array representation and is easier to descri be.
Al'so, the fixed array representation has semantics that, carried
into an inplenmentation, would produce inefficiency. Consequently,
linked lists with queue managenent functions nmake up the TPDU
storage description, despite the fact that pointers have a very

i npl enentation-1ike flavor. One of the queue managenent functions
permts renoving several TPDUs fromthe head of the send queue, to
nodel the acknow edgenment of several TPDUs at once, as specified in
IS 8073. Each TPDU record in the queue carries the nunber of
retransm ssions tried, for timer control (not present in the Cass 2
TPDU records).

There are two states of the Cass 4 TPMthat do not appear in IS
8073. One of these was put in solely to facilitate obtaining credit
in case no credit was granted for the CR or CC TPDU. The other state
was put into clarify operations when there is unacknow edged
expedited data outstanding (Class 2 does not have this state).

The tinmers used in the Cass 4 TPM are di scussed below, as is the
description of end-to-end flow control.

For sinplicity in description, the editors of the formal description
assunmed that no queuei ng of expedited data would occur at the user
interface of the receiving entity. The user has the capability to
bl ock the up-flow of expedited data until it is ready. This
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assunption has several inplications. First, an ED TPDU cannot be
acknowl edged until the user is ready to accept it. This is because
the receipt of an EA TPDU would indicate to the sending peer that the
receiver is ready to receive the next ED TPDU, which would not be
true. Second, because of the way normal data flow is bl ocked by the
sendi ng of an ED TPDU, normal data flow ceases until the receiving
user is ready for the ED TPDU. This suggests that the user

i nterface shoul d enpl oy separate and noninterfering nmechani snms

for passing normal and expedited data to the user. Moreover

the mechani sm for expedited data passage should be bl ocked only in
dire operational conditions. This neans that receipt of expedited
data by the user should be a procedure (transition) that operates

at nearly the highest priority in the user process. The alternative
to describing the expedited data handling in this way would entail a
schenme of properly synchroni zing the queued ED TPDUs with the DT
TPDUs received. This requires sone intricate handling of DI and ED
sequence nunbers. Wile this alternative may be attractive for

i npl enentations, for clarity in the formal description it provides
only unnecessary conplication

The description of nornmal data TSDU processing is based on the
assunption that the data the T-DATA-request refers to is potentially
arbitrarily long. The semantic of the TSDU in this case is anal ogous
to that of a file pointer, in the sense that any file pointer is a
reference to a finite but arbitrarily |large set of octet-strings.

The formation of TPDUs fromthis string is anal ogous to reading the
file in fixed-length segments--records or blocks, for exanple. The
reassenbly of TPDUs into a string is anal ogous to appendi ng each TPDU
tothe tail of a file; the file is passed when the end-of - TSDU
(end-of-file) is received. This schenme pernmits conceptual buffering
of the entire TSDU in the receiver and avoi ds the question of whether
or not received data can be passed to the user before the EOT is
received. (The file pointer may refer to a file owed by the user

so that the question then beconmes noot.)

The encoding of TPDUs is conpletely described, using Pascal functions
and sonme special data nmanipulation functions of Estelle (these are
not normally part of Pascal). There is one encoding function
corresponding to each TPDU type, rather than a single paraneterized
function that does all of them This was done so that the separate
structures of the individual types could be readily discerned, since
the purpose of the functions is descriptive and not necessarily
comput at i onal

The output of TPDUs fromthe TPMis guarded by an internal flow
control flag. When the TPDU is first sent, this flag is ignored,
since if the TPDU does not get through, a retransm ssion may take
care of it. However, when a retransmssion is tried, the flag is
heeded and the TPDU is not sent, but the retransm ssion count is
increnented. This guarantees that either the TPDU will eventually
be sent or the connection will tinme out (this despite the fact that
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the peer will never have received any TPDU to acknow edge).
Checksum conput ati ons are done in the TPMrather than by the TPE
since the TPE nust handle all classes. Also, if the TPMs can be
made to truly run in parallel, the performance nmay be greatly
enhanced.

The decodi ng of received TPDUs is partially described in the Cass 4
TPM description. Only the CR and CC TPDUs present any problens in
decodi ng, and these are largely due to the nondeterministic order of
paraneters in the variable part of the TPDU headers and the

| ocality-and cl ass-dependent content of this variable part. Since
contents of this variable part (except the TSAP-1Ds) do not affect
the association of the TPDU with a transport connection, the
decodi ng of the variable part is not described in detail. Such a
description would be very lengthy indeed because of all the
possibilities and would not contribute nmeasurably to understanding
by the reader.

1.2.4 Net wor k Sl ave.

The primary functions of the Network Slave are to provi de downward
flow control in the TPE, to concatenate TPDUs into a single NSDU and
to respond to the receipt of spurious TPDUs. The Sl ave has an

i nternal queue on which it keeps TPDUs until the network is ready to
accept themfor transmission. The TPE is kept infornmed as to the

| ength of queue, and the output of the TPMs is throttled if the

| ength exceeds this sone threshold. This threshold can be adjusted
to nmeet current operating conditions. The Slave will concatenate
the TPDUs in its queue if the option to concatenate is exercised and
the conditions for concatenating are net. Concatenation is a TPE
option, which nay be exercised or not at any time.

1.2.5 Ti ners.

In the formal description tiners are all nopdel ed using a spontaneous
transition with delay, where the delay paraneter is the tinmer period.
To activate the tinmer, a tiner identifier is placed into a set,
thereby satisfying a predicate of the form

provided tiner_x in active_tiners

However, the transition code is not executed until the el apsed tine
;fromthe placenent of the identifier in the set is at |east equa

to the delay paraneter. The editors of the formal description chose
to nodel tiners in this fashion because it provided a sinply
expressed description of tinmer behavior and elimnated having to
consider howtimng is done in a real systemor to provide speci al
timer nodul es and comunication to them It is thus recommended that
i npl emrentors not follow the timer nodel closely in inplenmentations,
consi dering instead the sinplest and nost efficient neans of timng
permitted by the inplenmentation environnment. |nplenentors should

Mt Coy [ Page 15]



RFC 1008 June 1987

al so note that the delay paraneter is typed "integer" in the fornmal
description. No scale conversion fromactual tinme is expressed in the
timer transition, so that this scale conversion nmust be considered
when tinmers are realized.

1.2.5.1 Transport Protocol Entity timers.

There is only one timer given in the formal description of the
TPE--the reference tinmer. The reference tiner was placed here ;so
that it can be used by all classes and all connections, as needed.
There is actually little justification for having a reference tiner
within the TPM-it wastes resources by holding the transport

endpoi nt, even though the TPMis incapable of responding to any

i nput. Consequently, the TPE is responsible for all aspects of

ref erence nanagenent, including the tineouts.

1.2.5.2 Transport Protocol Machine tinmers.

Class 2 transport does not have any timers that are required by IS
8073. However, the standard does recommend that an optional tiner be
used by Class 2 in certain cases to avoid deadl ock. The forma
description provides this timer, with comments to justify its usage.
It is recoomended that such a tiner be provided for Cass 2
operation. Cass 4 transport has several tinmers for connection
control, flow control and retransni ssions of unacknow edged dat a.
Each of these timers is discussed briefly belowin terns of how they
were related to the Class 4 operations in the formal description.
Further discussion of these timers is given in Part 8.

1.2.5.2.1 W ndow ti ner.

The wi ndow tiner is used for transport connection control as well as
providing timely updates of flow control credit information. One of
these tinmers is provided in each TPM It is reset each tinme an AK
TPDU is sent, except during fast retransm ssion of AKs for flow
control confirmation, when it is disabl ed.

1.2.5.2.2 Inactivity tiner.

The primary usage of the inactivity tinmer is to detect when the
renote peer has ceased to send anything (including AK TPDUs). This
timer is nandatory when operating over a connectionl ess network
service, since there is no other way to determ ne whether or not the
renote peer is still functioning. On a connection-oriented network
service it has an additional usage since to sone extent the continued
exi stence of the network connection indicates that the peer host has
not crashed.

Because of splitting, it is useful to provide an inactivity timer on

each network connection to which a TPMis assigned. In this manner,
if a network connection is unused for sonme tine, it can be rel eased,
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even though a TPM assigned to it continues to operate over other
networ k connections. The formal description provides this capability
in each TPM

1.2.5.2.3 Net wor k connection tiner.

This tiner is an optional timer used to ensure that every network
connection to which a TPMis assigned gets used periodically. This
prevents the expiration of the peer entity's inactivity timer for a
networ k connection. There is one tinmer for each network connection
to which the TPMis assigned. |If there is a DI or ED TPDU waiting to
be sent, then it is chosen to be sent on the network connection. |If
no such TPDU is waiting, then an AK TPDU is sent. Thus, the NC timer
serves sonmewhat the sane purpose as the w ndow timer, but is broader
in scope.

1.2.5.2.4 Gve-up tinmer

There is one give-up tinmer for a TPM which is set whenever the
retransmission limt for any CR, CC, DI, ED or DR TPDU is reached.
Upon expiration of this tiner, the transport connection is closed.

1.2.5.2.5 Ret ransm ssion tiners.

Retransmi ssion tiners are provided for CR, CC, DI, ED and DR TPDUs.
The formal description provides distinct tinmers for each of these
TPDU types, for each TPM However, this is for clarity in the
description, and Part 8.2.5 presents argunents for other strategies
to be used in inplenmentations. Also, DI TPDUs with distinct sequence
nunbers are each provided with tinmers, as well. There is a primtive
function which deternines the range within the send w ndow for which
timers will be set. This has been done to express flexibility in the
retransm ssi on schene.

The flow control confirmation schene specified in IS 8073 al so
provides for a "fast" retransmssion timer to ensure the reception of
an AK TPDU carrying wi ndow resynchroni zation after credit reduction
or when opening a wi ndow that was previously closed. The fornma
description pernmits one such tiner for a TPM It is disabled after
the peer entity has confirned the wi ndow information

1.2.5.2.6 Error transport protocol data unit timer.
In IS 8073, there is a provision for an optional timeout to limt the
wait for a response by the peer entity to an ER TPDU. Wen this
timer expires, the transport connection is termnated. Each Cass 2
or Class 4 TPMis provided with one of these tinmers in N3756.

1.2.6 End-to-end Fl ow Control.

Flow control in the formal description has been witten in such a way
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as to permt flexibility in credit control schenmes and
acknow edgenent strategies.

1.2.6.1 Credit control

The credit nechanismin the formal description provides for actua
managenent of credit by the TPE. This is done through vari abl es
exported by the TPMs which indicate to the TPE when credit is needed
and for the TPE to indicate when credit has been granted. In this
manner, the TPE has control over the credit a TPM has. The mechani sm
allows for reduction in credit (Cass 4 only) and the possibility of
preci pi tous wi ndow cl osure. The nechani sm does not preclude the use
of credit granted by the user or other sources, since credit need is
expressed as current credit being less than sone threshold. Setting
the threshold to zero pernmits these other schemes. An AK TPDU is
sent each tine credit is updated.

The end-to-end flow control is also coupled to the interface flow
control to the user. |If the user has blocked the interface up-flow,
then the TPMis prohibited fromrequesting nore credit when the
current wi ndow i s used up

1.2.6.2 Acknow edgenent .

The nechani sm for acknow edgi ng normal data provides flexibility
sufficient to send an AK TPDU in response to every Nth DT TPDU
received where N > 0 and N nay be constant or dynam cally determ ned.
Each TPMis provided with this, independent of all other TPMs, so

t hat acknow edgenent strategy can be determined separately for each
transport connection. The capability of altering the acknow edgenent
strategy is useful in operation over networks with varying error
rates.

1.2.6.3 Sequencing of received data.

It is not specified in IS 8073 what nust be done w th out-of-sequence
but w t hi n-wi ndow DT TPDUs recei ved, except that an AK TPDU with
current wi ndow and sequence infornation be sent. There are

per formance reasons why such DT TPDUs should be held (cached): in
particul ar, avoi dance of retransm ssions. However, this buffering
schenme is conplicated to inplenment and worse to describe formally

wi t hout resorting to nechanisns too closely resenbling

i npl enentation. Thus, the formal description nechani smdiscards such
DT TPDUs and relies on retransnission to fill the gaps in the w ndow
sequence, for the sake of sinplicity in the description.

1.2.7 Expedi t ed dat a.
The transm ssion of expedited data, as expressed by IS 8073, requires

t he bl ockage of normal data transm ssion until the acknow edgenent is
received. This is handled in the formal description by providing a
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special state in which normal data transm ssion cannot take place.
However, recent experinments with Cass 4 transport over network
services with high bandw dth, high transit delay and high error
rates, undertaken by the NBS and COVBAT Laboratories, have shown that
the protocol suffers a marked decline in its performance in such
conditions. This situation has been presented to 1SO wth the
result that the the protocol will be nodified to permt the sending
of normal data al ready accepted by the transport entity fromthe user
before the expedited data request but not yet put onto the network.
When the nodification is incorporated into IS 8073, the forma
description will be appropriately aligned.

2 Envi ronnment of inplenmentati on.

The follow ng sections describe sonme general approaches to

i npl ementing the transport protocol and the advantages and

di sadvant ages of each. Certain conmercial products are identified

t hroughout the rest of this docunment. In no case does such
identification inply the recomendati on or endorsenent of these
products by the Departnment of Defense, nor does it inply that the
products identified are the best available for the purpose descri bed.
In all cases such identification is intended only to illustrate the
possibility of inplenentation of an idea or approach. UNIX is a
trademark of AT&T Bell Laboratories.

Most of the discussions in the remainder of the docunent deal wth
Class 4 exclusively, since there are far nore inplenentation issues
with Cass 4 than for Class 2. Also, since Class 2 is logically a
special case of Class 4, it is possible to inplenent Cass 4 al one,
wi th special provisions to behave as O ass 2 when necessary.

2.1 Host operating system program

A common nethod of inplenenting the OSI transport service is to
integrate the required code into the specific operating system
supporting the data commruni cations applications. The particular
techni que for integration usually depends upon the structure and
facilities of the operating systemto be used. For exanple, the
transport software mght be inplenented in the operating system
kernel, accessible through a standard set of systemcalls. This
schenme is typically used when inplenenting transport for the UN X
operating system Cass 4 transport has been inplenmented using this
techni que for SystemV by AT&T and for BSD 4.2 by severa

organi zations. As another exanple, the transport service mght be
structured as a device driver. This approach is used by DEC for the
VAX/ VM5 i npl enent ati on of classes 0, 2, and 4 of the OSI transport
protocol. The Intel i RRMX-86 inplenentation of Cass 4 transport is
anot her exanple. Intel inplenents the transport software as a first
Il evel job within the operating system Such an approach allows the
software to be linked to the operating systemand | oaded with every
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boot of the system

Several advantages nmay accrue to the comuni cati ons user when
transport is inplenented as an integral part of the operating system
First, the interface to data conmunications services is well known
to the application programrer since the sanme principles are foll owed
as for other operating systemservices. This allows the fast

i npl ement ati on of comruni cations applications wthout the need for
retraining of programrers. Second, the operating system can support
several different suites of protocols w thout the need to change
application prograns. This advantage can be realized only with
careful engineering and control of the user-systemcall interface to
the transport services. Third, the transport software may take
advantage of the nornally avail abl e operati ng system servi ces such as
scheduling, flow control, nmenory nanagenent, and interprocess

conmuni cation. This saves tinme in the devel opment and mnai ntenance of
the transport software.

The di sadvantages that exist with operating systemintegration of the
TP are primarily dependent upon the specific operating system
However, the mmjor disadvantage, degradation of host application
performance, is always present. Since the comunications software
requires the attention of the processor to handle interrupts and
process protocol events, sone degradation will occur in the
performance of host applications. The degree of degradation is
largely a feature of the hardware architecture and processing
resources required by the protocol. O her disadvantages that may
appear relate to linmted perfornance on the part of the

conmuni cations service. This limted performance is usually a
function of the particular operating systemand is nost directly
related to the nmethod of interprocess conmuni cation provided with the
operating system |In general, the nore tinmes a nessage nust be
copi ed fromone area of nenory to another, the poorer the

conmuni cations software will perform The method of copying and the
nunber of copies is often a function of the specific operating
system For exanple, copying could be optimzed if true shared
menory is supported in the operating system In this case, a
signi fi cant anmount of copying can be reduced to pointer-passing.

2.2 User program

The OSI transport service can be inplenmented as a user job within any
operating system provi ded a nmeans of nulti-task conmunications is
avail abl e or can be inplenmented. This approach is al nost always a
bad one. Performance problenms will usually exist because the

comuni cation task is conpeting for resources |ike any ot her
application program The only justification for this approach is the
need to develop a sinple inplenmentation of the transport service

qui ckly. The NBS inplenmented the transport protocol using this
approach as the basis for a transport protocol correctness testing
system Since performance was not a goal of the NBS inplenentation
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t he ease of devel opment and mai ntenance nmade this approach
attractive.

2.3 | ndependent processing el enent attached to a system bus.

| mpl enent ati on of the transport service on an independent processor
that attaches to the system bus may provi de substantial perfornance

i nprovenents over other approaches. As conputing power and menory
have beconme cheaper this approach has becone realistic. Exanples
include the Intel inplenentation of iNA-961 on a variety of nultibus
boards such as the i SBC 186/51 and the i SXM 554. Simlar products
have been devel oped by Mdtorola and by several independent vendors of
| BM PC add-ons. This approach requires that the transport software
operate on an independent hardware set running under operating system
code devel oped to support the comuni cati ons software environnent.
Conmruni cation with the application prograns takes place across the
system bus using some sinple, proprietary vendor protocol. Careful
engi neering can provide the application progranmer with a standard
interface to the conmunications processor that is simlar to the
interface to the input/output subsystem

The advantages of this approach are mainly concentrated upon enhanced
performance both for the host applications and the conmunications
servi ce. Depending on such factors as the speed of the
conmuni cati ons processor and the system bus, data conmuni cati ons

t hr oughput may i nprove by one or two orders of magnitude over that
avail abl e from host operating systemintegrated inplenmentations.

Thr oughput for host applications should also inprove since the
conmuni cati ons processing and interrupt handling for timers and data
I i nks have been renmoved fromthe host processor. The comuni cati ons
mechani sm used between the host and conmuni cation processors is
usual ly sufficiently sinple that no real burden is added to either
processor.

The di sadvantages for this approach are caused by conplexity in
devel opi ng the comuni cati ons software. Software devel opnent for the
conmuni cati ons board cannot be supported with the standard operating
systemtools. A method of downl oadi ng the processor board and
debuggi ng the conmuni cati ons software may be required; a trade-off
could be to put the code into firmvare or microcode. The
conmuni cati ons software nust include at |east a hardware nonitor and,
nmore typically, a small operating systemto support such functions as
i nt er process communi cation, buffer managenent, flow control, and task
synchroni zati on. Debuggi ng of the user to conmunicati on subsystem
interface may involve several |evels of system software and hardware.

The design of the processing elenment can follow conventional |ines,
in which a single processor handling alnost all of the operation of
the protocol. However, with inexpensive processor and nenory chips

now avail able, a multiprocessor design is econonmically viable. The
di agram bel ow shows one such design, which alnost directly
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corresponds to the structure of the formal description. There are
several advantages to this design:

1) managenent of CPU and nenory resources is at a m ninmum
2) essentially no resource contention;

3) transport connection operation can be witten in m crocode,
separate from network service handling;

4) transport connections can run with true parallelism

5) throughput is not linmted by contention of connections for CPU
and network access; and

6) |lower software conplexity, due to functional separation

Possi bl e di sadvantages are greater inflexibility and hardware
conplexity. However, these mght be offset by | ower devel opnent
costs for mcrocode, since the code separation should provide overal
| ower code conplexity in the TPE and the TPM i npl enent ati ons.

In this system the TPE instantiates a TPM by enabling its cl ock.

I ncomi ng Qutgoing are passed to the TPMs al ong the menory bus. TPDUs
TPDUs froma TPM are sent on the output data bus. The user interface
control |l er accepts connect requests fromthe user and directs themto
the TPE. The TPE assigns a connection reference and inforns the
interface controller to direct further inputs for this connection to
the designated TPM The shared TPM nenory is anal ogous to the
exported variables of the TPM nodules in the formal description, and
is used by the TPE to input TPDUs and other information to the TPM

In sunmmary, the of f-Ioadi ng of comunications protocols onto

i ndependent processing systens attached to a host processor across a
systembus is quite conmon. As processing power and nmenory becone
cheaper, the ampbunt of software off-loaded grows. it is now typica
to fine transport service available for several system buses with
interfaces to operating systens such as UN X, XEN X, i RWX, Ms- DCS,
and VERSADCS.
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2.4 Front end processor

A nore traditional approach to off-|oading communi cations protocols

i nvol ves the use of a free-standing front end processor, an approach
very sinmilar to that of placing the transport service onto a board
attached to the systembus. The difference is one of scale. Typical
front end p interface locally as desirable, as |long as such additions
are strictly local (i.e., the invoking of such services does not
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result in the exchange of TPDUs with the peer entity).

The interface between the wuser and transport is by nature
asynchronous (although sonme hypothetical inplenentation that is
whol 'y synchronous could be conjectured). This characteristic is
due to two factors: 1) the interprocess comunications (IPC

nmechani sm-used between the user and transport--decouples the
two, and to avoid bl ocking the user process (while waiting for a
response) requires an asynchronous response mechanism and 2)
there are some asynchronously-generated transport indications that
must be handled (e.g., the arrival of user data or the abrupt
termnation of the transport connection due to network errors).

If it is assuned that the user interface to transport is
asynchronous, there are other aspects of the interface that are al so
predeternined. The nost inportant of these is that transport

service requests are confirned twice. The first confirmation occurs
at the time of the transport service request initiation. Here,
interface routines can be used to identify invalid sequences of
requests, such as a request to send data on a connection that is
not yet open. The second confirmation occurs when the service
request crosses the interface into the transport entity. The entity
may accept or reject the request, depending on its resources and its
assessnent of connection (transport and network) status, priority,
service quality.

If the interface is to be asynchronous, then sone nmechani sm nust be
provi ded to handl e the asynchronous (and somneti nmes unexpect ed)
events. Two ways this is commonly achieved are: 1) by polling, and
2) by a software interrupt mechanism The first of these can be
wast eful of host resources in a nultiprogramm ng environment, while
the second nmay be conplicated to inplenment. However, if the
interface is a conbination of hardware and software, as in the cases
discussed in Parts 2.3 and 2.4, then hardware interrupts may be
avai |l abl e.

One way of inplenenting the abstract services is to associate with
each service prinmitive an actual function that is invoked. Such
functions could be held in a special interface library with other
functions and procedures that realize the interface. Each service
primtive function would access the interprocess comunication (IPC)
nmechani sm as necessary to pass paraneters to/fromthe transport
entity.

The description of the abstract service in IS 8073 and N3756 inplies
that the interface nust handle TSDUs of arbitrary length. This
situation suggests that it nmay be useful to inplenment a TSDU as an
obj ect such as a file-pointer rather than as the nessage itself. In
this way, in the sending entity, TPDUs can be forned by reading
segnents of TPDU-size fromthe file designated, without regard for
the actual length of the file. In the receiving entity, each new
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TPDU coul d be buffered in a file designated by a file-pointer, which
woul d then be passed to the user when the EOT arrives. |n the fornal
description of transport, this procedure is actually descri bed,

al t hough explicit file-pointers and files are not used in the
description. This method of inplenmenting the data interface is not
essentially different frommintaining a linked |ist of buffers. (A
disk file is arranged in precisely this fashion, although the file
user is usually not aware of the structure.)

The abstract service definition describes the set of paraneters
that nust be passed in each of the service prinmtives so that
transport can act properly on behalf of the user. These
paraneters are required for the transport protocol to operate
correctly (e.g., a called address nust be passed with the
connect request and the connect response nust contain a responding
addr ess) . The abstract service defintion does not preclude,
however, the inclusion of |ocal paranmeters. Local paraneters may be
included in the inplementation of the service interface for use
by the local entity. One exanple is a buffer nanagenent paraneter
passed from the wuser in connect requests and confirns, providing
the transport entity with expected buffer usage estinates. The
local entity could use this in inplementing a nore efficient
buf fer managenment strategy than woul d ot herwi se be possible.

One issue that is of inmportance when designing and inplenmenting
a transport entity is the provision of a registration nechani smfor
transport users. This facility provides a neans of identifying to
the transport entity those users who are willing to participate in
comuni cations with renpte users. An exanple of such a user is a
dat a base managenent system which ordinarily responds to connections
requests rather than to initiate them This procedure of user
identification is sonetinmes called a "passive open". There are
several ways in which registration can be inplenmented. One is to
install the set of users that provide services in a table at
system generation tine. This nmethod nay have the di sadvant age of

bei ng inflexible. A nore flexible approach is to inplenent a
| ocal transport service primtive, "listen", to indicate a waiting
user. The wuser then registers its transport suffix with the

transport entity via the listen primtive. Another possibility is a
conbi nati on of predefined table and listen primtive. O her
paraneters may al so be included, such as a partially or fully
qualified transport address fromwhich the user is willing to
receive connections. A variant on this approach is to
provi de an ACTI VE/ PASSI VE | ocal paraneter on the connect request
service primtive. Part 5 discusses this issue in nore detail

3.2 FIl ow contr ol
Interface flow control is generally considered to be a | oca

i npl ementation i ssue. However, in order to conpletely specify the
behavi or of the transport entity, it was necessary to include in the
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formal description a nodel of the control of data flow across the
servi ce boundaries of transport. The international standards for
transport and the OSI reference nodel state only that interface flow
control shall be provided but give no guidance on its features.

The actual nechani sms used to acconplish flow control, which need not
explicitly follow the nodel in the formal description, are dependent
on the way in which the interface itself is realized, i.e., what
TSDUs and service primtives really are and how the transport entity
actually comunicates with its user, its environnent, and the network
service. For exanple, if the transport entity comunicates with its
user by neans of named (UNI X) pipes, then flow control can be
realized using a special interface library routine, which the

recei ving process invokes, to control the pipe. This approach also
entails sone consideration for the capacity of the pipe and bl ocki ng
of the sending process when the pipe is full (discussed further in
Part 3.3). The close correspondence of this interpretation to the
nodel is clear. However, such an interpretation is apparently not
wor kabl e if the user process and the transport entity are in
physically separate processors. |In this situation, an explicit

prot ocol between the receiving process and the sendi ng process nust
be provided, which could have the conplexity of the data transfer
portion of the Cass O transport protocol (Class 2 if flow
controlled). Note that the formal nodel, under proper
interpretation, also describes this nmechanism

3.3 I nt er process contmuni cati on.

One of the nobst inportant elenments of a data comunication systemis
the approach to interprocess communication (IPC). This is true
because suites of protocols are often inplenented as groups of
cooperating tasks. Even if the protocol suites are not inplenented
as task groups, the communication systemis a funnel for service
requests fromnultiple user processes. The services are normally
comuni cat ed through some interprocess pathway. Usually, the

i npl eent ati on environment places sone restrictions upon the

i nterprocess conmmuni cati ons nethod that can be used. This section
describes the desired traits of IPC for use in data conmuni cations
protocol inplenentations, outlines sonme possible uses for |IPC, and
di scusses three conmon and generic approaches to | PC

To support the inplenentation of data comuni cati ons protocols, |PC
shoul d possess several desirable traits. First, |PC should be
transaction based. This pernits sending a nessage w thout the

over head of establishing and maintaining a connection. The
transactions should be confirmed so that a sender can detect and
respond to non-delivery. Second, |PC should support both the
synchronous and the asynchronous nodes of nessage exchange. An |PC
receiver should be able to ask for delivery of any pendi ng nessages
and not be bl ocked fromcontinuing if no nmessages are present.
Optionally, the receiver should be permitted to wait if no nessages
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are present, or to continue if the path to the destination is
congested. Third, |IPC should preserve the order of nessages sent to
the sanme destination. This allows the use of the |IPC without

nmodi fication to support protocols that preserve user data sequence.
Fourth, IPC should provide a flow control mechanismto allow pacing
of the sender’s transmi ssion speed to that of the receiver

The uses of IPCin inplenentation of data comuni cati on systens are
many and varied. A commpn and expected use for IPCis that of
passi ng user messages anong the protocol tasks that are cooperating
to performthe data conmuni cation functions. The user nessages may
contain the actual data or, nore efficiently, references to the

| ocation of the user data. Another comon use for the IPCis

i npl enentati on and enforcenent of |ocal interface flow control. By
limting the nunber of | PC nessages queued on a particul ar address,
senders can be slowed to a rate appropriate for the I PC consuner. A
third typical use for IPCis the synchronization of processes. Two
cooperating tasks can coordinate their activities or access to shared
resources by passing | PC nessages at particular events in their
processi ng.

More creative uses of |IPCinclude buffer, tinmer, and scheduling
managenent. By establishing buffers as a |list of nmessages avail abl e
at a known address at systeminitialization tinme, the potenti al

exi sts to manage buffers sinply and efficiently. A process requiring
a buffer would sinply read an | PC nessage fromthe known address. |If
no nmessages (i.e., buffers) are available, the process could bl ock
(or continue, as an option). A process that owned a buffer and
wished to release it would sinply wite a nessage to the known
address, thus unbl ocki ng any processes waiting for a buffer.

To nmanage timers, nessages can be sent to a known address that
represents the timer nodule. The tinmer nodule can then maintain the
list of tiner nessages with respect to a hardware clock. Upon
expiration of a timer, the associ ated nessage can be returned to the
originator via IPC. This provides a convenient nethod to process the
set of countdown tiners required by the transport protocol

Schedul i ng managenent can be achi eved by using separate | PC addresses
for message classes. A receiving process can enforce a scheduling

di scipline by the order in which the message queues are read. For
exanpl e, a transport process night possess three queues: 1) nornmal
data fromthe user, 2) expedited data fromthe user, and 3) nessages
fromthe network. |f the transport process then wants to give top
priority to network nmessages, middle priority to expedited user
nmessages, and lowest priority to nornmal user messages, all that is
required is receipt of I PC nessages on the highest priority queue
until no nmore nessages are available. Then the receiver noves to the
next lower in priority and so on. Mdre sophistication is possible by
setting limts upon the nunber of consecutive nessages received from
each queue and/or varying the order in which each queue is exam ned.
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It is easy to see how a round-robin scheduling discipline could be
i mpl emented using this formof |PC

Approaches to I PC can be placed into one of three classes: 1) shared
menory, 2) menory-nmenory copying, and 3) input/output channe

copyi ng. Shared nenory is the nost desirable of the three classes
because the ampunt of data novenent is kept to a mininum To pass

| PC messages using shared nenory, the sender builds a small nessage
referencing a potentially |arge anount of user data. The snal
nmessage is then either copied fromthe sender’s process space to the
receiver’'s process space or the small nessage is mapped from one
process space to another using techniques specific to the operating
system and hardware involved. These approaches to shared nenory are
equi val ent since the anobunt of data novenment is kept to a m ni mum
The price to be paid for using this approach is due to the
synchroni zati on of access to the shared nmenory. This type of sharing
is well understood, and several efficient and sinple techniques exist
to manage the sharing.

Menory-menory copying is an approach that has been conmonly used for
IPC in UNI X operating systeminplenmentations. To pass an | PC nessage
under UNI X data is copied fromthe sender’s buffer to a kernel buffer
and then froma kernel buffer to the receiver’s buffer. Thus two
copy operations are required for each I PC nessage. O her nethods

m ght only involve a single copy operation. Also note that if one of
the processes involved is the transport protocol inplenented in the
kernel, the I PC nessage nmust only be copied once. The main

di sadvantage of this approach is inefficiency. The major advantage
is sinplicity.

Wien the processes that nust exchange nessages reside on physically
separate conputer systenms (e.g., a host and front end), an

i nput/out put channel of sonme type nust be used to support the |IPC

In such a case, the problemis simlar to that of the general problem
of a transport protocol. The sender nust provide his | PC nessage to
some standard operating system out put nmechanismfromwhere it will be
transmtted via sone physical nediumto the receiver’s operating
system The receiver’'s operating systemwll then pass the nmessage
on to the receiving process via sonme standard operating system i nput
mechani sm This set of procedures can vary greatly in efficiency and
conpl exity dependi ng upon the operating systenms and hardware

i nvolved. Usually this approach to IPCis used only when the
circunstances require it.

3.4 Interface to real networks.

| mpl enent ati ons of the class 4 transport protocol have been operated
over a wide variety of networks including: 1) ARPANET, 2) X 25
networks, 3) satellite channels, 4) CSMA CD | ocal area networks, 5)
token bus | ocal area networks, and 6) token ring | ocal area
networks. This section briefly describes known instances of each use
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of class 4 transport and provides sonme quantitative eval uation of the
perfornmance expectations for transport over each network type.

3.4.1 | ssues.

The interface of the transport entity to the network service in
general will be realized in a different way fromthe user interface.
The network service processor is often separate fromthe host CPU
connected to it by a bus, direct nenory access (DMA), or other I|ink.
A typical way to access the network service is by neans of a device
driver. The transfer of data across the interface in this instance
woul d be by buffer-copying. The use of double-buffering reduces sone
of the conplexity of flow control, which is usually acconplished by
exam ning the capacity of the target buffer. |If the transport
processor and the network processor are distinct and connected by a
bus or external link, the network access may be nore conpli cated
since copying will take place across the bus or link rather than
across the nmenory board. |In any case, the network service
primtives, as they appear in the formal description and I'S 8073 nust
be carefully correlated to the actual access schenme, so that the
semantics of the primtives is preserved. One way to do this is to
create a library of routines, each of which corresponds to one of the
service primtives. Each routine is responsible for sending the
proper signal to the network interface unit, whether this

conmuni cation is directly, as on a bus, or indirectly via a device
driver. In the case of a connectionless network service, there is
only one prinitive, the N_DATA request (or N_UN T_DATA request),

whi ch has to be realized.

In the formal description, flow control to the NSAP is controlled by
by a Slave nodul e, which exerts the "backpressure"” on the TPMif its
i nternal queue gets too long. Incomng flow, however, is controlled
in much the sane way as the flow to the transport user is controlled.
The inmplenmentor is rem nded that the formal description of the flow
control is specified for conpl eteness and not as an inplenmentation
gui de. Thus, an inplenentation should depend upon actual interfaces
in the operating environment to realize necessary functions.

3.4.2 I nstances of operation.
3.4.2.1 ARPANET

An early inplenmentation of the class 4 transport protocol was

devel oped by the NBS as a basis for conformance tests [NBS83]. This
i npl emrentati on was used over the ARPANET to conmuni cate between NBS
BBN, and DCA. The early NBS inplenentati on was executed on a
PDP-11/70. A later revision of the NBS inpl enentati on has been noved
to a VAX-11/750 and VAX-11/7;80. The Norwegi an Tel ecomruni cati on

Admi nistration (NTA) has inplenented class 4 transport for the UN X
BSD 4.2 operating systemto run on a VAX [NTA84]. A later NTA

i npl enentation runs on a Sun 2-120 workstation. The University of
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W sconsin has also inplenented the class 4 transport protocol on a
VAX- 11/ 750 [BRI 85]. The Wsconsin inplenentation is enbedded in the
BSD 4.2 UNI X kernel. For nost of these inplenentations class 4

transport runs above the DOD | P and bel ow DOD appli cati on protocols

3.4.2.2 X. 25 networ ks

The NBS i npl enent ati ons have been used over Telenet, an X 25 public
data network (PDN). The heavi est use has been testing of class 4
transport between the NBS and several renotely |ocated vendors, in
preparation for a denonstration at the 1984 National Conputing
Conference and the 1985 Autofact denonstration. Several approaches
to inplementati on were seen in the vendors’ systemns, including ones
simlar to those discussed in Part 6.2. At the Autofact
denonstrati on nany vendors operated class 4 transport and the | SO

i nternetwork protocol across an internetwork of CSMA CD and token bus
| ocal networks and Accunet, an AT&T X. 25 public data network.

3.4.2.3 Satellite channel s.

The COVBAT Laboratories have inplenmented class 4 transport for
operation over point-to-point satellite channels with data rates up
to 1.544 Mops [CHOB5]. This inplenentation has been used for
experiments between the NBS and COVBAT. As a result of these
experiments several inprovenents have been nmade to the class 4
transport specification within the international standards arena
(both 1SO and CCITT). The COVBAT inpl enentation runs under a
proprietary multiprocessing operating system known as COSMOS. The
har dwar e base includes nultiple Mtorola 68010 CPUs with | ocal nenory
and Multibus shared nenory for data nessages.

3.4.2. 4 CSMA/ CD net wor ks.

The CSMA/ CD network as defined by the | EEE 802. 3 standard is the npst
popul ar network over which the class 4 transport has been

i npl enented. |nplenmentations of transport over CSMAN CD networks have
been denonstrated by: AT&T, Charles River Data Systens,
Conput ervi sion, DEC, Hewlitt-Packard, ICL, Intel, Intergraph, NCR and
SUN. Most of these were denonstrated at the 1984 National Conputer
Conference [ M L85b] and again at the 1985 Autofact Conference.

Several of these vendors are now delivering products based on the
denonstration software.

3.4.2.5 Token bus net wor ks.

Due to the establishnent of class 4 transport as a nandatory protocol
within the General Mtor’s manufacturing autonation protocol (MAP),
many i npl enent ati ons have been denonstrated operating over a token
bus network as defined by the | EEE 802.4 standard. Moyst past

i npl ementations relied upon a Concord Data Systens token interface
module (TIM to gain access to the 5 Mips broadband 802. 4 servi ce.
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Several vendors have recently announced boards supporting a 10 Mops
br oadband 802.4 service. The newer boards plug directly into
comput er system buses while the TIMs are accessed across a high

| evel data link control (HDLC) serial channel. Vendors denonstrating
class 4 transport over | EEE 802.4 networks include Allen-Bradl ey,
AT&T, DEC, Gould, Hewl ett-Packard, Honeywell, IBM Intel, Mbdtorola,

NCR and Si enens.
3.4.2.6 Token ring networks.

The class 4 transport inplenmentations by the University of Wsconsin
and by the NTA run over a 10 Mops token ring network in addition to
ARPANET. The ring used is fromProteon rather than the recently
finished | EEE 802.5 standard.

3.4.3 Per f or mance expectati ons.

Performance research regarding the class 4 transport protocol has
been limted. Sone work has been done at the University of
Wsconsin, at NTA, at Intel, at COVMBAT, and at the NBS. The materi al
presented bel ow draws fromthis linited body of research to provide
an inplementor with sone quantitative feeling for the perfornmance
that can be expected fromclass 4 transport inplenentations using
different network types. Mdre detail is available from severa
publ i shed reports [ NTA84, BRI 85, INT85, ML85b, COL85]. Sone of the
results reported derive fromactual neasurenents while other results
arise fromsinmulation. This distinction is clearly noted.

3.4.3.1 Thr oughput .

Several |ive experinments have been conducted to determ ne the

t hroughput possible with inplenentations of class 4 transport.

Achi evabl e t hroughput depends upon many factors including: 1) CPU
capabilities, 2) use or non-use of transport checksum 3) |IPC
mechani sm 4) buffer managenent technique, 5) receiver resequencing,
6) network error properties, 7) transport flow control, 8) network
congestion and 9) TPDU size. Sonme of these are specifically

di scussed el sewhere in this docunment. The reader nust keep in mnd
these issues when interpreting the throughput nmeasures presented

her e.

The University of Wsconsin inplenented class 4 transport in the UN X
kernel for a VAX-11/750 with the express purpose of neasuring the
achi evabl e t hroughput. Throughputs observed over the ARPANET ranged
between 10.4 Kbps and 14.4 Kbps. On an unl oaded Proteon ring | ocal
net wor k, observed throughput with checksum ranged between 280 Kbps
and 560 Kbps. Wthout checksum throughput ranged between 384 Kbps
and 1 Mops.

The COVBAT Laboratories inplenmented class 4 transport under a
proprietary multiprocessor operating systemfor a mnultiprocessor
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68010 hardware architecture. The transport inplenmentation executed
on one 68010 while the traffic generator and link drivers executed on
a second 68010. All user messages were created in a global shared
menory and were copied only for transm ssion on the satellite link
Thr oughputs as high as 1.4 Mps were observed w t hout transport
checksunmming while up to 535 Kbps coul d be achi eved when transport
checksuns were used. Note that when the 1.4 Mps was achi eved the
transport CPU was idle 20%of the time (i.e., the 1.544 Nops
satellite link was the bottl eneck). Thus, the transport

i npl enent ati on used here coul d probably achieve around 1.9 Mps user
t hroughput with the experinment paranmeters remai ni ng unchanged.

H gher throughputs are possible by increasing the TPDU size; however,
| arger nessages stand an increased chance of damage during
transm ssi on.

Intel has inplenented a class 4 transport product for operation over
a CSMA/ CD | ocal network (i NA-960 running on the i SBC 186/ 51 or i SXM
552). Intel has measured throughputs achieved with this conbination
and has published the results in a technical analysis conparing

i NA-960 performance on the 186/51 with i NA-960 on the 552. The CPU
used to run transport was a 6 MHz 80186. An 82586 co-processor was
used to handl e the nedi um access control. Throughputs neasured
ranged between 360 Kbps and 1.32 Mps, depending on the paraneter

val ues used.

Sinmul ation of class 4 transport via a nodel devel oped at the NBS has
been used to predict the performance of the COVBAT inplenentation and
is now being used to predict the performance of a three processor
architecture that includes an 8 MHz host connected to an 8 MHz front
end over a systembus. The third processor provides medi um access
control for the specific |ocal networks being nodeled. Early node
results predict throughputs over an unl oaded CSMA CD | ocal network of
up to 1.8 Mips. The sane system nodel ed over a token bus | ocal
network with the same transport paraneters yields throughput
estimates of up to 1.6 Mops. The token bus technol ogy, however,
permits |arger nmessage sizes than CSMA/ CD does. Wen TPDUs of 5120
byt es are used, throughput on the token bus network is predicted to
reach 4.3 Mops.

3.4.3.2 Del ay.

The one-way del ay between sending transport user and receiving
transport user is determined by a conplex set of factors. Readers
shoul d al so note that, in general, this is a difficult measure to
make and little work has been done to date with respect to expected
one-way delays with class 4 transport inplenentations. 1In this
section a tutorial is given to explain the factors that deternine the
one-way delay to be expected by a transport user. Delay experinents
perfornmed by Intel are reported [INT85], as well as sonme sinulation
experiments conducted by the NBS [ M L85a].
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The transport user can generally expect one-way del ays to be
determ ned by the follow ng equation

D=TS+ ND+ TR+ [IS + [IR (1)

wher e:
[.] neans the enclosed quantity nmay be 0O
Dis the one-way transport user del ay,
TS is the transport data send processing tine,
IS is the internet datagram send processing tinmne,
ND i s the network del ay,

IR is the internet datagramreceive processing
time, and

TR is the transport data receive processing tine.

Al t hough no performance neasurenments are available for the | SO
internetwork protocol (1SOIP), the ISOIP is so simlar to the DOD
| P that processing tines associated with sending and receiving

dat agrans should be the about the same for both IPs. Thus, the IS
and IR terns given above are ignored fromthis point on in the

di scussion. Note that many of these factors vary dependi ng upon the
application traffic pattern and | oads seen by a transport

i npl ementation. 1In the follow ng discussion, the transport traffic
is assunmed to be a single nessage.

The value for TS depends upon the CPU used, the |IPC nechanism the
use or non-use of checksum the size of the user nmessage and the size
of TPDUs, the buffer managenent schene in use, and the method chosen
for timer managenent. Checksum processing tines have been observed
that include 3.9 us per octet for a VAX-11/750, 7.5 us per octet on a
Mot orol a 68010, and 6 us per octet on an Intel 80186. The class 4
transport checksum al gorithm has consi derabl e ef fect on achi evabl e
performance. This is discussed further in Part 7. Typical values for
TS, excluding the processing due to the checksum are about 4 ns for
CPUs such as the Motorola 68010 and the Intel 80186. For 1024 octet
TPDUs, checksum cal cul ation can increase the TS value to about 12 ns.

The val ue of TR depends upon sinilar details as TS. An additional
consi deration is whether or not the receiver caches (buffers) out of
order TPDUs. If so, the TR will be higher when no packets are | ost
(because of the overhead incurred by the resequencing logic). Al so,
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when packets are |ost, TR can appear to increase due to transport
resequenci ng del ay. Wen out of order packets are not cached, | ost
packets increase D because each unacknow edged packet mnust be
retransmitted (and then only after a delay waiting for the
retransmission tinmer to expire). These details are not taken into
account in equation 1. Typical TR values that can be expected with
non- cachi ng i npl enentati ons on Mdtorola 68010 and Intel 80186 CPUs
are approximately 3 to 3.5 ns. Wen transport checksunming is used
on these CPUs, TR becones about 11 nms for 1024 byte TPDUs.

The value of ND is highly variable, depending on the specific network
technol ogy in use and on the conditions in that network. 1n general
ND can be defined by the foll owi ng equati on.

ND=NQ+ MA+ TX + PD+ TQ (2)

wher e:
NQ i s networ k queui ng del ay,
MA i s nedi um access del ay,
TX i s message transm ssion tine,
PD i s network propagation delay, and
TQ is transport receive queuing del ay.
Each termof the equation is discussed in the follow ng paragraphs.

Net wor k queuing delay (NQ is the tine that a TPDU waits on a network
transnit queue until that TPDU is the first in line for transm ssion
NQ depends on the size of the network transnit queue, the rate at

whi ch the queue is enptied, and the nunber of TPDUs al ready on the
queue. The size of the transmt queue is usually an inplenentation
paraneter and is generally at |east two nessages. The rate at which
the queue enpties depends upon MA and TX (see the discussion bel ow).
The nunber of TPDUs al ready on the queue is determined by the traffic
intensity (ratio of nean arrival rate to nmean service rate). As an
exanpl e, consider an 8 Kbps point-to-point |ink serving an eight
nmessage queue that contains 4 nmessages with an average size of 200
byt es per nessage. The next nessage to be placed into the transmt
queue woul d experience an NQ of 800 ns (i.e., 4 nessages tines 200

ms). In this exanple, MA is zero. These basic facts permt the
computati on of NQ for particular environments. Note that if the
network send queue is full, back pressure flow control will force

TPDUs to queue in transport transmt buffers and cause TS to appear
to increase by the anmount of the transport queuing delay. This
condi ti on depends on application traffic patterns but is ignored for
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the purpose of this discussion.

The val ue of MA depends upon the network access nethod and on the
network congestion or load. For a point-to-point link MAis zero.

For CSMA/ CD networ ks MA depends upon the | oad, the nunber of

stations, the arrival pattern, and the propagation delay. For

CSMA/ CD networ ks MA has val ues that typically range fromzero (no

|l oad) up to about 3 ms (80% 11 oads). Note that the value of MA as
seen by individual stations on a CSMAN/ CD network is predicted (by NBS
simulation studies) to be as high as 27 nms under 70% | oads. Thus,
dependi ng upon the traffic patterns, individual stations nmay see an
average MA value that is much greater than the average MA val ue for
the network as a whole. On token bus networks MA is determ ned by the
token rotation tinme (TRT) which depends upon the |oad, the nunber of
stations, the arrival pattern, the propagation delay, and the val ues
of the token holding tinme and target rotation tines at each station

For small networks of 12 stations with a propagation delay of 8 ns,
NBS sinul ati on studies predict TRT values of about 1 ns for zero |oad
and 4.5 ns for 70% 1 oads for 200 byte nmessages arriving with
exponential arrival distribution. Traffic patterns also appear to be
an inmportant deterninant of target rotation tinme. Wen a pair of
stations perforns a continuous file transfer, average TRT for the
simul ated network is predicted to be 3 ns for zero background | oad
and 12.5 nms for 70% background | oad (total network |oad of 85%

The nessage size and the network transm ssion speed directly
determ ne TX. Typical transm ssion speeds include 5 and 10 Mips for
standard | ocal networks; 64 Kbps, 384 Kbps, or 1.544 Mops for

poi nt-to-point satellite channels; and 9.6 Kbps or 56 Kbps for
public data network access |inks.

The properties of the network in use determine the values of PD. On
an | EEE 802.3 network, PDis linmted to 25.6 us. For |EEE 802.4
networks, the signal is propagated up-link to a head end and then
down-link fromthe head end. Propagation delay in these networks
depends on the distance of the source and destination stations from
the head end and on the head end | atency. Because the naxi rum networ k
length is nmuch greater than with | EEE 802. 3 networks, the PD val ues
can also be nmuch greater. The |EEE 802.4 standard requires that a
network provider give a value for the maxi mumtransm ssion path
delay. For satellite channels PDis typically between 280 and 330
nms. For the ARPANET, PD depends upon the nunber of hops that a
nmessage nakes between source and destination nodes. The NBS and NTIA
nmeasur ed ARPANET PD average val ues of about 190 nms [NTI85]. In the
ARPA internet systemthe PDis quite variable, depending on the
nunber of internet gateway hops and the PD val ues of any intervening
net wor ks (possibly containing satellite channels). In experinents on
an internetwork containing a a satellite link to Korea, it was
determ ned by David MIIs [RFC85] that internet PD val ues could range
from19 nms to 1500 ms. Thus, PD values ranging from 300 to 600 ns
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can be considered as typical for ARPANET internetwork operation.

The anount of tinme a TPDU waits in the network receive queue before
bei ng processed by the receiving transport is represented by TQ
simlar to NQin that the value of TQ depends upon the size of the
queue, the nunber of TPDUs already in the queue, and the rate at

whi ch the queue is enptied by transport.

Oten the user delay D will be dom nated by one of the conponents. On
a satellite channel the principal conmponent of Dis PD, which inplies
that ND is a principal conmponent by equation (2). On an unl oaded
LAN, TS and TR night contribute nost to D. On a highly | oaded LAN,
MA may cause NQto rise, again inplying that NDis a major factor in
det erm ni ng D.

Sone one-way del ay neasures have been nmade by Intel for the i NA-960
product running on a 6 Mz 80186. For an unl oaded 10 Mips CSMA CD
network the Intel nmeasures show delays as low as 22 ms. The NBS has
done sone simulations of class 4 transport over 10 Mops CSMA/ CD and
t oken bus networks. These (unvalidated) predictions show one-way
del ays as low as 6 ns on unl oaded LANs and as high as 372 nms on
CSMA/ CD LANs with 70% | oad.

3.4.3.3 Response tine.
Determination of transport user response tine (i.e., two-way del ay)
depends upon many of the sanme factors di scussed above for one-way
delay. 1In fact, response time can be represented by equation 3 as
shown bel ow.
R=2D+ AS + AR (3)

wher e:

R is transport user response tine,

D is one-way transport user del ay,

AS i s acknow edgenent send processing tinme, and

AR i s acknow edgenent receive processing tine.
D has been expl ai ned above. AS and AR deal with the acknow edgenent
sent by transport in response to the TPDU t hat enbodi es the user
request.
AS is sinmply the anbunt of tinme that the receiving transport nust
spend to generate an AK TPDU. Typical tinmes for this function are
about 2 to 3 ms on processors such as the Mdtorola 68010 and the

Intel 80186. O course the actual tinme required depends upon factors
such as those explained for TS above.
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The anount of time, AR, that the sending transport nust spend to
process a received AK TPDU. Determ nation of the actual tine

requi red depends upon factors previously described. Note that for AR
and AS, processing when the checksumis included takes somewhat

| onger. However, AK TPDUs are usually between 10 and 20 octets in

Il ength and therefore the increased tinme due to checksum processing is
much | ess than for DT TPDUs.

No class 4 transport user response time neasures are avail abl e;
however, sone simul ati ons have been done at the NBS. These

predi ctions are based upon inplenmentation strategi es that have been
used by conmercial vendors in building mcroprocessor-based class 4
transport products. Average response times of about 21 ns on an

unl oaded 10 Mops token bus network, 25 ms with 70% | oadi ng, were
predicted by the sinmulations. On a 10 Mops CSMY CD network, the
simul ati ons predict response tinmes of about 17 ms for no | oad and 54
ms for a 70% | oad.

3.5 Error and status reporting.

Al t hough the abstract service definition for the transport protocol
specifies a set of services to be offered, the actual set of
services provided by an inplenentation need not be limted to
these. In particular, local status and error information can be
provi ded as a confirmed service (request/response) and as an
asynchronous "interrupt” (indication). One use for this service is
to allow users to query the transport entity about the status of
their connections. An exanple of information that could be
returned fromthe entity is:

connection state

current send sequence nunber

current receive and transmt credit w ndows
transport/network interface status

nunber of retransm ssions

nunber of DTs and AKs sent and received
current tiner val ues

O O0OO0OO0OO0OO0O0

Anot her use for the |local status and error reporting service is for
admi ni stration purposes. Using the service, an adninistrator can
gather information such as descri bed above for each open connection
In addition, statistics concerning the transport entity as a whol e
can be obtained, such as nunmber of transport connections open,

aver age nunber of connections open over a given reporting period,
buffer wuse statistics, and total nunber of retransmitted DT TPDUs.
The administrator might also be given the authority to cancel
connections, restart the entity, or nmanually set timer val ues.
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4 Entity resource managenent.
4.1 CPU managenent .

The formal description has inplicit scheduling of TPM nodul es, due to
the semantics of the Estelle structuring principles. However, the

i npl emrentor shoul d not depend on this scheduling to obtain optinal
behavi or, since, as stated in Part 1, the structures in the forma
description were inposed for purposes other than operational
efficiency.

Whet her by design or by default, every inplenmentation of the
transport protocol enbodi es sone decision about allocating the CPU

resource anong transport connecti ons. The resource may be
monolithic, i.e. a single CPU, or it may be distributed, as in the
exanpl e design given in Part 2.3. In the forner, there are two
sinpl e techniques for apportioning CPU processing tinme anong
transport connections. The first of these,

first-come/first-served, consists of the transport entity handling
user service requests in the order in which they arrive. No
attenpt is nmade to prevent one transport connection from using
an inordinate anmount of the CPU

The second sinple technique is round-robin scheduling of

connecti ons. Under this nethod, each transport connection is
serviced in turn. For each connection, transport processes one
user service request, if there is one present at the interface,

bef ore proceeding to the next connection.

The quality of service paraneters provided in the connection request
can be used to provide a finer-grained strategy for managi ng the CPU.
The CPU coul d be allocated to connections requiring | ow delay nore
often while those requiring high throughput would be served | ess
often but for longer periods (i.e., several connections requiring

hi gh throughput m ght be serviced in a concurrent cluster).

For exanmple, in the service sequence below, let "T" represent

m > 0 service requests, each requiring high throughput, let "D’
represent one service request requiring |ow delay and let the suffix
n =1,2,3 represent a connection identifier, unique only within a
particul ar service requirenment type (T,D). Thus Tl represents a set
of service requests for connection 1 of the service requirenent type
T, and D1 represents a service set (with one nenber) for connection 1
of service requirenment type D

D1 D2 D3 T1 D1 D2 D3 T2 D1 D2 D3 T1...

If m=4in this service sequence, then service set DI will get
wor st - case service once every seventh service request processed.
Service set T1 receives service on its four requests only once in
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fourteen requests processed.

D1 D2 D3 T1 D1 D2 D3 T2 D1 D2 D3 T1...

I I I I I I
| 3 requests | 4 | 3 | 4] 3 |

This neans that the CPUis allocated to Tl 29% ( 4/14 ) of the
avail able tine, whereas Dl obtains service 14%( 1/7 ) of the tine,
assumi ng processing requirenents for all service requests to be
equal . Now assune that, on average, there is a service request
arriving for one out of three of the service requirenent type D
connections. The CPUis then allocated to the T type 40% ( 4/10 )
while the Dtype is allocated 10% ( 1/10 ).

4.2 Buf f er managenent.

Buffers are used as tenporary storage areas for data on its way to
or arriving fromthe network. Decisions nust be nmade about buffer
managenent in two areas. The first is the overall strategy for
managi ng buffers in a nulti-layered protocol environment. The
second is specifically how to allocate buffers within the
transport entity.

In the formal description no details of buffer strategy are given,
since such strategy depends so heavily on the inplenmentation
environment. Only a general mechanismis discussed in the fornal
description for allocating receive credit to a transport connecti on,
wi t hout any expression as to how this resource i s managed.

Good buffer managenment should correlate to the traffic presented by
the applications using the transport service. This traffic has
inmplications as well for the performance of the protocol. At present,
the relationship of buffer strategy to optinal service for a given
traffic distribution is not well understood. Some work has been
done, however, and the reader is referred to the work of Jeffery
Spirn [SPI 82, SPI83] and to the experinent plan for research by the
NBS [ HEA85] on the effect of application traffic patterns on the
performance of C ass 4 transport.

4.2.1 Overal |l buffer strategy.

Three schenmes for managenent of buffers in a nmultilayered
environnent are described here. These represent a spectrum of
possibilities available to the inplementor. The first of these is a
strictly layered approach in which each entity in the protoco

hi erarchy, as a process, nanhages its own pool of buffers

i ndependently of entities at other layers. One advantage of this
approach is sinplicity; it is not necessary for an entity to
coordinate buffer wusage with a resource manager which is serving
the needs of nunerous protocol entities. Another advantage is

nmodul arity. The interface presented to entities in other layers is
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wel | defined; protocol service requests and responses are passed
bet ween | ayers by val ue (copying) versus by reference (pointer
copying). In particular, this is a strict interpretation of the OS
reference nodel, 1S 7498 [1SCB4b], and the protocol entities hide
nmessage details fromeach other, sinplifying handling at the entity
i nterfaces.

The single disadvantage to a strictly layered schene derives from
the value-passing nature of the interface. Each tinme protocol

data and control information is passed from one |ayer to another
it must be copied fromone layer’'s buffers to those of another |ayer
Copying between layers in a multi-layered environnent is
expensi ve and i nposes a severe penalty on the perfornance of the
comuni cations system as well as the conputer systemon which it is
runni ng as a whol e.

The second schene for nanagi ng buffers anbng nultiple protoco
layers is buffer sharing. In this approach, buffers are a
shared resource anong nultiple protocol entities; protocol data and
control information contained in the buffers is exchanged by passing
a buffer pointer, or reference, rather than the values as in the
strictly layered approach described above. The advantage to
passing buffers by reference is that only a small anount of

i nformation, the buffer pointer, is copied from layer to |[ayer
The resulting performance is nmuch better than that of the strictly
| ayered approach.

There are several requirenments that nust be net to inplenent
buffer sharing. First, the host system architecture nust all ow
menory sharing anong protocol entities that are sharing the
buffers. This can be achieved in a variety of ways: multiple
protocol entities may be inplenented as one process, all sharing
the same process space (e.g., kernel space), or the host system
architecture nay allow processes to map portions of their address
space to common buffer areas at sone known | ocation in physical
nenory.

A buffer manager is another requirenment for inplenenting shared
buffers. The buffer manager has the responsibility of providing
buffers to protocol entities when needed froma list of free
buffers and recycling used buffers back into the free list. The
pool may consist of one or nore lists, depending on the |evel of
control desired. For exanple, there could be separate |ists of
buffers for outgoing and i ncom ng nessages.

The protocol entities nust be inplenmented in such a way as to
cooperate with the buffer manager. While this appears to be an
obvious condition, it has inportant inplications for the strategy
used by inplementors to devel op the conmuni cations system This
cooperation can be described as follows: an entity at layer N
requests and is allocated a buffer by the nanager; each such buffer
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4.

2.

is returned to the manager by some entity at layer N - k (outgoing
data) or N + k (incom ng data).

Protocol entities also nmust be designed to cooperate with each
other. As buffers are allocated and sent towards the network from
hi gher |ayers, allowance nust be nmade for protocol contro
information to be added at |ower |layers. This usually neans

al locating oversized buffers to allow space for headers to be
prepended at |ower layers. Sinilarly, as buffers nove upward from
the network, each protocol entity processes its headers before
passing the buffer on. These nmanipulations can be handled by
managi ng pointers into the buffer header space.

In their pure fornms, both strictly layered and shared buffer

schenes are not practical. In the former, there is a performance
penalty for copying buffers. On the other hand, it is not practical
to inmplenment buffers that are shared by entities in all layers of the

protocol hierarchy: the |ower protocol |ayers (OSI layers 1 - 4)
have essentially static buffer requirenments, whereas the upper
protocol layers (CSlI layers 5 - 7) tend to be dynamic in their buffer
requirements. That is, several different applications may be running
concurrently, with buffer requirenents varying as the set of
applications varies. However, at the transport layer, this latter
variation is not visible and variations in buffer requirements wll
depend nore on service quality considerations than on the specific
nature of the applications being served. This suggests a hybrid
schenme in which the entities in OSI layers 1 - 4 share buffers while
the entities in each of the OSI layers 5 - 7 share in a buffer pool
associ ated with each layer. This approach provides nost of the
efficiency of a pure shared buffer schene and allows for sinple,
nodul ar interfaces where they are nost appropriate.

2 Buf f er managenent in the transport entity.

Buffers are allocated in the transport entity for two purposes:
sendi ng and receiving data. For sending data, the decision of how
much buffer space to allocate is relatively sinple; enough space
shoul d be allocated for outgoing data to hold the naxi nrum nunber of
data nessages that the entity will have outstanding (i.e., sent but
unacknow edged) at any tine. The send buffer space is determ ned by
one of two values, whichever is lower: the send credit received
fromthe receiving transport entity, or a maxi mum value inposed by
the local inplenmentation, based on such factors as overal

buf fer capacity.

The allocation of receive buffers is a nore interesting problem
because it is directly related to the credit value transnitted the
peer transport entity in CR (or CC) and AK TPDUs. If the tota

credit offered to the peer entity exceeds the total avail able buffer
space and credit reduction is not inplenented, deadl ock my
occur, causing termnation of one or nore transport connections. For
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t he purposes of this discussion, offered credit is assuned to be
equi val ent to avail able buffer space.

The sinpl est schenme for receive buffer allocation is allocation of
a fixed anmount per transport connection. This anount is allocated
regardl ess of how the connection is to be used. This schene is
fair in that all connections are treated equally. The inplenentation
approach in Part 2.3, in which each transport connection is handl ed
by a physically separate processor, obviously could use this schene,
since the allocation would be in the formof nmenory chi ps assigned by
the system desi gner when the systemis built.

A nmore flexible method of allocating receive buffer space is
based on the connection quality of service (Q0S) requested by the
user. For instance, a QOS indicating high throughput woul d be given
nmore send and receive buffer space than one a QOS indicating | ow
delay. Simlarly, connection priority can be used to determ ne
send and receive buffer allocation, with inportant (i.e., high
priority) connections allocated nore buffer space.

A slightly nore conplex schene is to apportion send and receive

buf fer space using both QOS and priority. For each connection, QOS
i ndi cates a general category of operation (e.g., high throughput or
|l ow delay). Wthin the general category, priority determ nes the
specific amunt of buffer space allocated from a range of
possi bl e values. The general categories may well overlap, resulting,
for exanple, in a high priority connection with | ow throughput

requi rements being allocated nore buffer space than low priority
connection requiring a high throughput.

5 Managenent of Transport service endpoints.
As nentioned in Part 1.2.1.1, a transport entity needs sonme way of
referencing a transport connection endpoint within the end system a
TCEP_id. There are several factors influencing the managenent of
TCEP_i ds:

1) I PC nechani sm between the transport entity and the session
entity (Part 3.3);

2) transport entity resources and resource nanagenent (Part 4);

3) nunber of distinct TSAPs supported by the entity (Part 1.2.2.1);
and

4) user process rendezvous nechani sm (the neans by which session
processes identify thenselves to the transport entity, at a
gi ven TSAP, for association with a transport connection);

The | PC mechani sm and t he user process rendezvous nechani sm have nore
direct influence than the other two factors on how the TCEP_id
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managenent is inpl enent ed.

The nunber of TCEP_ids avail able should reflect the resources that
are available to the transport entity, since each TCEP_id in use
represents a potential transport connection. The formal description
assunes that there is a function in the TPE which can decide, on the
basis of current resource availability, whether or not to issue a
TCEP_id for any connection request received. |If the TCEP_ id is

i ssued, then resources are allocated for the connection endpoint.
However, there is a somewhat different problemfor the users of
transport. Here, the transport entity nust sonmehow i nformthe
session entity as to the TCEP_ids avail able at a given TSAP.

In the formal description, a T-CONNECT-request is permtted to enter
at any TSAP/ TCEP_id. A function in the TPE consi ders whether or not
resources are availble to support the requested connection. There is
al so a function which checks to see if a TSAP/TCEP_id is busy by
seeing if there is a TPMallocated to it. But this function is not
useful to the session entity which does not have access to the
transport entity’'s operations. This description of the procedure is
clearly too | oose for an inplenentation.

One solution to this problemis to provide a new (abstract) service,
T-REGQ STER, locally, at the interface between transport and session.

| Primtives Par anet ers |
I T- REA STER request | Session process identifier I
I T- REA STER i ndi cation I Transport endpoint identifier, I
| | Session process identifier |
i T- REA STER r ef usal i Session process identifier i

This service is used as foll ows:

1) A session process is identified to the transport entity by a
T- REA STER-request event. |If a TCEP_id is available, the
transport entity selects a TCEP_id and places it into a table
corresponding to the TSAP at which the T- REG STER-request
event occurred, along with the session process identifier. The
TCEP_id and the session process identifier are then
transnmitted to the session entity by nmeans of the T- REGA STER-
i ndication event. If no TCEP_id is available, then a T-

REQ STER-ref usal event carrying the session process identifier
is returned. At any tine that an assigned TCEP_id is not
associated with an active transport connection process

(all ocated TPM, the transport entity can issue a T- REG STER-
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refusal to the session entity to indicate, for exanple, that
resources are no |onger available to support a connection
since TC resources are not allocated at registration tinmne.

2) If the session entity is to initiate the transport connection
it issues a T- CONNECT-request with the TCEP_id as a paraneter
(Note that this procedure is at a slight variance to the
procedure in N3756, which specifies no such paraneter, due to
the requirenent of alignnent of the formal description with
the service description of transport and the definition of the
session protocol.) If the session entity is expecting a
connection request froma renote peer at this TSAP, then the
transport does nothing with the TCEP_id until a CR TPDU
addressed to the TSAP arrives. Wen such a CR TPDU arri ves,
the transport entity issues a T- CONNECT-indication to the
session entity with a TCEP_id as a paraneter. As a nanagenent
aid, the table entry for the TCEP_id can be narked "busy" when
the TCEP_id is associated with an allocated TPM

3) If a CRTPDU is received and no TCEP_id is in the table for
the TSAP addressed, then the transport selects a TCEP_id,
includes it as a paraneter in the T- CONNECT-indication sent to
the session entity, and places it in the table. The T-
CONNECT-response returned by the session entity will carry the
TCEP_id and the session process identifier. |If the session
process identifier is already in the table, the new one is
di scarded; otherwise it is placed into the table. This
procedure is also followed if the table has entries but they
are all marked busy or are enpty. |If the table is full and
all entries ar marked busy, then the transport entity
transnmits a DR TPDU to the peer transport entity to indicate
that the connection cannot be nade. Note that the transport
entity can disable a TSAP by narking all its table entries
busy.

The realization of the T-REGQ STER service will depend on the | PC
nmechani sns avail abl e between the transport and session entities. The
probl em of user process rendezvous is solved in general by the T-
REG STER service, which is based on a solution proposed by M chae
Cherni k of the NBS [ CHK85].

6 Managenent of Network service endpoints in Transport.
6.1 Endpoi nt identification.
The identification of endpoints at an NSAP is different fromthat for

the TSAP. The nature of the services at distinct TSAPs is
fundanentally the sane, although the quality could vary, as a | ocal
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choice. However, it is possible for distinct NSAPs to represent
access to essentially different network services. For exanple, one
NSAP may provi de access to a connectionl ess network service by neans

of an internetwork protocol. Another NSAP may provi de access to a
connection-oriented service, for use in conmunicating on a | ocal
subnetwork. It is also possible to have several distinct NSAPs on

t he same subnetwork, each of which provides sonme service features of
| ocal interest that distinguishes it fromthe other NSAPs.

A transport entity accessing an X 25 service could use the | ogical
channel nunbers for the virtual circuits as NCEP_ids. An NSAP
provi di ng access only to a permanent virtual circuit would need only
a single NCEP_id to nultiplex the transport connections. Simlarly,
a CSMA/ CD network woul d need only a single NCEP_id, although the
network is connecti onl ess.

6.2 Managenent issues.

The Class 4 transport protocol has been succesfully operated over
bot h connecti onl ess and connection-oriented network services. In
bot h nbdes of operation there exists sonme information about the
network service that a transport inplenentation could make use of to
enhance perfornmance. For exanple, know edge of expected delay to a
destination would pernit optinal selection of retransmi ssion tiner
val ue for a connection instance. The infornation that transport

i mpl enentati ons could use and the nechani snms for obtaining and
managi ng that information are, as a group, not well understood.
Projects are underway within | SO cormittees to address the nmanagenent
of OSI as an architecture and the managenent of the transport |ayer
as a layer.

For operation of the Cass 4 transport protocol over
connection-oriented network service several issues nust be addressed
i ncl udi ng:

a. When shoul d a new network connecti on be opened to support a
transport connection (versus nultiplexing)?

b. When a network connection is no |onger being used by any
transport connection, should the network connection be closed
or remain open awaiting a new transport connection?

C. When a network connection is aborted, how should the peer
transport entities that were using the connection cooperate to
re-establish it? |If splitting is not to be used, how can this
re-establishnent be achi eved such that one and only one
net wor k connection results?

The Class 4 transport specification pernits a transport entity to
mul ti pl ex several transport connections (TCs) over a single network
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connection (NC) and to split a single TC across several NCs. The

i npl emrent or nust deci de whether to support these options and, if so,
how. Even when the inplenentor decides never to initiate splitting
or nultiplexing the transport entity nust be prepared to accept this
behavi or from other transport inplementations. Wen nultiplexing is
used TPDUs frommultiple TCs can be concatenated into a single
network service data unit (NSDU). Therefore, danmage to an NSDU may
effect several TCs. 1|In general, Cass 2 connections should not be
mul tiplexed with Cass 4 connections. The reason for this is that if
the error rate on the network connection is high enough that the
error recovery capability of Class 4 is needed, then it is too high
for Cass 2 operation. The deciding criterion is the tolerance of
the user for frequent disconnection and data errors.

Several issues in splitting nmust be considered:
1) maxi mum nunber of NCs that can be assignhed to a given TC,

2) mni mum nunber of NCs required by a TCto maintain the "quality
of service" expected (default of 1);

3) when to split;

4) inactivity control

5) assignment of received TPDU to TC, and

6) notification to TC of NC status (assigned, dissociated, etc ).

Al'l of these except 3) are covered in the formal description. The
met hods used in the formal description need not be used explicitly,
but they suggest approaches to inplenentation.

To support the possibility of nultiplexing and splitting the

i npl erentor nust provide a comon function below the TC state

machi nes that nmaps a set of TCs to a set of NCs. The fornma
description provides a general neans of doing this, requiring mainly
i npl enentation environnment details to conplete the nechani sm
Deci si ons about when network connections are to be opened or closed
can be made locally using local decision criteria. Factors that may
effect the decision include costs of establishing an NC, costs of

mai ntai ning an open NCwith little traffic flow ng, and estimtes of
the probability of data flow between the source node and known
destinations. Managenent of this type is feasible when a priori
know edge exists but is very difficult when a need exists to adapt to
dynamic traffic patterns and/or fluctuating network charging

mechani sns.

To handl e the issue of re-establishnent of the NC after failure, the

| SO has proposed an addendum N3279 [I1SO85c] to the basic transport
standard descri bing a network connection nmanagenent subpr ot ocol
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(NCvB) to be used in conjunction with the transport protocol.
Enhanced checksum al gorithm
Ef fect of checksum on transport perfornance.

Performance experinments with Cass 4 transport at the NBS have
reveal ed that straightforward inplenentation of the Fl etcher checksum
using the algorithmrecomended in the |SO transport standard | eads
to severe reduction of transport throughput. Early nodeling

i ndi cated throughput drops of as nuch as 66% when using the checksum
Wirk by Anastase Nakassis [ NAK85] of the NBS |l ed to several inproved

i npl ementations. The performance degradati on due to checksumis now
in the range of 40-55% when using the inproved inplenentations.

It is possible that transport nay be used over a network that does
not provide error detection. |In such a case the transport checksum
is necessary to ensure data integrity. In nany instances, the
under | yi ng subnetwork provides sone error checki ng mechanism The
HDLC frame check sequence as used by X 25, |EEE 802.3 and 802.4 rely
on a 32 bit cyclic redundancy check and satellite |ink hardware
frequently provides the HDLC franme check sequence. However, these
are all link or physical |ayer error detection nmechani snms which
operate only point-to-point and not end-to-end as the transport
checksum does. Sone links provide error recovery while other |inks
sinply discard damaged nmessages. |f adequate error recovery is

provi ded, then the transport checksumis extra overhead, since
transport will detect when the |ink nechani sm has di scarded a nessage
and will retransmt the nessage. Even when the IP fragnments the
TPDU, the receiving IP will discover a hole in the reassenbly buffer
and discard the partially assenbled datagram (i.e., TPDU). Transport
will detect this nissing TPDU and recover by neans of the

retransm ssion mechani sm

Enhanced al gorithm

The Fl etcher checksum al gorithmgiven in an annex to I'S 8073 is not
part of the standard, and is included in the annex as a suggestion to
i mpl enentors. This was done so that as inprovements or new

al gorithnms cane along, they could be incorporated without the
necessity to change the standard.

Nakassi s has provided three ways of coding the algorithm shown

bel ow, to provide inplenentors with insight rather than universally
transportabl e code. One version uses a high order |anguage (C. A
second version uses C and VAX assenbler, while a third uses only VAX
assenbler. In all the versions, the constant MODX appears. This
represents the maxi mum nunber of sums that can be taken w t hout
experiencing overflow. This constant depends on the processor’s word
size and the arithnmetic node, as follows:
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Choose n such that

(n+1)*(254 + 255*n/2) <= 2**N - 1

where N is the nunber of usable bits for signed (unsigned)
arithnmetic. Nakassis shows [NAK85] that it is sufficient
to take

n <=sqgrt( 2*(2**N - 1)/255 )

and that n = sqgrt( 2*(2**N - 1)/255 ) - 2 generally yields
usabl e values. The constant MODX then is taken to be n.

Sone typical values for MODX are given in the follow ng table.

Bl TS/ WORD MODX ARl THVETI C
15 14 si gned
16 21 unsi gned
31 4102 si gned
32 5802 unsi gned

This constant is used to reduce the nunber of tines nod 255 addition
i s invoked, by way of speeding up the algorithm

It should be noted that it is also possible to inplenent the checksum
in separate hardware. However, because of the placenent of the
checksumw thin the TPDU header rather than at the end of the TPDU
inplenmenting this with registers and an adder will require

significant associated logic to access and process each octet of the
TPDU and to nove the checksumoctets in to the proper positions in the
TPDU. An alternative to designing this supporting logic is to use a
fast, microcoded 8-bit CPU to handle this access and the conputation.
Al t hough there is sone speed penalty over separate |ogic, savings

may be realized through a reduced chip count and devel oprent ti ne.

7.2.1 C | anguage al gorithm
#def i ne MODX 4102
encodecc( ness,len, k)
unsi gned char ness[] ; /* the TPDU to be checksumed */
i nt | en,

K; /* position of first checksum oct et
as an offset fromnmess[0] */
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{ int ip,
iq,
ir,
cO,
cl;
unsi gned char *p, *pl, *p2, *p3

p =ness ; p3 = ness + len ;

if ( k>0) { ness[k-1] = 0x00 ; ness[k] = 0x00 ; }
/* insert zeros for checksum octets */

cO=0; c1 =0 ; pl = ness ;
while (pl < p3) /* outer sum accumrul ati on | oop */

p2 = pl + MDX ; if (p2 > p3) p2 = p3 ;
for (p=pl; p <p2,; p++) /* inner sumaccunulation |oop */
{ cO=¢c0 + (*p) ; ¢l =<cl + cO

}
cO = cO%55 ; cl1 = c155 ; pl = p2 ,;
/* adjust accurul ated suns to nod 255 */

}

ip=(cl<<8) + c0; /* concatenate cl and cO */
if (k >0)

{ /* conmpute and insert checksumoctets */

iqg=((len-k)*cO - cl)ms5 ; if (iqgq<=0) iqg=1iq + 255 ;

mess[k-1] =iq ;

ir = (510 - c0 - iq) ;

if (ir >255) ir =ir - 255 ; mess[k] =ir
return(ip)

7.2.2 Cl assenbl er al gorithm
#i ncl ude <mat h>

encodecn( ness, | en, k)
unsi gned char *ness
i nt | en, k

{
int i,ip,c0,cl ;

if (k >0) { mess[k-1] = 0Ox00 ; ness[k] = 0x00 ; }
ip = optnil(ness,|en, &0, &c1) ;

if (k >0)

{1 =( (len-kK)*cO - cl)w@55 ; if (i <=0) i =i + 255
mess[k-1] =i ;
i = (510 - cO - i) ; if (i >255) i =i - 255
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mess[ k] =i

return(ip) ;

| engt h

remai nder of;

nod( 255) .

. ENTRY  optni, "M<r2,r3

nov| 4(ap),r8

novl 8(ap),r9

clrq ra

clrq re

clrl r3

novl #255,r10

novl #4102, r 11

xl oop: novl r1l,r7

cnpl ro, r7

bgeq yl oop

novl ro, r7

yl oop: novb (r8)+,r3

addl 2 r3,r4

addl 2 rd,r6

sobgtr r7,yl oop
edi v r10,r6,r0,r6 ;
edi v r10,r4,r0,r4 ;
subl 2 ri1,r9 :
bgtr x| oop ;
nov| r4, @2(ap) ;
novl reé, @e6(ap) ;
ashl #8,16,r0 X
addl 2 r4,r0 :
ret

7.2.3 Assenbler algorithm

buff0: . blkb 3

| engt h
k

Me Coy
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cal li ng sequence optn(nessage, | engt h, &0, &1) where
nessage i s an array of bytes

is the length of the array

&0 and &cl are the addresses of the counters to hold the
the first and second order partial

suns

4,r51r6,r7,r8,r9,r10,r11>
r8---> nessage

r9=Il ength

r5=r4=0

r7=r6=0

cl ear high order bytes of
r10 holds the value 255
rlil= MODX

i f r7=MODX

is ro9>=r7 ?

if yes, go and execute the inner
| oop MODX ti nes.
ot herwi se set r7,
counter,

r3

the inner |oop

suml=suni+byt e
sunm2=sun+sunil
while r7>0 return to il oop

nod 255 addition

r 6=r enai nder

adj ust
go for
first

ro
anot her
ar gunent

| oop if necessary

second ar gument

; allocate 3 bytes so that aloop is
; optimally aligned

macro i nplenentation of Fletcher’s algorithm
calling sequence i p=encodemr nessage, | engt h, k) where
nmessage is an array of bytes

is the length of the array

is the location of the check octets if >0,
an indication not to encode if O.
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nmovl
nmovl
clrq
clrq
clrl
nmovl
nmovl
bl eq
subl 3
addl 2
clrb
clrb
bl oop:
cnpl
bgeq
nmovl

al oop:
addl 2
addl 2
sobgtr

ediv
ediv
subl 2
bgtr
ashl
addl| 2
cnpl
bl eq

novl
mul | 3
ediv
subl 2
bgtr
addl| 2
byt el:
addl| 2
subl 3
bgtr
addl 2
byt e2:
exit:

8 Par anet er

8.1

Expressions for timer values used to contro

Me Coy

4(ap),r8
8(ap),r9
r4

ré

r3
#255,r10
12(ap),r2
bl oop
r2,r9,rl11
rg, r2
(r2)
-(r2)
nMovw
ro,r7
al oop
ro,r7

novb
r3,r4
r4,r6
r7,al oop

r10,r6,r0,r6
r10,r4,r0,r4
#4102, r9

bl oop
#8,1r6,r0
r4,r0

r2,r7

exit

re,r8
ri1l1,r4,r6
r10,r6,r7,r6
r8,ro6
byt el
r10,r6
novb
re,r4
r4,r10,r4
byt e2
ri0,r4
novb
ret

sel ecti on.

Connecti on contr ol

(r8)+,

r6,(r25

f e e e w s w e ow s

rd,(r2)

June 1987

r8---> nessage

r 9=I engt h

r5=r4=0

r7=r 6=0

clear high order bytes of r3
r10 holds the val ue 255

r 2=k

if r2<=0, we do not encode
set rll=L-k

r2---> octet k+1

cl ear check octet k+1

cl ear check octet k, r2---> octet k.

7 ; set r7 (inner loop counter) = to MODX
if r9>=MODX, then go directly to adjust r9

and execute the inner |oop MODX tines.

ot herwi se set r7, the inner |oop counter,
equal to r9, the nunber of the
unprocessed characters
3 ;

c0=cO+byt e

sun=sunk+suml
while r7>0 return to il oop

; for nmod 255 addition
r 6=r enni nder

go for another loop if necessary
r 0=256*r 6
r 0=256*r 6+r 4

since r7=0, we are checking if r2 is

zero or less: if yes we bypass
; the encodi ng.

r8=cl

ré=(L-k)*cO

ré = (L-k)*cO nod(255)
ré= ((L-k)*cO0)9@55 -cl and if negative,
we nust
add 255
+ ; save the octet and |et
r 4=r 4+r 6=(x+cO0)
r4=255- (x+c0)
if >0 rd4=octet (k+1)
r4=255+r 4

; save y in octet k+l1

r2---> octet k+1

the general transport
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connection behavior are given in IS 8073. However

specific factors in the expressions

June 1987

, values for the

are not given and the expressions

are only estimates. The derivation of timer values fromthese

expressions is not mandatory in the standard. The timer

val ue

expressions in IS 8073 are for a connection-oriented network service
and nmay not apply to a connectionl ess network service.

The followi ng synbols are used to denote factors contributing to
ti mer val ues, throughout the remmi nder of this Par

Elr

Erl

Mr
M|

T1

\W

expected maxi numtransit delay, local to re

expected maxi numtransit delay, renote to |

t.
not e

ocal

time needed by renpte entity to generate an acknow edgenent

time needed by local entity to generate an acknow edgenent

| ocal processing tine for an incom ng TPDU
maxi mum NSDU |ifetine, local to renote

maxi mum NSDU |ifetine, renpte to | ocal

bound for maxinmumtine local entity will wait for

acknowl edgenent before retransmitting a TPDU

bound for maxi mumlocal entity will continue to transnit a

TPDU t hat requires acknow edgment

bound for maxi mum nunber of times local entity wll transmt

a TPDU requiring acknow edgenent

bound for the maximumti ne between the transm ssion of a
relating to it.

TPDU and the recei pt of any acknow edgrent
bound for the tinme after which an entity w

not received fromthe peer entity

Il initiate
procedures to terninate a transport connection if a TPDU is

bound for the maximumtime an entity will wait before

transnmitting up-to-date wi ndow i nformation

These synbols and their definitions correspond to those given in
Clause 12 of 1S 8073.

8.1.1

G ve-up tiner.

The give-up tinmer determnes the amunt of tine

entity wll

appropriate reply) of a transnmtted nessage after

Me Coy

the transport

t he

continue to await an acknow edgenent (or other

message
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has been retransmitted the maxi mum nunber of tines. The
reconmendation given in IS 8073 for values of this tinmer is
expressed by

T1 + W+ M1, for DT and ED TPDUs

T1 + M1, for CR CC, and DR TPDUs,
wher e

T1L =Er + EFl + Ar + Xx.

However, it should be noted that Ar will not be known for either the
CR or the CC TPDU, and that Elr and Erl nay vary considerably due to
routing in some conectionless network services. 1In Part 8.3.1, the
determ nation of values for Tl is discussed in nore detail. Values
for M| generally are relatively fixed for a given network service.
Since M| is usually much larger than expected values of T1, a

rul e-of -thunb for the give-up tinmer value is 2*MI + Al + x for the
CR, CC and DR TPDUs and 2*M | + Wfor DT and ED TPDUs.

8.1.2 Inactivity timer.

This tiner neasures the nmaxinmum tinme period during which a
transport connection can be inactive, i.e., the maximumtinme an
entity can wait without receiving i nconmi ng nessages. A usable val ue
for the inactivity timer is

| = 2%( max( T1, W)*N).

This accounts for the possibility that the renbte peer is using a

wi ndow tinmer value different fromthat of the local peer. Note that
an inactivity tinmer is inportant for operation over connectionless
network services, since the periodic receipt of AK TPDUs is the only
way that the local entity can be certain that its peer is stil
functi oni ng.

8.1.3 W ndow ti ner.

The wi ndow tinmer has two purposes. It is used to assure that the
renote peer entity periodically receives the current state of the
local entity's flow control, and it ensures that the renote peer
entity is aware that the local entity is still functioning. The
first purpose is necessary to place an upper bound on the tine
necessary to resynchronize the flow control should an AK TPDU whi ch
notifies the renpte peer of increases in credit be lost. The second
purpose is necessary to prevent the inactivity tiner of the renote
peerfromexpiring. The value for the window tinmer, W depends on
several factors, anbng which are the transit delay, the

acknowl edgenent strategy, and the probability of TPDU | oss in the
network. Generally, Wshould satisfy the foll owi ng condition
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W> C(Erl + x)

where C is the maxi mum anount of credit offered. The rationale for
this condition is that the right-hand side represents the maxi num
time for receiving the entire window. The protocol requires that al
data recei ved be acknow edged when the upper edge of the wi ndow is
seen as a sequence nunber in a received DT TPDU. Since the w ndow
timer is reset each time an AK TPDU is transmtted, there is usually
no need to set the timer to any |l ess than the value on the right-hand
side of the condition. An exception is when both C and the maxi mum
TPDU size are large, and Erl is |arge.

When the probability that a TPDU will be lost is small, the value of
Wcan be quite large, on the order of several nminutes. However, this
i ncreases the delay the peer entity will experience in detecting the
deactivation of the local transport entity. Thus, the value of W
shoul d be given sonme consideration in terms of how soon the peer
entity needs to detect inactivity. This could be done by placing
such information into a quality of service record associated with the
peer’s address.

When t he expected network error rate is high, it may be necessary to
reduce the value of Wto ensure that AK TPDUs are being received by
the renote entity, especially when both entities are qui escent for
some period of tinme.

8.1.4 Ref erence ti mer.

The reference tinmer nmeasures the time period during which a
source reference nmust not be reassigned to another transport
connection, in order that spurious duplicate mnessages not
interfere wth a new connection. The value for this tinmer
given in 1S 8073 is

L=Mr + MI + R+ Ar
wher e
R=T1*N + z

in which z is a small tolerance quantity to allow for factors
internal to the entity. The use of L as a bound, however, nust be
considered carefully. In sonme cases, L may be very large, and not
realistic as an upper or a |ower bound. Such cases may be
encountered on routes over several catenated networks where Ris set
hi gh to provi de adequate recovery from TPDU | oss. In other cases L
may be very small, as when transmission is carried out over a LAN and
Ris set small due to | ow probability of TPDU loss. Wen L is
conputed to be very small, the reference need not be tinmed out at
all, since the probability of interference is zero. On the other
hand, if L is conputed to be very large a smaller value can be used.
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One choice for the value mght be
L=mn( R(MI + Mr)/2)

If the reference nunber assigned to a new connection by an
entity is nmonotonically incremented for each new connection through
the entire avail abl e reference space (maximum 2**16 - 1), the tiner
is not critical: the sequence space is large enough that it is |likely
that there will be no spurious nmessages in the network by the tine
ref erence nunbers are reused.

8.2 FI ow contr ol

The peer-to-peer flow control nechanism in the transport protoco
determ nes the upper bound on the pace of data exchange that occurs

on transport connections. The transport entity at each end of
a connection offers a credit to its peer representing the nunber of
data nessages it is currently willing to accept. Al received

data nessages are acknow edged, wth the acknow edgenment nessage
containing the current receive credit information. The three
credit allocation schenes discussed below present a diverse set
of exanples of how one mght derive receive credit val ues.

8.2.1 Pessim stic credit allocation.

Pessim stic credit allocation is perhaps the sinplest formof flow
control. It is similar in concept to X-on/X-off control. 1In this
nmet hod, the receiver always offers a credit of one TPDU. When the DT
TPDU i s received, the receiver responds with an AK TPDU carrying a
credit of zero. Wuen the DT TPDU has been processed by the receiving
entity, an additional AK TPDU carrying a credit of one will be sent.
The advantage to this approach is that the data exchange is very
tightly controlled by the receiving entity. The disadvantages are:

1) the exchange is slow every data nessage requiring at |east
the time of two round trips to conplete the transfer transfer, and 2)
the ratio of acknow edgenent to data nessages sent is 2:1. Wile not
recommeneded, this schenme illustrates one extrene nethod of credit

al [ ocati on.

8.2.2 Optimstic credit allocation.

At the other extrene frompessinmistic credit allocation is optimstic
credit allocation, in which the receiver offers nore credit than
it has buffers. This scheme has two dangers. First, if the
receiving user is not accepting data at a fast enough rate, the
receiving transport’s buffers wll Dbecone filled. Since the
credit offered was optimistic, the sending entity will continue to
transnit data, which nust be dropped by the receiving entity for

| ack of buffers. Eventually, the sender may reach the nmaxinmm
nunber of retransni ssions and term nate the connection
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The second danger in using optimstic flow control is that the
sending entity may transmt faster than the receiving entity can
consune. This could result from the sender being inplenented on
a faster machine or being a nore efficient inplenentation. The
resul tant behavior is essentially the sane as descri bed above:
receive buffer saturation, dropped data nessages, and connection
terni nation.

The two dangers cited above can be aneliorated by inplenenting

the credit reduction scheme as specified in the protocol. However,
optimstic credit allocation works well only in Ilimted
ci rcunst ances. In nost situations it is inappropriate and

inefficient even when using credit reduction. Rather than seeking
to avoid congestion, optimistic allocation causes it, in nost cases,
and credit reduction sinply allows one to recover from congestion
once it has happened. Note that optimstic credit allocation

combi ned wi th cachi ng out-of -sequence nmessages requires a

sophi sticated buffer managenent schene to avoid reasssenbly deadl ock
and subsequent |oss of the transport connecti on.

8.2.3 Buf f er - based credit allocation.

Basing the receive credit offered on the actual availability of
receive buffers is a better nmethod for achieving flow control

I ndeed, with few exceptions, the inplenentations that have been

studi ed used this nmethod. It continuous flow of data and
elimnating the need for the credit-restoring acknow edgenents.
Since only available buffer space is offered, the dangers of
optimstic credit allocation are al so avoi ded.

The anount of buffer space needed to maintain a continuous bul k
data transfer, which represents the maxi mum buffer requirenent, is
dependent on round trip delay and network speed. Generally, one
woul d want the buffer space, and hence the credit, |arge enough to
allow the sender to send continuously, so that increnmental credit
updates arrive just prior to the sending entity exhausting the
avail able credit. One exanple is a single-hop satellite link
operating at 1.544 Mbits/sec. One report [COL85] indicates that
the buffer requirenent necessary for continuous flow is approximtely
120 Kbytes. For 10 Mits/sec. |EEE 802.3 and 802.4 LANs, the figure
is on the order of 10K to 15K bytes [BRI 85, |NT85, M L85].

An interesting nodification to the buffer-based credit allocation
schenme is suggested by R K. Jain [JAI85]. Wereas the approach
descri bed above is based strictly on the avail able buffer space, Jain
suggests a schene in which credit is reduced voluntarily by the
sending entity when network congestion is detected. Congestion
is inplied by the occurrence of retransmi ssions. The sending

entity, recognizing retransm ssions, reduces the |ocal value of
credit to one, slowy raising it to the actual receive credit

al l ocation as error-free transm ssions continue to occur. This
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techni que can overcone various types of network congestion occurring
when a fast sender overruns a slow receiver when no link |evel flow
control is available.

8.2.4  Acknow edgenent policies.

It is useful first to reviewthe four uses of the acknow edgenent
message in Cass 4 transport. An acknow edgenent nessage:

1) confirms correct recei pt of data nessages,

2) contains a credit allocation, indicating how many
data nessages the entity is willing to receive
fromthe correspondent entity,

3) may optionally contain fields whi ch confirm
recei pt of critical acknow edgenent nessages,
known as flow control confirmation (FCC), and

4) is sent upon expiration of the w ndow tinmer to
maintain a mninmumlevel of traffic on an
ot herwi se qui escent connecti on.

I n choosi ng an acknow edgenent strategy, the first and third uses
menti oned above, data confirmation and FCC, are the nobst rel evant;
the second, credit allocation, is determined according to the
flow control strategy chosen, and the fourth, the w ndow

acknow edgenent, is only nmentioned briefly in the discussion on
flow control confirmation.

8.2.4.1 Acknowl edgenent of dat a.

The prinmary purpose of the acknow edgenment nessage is to confirm
correct receipt of data nessages. There are several choices that
the inpl ementor nust nmake when designing a specific

i mpl enent ati on. Wi ch choice to nmake is based largely on the
operating environnent (e.g., network error characteristics).

The issues to be decided upon are discussed in the sections bel ow

8.2.4.1.1 Msordered data nessages.

Dat a nmessages received out of order due to network m sordering
or loss can be cached or discarded. There is no single determ nant
that guides the inplenmentor to one or the other choice. Rather,
there are a nunber of issues to be considered.

One issue is the inportance of maintaining a low delay as perceived
by the user. |If transport data nessages are |ost or damaged in
transit, the absence of a positive acknow edgenment will trigger a
retransm ssion at the sending entity. When the retransnitted data
nmessage arrives at the receiving transport, it can be delivered
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to the user. |f subsequent data nmessages had been cached, they
could be delivered to the user at the same tine. The del ay
between the sending and receiving users would, on average, be
shorter than if nessages subsequent to a | ost nessage were
dependent on retransm ssion for recovery.

A second factor that influences the caching choice is the cost of
transnission. |If transmission costs are high, it is nore econonica
to cache nmisordered data, in conjunction with the use of

sel ective acknow edgenent (described below), to avoid

retransm ssions.

There are two resources that are conserved by not caching m sordered
data: design and inplenentation time for the transport entity and CPU
processing time during execution. Savings in both categories
accrue because a non-caching inplenentation is sinpler in its buffer
managenent. Data TPDUs are discarded rather than being reordered.
This avoi ds the overhead of nanaging the gaps in the received

data sequence space, searching of sequenced nessage lists, and
inserting retransmtted data nmessages into the |lists.

8.2.4.1.2 Nt h acknow edgenent.

In general, an acknow edgenent message is sent after receipt of
every N data nessages on a connection. If Nis small conpared to the
credit offered, then a finer granularity of buffer control is
afforded to the data sender’s buffer managenent function. Data
nmessages are confirmed in snmall groups, allow ng buffers to be
reused sooner than if N were larger. The cost of having N small is
twofold. First, nore acknow edgenent nessages must be generated by
one transport entity and processed by another, consunm ng sone of the
CPU resource at both ends of a connection. Second, the

acknowl edgenent nessages consume transm ssion bandwi dth, which may
be expensive or limted.

For larger N, buffer managenment is |less efficient because the
granularity with which buffers are controlled is N tinmes the maxi num
TPDU size. For exanple, when data nessages are transmitted to a
receiving entity enploying this strategy with large N, N data
nmessages nmust be sent before an acknow edgenent is returned
(al t hough the wi ndow ti mer causes the acknow edgenent to be sent

eventual ly regardless of N). |If the mnimumcredit allocation for
conti nuous operation is actually a fraction of N, a credit of N
must still be offered, and N receive buffers reserved, to achieve a

continuous flow of data nmessages. Thus, nore receive buffers
are used than are actually needed. (Alternatively, if one relies on
the timer, which nust be adjusted to the receipt tinme for N and
will not expire until some tine after the fraction of N has been
sent, there nay be idle tine.)

The choice of values for N depends on several factors. First, if the
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rate at which DT TDPUs are arriving is relatively low, then there is
not rnuch justification for using a value for N that exceeds 2. On
the other hand, if the DI TPDU arrival rates is high or the TPDU s
arrive in large groups (e.g., in a frame froma satellite link), then
it may be reasonable to use a larger value for N, sinply to avoid the
over head of generating and sending the acknow edgenents whil e
procesing the DT TPDUs. Second, the value of N should be related to
the maxi mumcredit to be offered. Letting C be the maximumcredit to
be offered, one should choose N < U2, since the receipt of C TPDUs
wi t hout acknow edging will provoke sending one in any case. However,
since the extended formats option for transport provides max C =
2**16 - 1, a choice of N=2**15 - 2 is likely to cause sonme of the
sender’s retransnission tiners to expire. Since the retransmtted

TPDU s will arrive out of sequence, they will provoke the sending of
AK TPDU s. Thus, not nuch is gained by using an N large. A better
choice is N=1og C (base 2). Third, the value of should be rel ated

to the maxi rum TPDU si ze used on the connection and the overal

buf fer managenment. For exanple, the buffer managenment may be tied to
the |l argest TPDU that any connection will use, with each connection
managi ng the actual way in which the negotiated TPDU size relates to
this buffer size. |In such case, if a connection has negotiated a
maxi mum TPDU si ze of 128 octets and the buffers are 2048 octets, it
may provide better managenent to partially fill a buffer before
acknow edging. |If the exanple connection has two buffers and has
based offered credit on this, then one choice for N could be 2*| og(
2048/ 128 ) = 8. This would nean that an AK TPDU woul d be sent when a
buffer is half filled ( 2048/ 128 = 16 ), and a doubl e buffering
schene used to manage the use of the two buffers. the use of the t
There are two studies which indicate that, in many cases, 2 is a good
choice for N [COL85, BRI85]. The increased granularity in buffer
managenent is reasonably small when conpared to the credit

al l ocation, which ranges from 8K to 120K octets in the studies cited.
The benefit is that the nunber of acknow edgenents generated (and
consuned) is cut approximtely in half.

8.2.4.1.3 Sel ecti ve acknow edgenent .

Sel ective acknow edgenent is an option that allows nisordered data
nmessages to be confirmed even in the presence of gaps in the received
nmessage sequence. (Note that selective acknow edgenent is only
meani ngul whe cachi ng out-of-orderdata nmessags.) The advantage to
using this nechanism is hat i grealy reduces the nunber of
unnecessary retransm ssions, thus saving both conputing tine and
transni ssi on bandwi dth [COL85] (see the discussion in Part 8.2.4.1.1
for more details).

8.2.4.2 Fl ow control confirmation and fast retransm ssion.
FIl ow control confirmation (FCC) is a mechanismof the transport

prot ocol whereby acknow edgenment nessages containing critical flow
control information are confirmed. The critical acknow edgenent
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nmessages are those that open a closed flow control w ndow and
certain ones that occur subsequent to a credit reduction. In
principle, if these critical nessages are |ost, proper

resynchroni ztion of the flow control relies on the w ndow tiner,
which is generally of relatively |Iong duration. In order to reduce
delay in resynchronizing the flow control, the receiving entity can
repeatedly send, within short intervals, AK TPDUs carrying a request
for confirmation of the flow control state, a procedure known as

"fast" retransnission (of the acknow edgenent). |If the sender
responds with an AK TPDU carryi ng an FCC paraneter, fast
retransmission is halted. If no AK TPDU carrying the FCC paraneter

is received, the fast transm ssion halts after having reached a
maxi nrum nunber of retransni ssions, and the wi ndow tiner resumnes
control of AK TPDU transmi ssion. It should be noted that FCCis an
optional nmechani smof transport and the data sender is not required
to respond to a request for confirmation of the flow control state
wi h an AK TPDU carrying the FCC paraneter.

Sone considerations for deciding whether or not to use FCC and f ast
retransm sson procedures are as foll ows:

1) likelihood of credit reduction on a given transport connecti on;
2) probability of TPDU | oss;

3) expected wi ndow tiner period;

4) w ndow si ze; and

5) acknow edgenent strategy.

At this time, there is no reported experience with using FCC and fast
retransmssion. Thus, it is not known whet her or not the procedures
produce sufficient reduction of resynchronization delay to warrant

i mpl enenting them

When i npl enmenting fast retransnmission, it is suggested that the tiner
used for the wi ndow timer be enployed as the fast tiner, since the

wi ndow i s disabled during fast retransm ssion in any case. This w ]l
avoi d having to nanage another tiner. The fornmal description
expressed the fast retransmission tinmer as a separate tinmer for
clarity.

8.2.4.3 Concat enati on of acknow edgenent and dat a.

When full duplex comunication is being operated by two transport
entities, data and acknow edgenment TPDUs from each one of the
entities travel in the same direction. The transport protocol
permts concatenating AK TPDUs in the sane NSDU as a DT TPDU. The
advantage of using this feaure in an inplenentation is that fewer
NSDUs will be transnmitted, and, consequently, fewer total octets will
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be sent, due to the reduced nunber of network headers transmtted.
However, when operating over the IP, this advantage may not
necessarily be recognized, due to the possible fragnmentation of the
NSDU by the IP. A careful analysis of the treatnment of the NSDU in

i nt ernetwork environnments should be done to deterni ne whet her or not
concatenation of TPDUs is of sufficient benefit to justify its use in
that situation

8.2.5 Ret ransni ssi on poli ci es.

There are primarily two retransm ssion policies that can be
enployed in a transport inplenmentation. |In the first of these, a
separate retransnission tinmer is initiated for each data nmessage
sent by the transport entity. At first glance, this approach appears
to be sinple and straightforward to inplenment. The deficiency of
this scheme is that it is inefficient. This derives fromtwo
sources. First, for each data nessage transmitted, a tinmer nust be
initiated and cancell ed, which consunes a significant anount of CPU

processing tine [BRI85]. Second, as the list of outstanding
timers grows, managenent of the list also becones increasingly
expensi ve. There are techniques which nake |list nanagenent nore

efficient, such as a list per connection and hashing, but
inplenenting a policy of one retransm ssion tinmer per transport
connection is a superior choice.

The second retransmni ssion policy, inplenenting one retransni ssion
timer for each transport conenction, avoids sonme of the
inefficiencies cited above: the list of outstanding timers is
shorter by approxinately an order of nagnitude. However, if the
entity receiving the data is generating an acknow edgenent for
every data nessage, the timer nust still be cancelled and restarted
for each data/acknowl edgenent nessage pair (this is an additional
i npetus for inplenenting an Nth acknow edgenent policy with N=2).

The rul es governing the single tinmer per connection schene are
listed bel ow

1) If a data nessage is transmtted and the
retransmission timer for the connection is not
already running, the timer is started.

2) If an acknow edgenent for previously unacknow edged
data is received, the retransnmssion tiner is restarted.

3) If an acknow edgenent nessage is received for the
| ast outstanding data nessage on the connection
then the tiner is cancell ed.

4) |If the retransm ssion tiner expires, one or nore

unacknow edged data nmessages are retransmtted,
begi nning with the one sent earliest. (Two
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reports [ HEA85, BRI 85] suggest that the nunber
to retransmt is one.)

8.3 Pr ot ocol control
8.3.1 Retransm ssion tinmer val ues.
8.3.1.1 Data retransm ssion timer

The value for the reference tiner may have a significant inpact on
the performance of the transport protocol [COL85]. However,

determ ning the proper value to use is sonetinmes difficult.
According to IS 8073, the value for the timer is conputed using the
transit delays, Erl and Elr, the acknow edgenent delay, Ar, and the
| ocal TPDU processing tinme, X:

T1 = BErl + Elr + Ar + X

The difficulty in arriving at a good retransm ssion timer value is
directly related to the variability of these factors O the two,

Erl and Elr are the nost susceptible to variation, and therefore have
the nost inpact on determining a good tiner value. The
follow ng paragraphs discuss nmethods for choosing retransm ssion
timer values that are appropriate in several network environnments.

In a single-hop satellite environment, network delay (Erl or Elr) has
smal | variance because of the constant propagation delay of about 270
ne., which overshadows the other conponents of network del ay.
Consequently, a fixed retransm ssion tinmer provides good perfornmance.
For example, for a 64K bit/sec. |ink speed and network queue size
of four, 650 nms. provides good perfornmance [ COL85].

Local area networks also have constant propagation del ay.
However, propagation delay is a relatively uninportant factor in
total network delay for a local area network. Medium access delay
and queuing delay are the significant conponents of network del ay,
and (Ar + x) also plays a significant role in determnining an
appropriate retransmission tinmer. Fromthe discussion presented in
Part 3.4.3.2 typical nunbers for (Ar + x) are on the order of 5 - 6.5
ms and for Erl or Elr, 5 - 35 nms. Consequently, a reasonable val ue
for the retransmission timer is 100 ms. This value works well for
| ocal area networks, according to one cited report [INT85] and

simul ati on work perfornmed at the NBS.

For better performance in an environment with | ong propagation

del ays and significant variance, such as an internetwork an adaptive
algorithmis preferred, such as the one suggested value for TCP/IP
[1SI81]. As analyzed by Jain [JAI85], the algorithmuses an
exponential averaging scheme to derive a round trip delay estinate:

Di) =b* Di-1) + (1-b) * (i)
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where D(i) is the update of the delay estimate, S(i) is the sanple
round trip time neasured between transnission of a given packet and
recei pt of its acknow edgenent, and b is a weighting factor
between 0 and 1, wusually O0.5. The retransm ssion timer is
expressed as sone multiplier, k, of D. Small values of k cause
qui ck detection of |ost packets, but result in a higher nunber of
false timeouts and, therefore, unnecessary retransm ssions. In
addition, the retransnission timer should be increased

arbitrarily for each case of multiple transni ssions; an exponenti al

i ncrease i s suggested, such that

D(i) =c* Di-1)
where c is a dinensionless paraneter greater than one.

The remai ning paraneter for the adaptive algorithm is the initial
delay estimte, [DO0). It is preferable to choose a slightly

| arger val ue than needed, so that unnecessary retransm ssions do

not occur at the beginning. One possibility is to neasure the round
trip delay during connection establishnent. In any case, the

ti mer converges except under conditions of sustained congestion.

8.3.1.2 Expedi ted data retransm ssion tiner.

The timer which governs retransm ssion of expedited data should
be set using the normal data retransnission tiner val ue.

8.3.1.3 Connect -request/confirmretransm ssion timer.

Connect request and confirm nessages are subject to Erl + Elr,
total network delay, plus processing tine at the receiving
transport entity, if these values are known. |f an accurate estimte
of the round trip time is not known, two views can be espoused in
choosing the value for this timer. First, since this tinmer
governs connection establishment, it is desirable to m nimze del ay
and so a small val ue can be chosen, possibly resulting in unnecessary
retransm ssions. Alternatively, a |larger value can be used, reducing
the possibility of unnecessary retransm ssions, but resulting in

| onger delay in connection establishment should the connect request
or confirm message be lost. The choice between these two views is
dictated largely by |ocal requirenents.

8.3.1.4 Disconnect-request retransnission tinmer.
The timer which governs retransm ssion of the disconnect request
nmessage should be set fromthe normal data retransmni ssion tiner
val ue.

8.3.1.5 Fast retransm ssion tiner.

The fast retransmission tiner causes critical acknow edgenent
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nmessages to be retransmitted avoiding delay in resynchronizing
credit. This tiner should be set to approximately Erl + Elr.

8.3.2 Maxi mum nunber of retransm ssi ons.

This transport paraneter determ nes the maxi mum nunber of tines a
data nessage will be retransmitted. A typical value is eight. If
nmoni toring of network service is performed then this val ue can be
adj usted according to observed error rates. As a high error rate
inplies a high probability of TPDU | oss, when it is desirable to
conti nue sending despite the decline in quality of service, the
nunber of TPDU retransmi ssions (N) should be increased and the
retransm ssion interval (T1) reduced.

8.4 Sel ection of maxi mum Transport Protocol data unit size.

The choice of maxi num size for TPDUs in negotiation proposals depends
on the application to be served and the service quality of the
supporting network. In general, an application which produces |arge
TSDUs shoul d use as large TPDUs as can be negotiated, to reduce the
overhead due to a |large nunber of small TPDUs. An application which
produces snall TSDUs should not be affected by the choice of a |arge
maxi nrum TPDU si ze, since a TPDU need not be filled to the maxi mum
size to be sent. Consequently, applications such as file transfers
woul d need | arger TPDUs while term nals would not. On a high

bandw dth network service, |large TPDUs give better channel
utilization than do snaller ones. However, when error rates are

hi gh, the likelihood for a given TPDU to be danaged is correlated to
the size and the frequency of the TPDUs. Thus, smaller TPDU size in
the condition of high error rates will yield a smaller probability
that any particular TPDU will be | ost.

The i nmpl ementor nust choose whether or not to apply a uniform maxi mum
TPDU size to all connections. |If the network service is uniformin
service quality, then the selection of a uniform maxi numcan sinmplify
the inmplenmentation. However, if the network quality is not uniform
and it is desirable to optinize the service provided to the transport
user as nuch as possible, then it may be better to determ ne the
maxi num si ze on an i ndividual connection basis. This can be done at
the time of the network service access if the characteristics of the
subnetwork are known.

NOTE: The maxi mum TPDU size is inportant in the calculation of the
flow control credit, which is in nunbers of TPDUs offered. If buffer
space is granted on an octet base, then credit nust be granted as

buf fer space divided by maxi num TPDU si ze. Use of a snmaller TPDU
size can be equivalent to optimstic credit allocation and can | ead
to the expected problens, if proper analysis of the nanagenent is not
done.
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9

9.

Speci al options.

Speci al options may be obtai ned by taking advantage of the nanner in
which I'S 8073 and N3756 have been witten. It nust be enphasized
that these options in no way violate the intentions of the standards
bodi es that produced the standards. Flexibility was deliberately
witten into the standards to ensure that they do not constrain
applicability to a wide variety of situations.

1 Negot i ati ons.

The negotiation procedures in IS 8073 have deliberate anbiguities in
themto permt flexibility of usage within closed groups of

conmuni cants (the standard defines explicitly only the behavi or anong
open communi cants). A closed group of comrunicants in an open system
is one which, by reason of organization, security or other special
needs, carries on certain comunication anong its menbers which is
not of interest or not accessible to other open system nenbers.
Exanpl es of some closed groups within DOD mi ght be: an Air Force
Command, such as the SAC, a Navy base or an Arny post; a ship;

Def ense Intelligence; Joint Chiefs of Staff. Use of this
characteristic does not constitute standard behavior, but it does not
viol ate conformance to the standard, since the effects of such usage
are not visible to non-nmenbers of the closed group. Using the
procedures in this way permits options not provided by the standard.
Such options might permt,for exanple, carrying special protection
codes on protocol data units or for identifying DI TPDUs as carrying
a particular kind of nessage.

St andard negoti ati on procedures state that any paranmeter in a
received CR TPDU that is not defined by the standard shall be
ignored. This defines only the behavior that is to be exhibited

bet ween two open systems. It does not say that an inplenmentation
whi ch recogni zes such non-standard paranmeters shall not be operated
in networks supporting open systenms interconnection. Further, any
ot her type TPDU cont ai ni ng non-standard paraneters is to be treated
as a protocol error when received. The presunption here is that the
non- standard paraneter is not recognized, since it has not been
defined. Now consider the follow ng exanpl e:

Entity A sends Entity B a CR TPDU contai ni ng a non-standard
par amet er .

Entity B has been inplenented to recogni ze the non-standard paraneter
and to interpret its presence to nean that Entity A w Il be sending
DT TPDUs to Entity B with a special protection identifier paramneter

i ncl uded.

Entity B sends a CC TPDU cont ai ni ng the non-standard paraneter to
indicate to Entity A that it has received and understood the
paraneter, and is prepared to receive the specially marked DT TPDUs

Mt Coy [ Page 65]



RFC 1008 June 1987

fromEntity AL Since Entity A originally sent the non-standard
paraneter, it recognizes the paraneter in the CC TPDU and does not
treat it as a protocol error.

Entity A may now send the specially marked DT TPDUs to Entity B and
Entity Bwill not reject themas protocol errors.

Note that Entity B sends a CC TPDU wi th the non-standard paraneter
only if it receives a CR TPDU containing the paraneter, so that it
does not create a protocol error for an initiating entity that does
not use the paraneter. Note also that if Entity B had not recognized
the parameter in the CR TPDU, it would have ignored it and not
returned a CC TPDU contai ning the paraneter. This non-standard
behavior is clearly invisible and inaccessible to Transport entities
outside the closed group that has chosen to inplenent it, since they
are incapable of distinguishing it fromerrors in protocol

9.2 Recovery from peer deactivation

Transport does not directly support the recovery of the transport
connection froma crashed renote transport entity. A partial
recovery i s possible, given proper interpretation of the state tables
in Annex Ato IS 8073 and inplenentation design. The interpretation
of the Cass 4 state tables necessary to effect this operation is as
foll ows:

Whenever a CR TPDU is received in the state OPEN, the entity is
required only to record the new network connection and to reset the
inactivity timer. Thus, if the initiator of the original connection
is the peer which crashed, it may send a new CR TPDU to the surviving
peer, sonehow communicating to it the original reference nunbers
(there are several ways that this can be done).

VWhenever a CC TPDU is received in the

state OPEN, the receiver is required only to record the new network
connection, reset the inactivity tiner and send either an AK, DT or
ED TPDU. Thus, if the responder for the original connection is the
peer which crashed, it may send a new CC TPDU to the surviving peer,
comuni cating to it the original reference nunbers.

In order for this procedure to operate properly, the situation in a.
above, requires a CC TPDU to be sent in response. This could be the
original CC TPDU that was sent, except for new reference nunbers.

The original initiator will have sent a new reference nunber in the
new CR TPDU, so this would go directly into the CC TPDU to be
returned. The new reference nunber for the responder could just be a
new assi gnnent, with the old reference nunber frozen. 1In the
situation in b., the originator could retain its reference nunber (or
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assign a new one if necessary), since the CC TPDU should carry both
old reference nunbers and a new one for the responder (see bel ow).

In either situation, only the new reference nunbers need be extracted
fromthe CR/ICC TPDUs, since the options and paraneters will have been
previously negotiated. This procedure evidently requires that the CR
and CC TPDUs of each connection be stored by the peers in nonvolatile
menory, plus particulars of the negotiations.

To transfer the new reference nunbers, it is suggested that the a new
paraneter in the CR and CC TPDU be defined, as in Part 9.1, above.
This paraneter could also carry the state of data transfer, to aid in
resynchronizing, in the following form

1) the last DT sequence nunber received by the peer that crashed;

2) the last DT sequence nunber sent by the peer that
crashed;

3) the credit | ast extended by the peer that crashed;
4) the last credit perceived as offered by the surviving peer;

5) the next DT sequence nunber the peer that crashed expects to
send (this may not be the sane as the |ast one sent, if the |ast
one sent was never acknow edged);

6) the sequence number of an unacknow edged ED TPDU, if any;

7) the nornmal data sequence nunber corresponding to the
transni ssion of an unacknow edged ED TPDU, if any (this is to
ensure the proper ordering of the ED TPDU in the normal data

flow;

A nunber of other considerations nust be taken into account when
attenpting data transfer resynchronization. First, the recovery wll
be greatly conplicated if subsequencing or flow control confirmation
is in effect when the crash occurs. Careful analysis should be done
to determ ne whether or not these features provide sufficient benefit
to warrant their inclusion in a survivable system Second,

non-vol atil e storage of TPDUs whi ch are unacknow edged nust be used
in order that data loss at the tinme of recovery can be ninimzed.
Third, the values for the retrannmsission tinmers for the comunicating
peers nust allow sufficient tinme for the recovery to be attenpted.
This may result in longer delays in retransmtting when TPDUs are

| ost under normal conditions. One way that this mght be achieved is
for the peers to exchange in the original CR CC TPDU exchange, their
expected | ower bounds for the retransmssion tinmers, follow ng the
procedure in Part 9.1. In this manner, the peer that crashed may be
det erm ne whether or not a new connection should be attenpted. Fourth,
while the recovery involves directly only the transport peers when
operati ng over a connectionless network service, recovery when
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operating over a connection-oriented network service requires sone
sort of agreenent as to when a new network connection is to be
established (if necessary) and which peer is responsible for doing
it. This is required to ensure that unnecessary network
connections are not opened as a result of the recovery. Splitting
network connections may help to aneliorate this problem

9.3 Sel ection of transport connection reference nunbers.

In N3756, when the reference wait period for a connection begins, the
resources associated with the connection are rel eased and the
reference nunber is placed in a set of frozen references. A tiner
associated with this nunber is started, and when it expires, the
nunber is renoved fromthe set. A function which chooses reference
nunbers checks this set before assigning the next reference nunber.

If it is desired to provide a nuch | onger period by the use of a

| arge reference nunber space, this can be net by replacing the

i npl ement ati on dependent function "select | ocal _ref" (page TPE-17 of
N3756) by the follow ng code:

function select_local _ref : reference_type;

begi n
last _ref := (last_ref + 1) nmod( N+1 ) + 1;
while last _ref in frozen_ref[class_4] do
last _ref := (last_ref + 1) nmod( N+1 ) + 1;
select _local _ref := last_ref;
end;

where "last_ref" is a new variable to be defined in declarations
(pages TPE-10 - TPE-11), used to keep track of the | ast reference
val ue assigned, and Nis the length of the reference nunber cycle,
whi ch cannot exceed 2**16 - 1 since the reference nunber fields in
TPDUs are restricted to 16 bits in |ength.

9.4 otaining Class 2 operation froma Cass 4 inplenentation

The operation of Cass 4 as described in IS 8073 |ogically contains
that of the Class 2 protocol. The formal description, however, is
written assuming Class 4 and Class 2 to be distinct. This was done
because the description nust reflect the conformance statenment of IS
8073, which provides that Class 2 al one may be inpl enent ed.

However, Class 2 operation can be obtained froma Cass 4

i npl ement ation, which would yield the advantages of |ower conplexity,
smal |l er menory requirenents, and | ower inplenmentation costs as
conpared to inplementing the classes separately. The inpl enentor
will have to make the following provisions in the transport entity
and the Class 4 transport machine to realize C ass 2 operation.
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Disable all timers. In the formal description, all Cass 4
timers except the reference tiner are in the Cass 4 TPM
These timers can be designed at the outset to be enabl ed or
not at the instantiation of the TPM The reference tinmer is
in the Transport Entity nodule (TPE) and is activated by the
TPE recogni zing that the TPM has set its "please kill_ne"
variable to "freeze". |If the TPMsets this variable instead
to "now', the reference tinmer for that transport connection is
never started. However, |IS 8073 provides that the reference
timer can be used, as a local entity managenent deci sion, for
G ass 2.

The above procedure should be used when negotiating from Cl ass
4 to Cass 2. |If Class 2 is proposed as the preferred cl ass,
then it is advisable to not disable the inactivity tiner, to
avoid the possibility of deadl ock during connection
establishment if the peer entity never responds to the CR
TPDU. The inactivity tinmer should be set when the CR TPDU i s
sent and deactivated when the CC TPDU i s received.

Di sabl e checksuns. This can be done sinply by ensuring that
the bool ean variabl e "use_checksuns" is always set to "fal se"
whenever Class 2 is to be proposed or negoti at ed.

Never pernit flow control credit reduction. The fornal
description makes flow control credit managenent a function of
the TPE operations and such nanagenent is not reflected in the
operation of the TPM Thus, this provision may be handl ed by
al ways making the "credit-granting" mechani smaware of the

cl ass of the TPM bei ng served.

Include Cass 2 reaction to network service events. The O ass
4 handling of network service events is nore flexible than
that of Class 2 to provide the recovery behavior
characteristic of Cass 4. Thus, an option should be provided
on the handling of N_DI SCONNECT_i ndi cati on and
N_RESET i ndication for Class 2 operation. This consists of
sending a T_DI SCONNECT_i ndi cation to the Transport User,
setting "please kill_nme" to "now' (optionally to "freeze"),
and transitioning to the CLOSED state, for both events. (The
Class 4 action in the case of the N DI SCONNECT is to renpve
the network connection fromthe set of those associated with
the transport connection and to attenpt to obtain a new
network connection if the set becones enpty. The action on
receipt of the N RESET is to do nothing, since the TPE has

al ready issued the N RESET response.)

Ensure that TPDU paraneters conformto Class 2. This inplies
that subsequence nunbers should not be used on AK TPDUs, and
no flow control confirmation paranmeters should ever appear in
an AK TPDU. The checksum paraneter is prevented from
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appearing by the "fal se" value of the "use_checksuns"

vari able. (The acknow edgenent tine paraneter in the CR and
CC TPDUs wi |l not be used, by virtue of the negotiation
procedure. No special assurance for its non-use is
necessary.)

The TPE managenent of network connections should see to it
that splitting is never attenpted with Cass 4 TPMs running as
Cass 2. The handling of multiplexing is the sane for both
classes, but it is not good practice to nultiplex Cass 4 and
Cl ass 2 together on the same network connecti on.
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