Net wor k Wor ki ng Group

Request for Comments:

NI C 6780

DATA

Ander son,

166

RECONFI GURATI ON SERVI CE - -

CONTENTS

Pur pose of this RFC
Mot i vati on

OVERVI EW OF THE DATA RECONFI GURATI ON SERVI CE . ..

El enents of the Data Reconfiguration SERVICE ...

Concept ual Network Connections
Conception Protocols and Message Formats
Exanpl e Connection Configurations

THE FORM MACHI NE

| nput / Qut put Streans and For s
For m Machi ne BNF Synt ax

Alternate Specification of Form Machi ne Syntax .

For ns

Term Format 1
Term Format 2
Term Fornmat 3
Term Format 4

et al.

Bob Ander son
Rand

Vint Cerf
UCLA
Eric Harslem
John Haef ner
Rand

Ji m Madden

U of Illinois
Bob Metcal fe
MT

Ari e Shoshani
SDC

JimWite
UcsB

Davi d Wod
Mtre

25 May 1971

AN | MPLEMENTATI ON SPECI FI CATI ON

[Page 1]

RFC 166 Dat a Reconfiguration Service May 1971

The Application of a Term.................... 14
Restrictions and Interpretations of Term
Functions 15
Termand Rule Sequencing 16
IV EXAMPLES e 17
RemarKs 17
Field Insertion 17
Deletion 17
Variable Length Records 18
String Length Conputation 18
Transposition 18
Character Packing and Unpacking 18
. 1 NTRODUCTI ON

PURPOSE OF THI S RFC

The Purpose of this RFCis to specify the Data Reconfiguration
Service (DRS.)

The DRS experinment involves a software nechanismto reformat Network
data streans. The mechani sm can be adapted to numerous Network
application prograns. W hope that the result of the experinment wll
lead to a future standard service that enbodi es the principles
described in this RFC

MOT| VATI ON

Application prograns require specific data I/O formats yet the
formats are different fromprogramto program W take the position
that the Network shoul d adapt to the individual programrequiremnments
rat her than changi ng each programto conply with a standard. This
position doesn’t preclude the use of standards that describe the
formats of regul ar nessage contents; it is merely an interpretation
of a standard as being a desirable node of operation but not a
necessary one.

In addition to differing programrequirenments, a format m smatch
probl em occurs where users wish to enploy many different Kkinds of
consoles to attach to a single service program It is desirable to
have the Network adapt to individual console configurations rather
than requiring uni que software packages for each consol e
transformation.

Ander son, et al. [Page 2]

RFC 166 Dat a Reconfiguration Service May 1971

One approach to providing adaptation is for those sites with
substantial conputing power to offer a data reconfiguration service;
this docunent is a specification of such a service.

The envi si oned nodus operandi of the service is that an applications
progranmer defines forns_ that describe data reconfigurations. The
service stores the forns by nanme. At a later tine, a user (perhaps a
non- progranmer) enpl oys the service to acconplish a particul ar
transformati on of a Network data stream sinply by calling the form
by nane.

W have attenpted to provide a notation tailored to sone specifically
needed i nstances of data reformatting while keeping the notation and
its underlying inplenentation within sonme utility range that is
bounded on the | ower end by a notation expressive enough to make the
experinmental service useful, and that is bounded on the upper end by
a notation short of a general purpose progranmm ng | anguage.

1. OVERVI EW OF THE DATA RECONFI GURATI ON SERVI CE
ELEMENTS OF THE DATA RECONFI GURATI ON SERVI CE

An inplenmentation of the Data Reconfiguration Service (DRS) includes
nodul es for connection protocols, a handler of sone requests that can
be made of the service, a conpiler and/or interpreter (called the
Form Machi ne) to act on those requests, and a file storage nodule for
saving and retrieving definitions of data reconfigurations (formns).

This section describes connection protocols and requests. The next
section covers the Form Machi ne | anguage in sonme detail. File
storage is not described in this docunment because it is transparent
to the use of the service an its inplenentation is different at each
DRS host .

CONCEPTUAL NETWORK CONNECTI ONS

There are three conceptual Network connections to the DRS, see Fig.
1

1) The control connection (CC) is between an originating user
and the DRS. Forns specifying data reconfigurations are
defined over this connection. The user indicates (once)
forms to be applied to data passing over the two
connections described bel ow.

2) The user connection (UC) is between a user process and the
DRS.

Ander son, et al. [Page 3]

RFC 166 Dat a Reconfiguration Service May 1971
3) The server connection (SC) is between the DRS and the
servi ng process.

Since the goal is to adapt the Network to user and server processes,
a mnimum of requirenents are inposed on the UC and SC

Fomm e o e oo oo - + Fo-m oo - + Fomm e oo +
| ORI G NATI NG cC | DRS | SC | SERVER |
| USER R | R | PROCESS |
Fomm e o e oo oo - + N Fo-m oo - + N Fomm e oo +
I / I
| uc/ <----- \
I / Vo
| L + \ |
TELNET --------- + | USER | +-- Sinplex or Duplex
Pr ot ocol | PROCESS | Connecti ons
Connecti on Fommm o - - +

Figure 1. DRS Network Connections

CONNECTI ON PROTOCOLS AND MESSAGE FORVATS

Over a control connection the dialog is directly between an
originating user and the DRS. Here the user is defining forms or
assi gning predefined forms to connections for reformatting.

The user connects to the DRS via the standard initial connection
protocol (ICP). Rather than going through a | ogger, the user calls
on a particular socket on which the DRS alway |istens. (Experinenta
socket nunbers will be published later.) DRS switches the user to
anot her socket pair.

Messages sent over a control connection are of the types and formats
specified for TELNET. (The data type code should specify ASC | --
the default.) Thus, a user at a termnal should be able to connect
to a DRS via his |local TELNET, for exanple, as shown in Fig. 2.

F S, + CC +--------- +
R I | TELNET |------- | DRS |
| U + S +
o +
USER
| (TERM NAL OR PROGRAM |
o +

Figure 2. A TELNET Connection to DRS

Ander son, et al. [Page 4]

RFC 166

Dat a Reconfiguration Service May 1971

When a user connects to DRS he supplies a six-character user ID (U D)
as a qualifier to guarantee the uni queness of his formnanmes. He

will initially have the follow ng conmands:

1. DEFFORM (form

2. ENDFORM (form
These two commands define a form the text of which is
chronol ogically entered between them The formis stored
in the DRS local file system

3. PURGE (form
The nanmed form as qualified by the current U D, is purged
fromthe DRS file system

4. LI STNAMES (Ul D)

The unqualified nanes of all fornms assigned to U D are
returned.

5. LI STFORM (form
The source text of a named formis returned.

6. DUPLEXCONNECT (user site, user receive socket, user method,
server site, server receive socket, server nethod, user-
to-server form name, server-to-user form nane)

A dupl ex connection is made between two processes using the
recei ve sockets and the sockets one greater. Method is
defined below. The fornms define the transformations on

t hese connecti ons.

7. S| MPLEXCONNECT (user site, user socket, user method, server
site, server socket, server nethod, form
A sinplex connection is nmade between the two sockets as
speci fi ed by nethod.

8. ABORT (site, receive socket)

The reconfiguration of data is term nated by cl osing both
the UC and SC specified in part in the conmand.
Ei t her one, both, or neither of the two parties specified in 6 or 7

may be at the sane host as the party issuing the request. Sites and
sockets specify user and server for the connection. Method indicates

Ander son

et al. [Page 5]

RFC 166 Dat a Reconfiguration Service May 1971

the way in which the connection is established.
The following rules apply to these commands:

1) Commands nay be abbreviated to the mini mum nunber of
characters to identify them uni quely.

2) Al commuands should be at the start of a line,.

3) Paraneters are enclosed in parentheses and separated by
commas.

4) | nbedded bl anks are ignored.

5) The paraneters are:

f orm nane 1-6 characters
u b 1-6 characters
Site 1-2 characters specifying
t he hexadeci mal host nunber
Socket 1-8 characters specifying the
hexadeci mal socket nunber
Met hod A single character

6) Method has the foll ow ng val ues:

C The sitel/socket is al ready connected
to the DRS as a dummy control connection
(shoul d not be the real control connection).
I Connect via the standard | CP (does not
apply to SI MPLEXCONNECT) .
D Connect directly via STR RTS.

The DRS will nake at least the followi ng mninm
responses to the user:

1) A positive or negative acknow edgenent after
each line (CR/ LF)
2) If aformfails or term nates
TERM NATE, ASCI| Host # as hex, ASCI| Socket # as hex,
ASCI | Return Code as decim
thus identifying at | east one end of the connecti on.

Ander son, et al. [Page 6]

RFC 166 Dat a Reconfiguration Service May 1971

EXAVPLE CONNECTI ON CONFI GURATI ONS

There are basically two nodes of DRS operation: 1) the user wishes to
establish a DRS UC/ SC connection(s) between the prograns and 2) the
user wants to establish the same connection(s) where he (his
terminal) is at the end of the UC or the SC. The latter case is
appropriate when the user wishes to interact fromhis ternmnal with
the serving process (e.g., a |logger).

In the first case (Fig. 1, where the originating user is either a
terminal or a program the user issues the appropriate CONNECT
conmand. The UC/ SC can be sinplex or dupl ex.

The second case has two possible configurations, shown in Figs. 3 and

Figure 3. Use of Dummy Control Connection

Fom e e - - +
+oomo-- + /| USER | cC +----- +
| |---/ | SIDE |-------- | | SC 4---w
| USER AR R + UC | DRS |-------- | SP |
| |---\ | SERVING |-------- | | oot
oo + \| SIDE | +e---- +

Fom e e - - +

Figure 4. Use of Server TELNET

In Fig. 3 the user instructs his TELNET to nmake two dupl ex
connections to DRS. One is used for control information (the CC) and
the other is a dumry. When he issues the CONNECT he references the
dummy dupl ex connection (UC) using the "already connected" option

In Fig. 4 the user has his TELNET (user side) call the DRS. Wen he
i ssues the CONNECT the DRS calls the TELNET (server side) which
accepts the call on behalf of the console. This distinction is known
only to the user since to the DRS the configuration Fig. 4 appears
identical to that in Fig. 1. Two points should be not ed:

1) TELNET protocol is needed only to define fornms and direct
connections. It is not required for the using and serving

Ander son, et al. [Page 7]

RFC 166 Dat a Reconfiguration Service May 1971

processes.
2) The using and serving processes need only a nini num of
nodi fication for Network use, i.e., an NCP interface.

1. THE FORM MACHI NE
| NPUT/ QUTPUT STREAMS AND FORMS

This section describes the syntax and semantics of fornms that specify
the data reconfigurations. The Form Machi ne gets an input stream
reformats the input stream according to a form describing the
reconfiguration, and emts the reformatted data as an output stream

In reading this section it will be helpful to envision the
application of a formto the data streamas depicted in Fig. 5. An
i nput stream pointer identifies the position of data (in the input
strean) that is being analyzed at any given tinme by a part of the
form Likew se, an output stream pointer |ocates data being emtted
in the output stream

AYA AYA
A || FORM [
T S ERLEEEEPEEE o
] bossisiiiioioooo -+ .
| | | CURRENT PART OF | |
INPUT | |<= CURRENT < -ccommmmmaooaa- > CURRENT => | | OUTPUT
STREAM| | PONTER | FORMBEING APPLIED | PONTER | | STREAM
| SREEPERPEPEEERPRRS -+ |
[T PR PP E PR PEP |
[T P PP E PR PEP |
|1 e |
WAV, WAV,

Figure 5. Application of Formto Data Streans

Ander son, et al. [Page 8]

RFC 166 Dat a Reconfiguration Service May 1971
FORM MACHI NE BNF SYNTAX
form = rule | rule form
rule ;= label inputstream outputstream;
| abel = |INTEGER | <null>
i nput stream = terms | <null>
terns = term]| ternms , term
out put stream = terms | <null>
term = identifier | identifier descriptor |
descriptor | conparator
identifier = an al pha character followed by O to 3
al phanunerics
descri pt or = (replicationexpression , datatype
val ueexpressi on , |engthexpression control)
conpar at or = (value connective value control)
(identifier *<=* control)
replicati onexpression = # | arithmeticexpression | <null>
dat at ype = B| O] X| E|] A
val ueexpr essi on = value | <null>
| engt hexpr essi on = arithneticexpression | <null>
connective = .LE | .LT. | .CGE. | .GI. | .EQ | .NE
val ue = Jliteral | arithneticexpression
arithnmeti cexpression = primary | prinmary operator
arithneti cexpression
primary = identifier | L(identifier) | V(identifier) |
| NTEGER
oper at or = +| -1 * |1/
literal = literaltype "string"
Anderson, et al. [Page 9]

RFC 166 Dat a Reconfiguration Service May 1971

literal type = B|] O] X| E| A
string 2= fromO to 256 characters
contr ol 1= = options | <null>
opti ons c:= S(where) | F(where) | U(where) |
S(where) , F(where) |
F(where) , S(where)
wher e c:= arithneticexpression | R(arithmeticexpression)

ALTERNATE SPECI FI CATI ON OF FORM MACHI NE SYNTAX

infinity
form = {rule}
1
1 1 1
rul e .= {INTEGER} {terns} {:terms} ;
0 0 0
infinity
terns o= term{,tern}
0
1
term ::= identifier | {identifier} descri ptor
0
| conparator
1
descri pt or .= ({arithneticexpression} , datatype ,
0
1 1 1
{value} , {lengthexpression} {:options}
0 0 0
1
conpar at or ::= (value connective value {:options}) |
0
1
(identifier .<=. value {:options})
0
connective ;= .LE | .LT. | .CGE | .GI. | .EQ | .NE
| engt hexpr essi on ©:= # | arithmeticexpression
dat at ype = B|] O] X| E|] A
val ue c:= literal | arithmeticexpression

Ander son, et al. [Page 10]

RFC 166 Dat a Reconfiguration Service May 1971

infinity
arithneti cexpression = primary {operator primary}
0
oper at or M O R A
primary ::= identifier | L(identifier) |
V(identifier) | |NTECGER
256
literal c:= literaltype "{CHARACTER} "
0
literal type ;= B|] O] X| A| E
1
opti ons c:= S(where) {,F(where)} |
0
1
F(where) {,S(where)} | U(where)
0
wher e ::= arithmeticexpression |
R(arithmeti cexpression)
3
identifier ;.= ALPHABETI C {ALPHAMERI C}
0
FORMVS

A formis an ordered set of rules.
form::= rule | rule form

The current rule is applied to the current position of the input
stream |If the (input streampart of a) rule fails to correctly
descri be the contents of the current input then another rule is made
current and applied to the current position of the input stream The
next rule to be made current is either explicitly specified by the
current termin the current rule or it is the next sequential rule by
default. Flow of control is nore fully described under TERM AND RULE
SEQUENCI NG

If the (input streampart of a) rule succeeds in correctly describing
the current input stream then sone data may be emitted at the
current position in the output streamaccording to the rule. The

i nput and out put stream pointers are advanced over the described and
emtted data, respectively, and the next rule is applied to the now
current position of the input stream

Application of the formis term nated when an explicit return
(R(arithneticexpression)) is encountered in a rule. The user and

Ander son, et al. [Page 11]

RFC 166 Dat a Reconfiguration Service May 1971

server connections are closed and the return code
(arithneticexpression) is sent to the originating user.

RULES

Arule is a replacenent, conparison, and/or an assignment operation
of the form shown bel ow.

rule ::= label inputstream outputstream

A label is the nanme of a rule and it exists so that the rule may be
referenced el sewhere in the formfor explicit rule transfer of
control. Labels are of the form bel ow

| abel ::= |INTEGER | <null>

The optional integer labels are in the range 0 >= | NTEGER >= 9999.
The rul es need not be | abeled in ascending nunerical order.

TERVS

The inputstream (describing the input streamto be matched) and the
out put stream (describing data to be enmitted in the output strean
consi st of zero or nore terns and are of the form shown bel ow.

i nput stream
out put stream
terns

terms | <null>
cterms | <null >
term| ternms , term

Ternms are of one of four formats as indicated bel ow.

term::= identifier | identifier descriptor |
descriptor | conparator

Term Format 1
The first termformat is shown bel ow.
identifier
The identifier is a synbolic reference to a previously identified
term(termformat 2) in the form It takes on the sane attributes
(value, length, type) as the termby that nane. Termformat 1 is

normal ly used to emt data in the output stream

Identifiers are forned by an al pha character followed by 0 to 3
al phanuneri c characters.

Ander son, et al. [Page 12]

RFC 166 Dat a Reconfiguration Service May 1971

Term Format 2
The second termformat is shown bel ow
identifier descriptor

Termformat 2 is generally used as an input streamterm but can be
used as an output streamterm

A descriptor is defined as shown bel ow.

descriptor ::= (replicationexpression, datatype,
val ueexpressi on, | engthexpression
control)

The identifier is the synbolic nanme of the termin the usua
progranm ng | anguage sense. It takes on the type, |length, value, and
replication attributes of the termand it may be referenced el sewhere
in the form

The replication expression, if specified, causes the unit val ue of
the termto be generated the nunber of tines indicated by the val ue
of the replication expression. The unit value of the term (quantity
to be replicated) is determned fromthe data type, val ue expression
and |l ength expression attributes. The data type defines the kind of
data being specified. The value expression specifies a nom nal val ue
that is augnented by the other termattributes. The length
expression deternines the unit length of the term (See the |IBM SRL
Form C28-6514 for a simlar interpretation of the pseudo instruction,
defined constant, after which the descriptor was nodel ed.)

The replication expression is defined bel ow

replicationexpression ::= # | arithmeticexpression | <null>
arithmeticexpression ::= primary | primary operator
arithneti cexpression
operator ::=+ | - | * | [/
primary ::= identifier | L(identifier) | V(identifier) |
| NTEGER

The replication expression is a repeat function applied to the
conbi ned data type value, and length expressions. |t expresses the
nunber of tines that the nominal value is to be repeated

The ternminal synbol # neans an arbitrary replication factor. It mnust

be explicitly termnated by a match or non-match to the input stream
This termnation may result fromthe sane or the followi ng term

Ander son, et al. [Page 13]

RFC 166 Dat a Reconfiguration Service May 1971

A null replication expression has the value of one. Arithnetic
expressions are evaluated fromleft-to-right with no precedence.

The L(identifier) is a length operator that generates a 32-bit binary
i nteger corresponding to the length of the termnanmed. The
V(identifier) is a value operator that generates a 32-bit binary

i nteger corresponding to the value of the termnaned. (See
Restrictions and Interpretations of Term Functions.) The val ue
operator is intended to convert character strings to their nunerica
correspondents.

The data type is defined bel ow.
datatype ::=B| O| X| E| A

The data type describes the kind of data that the termrepresents.
(I't is expected that additional data types, such as floating point

and user-defined types, will be added as needed.)
Data Type Meani ng Unit Length
B Bit string 1 bit
@] Bit string 3 bits
X Bit string 4 bits
E EBCDI C char act er 8 bits
A Network ASCI| character 8 bits

The val ue expression is defined bel ow

val ueexpression ::= value | <null>

value ::=literal | arithmeticexpression
literal ::=1literaltype "string"
literaltype ::=B| O| X| E| A

The val ue expression is the nom nal value of a termexpressed in the
format indicated by the data type. It is repeated according to the
replication expression

A null value expression in the input streamdefaults to the data
present in the input stream The data nust conply with the datatype
attri bute, however.

A null val ue expression generates padding according to Restrictions
and Interpretations of Term Functi ons.

The | ength expression is defined bel ow.

| engt hexpression ::= arithneticexpression | <null>

Ander son, et al. [Page 14]

RFC 166 Dat a Reconfiguration Service May 1971
The length expression states the length of the field containing the
val ue expression
If the Iength expression is less than or equal to zero, the term
succeeds but the appropriate stream pointer is not advanced.
Positive | engths cause the appropriate stream pointer to be advanced
if the term otherw se succeeds.

Control is defined under TERM AND RULE SEQUENCI NG

Term Format 3

Termformat 3 is shown bel ow.

descri ptor
It is identical to termformat 2 with the onission of the identifier
Termformat 3 is generally used in the output stream It is used in
the input streamwhere input data is to be passed over but not
retained for emission or |ater reference.

Term Fornat 4

The fourth termformat i s shown bel ow

conpar at or (val ue connective value control) |

(identifier *<=* value control)

val ue = literal | arithmeticexpression
literal =literaltype "string"

literal type =B| O] X| E| A

string = fromO to 256 characters

connective .LE. | .LT. | .G | .GI. | .EQ | .NE
The fourth termformat is used for assignment and conpari son.
The assi gnment operator *<=* assigns the value to the identifier
The connectives have their usual neaning. Values to be conpared nust
have the sanme type and length attributes or an error condition arises
and the formfails.

The Application of a Term

The elenents of a termare applied by the foll owi ng sequence of
st eps.

1. The data type, value expression, and | ength expression
toget her specify a unit value, call it Xx.

Ander son, et al. [Page 15]

RFC 166

In an

Dat a Reconfiguration Service May 1971

2. The replication expression specifies the nunber of tinmes x
is to be repeated. The value of the concatenated xs
beconmes y of length L.

3. If the termis an input streamtermthen the value of y of
length L is tested with the input val ue beginning at the
current input pointer position.

4. If the input value satisfies the constraints of y over
length L then the input value of length L becones the val ue
of the term

output streamterm the procedure is the sane except that the

source of input is the value of the tern(s) named in the val ue
expression and the data is emitted in the output stream

The above procedure is nodified to include a one term | ook-ahead

wher e

replicated values are of indefinite |length because of the

arbitrary synmbol, #.

Restricti

1

Ander son

ons and Interpretations of Term Functions

Terms having indefinite | engths because their values are
repeated according to the # synbol, nust be separated by sone
type-specific data such as a literal. (Aliteral isn't
specifically required, however. An arbitrary nunber of ASCl
characters could be term nated by a non-ASCI| character.)

Truncation and padding is as foll ows:

a) Character to character (A <-> E) conversion is left-
justified and truncated or padded on the right w th bl anks.

b) Character to nuneric and nuneric to nuneric conversions are
right-justified and truncated or padded on the left with
zeros.

c) Numeric to character conversions is right-justified and
| eft-padded with bl anks.

The following are ignored in a formdefinition over the contro
connecti on.

a) TELNET control characters.

b) Bl anks except w thin quotes.

c) [/* string */ is treated as conments except wi thin quotes.

The followi ng defaults prevail where the termpart is omtted.
a) The replication expression defaults to one.

b) # in an output streamtermdefaults to one.
c) The value expression of an input streamtermdefaults to

et al. [Page 16]

RFC 166 Dat a Reconfiguration Service May 1971

the value found in the input stream but the input stream
must conformto the data type and | ength expression. The
val ue expression of an output streamtermdefaults to
paddi ng only.

e) The length expression defaults to the size of the quantity
determ ned by the data type and val ue expression

f) Control defaults to the next sequential termif atermis
successfully applied; else control defaults to the next
sequential rule. |If _where_ evaluates to an undefined
_label _ the formfails.

5. Arithmetic expressions are evaluated left-to-right with no
pr ecedence.

6. The following limts prevail.

a) Binary lengths are <= 32 bits
b) Character strings are <= 256 8-bit characters
c) ldentifier names are <= 4 characters
d) Maxi mum nunber of identifiers is <= 256
e) Label integers are >= 0 and <= 9999

7. Val ue and |l ength operators product 32-bit binary integers. The
val ue operator is currently intended for converting A or E type
deci mal character strings to their binary correspondents. For
exanpl e, the value of E 12° would be 0...... 01100. The val ue
of EEAB would cause the formto fail

TERM AND RULE SEQUENCI NG

Sequencing may be explicitly controlled by including control in a

term
control = :options | <null>
options ::= S(where) | F(where) | U(where)
S(where) , F(where) |
F(where) , S(where)
wher e c:= arithneticexpression | R(arithmeticexpression)
S, F, and U denote success, fail, and unconditional transfers,
respectively. _Wiere_ evaluates to a _rule_ label, thus transfer can

be effected fromwithin a rule (at the end of a term) to the

begi nning of another rule. R nmeans terminate the formand return the
eval uated expression to the initiator over the control connection (if
still open).

If terms are not explicitly sequenced, the foll owing defaults
prevail .

Ander son, et al. [Page 17]

RFC 166 Dat a Reconfiguration Service May 1971

1) Wen a termfails go to the next sequential rule.

2) Wen a term succeeds go to the next sequenti al
termwithin the rule.

3) At the end of a rule, go to the next sequenti al
rul e.

Note in the follow ng exanple, the correl ati on between transfer of
control and novenent of the input pointer.

1 XYZ(,B,,8:S(2),F(3)) : XYZ :

2

3
The value of XYZ will never be emitted in the output stream since
control is transferred out of the rule upon either success or
failure. |If the termsucceeds, the 8 bits of input will be assigned

as the value of XYZ and rule 2 will then be applied to the sane input
streamdata. That is, since the conplete |left hand side of rule 1
was not successfully applied, the input stream pointer is not
advanced.

V. EXAMPLES
REMARKS

The followi ng exanples (fornms and also single rules) are sinple
representative uses of the Form Machine. The exanpl es are expressed
inatermper-line format only to aid the explanation. Typically, a
single rule nmight be witten as a single |ine.

FI ELD | NSERTI ON

To insert a field, separate the input into the two terns to allow the
inserted field between them For exanple, to do |line nunbering for a
121 character/line printer with a | eading carriage control character
use the follow ng form

(NUMB* <=*1) ; /*initialize |ine nunber counter to one*/
1 CC(,E ,1:F(R(99))), [/*pick up control character and save
as /

[*return a code of 99 upon exhaustion*/
LINE(,E , 121 : F(R(98))) /*save text as LINE*/

: CC, /*emt control character*/

(, E, NUMB, 2), /*emt counter in first two colums*/

(,E E.", 1), /*emt period after |ine nunber*/

(, E LINE, 117), /*emt text, truncated in 117 byte field*/
(NUMB* <=* NUMB+1: U(1)) ; /*increment line counter and go to

rul e one*/;;

Ander son, et al. [Page 18]

RFC 166 Dat a Reconfiguration Service May 1971

DELETI ON

Data to be deleted should be isolated as separate terns on the left,
so they may be onitted (by not emitting them) on the right.

(,8B,,8), /*isolate 8 bits to ignore*/
SAVE(, A, , 10) /*extract 10 ASCI| characters from
i nput streant/
:(, E, SAVE,) ; /*emit the characters in SAVE as EBCDI C

characters whose length defaults to the
l ength of SAVE, i.e., 10, and advance to
the next rul e*/

In the above exanple, if either input streamtermfails,
t he next sequential rule is applied.

VARI ABLE LENGTH RECORDS
Sone devices, termnals and prograns generate variable

Il ength records. The following rule picks up variable length
EBCDI C records and translates themto ASClI

CHAR(#, E, , 1), /[*pick up all (an arbitrary nunber of)
EBCDI C characters in the input streant/
(, X, X"FF", 2) /*foll owed by a hexadecimal Iliteral
FF (term nal signal)*/
:(, A CHAR)), [*emit themas ASCII*/
(, X, X"25",2); [*emit an ASCI| carriage return*/

STRI NG LENGTH COVPUTATI ON

It is often necessary to prefix a length field to an arbitrarily |ong
character string. The following rule prefixes an EBCDIC string with
a one-byte length field.

Q#,E 1), /*pick up all EBCDIC characters*/
TS(, X, X' FF", 2) /*followed by a hexadecimal literal, FF*/
(, B, L(Q+2,8), /*emit the length of the characters

plus the Iength of the literal plus
the length of the count field itself,
in an 8-bit field*/

Q /*emt the characters*/

TS, [*emt the termninal*/

Ander son, et al. [Page 19]

RFC 166 Dat a Reconfiguration Service May 1971

TRANSPCSI TI ON

It is often desirable to reorder fields, such as the follow ng
exanpl e.

QI El] 20)] R(! E!] lo)] S(! E!] 15)] T(l El] 5) Rl T! Sl Q 1
The terns are emtted in a different order
CHARACTER PACKI NG AND UNPACKI NG

In systems such as HASP, repeated sequences of characters are packed
into a count followed by the character, for nore efficient storage
and transm ssion. The first form packs nmultiple characters and the
second unpacks them

/*formto pack EBCDI C streans*/
[*returns 99 if OK input exhausted*/
/*returns 98 if illegal EBCD Ct/

/*1 ook for term nal signal FF which is not a | egal EBCDI C*/
[*duplication count nust be 0-254*/

1 (,XX'FF',2 @ S(R(99))) ;

/ *pi ck up an EBCDI C char/*
CHAR(,E, , 1) ;

/*get identical EBCDI C chars/*

LEN(#, E, CHAR, 1)

/*emit the count and the char/*

: (,B,L(LEN)+1,8), CHAR (:U(1));
/*end of fornf/;;

/*formto unpack EBCDIC streans*/

/*1 ook for termnal */

1 (,XX'FF',2: S(R(99))) ;

/*enmit character the nunber of tines indicated*/
/*by the count, in a field the | ength indicated*/
/*by the counter contents*/

CNT(,B,,8), CHAR(,E ,1) : (CNT,E CHAR 1:U(1));
[*failure of formnt/

(1 U(R(98))) ;;

[This RFC was put into machine readable formfor entry]
[into the online RFC archives by Sinpbne Demmel 03/98]

Ander son, et al. [Page 20]

