Net wor k Wor ki ng Group S. O Mlley
Request for Coments: 1263 L. Peterson
Uni versity of Arizona

Cct ober 1991

TCP EXTENSI ONS CONSI DERED HARMFUL

Status of this Meno

This meno provides information for the Internet conmunity. |t does
not specify an Internet standard. Distribution of this docunent is
unlimted.

Abstract
This RFC coments on recent proposals to extend TCP. It argues that

t he backward conpati bl e extensions proposed in RFC s 1072 and 1185
shoul d not be pursued, and proposes an alternative way to evolve the
Internet protocol suite. Its purpose is to stinulate discussion in
the Internet comunity.

1. Introduction

The rapid growh of the size, capacity, and conplexity of the
Internet has led to the need to change the existing protocol suite.
For example, the maxi mum TCP wi ndow size is no |onger sufficient to
efficiently support the high capacity links currently being planned
and constructed. One is then faced with the choice of either |eaving
the protocol alone and accepting the fact that TCP will run no faster
on high capacity links than on | ow capacity |links, or changing TCP.
This is not an isolated incident. W have counted at | east eight

ot her proposed changes to TCP (sone to be taken nore seriously than
ot hers), and the question is not whether to change the protocol
suite, but what is the npbst cost effective way to change it.

This RFC conpares the costs and benefits of three approaches to
maki ng these changes: the creation of new protocols, backward
conpati bl e protocol extensions, and protocol evolution. The next
section introduces these three approaches and enunerates the
strengt hs and weaknesses of each. The follow ng section describes
how we believe these three approaches are best applied to the many
proposed changes to TCP. Note that we have not witten this RFC as an
academ c exercise. It is our intent to argue agai nst acceptance of
the various TCP extensions, nost notably RFC s 1072 and 1185 [4, 5],
by describing a nore palatable alternative.

O Mal l ey & Peterson [Page 1]

RFC 1263 TCP Ext ensi ons Consi dered Har nf ul Cct ober 1991

2. Creation vs. Extension vs. Evolution
2.1. Protocol Creation

Protocol creation involves the design, inplenmentation

standardi zation, and distribution of an entirely new protocol. In
this context, there are two basic reasons for creating a new
protocol. The first is to replace an old protocol that is so outdated
that it can no |onger be effectively extended to performits original
function. The second is to add a new protocol because users are
maki ng demands upon the original protocol that were not envisioned by
t he designer and cannot be efficiently handled in terns of the
original protocol. For exanple, TCP was designed as a reliable

byt e-stream protocol but is commonly used as both a reliable record-
stream protocol and a reliable request-reply protocol due to the |ack
of such protocols in the Internet protocol suite. The performance
demands pl aced upon a byte-stream protocol in the new Internet
environnent nmakes it difficult to extend TCP to neet these new
appl i cati on denands.

The advantage of creating a new protocol is the ability to start with
a cl ean sheet of paper when attenpting to solve a conpl ex network
problem The designer, free fromthe constraints of an existing
protocol, can take nmaxi num advant age of nobdern network research in

t he basic al gorithns needed to solve the problem Even nore
inportantly, the inplementor is free to steal froma | arge nunber of
exi sting acadeni c protocols that have been devel oped over the years.
In sone cases, if truly new functionality is desired, creating a new
protocol is the only viable approach.

The nost obvi ous di sadvantage of this approach is the high cost of
standardi zing and distributing an entirely new protocol. Second,
there is the issue of making the new protocol reliable. Since new
protocol s have not undergone years of network stress testing, they
often contain bugs which require backward conpatible fixes, and
hence, the designer is back where he or she started. A third

di sadvant age of introducing new protocols is that they generally have
new i nterfaces which require significant effort on the part of the
Internet comunity to use. This alone is often enough to kill a new
pr ot ocol .

Finally, there is a subtle problemintroduced by the very freedom
provi ded by this approach. Specifically, being able to introduce a
new protocol often results in protocols that go far beyond the basic
needs of the situation. New protocols resenble Senate appropriations
bills; they tend to accurul ate nany anendnents that have nothing to
do with the original problem A good exanple of this phenonena is the
attenpt to standardize VMIP [1] as the Internet RPC protocol. Wile

O Mal l ey & Peterson [Page 2]

RFC 1263 TCP Ext ensi ons Consi dered Har nf ul Cct ober 1991

VMIP was a | arge protocol to begin with, the closer it got to
standardi zati on the nore features were added until it essentially
col | apsed under its own weight. As we argue bel ow, new protocols
should initially be mnimal, and then evolve as the situation

di ct at es.

2.2. Backward Conpati bl e Extensions

In a backward conpati bl e extension, the protocol is nodified in such
a fashion that the new version of the protocol can transparently
inter-operate with existing versions of the protocol. This generally
i nplies no changes to the protocol’s header. TCP slow start [3] is an
exanpl e of such a change. In a slightly nore rel axed version of
backward conpatibility, no changes are made to the fixed part of a
protocol’s header. Instead, either sone fields are added to the
variable length options field found at the end of the header, or

exi sting header fields are overloaded (i.e., used for nultiple

pur poses). However, we can find no real advantage to this technique
over sinply changing the protocol.

Backward conpati bl e extensions are wi dely used to nodify protocols
because there is no need to synchronize the distribution of the new
version of the protocol. The new version is essentially allowed to

di ffuse through the Internet at its own pace, and at |least in theory,
the Internet will continue to function as before. Thus, the explicit
distribution costs are linmted. Backward conpati bl e extensions al so
avoi d the bureaucratic costs of standardizing a new protocol. TCP is
still TCP and the approval cost of a nodification to an existing
protocol is much less than that of a new protocol. Finally, the very
difficulty of making such changes tends to restrict the changes to
the mnimal set needed to solve the current problem Thus, it is rare
to see unneeded changes nade when using this technique.

Unfortunately, this approach has several drawbacks. First, the tinme
to distribute the new version of the protocol to all hosts can be
quite long (forever in fact). This |eaves the network in a

het er ogeneous state for long periods of tine. If there is the
slightest inconpatibly between old and new versions, chaos can
result. Thus, the inplicit cost of this type of distribution can be
qui te high. Second, designing a backward conpati ble change to a new
protocol is extrenely difficult, and the inplenentations "tend toward
conpl exity and ugliness" [5]. The need for backward conpatibility
ensures that no code can every really be elinnated fromthe
protocol, and since such vestigial code is rarely executed, it is
often wong. Finally, nost protocols have limts, based upon the
design decisions of it inventors, that sinply cannot be side-stepped
in this fashion.

O Mall ey & Peterson [Page 3]

RFC 1263 TCP Ext ensi ons Consi dered Har nf ul Cct ober 1991

2.3. Protocol Evol ution

Protocol evolution is an approach to protocol change that attenpts to
escape the linmts of backward conpatibility without incurring all of
the costs of creating new protocols. The basic idea is for the
protocol designer to take an existing protocol that requires
nodi fi cati on and nake the desired changes wi thout nmaintaining
backward conpatibility. This drastically sinplifies the job of the
protocol designer. For exanple, the limted TCP wi ndow size coul d be
fixed by changing the definition of the w ndow size in the header
from1l6-bits to 32-bits, and re-conpiling the protocol. The effect of
backward conpatibility would be ensured by sinply keeping both the
new and ol d version of the protocol running until nost machi nes use
the new version. Since the change is small and invisible to the user
interface, it is atrivial problemto dynanically select the correct
TCP version at runtinme. How this is done is discussed in the next
secti on.

Protocol evolution has several advantages. First, it is by far the
sinpl est type of nodification to nake to a protocol, and hence, the
nodi fi cati ons can be nmade faster and are less likely to contain bugs.
There is no need to worry about the effects of the change on al

previ ous versions of the protocol. Al so, nobst of the protocol is
carried over into the new version unchanged, thus avoiding the design
and debuggi ng cost of creating an entirely new protocol. Second,
there is no artificial limt to the anount of change that can be made
to a protocol, and as a consequence, its useful lifetine can be
extended indefinitely. In a series of evolutionary steps, it is
possible to nake fairly radical changes to a protocol wthout
upsetting the Internet comunity greatly. Specifically, it is
possible to both add new features and renove features that are no

| onger required for the current environment. Thus, the protocol is
not condemmed to grow wi thout bound. Finally, by keeping the old
version of the protocol around, backward conpatibility is guaranteed.
The old code will work as well as it ever did.

Assumi ng the infrastructure described in the follow ng subsection,
the only real disadvantage of protocol evolution is the amunt of
menory required to run several versions of the sanme protocol
Fortunately, nenory is not the scarcest resource in nodern

wor kstations (it nmay, however, be at a premiumin the BSD kernel and
its derivatives). Since old versions may rarely if ever be executed,
the old versions can be swapped out to disk with little perfornmance
loss. Finally, since this cost is explicit, there is a huge incentive
to elimnate old protocol versions fromthe network.

O Mall ey & Peterson [Page 4]

RFC 1263 TCP Ext ensi ons Consi dered Har nf ul Cct ober 1991

2.4. Infrastructure Support for Protocol Evolution

The effective use of protocol evolution inplies that each protocol is
consi dered a vector of inplenentations which share the same top |evel
i nterface, and perhaps not nuch else. TCP[0O] is the current

i npl ementation of TCP and exists to provide backward conpatibility
with all existing machines. TCP[1l] is a version of TCP that is

optim zed for high-speed networks. TCP[O] is always present; TCP[1]
may or may not be. Treating TCP as a vector of protocols requires
only three changes to the way protocols are desi gned and i npl enent ed.

First, each version of TCP is assigned a unique id, but this idis
not given as an | P protocol nunber. (This is because IP s protocol
nunber field is only 8 bits long and could easily be exhausted.) The
"obvi ous" solution to this limtation is to increase |IP s protoco
nunber field to 32 bits. In this case, however, the obvious solution
is wong, not because of the difficultly of changing IP, but sinply
because there is a better approach. The best way to deal with this
problemis to increase the | P protocol nunber field to 32 bits and
move it to the very end of the IP header (i.e., the first four bytes
of the TCP header). A backward conpati bl e nodification wuld be nade
to I P such that for all packets with a special protocol nunber, say
77, 1P would |l ook into the four bytes following its header for its
de-nul tiplexing information. On systens which do not support a

nmodi fied I P, an actual protocol 77 would be used to performthe de-
mul tiplexing to the correct TCP version

Second, a version control protocol, called VICP, is used to sel ect
the appropriate version of TCP for a particular connection. VICP is
an exanple of a virtual protocol as introduced in [2]. Application
prograns access the various versions of TCP through VICP. Wen a TCP
connection is opened to a specific machine, VTCP checks its |ocal
cache to deternine the highest conmon version shared by the two
machines. If the target machine is in the cache, it opens that
version of TCP and returns the connection to the protocol above and
does not effect performance. |If the target machine is not found in

t he cache, VTCP sends a UDP packet to the other machi ne aski ng what
versions of TCP that machi ne supports. If it receives a response, it
uses that information to select a version and puts the information in
the cache. |If no reply is forthcom ng, it assunes that the other
machi ne does not support VICP and attenpts to open a TCP[0]
connection. VICP's cache is flushed occasionally to ensure that its
information is current.

Note that this is only one possible way for VICP to decide the right
version of TCP to use. Another possibility is for VICP to |earn the

right version for a particular host when it resolves the host’s nane.
That is, version infornmation could be stored in the Donain Name

O Mall ey & Peterson [Page 5]

RFC 1263 TCP Ext ensi ons Consi dered Har nf ul Cct ober 1991

System It is also possible that VICP night take the perfornance
characteristics of the network into consideration when selecting a
version; TCP[O] may in fact turn out to be the correct choice for a
| ow bandwi dt h net wor k.

Third, because our proposal would lead to a nore dynam cally changi ng
network architecture, a mechanismfor distributing new versions wll
need to be devel oped. This is clearly the hardest requirenent of the
infrastructure, but we believe that it can be addressed in stages.
More inportantly, we believe this problemcan be addressed after the
deci sion has been nade to go the protocol evolution route. In the
short term we are considering only a single new version of TCP---
TCP[1]. This version can be distributed in the same ad hoc way, and
at exactly the same cost, as the backward conpati bl e changes
suggested in RFC s 1072 and 1185.

In the mediumterm we envision the | AB approving new versions of TCP
every year or so. Gven this scenario, a sinple distribution
nmechani sm can be desi gned based on software distribution nechani sns

t hat have be devel oped for other environments; e.g., Unix RD ST and
Mach SUP. Such a nechani sm need not be available on all hosts.

I nstead, hosts will be divided into two sets, those that can quickly
be updated with new protocols and those that cannot. High
per f ormance nachi nes that can use high performance networks will need

the nost current version of TCP as soon as it is available, thus they
have incentive to change. O d nmachines which are too slow to drive a
hi gh capacity |lines can be ignored, and probably should be ignored.

In the long term we envision protocols being designed on an
application by application basis, without the need for centra
approval . In such a world, a conmon protocol inplenentation
environnent---a protocol backplane---is the right way to go. G ven
such a backpl ane, protocols can be automatically installed over the
network. While we claimto know how to build such an environnent,
such a discussion is beyond the scope of this paper.

2.5. Renarks

Each of these three nmethods has its advantages. Wen used in

conbi nation, the result is better protocols at a | ower overall cost.
Backward conpati bl e changes are best reserved for changes that do not
affect the protocol’s header, and do not require that the instance
running on the other end of the connection also be changed. Protocol
evol uti on should be the primary way of dealing with header fields
that are no |onger |arge enough, or when one algorithmis substituted
directly for another. New protocols should be witten to off | oad
unexpected user demands on existing protocols, or better yet, to

O Mall ey & Peterson [Page 6]

RFC 1263 TCP Ext ensi ons Consi dered Har nf ul Cct ober 1991

catch them before they start.

There are al so synergistic effects. First, since we know it is
possible to evolve a newly created protocol once it has been put in
pl ace, the pressure to add unnecessary features should be reduced.
Second, the ability to create new protocols renoves the pressure to
overextend a given protocol. Finally, the ability to evolve a
protocol renoves the pressure to maintain backward conpatibility
where it is really not possible.

3. TCP Extensions: A Case Study

This section exanmi nes the effects of using our proposed nethodol ogy
to inmplement changes to TCP. W will begin by analyzing the backward
conpati bl e extensions defined in RFC s 1072 and 1185, and proposing a
set of nmuch sinpler evolutionary nodifications. W also anal yze
several nore problematical extensions to TCP, such as Transacti onal
TCP. Finally, we point our sone areas of TCP which may require
changes in the future.

The evolutionary nodification to TCP that we propose includes all of
the functionality described in RFC s 1072 and 1185, but does not
preserve the header format. At the risk of being m sunderstood as
bel i eving backward conpatibility is a good idea, we also show how our
proposed changes to TCP can be folded into a backward conpati bl e

i npl enentation of TCP. W do this as a courtesy for those readers
that cannot accept the possibility of multiple versions of TCP.

3.1. RFC s 1072 and 1185
3.1.1. Round Trip Timng

In RFC 1072, a new ECHO option is proposed that all ows each TCP
packet to carry a timestanp in its header. This tinestanp is used to
keep a nore accurate estinate of the RTT (round trip tinme) used to
deci de when to re-transmt segnents. In the original TCP al gorithm
the sender manually tinmes a small nunber of sends. The resulting

al gorithm was quite conpl ex and does not produce an accurate enough
RTT for high capacity networks. The inclusion of a tinmestanp in every
header both sinplifies the code needed to calculate the RTT and

i nproves the accuracy and robustness of the al gorithm

The new al gorithm as proposed in RFC 1072 does not appear to have any
serious problens. However, the authors of RFC 1072 go to great
lengths in an attenpt to keep this nodification backward conpati bl e
with the previous version of TCP. They place an ECHO option in the

O Mall ey & Peterson [Page 7]

RFC 1263 TCP Ext ensi ons Consi dered Har nf ul Cct ober 1991

SYN segnent and state, "It is likely that nost inplenentations wll
properly ignore any options in the SYN segnent that they do not
understand, so new initial options should not cause problens" [4].
This statement does not exactly inspire confidence, and we consider
the addition of an optional field to any protocol to be a de-facto,
if not a de-jure, exanple of an evol utionary change. Optional fields
sinply attenpt to hide the basic inconpatibility inside the protocol,
it does not elimnate it. Therefore, since we are making an
evol uti onary change anyway, the only nodification to the proposed
algorithmis to nove the fields into the header proper. Thus, each
header will contain 32-bit echo and echo reply fields. Two fields are
needed to handl e bi-directional data streans.

3.1.2. Wndow Size and Sequence Nunber Space

Long Fat Networks (LFN s), networks which contain very high capacity
lines with very high |latency, introduce the possibility that the
nunber of bits in transit (the bandw dt h-delay product) coul d exceed
the TCP wi ndow size, thus making TCP the limting factor in network
performance. Wrse yet, the tine it takes the sequence nunbers to
wrap around could be reduced to a point below the MSL (nmaxi mum
segnent lifetine), introducing the possibility of old packets being
m stakenly accepted as new.

RFC 1072 extends the wi ndow size through the use of an inplicit
constant scaling factor. The wi ndow size in the TCP header is
multiplied by this factor to get the true wi ndow size. This

al gorithm has three problens. First, one nust prove that at all tines
the inplicit scaling factor used by the sender is the sane as the
receiver. The proposed al gorithm appears to do so, but the
conplexity of the algorithmcreates the opportunity for poor

i npl enentations to affect the correctness of TCP. Second, the use of
a scaling factor conplicates the TCP inplenentation in general, and
can have serious effects on other parts of the protocol

A final problemis what we characterize as the "quantum wi ndow

si zing" problem Assunming that the scaling factors will be powers of
two, the algorithmright shifts the receiver’s wi ndow before sending
it. This effectively rounds the wi ndow size down to the nearest

mul tiple of the scaling factor. For large scaling factors, say 64Kk,
this inplies that wi ndow values are all multiples of 64k and the

m ni mum wi ndow si ze is 64k; advertising a smaller windowis

i npossible. Wiile this is not necessarily a problem (and it seens to
be an extrene solution to the silly w ndow syndrone) what effect this
will have on the performance of high-speed network |inks is anyone’s
guess. W can imagine this extension leading to future papers
entitled "A Quantum Mechani cal Approach to Network Perfornmance"

O Mall ey & Peterson [Page 8]

RFC 1263 TCP Ext ensi ons Consi dered Har nf ul Cct ober 1991

RFC 1185 is an attenpt to get around the problem of the w ndow
wrappi ng too quickly without explicitly increasing the sequence
nunber space. Instead, the RFC proposes to use the tinmestanp used in
the ECHO option to weed out old duplicate nmessages. The al gorithm
presented in RFC 1185 is conplex and has been shown to be seriously
flawed at a recent End-to-End Research Group neeting. Attenpts are
currently underway to fix the algorithmpresented in the RFC. W
believe that this is a serious m stake.

W see two problenms with this approach on a very fundanental |evel
First, we believe that nmaki ng TCP depend on accurate cl ocks for
correctness to be a mstake. The Internet comunity has NO experience
with transport protocols that depend on cl ocks for correctness.
Second, the proposal uses two distinct schenmes to deal with old
dupl i cate packets: the sliding window al gorithmtakes care of "new'
ol d packets (packets fromthe current sequence nunber epoch) and the
timestanp algorithmdeals with "ol d" old packets (packets from

previ ous sequence nunber epochs). It is hard enough getting one of
these schemes to work nuch less to get two to work and ensure that
they do not interfere with one another.

In RFC 1185, the statenent is nade that "An obvious fix for the
probl em of cycling the sequence nunber space is to increase the size
of the TCP sequence nunber field." Using protocol evolution, the
obvious fix is also the correct one. The wi ndow size can be increased
to 32 bits by sinply changing a short to a long in the definition of
the TCP header. At the sane tine, the sequence nunber and

acknow edgnent fields can be increased to 64 bits. This change is
the mnimum conpl exity nodification to get the job done and requires
little or no analysis to be shown to work correctly.

On nmachines that do not support 64-bit integers, increasing the
sequence nunber size is not as trivial as increasing the wi ndow size.
However, it is identical in cost to the nodification proposed in RFC
1185; the high order bits can be thought of as an optinmal clock that
ticks only when it has to. Al so, because we are not dealing with
real time, the problenms with unreliable systemclocks is avoided. On
machi nes that support 64-bit integers, the original TCP code nay be
reused. Since only very high performance nachi nes can hope to drive
a communi cations network at the rates this nodification is designed
to support, and the new generation of RI SC m croprocessors (e.qg.

M PS R4000 and PA-RI SC) do support 64-bit integers, the assunption of
64-bit arithmetic may be nore of an advantage than a liability.

O Mall ey & Peterson [Page 9]

RFC 1263 TCP Ext ensi ons Consi dered Har nf ul Cct ober 1991

3.1.3. Selective Retransm ssi on

Anot her problemwith TCP's support for LFN' s is that the sliding

wi ndow al gorithm used by TCP does not support any form of selective
acknow edgnent. Thus, if a segnent is |lost, the total ampunt of data
that nmust be re-transmtted is sone constant tines the bandw dth-
del ay product, despite the fact that nobst of the segnents have in
fact arrived at the receiver. RFC 1072 proposes to extend TCP to
allow the receiver to return partial acknow edgnents to the sender in
the hope that the sender will use that information to avoid
unnecessary re-transm ssions.

It has been our experience on predictable |ocal area networks that
the performance of partial re-transm ssion strategies is highly non-
obvious, and it generally requires nore than one iteration to find a
decent algorithm It is therefore not surprising that the algorithm
proposed in RFC 1072 has sone problens. The proposed TCP extension
allows the receiver to include a short list of received fragnents
with every ACK. The idea being that when the receiver sends back a
normal ACK, it checks its queue of segnents that have been received
out of order and sends the relative sequence nunbers of conti guous
bl ocks of segments back to the sender. The sender then uses this
information to re-transnit the segnments transmitted but not listed in
t he ACK.

As specified, this algorithmhas two related problenms: (1) it ignores
the relative frequencies of delivered and dropped packets, and (2)
the list provided in the option field is probably too short to do
much good on networks with |arge bandw dt h-del ay products. In every
nodel of high bandw dth networks that we have seen, the packet | oss
rate is very low, and thus, the ratio of dropped packets to delivered
packets is very low. An algorithmthat returns ACKs as proposed is
sinmply going to have to send nore information than one in which the
recei ver returns NAKs.

This problemis conpounded by the short size of the TCP option field
(44 bytes). In theory, since we are only worried about high bandw dth
networ ks, returning ACKs instead of NAKs is not really a problenm the
bandwi dth is available to send any information that's needed. The
probl em cones when trying to conpress the ACK information into the 44
bytes all owed. The proposed extensions effectively conpresses the
ACK information by allow ng the receiver to ACK byte ranges rather
than segnents, and scaling the relative sequence nunbers of the re-
transnitted segnents. This makes it rmuch nore difficult for the
sender to tell which segnents should be re-transnitted, and
conplicates the re-transm ssion code. Mre inportantly, one should
never conpress small amounts of data being sent over a high bandw dth
network; it trades a scarce resource for an abundant resource. On

O Mall ey & Peterson [Page 10]

RFC 1263 TCP Ext ensi ons Consi dered Har nf ul Cct ober 1991

| ow bandwi dt h networ ks, selective retransm ssion is not needed and
t he SACK option should be disabl ed.

We propose two solutions to this problem First, the receiver can
examne its list of out-of-order packets and guess whi ch segnents
have been dropped, and NAK t hose segnents back to the sender. The
nunber of NAKs should be | ow enough that one per TCP packet shoul d be
sufficient. Note that the receiver has just as nmuch information as

t he sender about what packets should be retransmtted, and in any
case, the NAKs are sinply suggestions which have no effect on
correctness.

Qur second proposed nodification is to increase the offset field in
the TCP header from4 bits to 16 bits. This all ows 64k-bytes of TCP
header, which allows us to radically sinplify the selective re-
transni ssion al gorithm proposed in RFC 1072. The receiver can now
sinply send a list of 64-bit sequence nunbers for the out-of-order
segnents to the sender. The sender can then use this information to
do a partial retransm ssion w thout needing an ouji board to
translate ACKs into segnents. Wth the new header size, it may be
faster for the receiver to send a large list than to attenpt to
aggregate segnments into |arger bl ocks.

3.1.4. Header Modifications

The nodifications proposed above drastically change the size and
structure of the TCP header. This nmakes it a good tinme to re-think
the structure of the proposed TCP header. The primary goal of the
current TCP header is to save bits in the output stream Wen TCP was
devel oped, a hi gh bandwi dth network was 56kbps, and the key use for
TCP was terminal 1/O In both situations, mninml header size was

i nportant. Unfortunately, while the network has drastically

i ncreased in performance and the usage pattern of the network is now
vastly different, nost protocol designers still consider saving a few
bits in the header to be worth al nost any price. Qur basic goal is
different: to inprove performance by elimnating the need to extract

i nformati on packed into odd length bit fields in the header. Bel ow
is our first cut at such a nodification

The protocol id fieldis there to make further evol utionary

nodi fications to TCP easier. This field basically subsunes the
protocol nunber field contained in the | P header with a version
nunber. Each distinct TCP version has a different protocol id and
this field ensures that the right code is | ooking at the right
header. The offset field has been increased to 16 bits to support
the | arger header size required, and to sinplify header processing.
The code field has been extended to 16 bits to support nore options.

O Mal l ey & Peterson [Page 11]

RFC 1263 TCP Ext ensi ons Consi dered Har nf ul Cct ober 1991

The source port and destination port are unchanged. The size of both
t he sequence nunber and ACK fields have been increased to 64 bits.
The open wi ndow field has been increased to 32 bits. The checksum and
urgent data pointer fields are unchanged. The echo and echo reply
fields are added. The option field remains but can be nuch | arger
than in the old TCP. All headers are padded out to 32 bit

boundaries. Note that these changes increase the m ni mrum header size
from24 bytes (actually 36 bytes if the ECHO and ECHO reply options
defined in RFC 1072 are included on every packet) to 48 bytes. The
maxi mum header size has been increased to the nmaxi nrum segnent size.
We do not believe that the the increased header size will have a
nmeasur abl e ef fect on protocol perfornance.

0 1 2 3
01234567890123456789012345678901
T S o T s T T o S T il sl S T R S i i
| Prot ocol |ID |
T S o T s T T o S T il sl S T R S i i
| O f set | Code |
T S o T s T T o S T il sl S T R S i i
| Sour ce | Dest |
T S o T s T T o S T il sl S T R S i i

Seq

T i S o e iy S S S S S S T i i S
Ack

—_—

I

L

I

!l-- T ST e S AT I T o S S S S S i S S S s
| W ndow |

T ST S e T S Tk a S S S S e T
| Checksum | Ur gent |

T ST S e T S Tk a S S S S e T
| Echo |

T ST S e T S Tk a S S S S e T
| Echo Reply |

T ST S e T S Tk a S S S S e T
| Options Pad |

T ST S e T S Tk a S S S S e T

3.1.5. Backward Conpatibility

The nost |ikely objection to the proposed TCP extension is that it is
not backward conpatible with the current version of TCP, and nobst

i mportantly, TCP' s header. In this section we will present three
versions of the proposed extension with increasing degrees of
backward conpatibility. The final version will conbine the sane
degree of backward conpatibility found in the protocol described in

O Mal l ey & Peterson [Page 12]

RFC 1263 TCP Ext ensi ons Consi dered Har nf ul Cct ober 1991

RFC s 1072/ 1185, with the much sinpler semantics described in this
RFC.

We believe that the best way to preserve backward conpatibility is to
| eave all of TCP al one and support the transparent use of a new
protocol when and where it is needed. The basic schenme is the one
described in section 2.4. Those machi nes and operating systens that
need to support high speed connections should inpl enment sonme genera
protocol infrastructure that allows themto rapidly evolve protocols.
Machi nes that do not require such service sinply keep using the

exi sting version of TCP. A virtual protocol is used to manage the use
of multiple TCP versions.

Thi s approach has several advantages. First, it guarantees backward
conmpatibility with ALL existing TCP versions because such

i npl ementations will never see strange packets with new options.
Second, it supports further nodification of TCP with little

addi tional costs. Finally, since our version of TCP will nore closely
resenbl e the existing TCP protocol than that proposed in RFC s

1072/ 1185, the cost of maintaining two sinple protocols will probably
be I ower than maintaining one conplex protocol. (Note that wi th high
probability you still have to nmaintain two versions of TCP in any
case.) The only additional cost is the menory required for keeping
around two copies of TCP

For those that insist that the only efficient way to inplenment TCP
nodi fications is in a single nonolithic protocol, or those that
believe that the space requirenments of two protocols would be too
great, we sinply migrate the virtual protocol into TCP. TCP is

nodi fied so that when opening a connection, the sender uses the TCP
VERSI ON option attached to the SYN packet to request using the new
version. The receiver responds with a TCP VERSION ACK in the SYN ACK
packet, after which point, the new header format described in Section
3.1.4 is used. Thus, there is only one version of TCP, but that
version supports nultiple header formats. The conplexity of such a
protocol would be no worse than the protocol described in RFC

1072/ 1185. It does, however, make it nore difficult to nake
addi ti onal changes to TCP.

Finally, for those that believe that the preservation of the TCP s
header format has any intrinsic value (e.g., for those that don’t
want to re-programtheir ethernet nonitors), a header conpatible
version of our proposal is possible. One sinply takes all of the
addi tional information contained in the header given in Section 3.1.4
and places it into a single optional field. Thus, one could define a
new TCP option which consists of the top 32 bits of the sequence and
ack fields, the echo and echo_reply fields, and the top 16 bits of
the wi ndow field. This nodification nakes it nore difficult to take

O Mall ey & Peterson [Page 13]

RFC 1263 TCP Ext ensi ons Consi dered Har nf ul Cct ober 1991

advant age of machines with 64-bit address spaces, but at a mi ni num
will be just as easy to process as the protocol described in RFC
1072/ 1185. The only restriction is that the size of the header
option field is still limted to 44 bytes, and thus, selective
retransm ssion using NAKs rather than ACKs will probably be required.

The key observation is that one should nake a protocol extension
correct and sinple before trying to make it backward conpatible. As
far as we can tell, the only advantages possessed by the protocol
described in RFC 1072/ 1185 is that its typical header, size including
options, is 8 to 10 bytes shorter. The price for this "advantage" is
a protocol of such conplexity that it nmay prove inpossible for nornal
humans to inplenment. Trying to maintain backward conpatibility at
every stage of the protocol design process is a serious m stake.

3.2. TCP Over Extension

Anot her potential problemw th TCP that has been di scussed recently,
but has not yet resulted in the generation of an RFC, is the
potential for TCP to grab and hold all 2**16 port nunmbers on a given
machi ne. This problemis caused by short port nunbers, |ong MsLs,
and the misuse of TCP as a request-reply protocol. TCP must hold onto
each port after a close until all possible nmessages to that port have
di ed, about 240 seconds. Even worse, this tinme is not decreasing with
i ncrease network performance. Wth new fast hardware, it is possible
for an application to open a TCP connection, send data, get a reply,
and close the connection at a rate fast enough to use up all the
ports in less than 240 seconds. This usage pattern is generated by
peopl e using TCP for sonething it was never intended to do---
guar ant eei ng at-nost-once semantics for renote procedure calls.

The proposed solution is to enbed an RPC protocol into TCP while
preserving backward conpatibility. This is done by piggybacking the
request nessage on the SYN packet and the reply nessage on the SYNMN
ACK packet. This approach suffers fromone key problem it reduces
the probability of a correct TCP inplenentation to near 0. The basic
probl em has nothing to do with TCP, rather it is the lack of an

I nternet request-reply protocol that guarantees at-npst-once

semanti cs.

We propose to solve this problemby the creation of a new protocol
This has already been attenpted with VMIP, but the size and

conmpl exity of VMIP, coupled with the process currently required to
standardi ze a new protocol doonmed it fromthe start. |Instead of
solving the general problem we propose to use Sprite RPC [7], a nuch
sinpl er protocol, as a means of off-1|oading inappropriate users from
TCP.

O Mal l ey & Peterson [Page 14]

RFC 1263 TCP Ext ensi ons Consi dered Har nf ul Cct ober 1991

The basic design would attenpt to preserve as nmuch of the TCP
interface as possible in order that current TCP (mis)users could be
switched to Sprite RPC without requiring code nodification on their
part. A virtual protocol could be used to select the correct protocol
TCP or Sprite RPCif it exists on the other machine. A backward
conpati bl e nmodification to TCP could be nmade which woul d sinply
prevent it fromgrabbing all of the ports by refusing connections.
This woul d encourage TCP abusers to use the new protocol

Sprite RPC, which is designed for a |ocal area network, has two

probl ems when extended into the Internet. First, it does not have a
usefully flow control algorithm Second, it |acks the necessary
semantics to reliably tear down connections. The |lack of a tear down
nmechani sm needs to be solved, but the flow control problemcould be
dealt with in later iterations of the protocol as Internet blast
protocols are not yet well understood; for now, we could sinple limt
the size of each nessage to 16k or 32k bytes. This m ght also be a
good place to use a deconposed version of Sprite RPC [2], which
exposes each of these features as separate protocols. This would
permt the quick change of algorithms, and once the protocol had
stabilized, a nonolithic version could be constructed and distributed
to replace the deconposed version

In other words, the basic strategy is to introduce as sinple of RPC
protocol as possible today, and | ater evolve this protocol to address
the known [imtations.

3.3. Future Moudifications

The header prediction algorithmshould be generalized so as to be

| ess sensitive to changes in the protocols header and al gorithm
There al nost seens to be as nmuch effort to nmake all nodifications to
TCP backward conpatible with header prediction as there is to nake

t hem backward conpatible with TCP. The question that needs to be
answered is: are there any changes we can nmade to TCP to make header
prediction easier, including the addition of information into the
header. In [6], the authors showed how one m ght generalize
optimstic blast from VMIP to al nost any protocol that perforns
fragnentation and reassenbly. Generalizing header prediction so that
it scales with TCP nodification would be step in the right direction

It is clear that an evol utionary change to increase the size of the
source and destination ports in the TCP header will eventually be
necessary. W also believe that TCP could be nmade significantly
sinpl er and nore flexible through the elimnation of the pseudo-
header. The solution to this problemis to sinply add a length field
and the I P address of the destination to the TCP header. It has al so

O Mall ey & Peterson [Page 15]

RFC 1263 TCP Ext ensi ons Consi dered Har nf ul Cct ober 1991

been nentioned that better and sinpler TCP connection establishnent

al gorithnms would be useful. Sone formof reliable record stream
protocol shoul d be devel oped. Perform ng sliding wi ndow and fl ow
control over records rather than bytes would provi de numnerous
opportunities for optim zations and allow TCP to return to its
original purpose as a byte-streamprotocol. Finally, it has becone
clear to us that the current Internet congestion control strategy is
to use TCP for everything since it is the only protocol that supports
congestion control. One of the primary reasons many "new protocol s"
are proposed as TCP options is that it is the only way to get at
TCP' s congestion control. At some point, a TCP-independent congestion
control schene nust be inplenmented and one m ght then be able to
renove the existing congestion control from TCP and radically
sinmplify the protocol.

4. Discussion

One obvious side effect of the changes we propose is to increase the
size of the TCP header. In sone sense, this is inevitable; just about
every field in the header has been pushed to its linmit by the radical
grom h of the network. However, we have made very little effort to
make the minimal changes to solve the current problem In fact, we
have tended to sacrifice header size in order to defer future changes
as long as possible. The problemw th this is that one of TCP s
clainms to fane is its efficiency at sending small one byte packets
over sl ow networks. Increasing the size of the TCP header will
inevitably result in sonme increase in overhead on snall packets on

sl ow networks. Cl ark anbng others have stated that they see no
fundamental performance limtations that would prevent TCP from
supporting very high speed networks. This is true as far as it goes;
there seenms to be a direct trade-off between TCP performance on high
speed networks and TCP perfornmance on sl ow speed networks. The
dynamic range is sinply too great to be optimally supported by one
protocol. Hence, in keeping around the old version of TCP we have
effectively split TCP into two protocols, one for high bandw dth
lines and the other for |ow bandw dth |ines.

Anot her potential argunment is that all of the changes nentioned above
shoul d be packaged together as a new version of TCP. This version
coul d be standardi zed and we could all go back to the status quo of
stabl e unchangi ng protocols. While to a certain extent this is

i nevitable---there is a backlog of necessary TCP changes because of

the current |ogistical problens in nodifying protocols---it is only
begs the question. The status quo is sinply unacceptably static;
there will always be future changes to TCP. Evolutionary change wil |

also result in a better and nore reliable TCP. Mking small changes
and distributing themat regular intervals ensures that one change

O Mall ey & Peterson [Page 16]

RFC 1263 TCP Ext ensi ons Consi dered Har nf ul Cct ober 1991

has actually been stabilized before the next has been made. It also
presents a nore bal anced workl oad to the protocol designer; rather

t han desi gni ng one new protocol every 10 years he makes annua
protocol extensions. It will also eventually make protoco
distribution easier: the basic problemw th protocol distribution now
is that it is done so rarely that no one knows howto do it and there
is no incentive to develop the infrastructure needed to performthe
task efficiently. Wile the first protocol distribution is al nbst
guaranteed to be a disaster, the problemw |l get easier with each
addi tional one. Finally, such a new TCP woul d have the sanme probl ens
as VMIP did; a radically new protocol presents a bigger target.

The violation of backward conpatibility in systens as conplex as the
Internet is always a serious step. However, backward conpatibility is
a technique, not a religion. Two facts are often overl ooked when
backward conpatibility gets out of hand. First, violating backward
conmpatibility is always a big win when you can get away with it. One
of the key advantages of RI SC chips over CISC chips is sinply that
they were not backward conpatible with anything. Thus, they were not
bound by desi gn deci si ons made when conpilers were stupid and rea

men progranmed in assenbler. Second, one is going to have to break
backward conpatibility at some point anyway. Every system has somne
headroom |l im tations which result in either stagnation (IBM nmainframe
software) or even worse, accidental violations of backward
conpatibility.

O course, the biggest problemw th our approach is that it is not
conpatible with the existing standardi zati on process. W hope to be
able to design and distribute protocols in less tinme than it takes a
standards conmittee to agree on an acceptable neeting tine. This is
i nevitabl e because the basic problemw th networking is the

st andardi zati on process. Over the last several years, there has been
a push in the research community for |ightweight protocols, when in
fact what is needed are |ightweight standards. Al so note that we
have not proposed to inplenment sone entirely new set of "superior"
comuni cati ons protocols, we have sinply proposed a system for naking
necessary changes to the existing protocol suites fast enough to keep

up with the underlying change in the network. 1In fact, the first
standards organi zation that realizes that the primary inpedinent to
standardi zation is poor |ogistical support will probably w n.

5. Concl usi ons

The nost inportant conclusion of this RFC is that protocol change
happens and is currently happening at a very respectable clip. Wile
all of the changes given as exanple in this docunent are from TCP
there are many other protocols that require nodification. |In a nore

O Mal l ey & Peterson [Page 17]

RFC 1263 TCP Ext ensi ons Consi dered Har nf ul Cct ober 1991

6.

[1]

[2]

prosai ¢ donain, the tel ephone conpany is running out of phone
nunbers; they are being overrun by fax machi nes, nodens, and cars.
The underlying cause of these problens seens to be an consi stent
exponential increase alnpst all network metrics: nunber of hosts,
bandwi dt h, host performance, applications, and so on, conmbined with
an attenpt to run the network with a static set of unchangi ng network
protocols. This has been shown to be inpossible and one can al nost
feel the pressure for protocol change building. W sinply propose to
explicitly deal with the changes rather keep trying to hold back the
fl ood.

O al nost equal inportance is the observation that TCP is a protoco
and not a platformfor inplenenting other protocols. Because of a

| ack of any alternatives, TCP has beconme a de-facto platformfor

i npl enenting other protocols. It provides a vague standard interface
with the kernel, it runs on many machi nes, and has a well defined
distribution path. O herw se sane peopl e have proposed Bounded Ti ne
TCP (an unreliable byte stream protocol), Sinplex TCP (which supports
data in only one direction) and Miulti-cast TCP (too horrible to even
consider). Al of these protocols probably have their uses, but not
as TCP options. The fact that a |large nunber of people are willing to
use TCP as a protocol inplenentation platformpoints to the desperate
need for a protocol independent platform

Finally, we point out that in our research we have found very little
difference in the actual technical work involved with the three
proposed net hods of protocol nodification. The anmpunt of work

i nvolved in a backward conpati ble change is often nore than that
required for an evolutionary change or the creation of a new
protocol. Even the distribution costs seemto be identical. The
primary cost difference between the three approaches is the cost of
getting the nodification approved. A protocol nodification, no nmatter
how extensive or bizarre, seenms to incur nmuch | ess cost and risk. It
is time to stop changing the protocols to fit our current way of

t hi nki ng, and start changing our way of thinking to fit the

pr ot ocol s.

Ref er ences

Cheriton D., "VMIP: Versatile Message Transaction Protocol", RFC
1045, Stanford University, February 1988.

Hut chi nson, N., Peterson, L., Abbott, M, and S. O Mlley, "RPCin
t he x-Kernel: Evaluating New Design Techni ques", Proceedings of the
12t h Synposi um on Qperating System Principles, Pgs. 91-101,

O Mall ey & Peterson [Page 18]

RFC 1263 TCP Ext ensi ons Consi dered Har nf ul

Decenber 1989.

[3] Jacobson, V., "Congestion Avoidance and Control",
August 1988.

[4] Jacobson, V., and R Braden, "TCP Extensions for
RFC 1072, LBL, 1SI, October 1988.

Cct ober

1991

S| GCOW ' 88,

Long- Del ay Pat hs",

[5] Jacobson, V., Braden, R, and L. Zhang, "TCP Extensions for Hi gh-

Speed Pat hs", RFC 1185, LBL, ISI, PARC, Cctober 1990.

[6] O Milley, S., Abbott, M, Hutchinson, N, and L.

2, Pgs. 57-75, Decenber 1990.

[7] Welch, B., "The Sprite Renpte Procedure Call Systeni,
86/ 302, University of California at Berkeley, June 1988.

7. Security Considerations

Security issues are not discussed in this neno.

8. Authors’' Addresses

Larry L. Peterson

Uni versity of Arizona

Depart nent of Conputer Sciences
Tucson, AZ 85721

Phone: (602) 621-4231
EMail: |l p@s. arizona. edu

Sean O Mal |l ey

Uni versity of Arizona

Depart nent of Conputer Sciences
Tucson, AZ 85721

Phone: 602-621-8373
EMai | : sean@s. ari zona. edu

O Mall ey & Peterson

Pet er son,
sparent Blast Facility", Journal of |nternetworking,

"A Tran-
1, No.

UCB/ CSD

[Page 19]

