Net wor k Wor ki ng Group David D. dark
Request for Comments: 969 Mark L. Lanbert
Li xi a Zhang

M |. T. Laboratory for Conputer Science

Decenber 1985

NETBLT: A Bul k Data Transfer Protocol

1. STATUS OF THI S MEMO

This RFC suggests a proposed protocol for the ARPA-Internet
comuni ty, and requests discussion and suggestions for inprovenents.
This is a prelimnary discussion of the NETBLT protocol. It is
publ i shed for discussion and coment, and does not constitute a
standard. As the proposal nmay change, inplenentation of this
docunent is not advised. Distribution of this nmeno is unlinited.

2. | NTRODUCTI ON

NETBLT (Network Bl ock Transfer) is a transport |evel protocol
intended for the rapid transfer of a large quantity of data between
conmputers. It provides a transfer that is reliable and fl ow
controlled, and is structured to provide maxi mum throughput over a
wi de variety of networks.

The protocol works by opening a connection between two clients the
sender and the receiver), transferring the data in a series of |arge
data aggregates called buffers, and then cl osing the connection.
Because the amount of data to be transferred can be arbitrarily
large, the client is not required to provide at once all the data to
the protocol nodule. |Instead, the data is provided by the client in
buffers. The NETBLT | ayer transfers each buffer as a sequence of
packets, but since each buffer is conposed of a |arge nunber of
packets, the per-buffer interaction between NETBLT and its client is
far more efficient than a per-packet interaction would be.

Inits sinplest form a NETBLT transfer works as foll ows. The
sending client |loads a buffer of data and calls down to the NETBLT
layer to transfer it. The NETBLT | ayer breaks the buffer up into
packets and sends these packets across the network in |Internet
datagrans. The receiving NETBLT | ayer | oads these packets into a
mat chi ng buffer provided by the receiving client. Wen the |ast
packet in the buffer has been transmtted, the receiving NETBLT
checks to see that all packets in that buffer have arrived. |If sone
packets are missing, the receiving NETBLT requests that they be
resent. Wien the buffer has been conpletely transmtted, the
receiving client is notified by its NETBLT |ayer. The receiving
client disposes of the buffer and provides a new buffer to receive
nmore data. The receiving NETBLT notifies the sender that the buffer
arrived, and the sender prepares and sends the next buffer in the

Cark & Lanmbert & Zhang [Page 1]

RFC 969 Decenber 1985
NETBLT: A Bul k Data Transfer Protocol

same manner. This continues until all buffers have been sent, at
which tinme the sender notifies the receiver that the transnm ssion has
been conpleted. The connection is then closed.

As descri bed above, the NETBLT protocol is "lock-step"; action is
halted after a buffer is transmtted, and begins again after
confirmation is received fromthe receiver of data. NETBLT provides
for nultiple buffering, in which several buffers can be transmtted
concurrently. Miltiple buffering nakes packet flow essentially
conti nuous and can inprove perfornmance narkedly.

The remai nder of this docunent describes NETBLT in detail. The next
sections describe the phil osophy behind a nunber of protocol
features: packetization, flow control, reliability, and connection
managenent. The final sections describe the protocol formt.

3. BUFFERS AND PACKETS

NETBLT is designed to pernit transfer of an essentially arbitrary
amount of data between two clients. During connection setup the
sendi ng NETBLT can optionally informthe receiving NETBLT of the
transfer size; the maxinmumtransfer length is inposed by the field
width, and is 2**32 bytes. This limt should pernit any practi cal
application. The transfer size paraneter is for the use of the
receiving client; the receiving NETBLT makes no use of it. A NETBLT
receiver accepts data until told by the sender that the transfer is
conpl et e.

The data to be sent nust be broken up into buffers by the client.
Each buffer nust be the sane size, save for the last buffer. During
connection setup, the sending and receiving NETBLTs negotiate the
buffer size, based on limts provided by the clients. Buffer sizes
are in bytes only; the client is responsible for breaking up data
into buffers on byte boundari es.

NETBLT has been desi gned and shoul d be inplenented to work with
buffers of arbitrary size. The only fundanental limtation on buffer
si ze should be the anpbunt of nmenory available to the client. Buffers
shoul d be as |large as possible since this nmininzes the nunber of
buffer transm ssions and therefore inproves performance.

NETBLT is designed to require a mnimumof its own nenory, allow ng
the client to allocate as nuch nmenory as possible for buffer storage.
In particular, NETBLT does not keep buffer copies for retransm ssion
purposes. Instead, data to be retransnitted is recopied directly

Cark & Lanmbert & Zhang [Page 2]

RFC 969 Decenber 1985
NETBLT: A Bul k Data Transfer Protocol

fromthe client buffer. This does nean that the client cannot
rel ease buffer storage piece by piece as the buffer is sent, but this
has not proved a problemin prelimnary NETBLT inpl enentati ons.

Buffers are broken down by the NETBLT | ayer into sequences of DATA
packets. As with the buffer size, the packet size is negotiated

bet ween the sending and receiving NETBLTS during connection setup
Unli ke buffer size, packet size is visible only to the NETBLT | ayer.

Al'l DATA packets save the |ast packet in a buffer nust be the sane
size. Packets should be as |arge as possible, since in npst cases
(including the prelimnary protocol inplenmentation) performance is
directly related to packet size. At the sanme tine, the packets
shoul d not be so large as to cause Internet fragnentation, since this
normal | y causes performance degrada- tion.

Al'l buffers save the last buffer must be the sane size; obviously the
| ast buffer can be any size required to conplete the transfer. Since
the receiving NETBLT does not know the transfer size in advance, it
needs sone way of identifying the |ast packet in each buffer. For
this reason, the | ast packet of every buffer is not a DATA packet but
rat her an LDATA packet. DATA and LDATA packets are identical save
for the packet type.

4. FLOW CONTROL

NETBLT uses two strategies for flow control, one internal and one at
the client |evel

The sending and receiving NETBLTs transmit data in buffers; client
flow control is therefore at a buffer level. Before a buffer can be
transnitted, NETBLT confirns that both clients have set up matching
buffers, that one is ready to send data, and that the other is ready
to receive data. Either client can therefore control the flow of
data by not providing a new buffer. Cients cannot stop a buffer
transfer while it is in progress.

Since buffers can be quite large, there has to be another method for
flow control that is used during a buffer transfer. The NETBLT | ayer
provides this formof flow control

There are several flow control problens that could arise while a
buffer is being transmtted. |If the sending NETBLT is transferring
data faster than the receiving NETBLT can process it, the receiver’s
ability to buffer unprocessed packets could be overfl owed, causing
packets to be lost. Sinilarly, a slow gateway or internediate
network coul d cause packets to collect and overfl ow network packet

Cark & Lanbert & Zhang [Page 3]

RFC 969 Decenber 1985
NETBLT: A Bul k Data Transfer Protocol

buffer space. Packets will then be lIost within the network,
degradi ng perfornmance. This problemis particularly acute for NETBLT
because NETBLT buffers will generally be quite large, and therefore
conposed of nany packets.

A traditional solution to packet flow control is a window system in
whi ch the sending end is pernitted to send only a certain nunber of
packets at a time. Unfortunately, flow control using w ndows tends
to result in low throughput. Wndows rnust be kept small in order to
avoi d overfl owi ng hosts and gateways, and cannot easily be updat ed,
since an end-to-end exchange is required for each change.

To permit high throughput over a variety of networks and gat eways of
differing speeds, NETBLT uses a novel flow control ethod: rate
control. The transmission rate is negotiated by the sendi ng and
recei ving NETBLTs during connection setup and after each buffer
transm ssion. The sender uses tiners, rather than nmessages fromthe
receiver, to maintain the negotiated rate.

Inits sinplest form rate control specifies a mninmumtinme period
per packet transm ssion. This can cause performance problens for
several reasons: the transmission tinme for a single packet is very
smal |, frequently smaller than the granularity of the timng
mechani sm Al so, the overhead required to maintain timng nmechani sns
on a per packet basis is relatively high, which degrades performance.

The solution is to control the transm ssion rate of groups of
packets, rather than single packets. The sender transmits a burst of
packets over negotiated interval, then sends another burst. In this
way, the overhead decreases by a factor of the burst size, and the
per-burst transmission rate is |large enough that tini ng mechani sns
will work properly. The NETBLT s rate control therefore has two
parts, a burst size and a burst rate, with (burst size)/(burst rate)
equal to the average transm ssion rate per packet.

The burst size and burst rate should be based not only on the packet
transni ssion and processi ng speed which each end can handle, but also
on the capacities of those gateways and networks internediate to the
transfer. Following are sone intuitive values for packet size,

buffer size, burst size, and burst rate.

Packet sizes can be as snmall as 128 bytes. Performance with packets
this small is al nost al ways bad, because of the high per-packet
processi ng overhead. Even the default Internet Protocol packet size
of 576 bytes is barely big enough for adequate performance. Most

Cark & Lanbert & Zhang [Page 4]

RFC 969 Decenber 1985
NETBLT: A Bul k Data Transfer Protocol

networ ks do not support packet sizes rmuch |arger than one or two
t housand bytes, and packets of this size can also get fragnmented when
traveling over internedi ate networks, degradi ng perfornance.

The size of a NETBLT buffer is linmted only by the anount of menory
available to a client. Theoretically, buffers of 100K bytes or nore
are possible. This would nmean the transm ssion of 50 to 100 packets
per buffer.

The burst size and burst rate are obviously very machi ne dependent.
There is a certain anmount of transm ssion overhead in the sending and
recei ving machi nes associated with maintaining tinmers and schedul i ng
processes. This overhead can be minimzed by sending packets in

| arge bursts. There are also limtations inposed on the burst size
by the number of avail able packet buffers. On nost nodern operating
systens, a burst size of between five and ten packets should reduce
the overhead to an acceptable level. |In fact, a prelimnary NETBLT

i npl enentation for the |1 BM PC/ AT sends packets in bursts of five. It
could send nore, but is limted by avail able nenory.

The burst rate is in part deternmined by the granularity of the
sender’s timng nechanism and in part by the processing speed of the
receiver and any internediate gateways. It is also directly rel ated
to the burst size. Burst rates from60 to 100 mlliseconds have been
tried on the prelimnary NETBLT inplenmentation with good results
within a single local -area network. This value clearly depends on
the network bandw dth and packet buffering avail abl e.

Al'l NETBLT fl ow control paraneters (packet size, buffer size, burst
size, and burst rate) are negotiated during connection setup. The
negoti ation process is the sane for all paraneters. The client
initiating the connection (the active end) proposes and sends a set
of values for each parameter with its open connection request. The
other client (the passive end) conpares these values with the

hi ghest - performance values it can support. The passive end can then
nodi fy any of the paraneters only by naking themnore restrictive.
The nodified paraneters are then sent back to the active end in the
response message. |In addition, the burst size and burst rate can be
re-negoti ated after each buffer transm ssion to adjust the transfer
rate according to the performance observed fromtransferring the
previous buffer. The receiving end sends a pair of burst size and
burst rate values in the OK nessage. The sender conpares these
values with the values it can support. Again, it may then nodify any
of the paranmeters only by making themnore restrictive. The nodified
paraneters are then comuni cated to the receiver in a NULL-ACK
packet, described |ater.

Cark & Lanbert & Zhang [Page 5]

RFC 969 Decenber 1985
NETBLT: A Bul k Data Transfer Protocol

Qobvi ously each of the paraneters depend on many factors-- gateway and
host processi ng speeds, available nmenory, tiner granularity--sone of
whi ch cannot be checked by either client. Each client nust therefore
try to nake as best a guess as it can, tuning for perfornmance on
subsequent transfers.

5. RELIABILITY

Each NETBLT transfer has three stages, connection setup, data
transfer, and connection close. Each stage nmust be conpl eted
reliably; methods for doing this are described bel ow

5.1. Connection Setup

A NETBLT connection is set up by an exchange of two packets

bet ween the active client and the passive client. Note that
either client can send or receive data; the words "active" and
"passive" are only used to differentiate the client initiating the
connection process fromthe client responding to the connection
request. The first packet sent is an OPEN packet; the passive end
acknowl edges the OPEN packet by sendi ng a RESPONSE packet. After
these two packets have been exchanged, the transfer can begin.

As di scussed in the previous section, the OPEN and RESPONSE
packets are used to negotiate flow control paraneters. O her
paranmeters used in the transfer of data are al so negoti at ed.

These paraneters are (1) the maxi num nunber of buffers that can be
sending at any one tinme (this pernits multiple buffering and

hi gher throughput) and (2) whether or not DATA/ LDATA packet data
wi |l be checksunmed. NETBLT automatically checksuns al

non- DATA/ LDATA packets. |If the negotiated checksumflag is set to
TRUE (1), both the header and the data of a DATA/ LDATA packet are
checksumed; if set to FALSE (0), only the header is checksumed.
NETBLT uses the same checksunming al gorithm as TCP uses.

Finally, each end transmits its death-tinmeout value in either the
OPEN or the RESPONSE packet. The death-tinmeout value will be used
to determne the frequency with which to send KEEPALI VE packets
during idle periods of an opened connection (death tinmers and
KEEPALI VE packets are described in the follow ng section).

The active end specifies a passive client through a
client-specific "well-known" 16 bit port nunmber on which the
passive end listens. The active end identifies itself through a
32 bit Internet address and a 16 bit port nunber.

In order to allow the active and passive ends to conmuni cate

Cark & Lanbert & Zhang [Page 6]

RFC 969 Decenber 1985
NETBLT: A Bul k Data Transfer Protocol

m scel | aneous useful information, an unstructured, vari abl e-
length field is provided in OPEN and RESPONSE nessages for an
client-specific information that may be required.

Recovery for | ost OPEN and RESPONSE packets is provided by the use
of timers. The active end sets a tinmer when it sends an OPEN
packet. Wen the tiner expires, another OPEN packet is sent, until
sone pre-determ ned maxi mum nunber of OPEN packets have been sent.
A simlar schenme is used for the passive end when it sends a
RESPONSE packet. Wien a RESPONSE packet is received by the active
end, it clears its tinmer. The passive end' s tinmer is cleared
either by receipt of a GO or a DATA packet, as described in the
section on data transfer.

To prevent duplication of OPEN and RESPONSE packets, the OPEN
packet contains a 32 bit connection unique ID that nust be
returned in the RESPONSE packet. This prevents the initiator from
confusing the response to the current request with the response to
an earlier connection request (there can only be one connection
bet ween any two ports). Any OPEN or RESPONSE packet with a
destination port matching that of an open connection has its

uni que |1 D checked. A matching unique ID inplies a duplicate
packet, and the packet is ignored. A non-matching unique |ID nust
be treated as an attenpt to open a second connection between the
same port pair and nust be rejected by sending an ABORT nessage.

5.2. Data Transfer

The sinpl est nodel of data transfer proceeds as follows. The
sending client sets up a buffer full of data. The receiving
NETBLT sends a GO nmessage inside a CONTROL packet to the sender
signifying that it too has set up a buffer and is ready to receive
data into it. Once the GO nessage has been received, the sender
transmts the buffer as a series of DATA packets followed by an
LDATA packet. When the | ast packet in the buffer has been

recei ved, the receiver sends a RESEND nessage inside a CONTRCL
packet containing a list of packets that were not received. The
sender resends these packets. This process continues until there
are no mssing packets, at which tine the receiver sends an K
nessage i nsi de a CONTRCL packet to the sender, sets up another
buffer to receive data and sends another GO nessage. The sender,
havi ng recei ved the OK nessage, sets up another buffer, waits for
the GO nessage, and repeats the process.

There are several obvious flaws with this schene. First, if the

LDATA packet is lost, how does the receiver know when the buffer
has been transm tted? Second, what if the GO OK or RESEND

Cark & Lanbert & Zhang [Page 7]

RFC 969 Decenber 1985
NETBLT: A Bul k Data Transfer Protocol

nmessages are |lost? The sender cannot act on a packet it has not
recei ved, so the protocol will hang. Solutions for each of these
probl ens are presented bel ow, and are based on two ki nds of
timers, a data tinmer and a control timer.

NETBLT sol ves the LDATA packet |oss problem by using a data tiner
at the receiving end. Wen the first DATA packet in a buffer
arrives, the receiving NETBLT sets its data tiner; at the sane

time, it clears its control tinmer, described below |If the data
timer expires, the receiving end assunes the buffer has been
transnmitted and all missing packets lost. 1t then sends a RESEND

nmessage containing a list of the m ssing packets.

NETBLT sol ves the second problem that of missing OK GO and
RESEND nessages, through use of a control tiner. The receiver can
send one or nore control messages (OK, GO, or RESEND) within a

si ngl e CONTRCL packet. \Whenever the receiver sends a contro
packet, it sets a control timer (at the sane tinme it clears its
data tinmer, if one has been set).

The control timer is cleared as follows: Each control nessage

i ncl udes a sequence nunmber which starts at one and increases by
one for each control nessage sent. The sending NETBLT checks the
sequence nunber of every inconming control nmessage agai nst all

ot her sequence nunbers it has received. It stores the highest
sequence nunber bel ow which all other received sequence nunbers
are consecutive, and returns this nunber in every packet flow ng
back to the receiver. The receiver is permtted to clear the
control tinmer of every packet with a sequence nunber equal to or

| ower than the sequence nunber returned by the sender

I deal Iy, a NETBLT inplenentation should be able to cope with

out - of - sequence nessages, perhaps collecting themfor |ater
processi ng, or even processing themimediately. |If an incom ng
control nessage "fills" a "hole" in a group of nmessage sequence
nunbers, the inplementation could even be cl ever enough to detect
this and adjust its outgoing sequence val ue accordingly.

When the control timer expires, the receiving NETBLT resends the
control nessage and resets the tinmer. After a predeterm ned
nunber of resends, the receiving NETBLT can assune that the
sendi ng NETBLT has di ed, and can reset the connection.

The sendi ng NETBLT, upon receiving a control nessage, should act
as quickly as possible on the packet; it either sets up a new
buffer (upon receipt of an OK packet for a previous buffer),
resends data (upon receipt of a RESEND packet), or sends data

Cark & Lanbert & Zhang [Page 8]

RFC 969 Decenber 1985
NETBLT: A Bul k Data Transfer Protocol

(upon receipt of a GO packet). |If the sending NETBLT is not in a
position to send data, it sends a NULL- ACK packet, which contains
a

hi gh-recei ved- sequence- nunber as descri bed above (this pernmits the
receiving NETBLT to clear the control tiners of any packets which

are outstanding), and waits until it can send nore data. |In al
of these cases, the overhead for a response to the incom ng
control nessage should be snall; the total time for a response to

reach the receiving NETBLT should not be much nore than the
network round-trip transit tine, plus a variance factor.

The tinmer systemcan be summarized as follows: normally, the

recei ving NETBLT is working under one of two types of tinmers, a
control timer or a data timer. There is one data timer per buffer
transmni ssion and one control timer per control packet. The data
timer is active while its buffer is being transferred; a control
timer is active while it is between buffer transfers.

The above systemstill |eaves a few problens. [|f the sending
NETBLT is not ready to send, it sends a single NULL-ACK packet to
cl ear any outstanding control timers at the receiving end. After
this the receiver will wait. The sending NETBLT could die and the
receiver, with all its control tiners cleared, would hang. Al so,

t he above system puts tiners only on the receiving NETBLT. The
sendi ng NETBLT has no tinmers; if the receiving NETBLT dies, the
sendi ng NETBLT will just hang waiting for control nessages.

The solution to the above two problens is the use of a death tiner
and a keepalive packet for both the sending and receiving NETBLTSs.
As soon as the connection is opened, each end sets a death tinmer;
this tiner is reset every tine a packet is received. Wen a
NETBLT' s death tiner at one end expires, it can assunme the other
end has died and can cl ose the connecti on.

It is quite possible that the sending or receiving NETBLTs wil |
have to wait for long periods of tinme while their respective
clients get buffer space and |oad their buffers with data. Since
a NETBLT waiting for buffer space is in a perfectly valid state,
the protocol nust have sonme nethod for preventing the other end s
death tinmer fromexpiring. The solution is to use a KEEPALI VE
packet, which is sent repeatedly at fixed intervals when a NETBLT
is waiting for buffer space. Since the death tinmer is reset
whenever a packet is received, it will never expire as long as the
ot her end sends packets.

The frequency w th which KEEPALI VE packets are transmitted is
computed as follows: At connection startup, each NETBLT chooses a

Cark & Lanbert & Zhang [Page 9]

RFC 969 Decenber 1985
NETBLT: A Bul k Data Transfer Protocol

deat h-ti neout value and sends it to the other end in either the
OPEN or the RESPONSE packet. The other end takes the

deat h-ti neout value and uses it to conpute a frequency w th which
to send KEEPALI VE packets. The KEEPALI VE frequency shoul d be high
enough that several KEEPALIVE packets can be | ost before the other
end’ s death tinmer expires.

Bot h ends nust have sone way of estimating the values of the death
timers, the control timers, and the data tiners. The tinmer val ues
obvi ously cannot be specified in a protocol docunent since they
are very machi ne- and networ k-1 oad- dependent. |nstead they nust
be conmputed on a per-connection basis. The protocol has been

desi gned to nake such deternination easy.

The death timer value is relatively easy to estinmate. Since it is
continually reset, it need not be based on the transfer size.
Instead, it should be based at least in part on the type of
application using NETBLT. User applications should have small er
death tineout values to avoid forcing humans to wait |ong periods
of time for a death timeout to occur. Machine applications can
have | onger tineout val ues.

The control timer nust be nore carefully estimated. |t can have
as its initial value an arbitrary nunber; this nunber can be used
to send the first control packet. Subsequent control packets can
have their tinmer values based on the network round-trip transit
time (i.e. the time between sending the control packet and

recei ving the acknow edgnent of the correspondi ng sequence nunber)
plus a variance factor. The tinmer value should be continually
updat ed, based on a snoothed average of collected round-trip
transit times.

The data timer is dependent not on the network round-trip transit
tinme, but on the ampunt of time required to transfer a buffer of
data. The tine value can be conputed fromthe burst rate and the
nunber of bursts per buffer, plus a variance value <1>. During the
RESENDi ng phase, the data timer value should be set according to
the nunber of missing packets.

The timers have been designed to pernmit reasonable estimtion. In
particular, in other protocols, determ nation of round-trip delay
has been a problem since the action perforned by the other end on
recei pt of a particular packet can vary greatly depending on the
packet type. In NETBLT, the action taken by the sender on receipt
of a control nmessage is by and |large the sanme in all cases, making
the round-trip delay relatively independent of the client.

Cark & Lanmbert & Zhang [Page 10]

RFC 969 Decenber 1985
NETBLT: A Bul k Data Transfer Protocol

Timer value estimation is extrenely inportant, especially in a

hi gh- performance protocol |ike NETBLT. |If the estimates are too

| ow, the protocol makes many unneeded retransni ssions, degradi ng
performance. A short control tiner value causes the sending
NETBLT to receive duplicate control nessages (which it can reject,
but which takes tinme). A short data tinmer val ue causes the

recei ving NETBLT to send unnecessary RESEND packets. This causes
consi derably greater perfornance degradation since the sending
NETBLT does not nerely throw away a duplicate packet, but instead
has to send a nunber of DATA packets. Because data tinmers are set
on each buffer transfer instead of on each DATA packet transfer,
we afford to use a small variance val ue without worrying about
perfornmance degradation.

5.3. dosing the Connection

There are three ways to cl ose a connection: a connection close, a
"quit", or an "abort".

The connection close occurs after a successful data transfer.

When the sendi ng NETBLT has received an OK packet for the | ast
buffer in the transfer, it sends a DONE packet <2>. On receipt of
the DONE packet, the receiving NETBLT can close its half of the
connection. The sending NETBLT dallies for a predeterm ned anmount
of time after sending the DONE packet. This allows for the
possibility of the DONE packet’s having been lost. |f the DONE
packet was | ost, the receiving NETBLT will continue to send the
final OK packet, which will cause the sending end to resend the
DONE packet. After the dally period expires, the sending NETBLT
closes its half of the connection

During the transfer, one client nay send a QU T packet to the
other if it thinks that the other client is malfunctioning. Since
the QU T occurs at a client level, the QU T transni ssion can only
occur between buffer transm ssions. The NETBLT receiving the QUT
packet can take no action other than to i mediately notify its
client and transmt a QU TACK packet. The QUI T sender must tine
out and retransmit until a QU TACK has been received or a
predet erm ned nunber of resends have taken place. The sender of
the QU TACK dallies in the manner described above.

An ABORT takes place when a NETBLT |ayer thinks that it or its
opposite is nmalfunctioning. Since the ABORT originates in the
NETBLT | ayer, it can be sent at any tine. Since the ABORT inplies
that the NETBLT |l ayer is malfunctioning, no transmt reliability
is expected, and the sender can i mediately close it connecti on.

Cark & Lanmbert & Zhang [Page 11]

RFC 969 Decenber 1985
NETBLT: A Bul k Data Transfer Protocol

6. MULTI PLE BUFFERI NG

In order to increase performance, NETBLT has been designed in a
manner that encourages a nultiple buffering inplenmentation. Miltiple
buffering is a technique in which the sender and receiver allocate
and transmt buffers in a manner that allows error recovery of
previous buffers to be concurrent with transm ssion of current

buf fer.

During the connection setup phase, one of the negotiated paraneters
is the number of concurrent buffers permitted during the transfer.
The sinplest transfer allows for a maxi num of one buffer to be
transmtted at a tinme; this is effectively a | ock-step protocol and
causes tinme to be wasted while the sending NETBLT receives perm ssion
to send a new buffer. |If there are nore than one buffer avail abl e,
transfer of the next buffer may start right after the current buffer
finishes. For exanple, assume buffer A and B are allowed to transfer
concurrently, with A preceding B. As soon as A finishes transferring
its data and is waiting for either an OK or a RESEND nessage, B can
start sending i medi ately, keeping data flowing at a stable rate. |If
A receives an OK, it is done; if it receives a RESEND, the m ssing
packets specified in the RESEND nessage are retransmtted. Al
packets flow out through a priority pipe, with the priority equal to
the buffer nunber, and with the transfer rate specified by the burst
size and burst rate. Since buffer numbers increase nonotonically,
packets froman earlier buffer in the pipe will always precede those
of the later ones. One necessary change to the timng algorithmis
that when the receiving NETBLT set data tinmer for a new buffer, the
timer value should also take into consideration of the transfer tine
for all mssing packets fromthe previous buffers.

Havi ng several buffers transnmitting concurrently is actually not that
much nore conplicated than transnmitting a single buffer at a tine.
The key is to visualize each buffer as a finite state machi ne;
several buffers are nerely a group of finite state machines, each in
one of several states. The transfer process consists of noving
buffers through various states until the entire transm ssion has
conpl et ed.

The state sequence of a send-receive buffer pair is as follows: the
sendi ng and receiving buffers are created i ndependently. The

recei ving NETBLT sends a GO nessage, putting its buffer in a
"receiving" state, and sets its control tiner; the sending NETBLT
receives the GO nessage, putting its buffer into a "sending" state.
The sendi ng NETBLT sends data until the buffer has been transmtted.
If the receiving NETBLT s data tiner goes off before it received the
| ast (LDATA) packet, or it receives the LDATA packet in the buffer

Cark & Lanmbert & Zhang [Page 12]

RFC 969 Decenber 1985
NETBLT: A Bul k Data Transfer Protocol

and packets are nissing, it sends a RESEND packet and noves the
buffer into a "resending" state. Once all DATA packets in the buffer
and t he LDATA packet have been received, the receiving NETBLT enters
its buffer into a "received" state and sends an OK packet. The
sendi ng NETBLT receives the OK packet and puts its buffer into a
"sent" state.

7. PROTOCOL LAYERI NG STRUCTURE

NETBLT is inplenented directly on top of the Internet Protocol (IP)
It has been assigned a tenporary protocol nunber of 255. This nunber
will change as soon as the final protocol specification has been
det er m ned.

8. PACKET FORVATS

NETBLT packets are divided into three categories, each of which share
a common packet header. First, there are those packets that trave
only fromsender to receiver; these contain the control nessage
sequence nunbers which the receiver uses for reliability. These
packets are the NULL-ACK, DATA, and LDATA packets. Second, there is
a packet that travels only fromreceiver to sender. This is the
CONTRCOL packet; each CONTRCOL packet can contain an arbitrary nunber
of control nessages (GO, OK, or RESEND), each with its own sequence
nunber. Finally, there are those packets which either have speci al
ways of insuring reliability, or are not reliably transnmtted. These
are the QU T, QU TACK, DONE, KEEPALIVE, and ABORT packets. O these,
all save the DONE packet can be sent by both sending and receiving
NETBLTS.

Packet type nunbers:

OPEN:
RESPONSE
KEEPALI VE:
DONE
QU T:

QUI TACK
ABORT:
DATA:
LDATA:
NULL- ACK:
CONTROL:

POO~NOUITRWNEO

o

Cark & Lanmbert & Zhang [Page 13]

RFC 969 Decenber 1985
NETBLT: A Bul k Data Transfer Protocol

St andard header:

| ocal port: 2 bytes
foreign port: 2 bytes
checksum 2 bytes
ver si on nunber: 1 byte
packet type: 1 byte
packet | ength: 2 bytes

OPEN and RESPONSE packet s:

connection uni que |D: 4 bytes
standard buffer size: 4 bytes
transfer size: 4 bytes
DATA packet data segment si ze: 2 bytes
burst si ze: 2 bytes
burst rate: 2 bytes
death tineout value in seconds: 2 bytes
transfer node (1 = SEND, 0 = RECEIVE): 1 byte
maxi mum nunber of concurrent buffers: 1 byte
checksum entire DATA packet / checksum

DATA packet data only (1/0): 1 byte
client-specific data: arbitrary

DONE, QUI TACK, KEEPALI VE:
standard header only
ABORT, QUIT:
reason: arbitrary bytes
CONTRCL packet format:
CONTROL packets consist of a standard NETBLT header of type
CONTROL, followed by an arbitrary number of control nessages with

the follow ng formts:

Control nessage nunbers:

co) 0
X 1
RESEND: 2

Cark & Lanmbert & Zhang [Page 14]

RFC 969
NETBLT: A Bul k Data Transfer Protocol

K nessage:

nessage type (OK): 1 byte
buf f er nunber: 4 bytes
sequence nunber: 2 bytes
new burst si ze: 2 bytes
new burst interval: 2 bytes

GO nessage:

nessage type (GO : 1 byte

buf f er nunber: 4 bytes

sequence nunber: 2 bytes

RESEND nessage:

nessage type (RESEND): 1 byte
buf f er nunber: 4 bytes
sequence nunber: 2 bytes
nunber of m ssing packets: 2 bytes
packet nunbers...: n * 2 bytes

DATA, LDATA packet fornmats:

buf f er nunber:

hi ghest consecutive sequence nunber received:

packet number within buffer
dat a:

NULL- ACK packet fornat:

hi ghest consecutive sequence nunber received:

acknow edged new burst size:
acknow edged new burst interval:

NOTES:

Decenber

4 bytes
2 bytes
2 bytes
arbitrary bytes

2 bytes
2 bytes
2 bytes

1985

<1> When the buffer size is large, the variances in the round trip

del ays of nmany packets may cancel each other out;

this nmeans the

vari ance val ue need not be very big. This expectation can be

verified in further testing.

<2> Since the receiving end may not know the transfer size in
advance, it is possible that it nmay have allocated buffer space

and sent GO nessages for buffers beyond the actual

sent by the sending end. Care nust be taken on the sending
end’s part to ignhore these extra GO nmessages.

Cark & Lanmbert & Zhang

| ast buffer

[Page 15]

