Net wor k Wor ki ng Group R Housl ey

Request for Coments: 2773 P. Yee
Updat es: 959 SPYRUS
Cat egory: Experi nent al W Nace

NSA

February 2000

Encrypti on usi ng KEA and SKI PJACK

Status of this Meno

This meno defines an Experinental Protocol for the Internet
community. It does not specify an Internet standard of any ki nd.
Di scussi on and suggestions for inprovenent are requested.
Distribution of this nmeno is unlimnmted.

Copyright Notice

Copyright (C) The Internet Society (2000). Al Rights Reserved.

Abstract

Thi s docunent defines a nethod to encrypt a file transfer using the
FTP specification STD 9, RFC 959, "File Transfer Protocol (FTP)",
(Cctober 1985) [3] and RFC 2228, "FTP Security Extensions" (Cctober
1997) [1]. This nethod will use the Key Exchange Al gorithm (KEA) to
gi ve nutual authentication and establish the data encryption keys.
SKIPJACK is used to encrypt file data and the FTP comrand channel

1.0 Introduction

The File Transfer Protocol (FTP) provides no protocol security except
for a user authentication password which is transmtted in the clear
In addition, the protocol does not protect the file transfer session
beyond the origi nal authentication phase.

The Internet Engineering Task Force (I ETF) Common Aut hentication
Technol ogy (CAT) Wirking Group has proposed security extensions to
FTP. These extensions allow the protocol to use nore flexible
security schenes, and in particular allows for various |evels of
protection for the FTP command and data connections. This docunent
describes a profile for the FTP Security Extensions by which these
nmechani sns may be provi sioned using the Key Exchange Al gorithm (KEA)
in conjunction with the SKIPJACK symetric encryption al gorithm

Housl ey, et al. Experi nent al [Page 1]

RFC 2773 Encrypti on usi ng KEA and SKI PJACK February 2000

FTP Security Extensions [1] provides:

* user authentication -- augnenting the normal password
mechani sm
* server authentication -- normally done in conjunction with user

aut henti cati on;

* session paranmeter negotiation -- in particular, encryption keys
and attributes;

* command connection protection -- integrity, confidentiality, or
bot h;
* data transfer protection -- sane as for comrand connecti on

protection.

In order to support the above security services, the two FTP entities
negotiate a nechanism This process is open-ended and conpl et es when
both entities agree on an acceptabl e mechani smor when the initiating
party (always the client) is unable to suggest an agreeabl e
mechanism Once the entities agree upon a nechanism they may
comence aut hentication and/ or paraneter negotiation.

Aut henti cati on and paraneter negotiation occur w thin an unbounded
series of exchanges. At the conpletion of the exchanges, the
entities will either be authenticated (unilateral or nutually), and
may, additionally, be ready to protect FTP commands and dat a.

Fol | owi ng the exchanges, the entities negotiate the size of the
buffers they will use in protecting the conmands and data that

follow. This process is acconplished in two steps: the client offers
a suggested buffer size and the server may either refuse it, counter
it, or accept it.

At this point, the entities nmay issue protected commands within the
bounds of the paraneters negotiated through the security exchanges.
Protected commands are issued by applying the protection services
required to the normal commands and Base64 encoding the results. The
encoded results are sent as the data field within a ENC (integrity
and confidentiality) command. Base64 is an encoding for mapping

bi nary data onto a textual character set that is able to pass through
nost 7-bit systenms without |oss. The server sends back responses in
new result codes which allow the identical protections and Base64
encoding to be applied to the results. Protection of the data
transfers can be specified via the PROT cormmand whi ch supports the

Housl ey, et al. Experi nent al [Page 2]

RFC 2773 Encrypti on usi ng KEA and SKI PJACK February 2000

same protections as those afforded the other FTP comands. PROT
commands may be sent on a transfer-by-transfer basis, however, the
sessi on paraneters may not be changed within a session

2.0 Key Exchange Al gorithm (KEA) Profile

Thi s paper profiles KEA with SKIPJACK to achieve certain security
servi ces when used in conjunction with the FTP Security Extensions
framework. FTP entities may use KEA to give nutual authentication
and establish data encryption keys. W specify a sinple token format
and set of exchanges to deliver these services. Functions that may
be performed by the Fortezza Crypto Card.

The reader should be familiar with the extensions in order to
understand the protocol steps that follow. In the context of the FTP
Security Extensions, we suggest the usage of KEA with SKIPJACK for
authentication, integrity, and confidentiality.

A client may nutually authenticate with a server. Wat follows are
the protocol steps necessary to perform KEA aut hentication under the
FTP Security Extensions framework. Where failure nodes are
encountered, the return codes follow those specified in the
Extensions. They are not enunerated in this docunent as they are

i nvari ant anong the mechani sms used. The certificates are ASN. 1
encoded.

The exchanges detail ed bel ow presunme a worki ng know edge of the FTP
Security Extensions. The notation for concatenation is " || ".
Decryption of encrypted data and certification path validation is
implicitly assunmed, but is not shown.

AUTH KEA- SKI PJACK -->
<-- 334 ADAT=Base64(Certb || Rb)
ADAT Base64(Certa || Ra ||

WEK || IV || Encrypt(
Label - Type || Label-Length ||
Label -List || pad || ICV)) -->

Figure 1

The server and client certificates contain KEA public keys. The
client and server use KEA to generate a shared SKI PJACK symretric
key, called the TEK. The client uses the random nunber generator to
create a second SKI PJACK key, called the MEK. The MEK is wapped in

Housl ey, et al. Experi nment al [Page 3]

RFC 2773 Encrypti on usi ng KEA and SKI PJACK February 2000

the TEK for transfer to the server. An initialization vector (IV)
associated with the MEK is generated by the client and transferred to
the server. A list of security labels that the client wants to use
for this FTP session may be transferred to the server encrypted in
the MEK. As shown in Figure 2, the security |abel data is formatted
as a one octet type value, a four octet |abel Iength, the security

| abel list, padding, followed by an eight octet integrity check val ue
(ICV). Figure 3 lists the |abel types. |If the |abel type is absent
(value of zero length), then the |abel size nust be zero.

In order to ensure that the length of the plain text is a nultiple of
the cryptographic bl ock size, padding shall be perforned as follows.
The input to the SKIPJACK CBC encryption process shall be padded to a
multiple of 8 octets. Let n be the length in octets of the input.
Pad the input by appending 8 - (n nod 8) octets to the end of the
nmessage, each having the value 8 - (n nod 8), the nunmber of octets
bei ng added. In hexadeci mal, he possible pad strings are: 01, 0202
030303, 04040404, 0505050505, 060606060606, 07070707070707, and
0808080808080808. All input is padded with 1 to 8 octets to produce
a multiple of 8 octets in length. This pad technique is used
whenever SKI PJACK CBC encryption is perfornmed.

An I CV is calcul ated over the plaintext security |abel and paddi ng.
The ICV algorithmused is the 32-bit one’s conpl enment addition of
each 32-bit block followed by 32 zero bits. This ICV technique is
used in conjunction with SKIPJACK CBC encryption to provide data

integrity.
Label Type 1 Cctet
Label Length 4 octets
Label Li st variable | ength
Pad 1 to 8 octets
| CV 8 octets
Figure 2
Label Type Label Syntax Ref er ence
0 Absent Not applicable
1 NVBP SDN. 701[2]
2- 255 Reserved for Future Use To Be Determ ned
Figure 3

Housl ey, et al. Experi nment al [Page 4]

RFC 2773 Encrypti on usi ng KEA and SKI PJACK February 2000

FTP command channel operations are now confidentiality protected. To
provide integrity, the conmand sequence nunber, padding, and ICV are
appended to each command prior to encryption.

Sequence integrity is provided by using a 16-bit sequence numnber
which is incremented for each conmand. The sequence nunber is
initialized with the |least significant 16-bits of Ra. The server
response will include the sane sequence nunber as the client conmand.

An I CV is cal cul ated over the individual commuands (including the
carriage return and line feed required to term nate conmands), the
sequence nunber, and pad.

ENC Base64(Encrypt (" PBSZ 65535"
[SEQ || pad [| ICV)) -->
<-- 632 Base64(Encrypt("200" ||

SEQ || pad || 1CV))
ENC Base64(Encrypt (" USER yee"

|| SEQ || pad [| ICV)) -->
<-- 632 Base64(Encrypt("331" ||

SEQ || pad || 1CV))
ENC Base64(Encrypt (" PASS
fortezza" || SEQ ||
pad || 1CV)) --> |
<-- 631 Base64(Sign("230"))

Figure 4

After decryption, both parties verifying the integrity of the PBSZ
commands by checking for the expected sequence nunber and correct

I CV. The correct SKIPJACK key cal cul ation, |ICV checking, and the
validation of the certificates containing the KEA public keys
provi des nmutual identification and authentication.

ENC Base64(Encrypt ("PROT P" ||
SEQ || pad || ICV)) -->

N
1
1

(o))
w
N
oy}
QD
(%]
(9%
(@]
IS
—~
m
>
o
]
<
©
—
—~
N
o
—Q

|l pad ||

Figure 5

Housl ey, et al. Experi nment al [Page 5]

RFC 2773 Encrypti on usi ng KEA and SKI PJACK February 2000

At this point, files may be sent or received with encryption and
integrity services in use. |If encryption is used, then the first
buffer will contain the token followed by enough encrypted file
octets to conpletely fill the buffer (unless the file is too short to
fill the buffer). Subsequent buffers contain only encrypted file
octets. Al buffers are conpletely full except the final buffer

ENC Base64(Encrypt (
("RETR foo.bar") |
SEQ || pad || 1CV)) -->
<-- 632 Base64(Encrypt("15
SEQ || pad ||

Figure 6

- Q

The next figure shows the header information and the file data.

Pl ai nt ext Token |V 24 octets

VWVEK 12 octets
Hashval ue 20 octets
|V 24 octets
Label Type 1 octets
Label Length 4 octets
Label Label Length octets
Pad 1to 8 octets
| CV 8 octets
Figure 7

2.1 Pre-encrypted File Support

In order to support both on-the-fly encryption and pre-encrypted
files, a token is defined for carrying a file encryption key (FEK).
To prevent truncation and ensure file integrity, the token also

i ncludes a hash conputed on the conplete file. The token also
contains the security | abel associate with the file. This FEK is
wrapped in the session TEK. The token is encrypted in the session
TEK usi ng SKI PJACK CBC node. The token contains a 12 octet w apped
FEK, a 20 octet file hash, a 24 octet file IV, a 1 octet |abel type,
a 4 octet label length, a variable Iength | abel value, a one to 8
octet pad, and an 8 octet ICV. The first 24 octets of the token are
the plaintext 1V used to encrypt the renainder of the token. The
token requires its own encryption |V because it is transnitted across
t he data channel, not the command channel, and ordering between the

Housl ey, et al. Experi nment al [Page 6]

RFC 2773 Encrypti on usi ng KEA and SKI PJACK February 2000

channel s cannot be guaranteed. Storage of preconputed keys and
hashes for files in the file systemis a local inplenentation matter
however, it is suggested that if a file is pre-encrypted, then the
FEK be wapped in a |ocal storage key. Wen the file is needed, the
FEK i s unwrapped using the |local storage key, and then rew apped in
the session TEK. Figure 8 shows the assenbl ed token

Pl ai nt ext Token |V 24 octets
W apped FEK 12 octets
Hashval ue 20 octets
IV 24 octets
Label Type 1 octet
Label Length 4 octets
Label Label Length octets
Pad 1 to 8 octets
| CV 8 octets
Fi gure 8

3.0 Table of Key Terni nol ogy

In order to clarify the usage of various keys in this protocol
Figure 9 summari zes key types and their usage:

Key Type Usage

TEK Encrypti on of token at the beginning of
each file, also waps the MEK and the FEK

MEK Encrypti on of command channel

FEK Encryption of the file itself (may be

done out of scope of FTP)

Figure 9
4.0 Security Considerations
This entire nmeno i s about security nechanisns. For KEA to provide
the authentication and key managenent discussed, the inplenentation
must protect the private key fromdisclosure. For SKIPJACK to
provide the confidentiality discussed, the inplenentation mnust
protect the shared symretric keys from di scl osure.

5.0 Acknow edgenents

W would |like to thank Todd Horting for insights gai ned during
i npl ementation of this specification.

Housl ey, et al. Experi nment al [Page 7]

RFC 2773 Encrypti on usi ng KEA and SKI PJACK February 2000

6.0 References

[1] Horowitz, M and S. Lunt, "FTP Security Extensions", RFC 2228,
Cct ober 1997.

[2] Message Security Protocol 4.0 (MSP), Revision A Secure Data
Net wor k System (SDNS) Specification, SDN. 701, February 6, 1997.

[3] Postel, J. and J. Reynolds, "File Transfer Protocol", STD 9, RFC
959, Cctober 1985.

7.0 Authors’ Addresses

Russel | Housl ey
SPYRUS

381 El den Street
Suite 1120

Her ndon, VA 20170
USA

Phone: +1 703 707-0696
EMai | : housl ey@pyrus. com

Peter Yee

SPYRUS

5303 Betsy Ross Drive
Santa Clara, CA 95054
USA

Phone: +1 408 327-1901
EMai | : yee@pyrus.com

Housl ey, et al. Experi nment al [Page 8]

RFC 2773 Encrypti on usi ng KEA and SKI PJACK February 2000

8.0 Full Copyright Statenent
Copyright (C) The Internet Society (2000). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
ot hers, and derivative works that comment on or otherw se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng I nternet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into |Ianguages other than
Engli sh.

The limted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknow edgenent

Fundi ng for the RFC Editor function is currently provided by the
I nternet Society.

Housl ey, et al. Experi nment al [Page 9]

