Net wor k Wor ki ng Group V. Jacobson
Request for Coments: 1072 LBL
R Braden

| SI

Oct ober 1988

TCP Extensions for Long-Delay Paths

Status of This Menp

This meno proposes a set of extensions to the TCP protocol to provide
ef ficient operation over a path with a hi gh bandw dt h*del ay product.
These extensions are not proposed as an Internet standard at this
time. Instead, they are intended as a basis for further
experinmentation and research on transport protocol performnmance.
Distribution of this neno is unlimted.

1. | NTRODUCTI ON

Recent work on TCP perfornmance has shown that TCP can work well over
a variety of Internet paths, ranging from 800 Mit/sec |I/0O channels
to 300 bit/sec dial-up nodens [Jacobson88]. However, there is still
a fundanental TCP performance bottleneck for one transm ssion regine:
paths with high bandwi dth and I ong round-trip delays. The
significant paraneter is the product of bandwi dth (bits per second)
and round-trip delay (RTT in seconds); this product is the nunber of
bits it takes to "fill the pipe", i.e., the anmount of unacknow edged
data that TCP nust handle in order to keep the pipeline full. TCP
performance problens arise when this product is |arge, e.g.,
significantly exceeds 10**5 bits. W will refer to an Internet path
operating in this region as a "long, fat pipe", and a network
containing this path as an "LFN' (pronounced "el ephan(t)").

H gh-capacity packet satellite channels (e.g., DARPA's W deband Net)
are LFN' s. For exanple, a Tl-speed satellite channel has a
bandw dt h*del ay product of 10**6 bits or nmore; this corresponds to
100 outstanding TCP segnents of 1200 bytes each! Proposed future
terrestrial fiber-optical paths will also fall into the LFN cl ass;
for exanple, a cross-country delay of 30 ns at a DS3 bandwi dt h
(45Mops) al so exceeds 10**6 bits.

Clever algorithnms alone will not give us good TCP performance over
LFN's; it will be necessary to actually extend the protocol. This
RFC proposes a set of TCP extensions for this purpose.

There are three fundanmental problens with the current TCP over LFN

Jacobson & Braden [Page 1]

RFC 1072 TCP Extensions for Long-Del ay Paths Cct ober 1988

pat hs:

(1) Wndow Size Limtation

The TCP header uses a 16 bit field to report the receive w ndow
size to the sender. Therefore, the | argest w ndow that can be
used is 2**16 = 65K bytes. (In practice, sone TCP

i mpl ementations will "break" for w ndows exceedi ng 2**15,
because of their failure to do unsigned arithnetic).

To circunvent this problem we propose a new TCP option to all ow
wi ndows | arger than 2**16. This option will define an inplicit
scale factor, to be used to nultiply the wi ndow size val ue found
in a TCP header to obtain the true w ndow si ze.

(2) Cumul ative Acknow edgnent s

Any packet |osses in an LFN can have a catastrophic effect on
throughput. This effect is exaggerated by the sinple cunulative
acknow edgnment of TCP. Wienever a segnment is lost, the
transmtting TCP will (eventually) time out and retransmt the
nm ssing segnment. However, the sending TCP has no information
about segnments that may have reached the receiver and been
gueued because they were not at the | eft wi ndow edge, so it may
be forced to retransmt these segnments unnecessarily.

We propose a TCP extension to inplenment selective

acknow edgenents. By sending sel ective acknow edgnents, the
receiver of data can informthe sender about all segnments that
have arrived successfully, so the sender need retransmt only
the segnents that have actually been |ost.

Sel ective acknow edgnents have been included in a nunber of
experimental Internet protocols -- VMIP [Cheriton88], NETBLT
[Clark87], and RDP [Velten84]. There is sonme enpirical evidence
in favor of selective acknow edgnents -- sinple experinments with
RDP have shown that disabling the selective acknow egnent
facility greatly increases the nunber of retransmtted segnments
over a lossy, high-delay Internet path [Partridge87]. A
simulation study of a sinple formof selective acknow edgnents
added to the 1SO transport protocol TP4 al so showed proni se of
performance i nprovenent [NBS85].

Jacobson & Braden [Page 2]

RFC 1072 TCP Extensions for Long-Del ay Paths Cct ober 1988

(3) Round Trip Timng

TCP inpl enments reliable data delivery by neasuring the RITT,
i.e., the tine interval between sending a segment and receiving
an acknow edgnment for it, and retransmitting any segnents that
are not acknow edged within some small nmultiple of the average
RTT. Experience has shown that accurate, current RTT estinates
are necessary to adapt to changing traffic conditions and,

wi thout them a busy network is subject to an instability known
as "congestion coll apse" [Nagl e84].

In part because TCP segnents may be repacketized upon

retransm ssion, and in part because of conplications due to the
cumul ati ve TCP acknow edgenent, measuring a segnments’s RTT nay

i nvolve a non-trivial anount of conputation in sone

i mpl enentations. To mnimze this conputation, some

i mpl ementations tinme only one segrment per wi ndow. Wile this

yi el ds an adequate approxinmation to the RTT for small w ndows
(e.g., a 4 to 8 segnent Arpanet w ndow), for an LFN (e.g., 100
segment Wdeband Network windows) it results in an unacceptably
poor RTT estinate.

In the presence of errors, the probl em becones worse. Zhang

[Zhang86], Jain [Jain86] and Karn [Karn87] have shown that it is
not possible to accunulate reliable RTT estimates if
retransmitted segnents are included in the estimate. Since a
full window of data will have been transmitted prior to a
retransm ssion, all of the segnents in that window will have to
be ACKed before the next RTT sanple can be taken. This nmeans at
| east an additional windows worth of tine between RTT
neasurements and, as the error rate approaches one per w ndow of
data (e.g., 10**-6 errors per bit for the Wdeband Net), it
becones effectively inpossible to obtain an RTT neasurenent.

We propose a TCP "echo" option that allows each segnent to carry
its own tinmestanp. This will allow every segnment, including
retransm ssions, to be tined at negligible conputational cost.

I n designing new TCP options, we nust pay careful attention to
interoperability with existing inplenentations. The only TCP option
defined to date is an "initial option", i.e., it may appear only on a
SYN segnent. It is likely that nost inplenentations will properly

i gnore any options in the SYN segnent that they do not understand, so
new i nitial options should not cause a problem On the other hand,
we fear that receiving unexpected non-initial options may cause sone
TCP's to crash.

Jacobson & Braden [Page 3]

RFC 1072 TCP Extensions for Long-Del ay Paths Cct ober 1988

Therefore, in each of the extensions we propose, non-initial options
may be sent only if an exchange of initial options has indicated that

bot h sides understand the extension. This approach will also allow a
TCP to determ ne when the connection opens how big a TCP header it
wi |l be sending.

2. TCP W NDOW SCALE OPTI ON

The obvious way to inplenent a wi ndow scale factor woul d be to define
a new TCP option that could be included in any segnent specifying a
wi ndow. The receiver would include it in every acknow edgnent
segnent, and the sender would interpret it. Unfortunately, this

si nmpl e approach would not work. The sender mnust reliably know the
receiver’'s current scale factor, but a TCP option in an

acknow edgenent segnent will not be delivered reliably (unless the
ACK happens to be piggy-backed on data).

However, SYN segnments are al ways sent reliably, suggesting that each
side may comunicate its wi ndow scale factor in an initial TCP
option. This approach has a di sadvantage: the scal e must be
establ i shed when the connection is opened, and cannot be changed
thereafter. However, other alternatives would be much nore
conplicated, and we therefore propose a newinitial option called

W ndow Scal e.

2.1 Wndow Scale Option

This three-byte option may be sent in a SYN segnent by a TCP (1)
to indicate that it is prepared to do both send and receive w ndow
scaling, and (2) to conmunicate a scale factor to be applied to
its receive window. The scale factor is encoded |ogarithmcally,
as a power of 2 (presumably to be inplenmented by binary shifts).

Note: the window in the SYN segnment itself is never scal ed.
TCP W ndow Scal e Option

Kind: 3

Here shift.cnt is the nunber of bits by which the receiver right-
shifts the true receive-w ndow value, to scale it into a 16-bit
value to be sent in TCP header (this scaling is explained bel ow).
The value shift.cnt may be zero (offering to scale, while applying
a scale factor of 1 to the receive w ndow).

Jacobson & Braden [Page 4]

RFC 1072 TCP Extensions for Long-Del ay Paths Cct ober 1988

This option is an offer, not a prom se; both sides nust send
W ndow Scal e options in their SYN segnents to enabl e w ndow
scaling in either direction.

2.2 Using the Wndow Scal e Option

A nodel inplenentation of window scaling is as foll ows, using the
not ati on of RFC-793 [Postel 81]:

* The send-w ndow (SND. WND) and recei ve-wi ndow (RCV. WND) si zes
in the connection state block and in all sequence space
cal cul ati ons are expanded from 16 to 32 bits.

* Two wi ndow shift counts are added to the connection state:
snd. scal e and rcv.scale. These are shift counts to be
applied to the incomng and out goi ng wi ndows, respectively.
The precise algorithmis shown bel ow.

* Al'l outgoing SYN segnents are sent with the Wndow Scal e
option, containing a value shift.cnt = Rthat the TCP would
like to use for its receive w ndow.

* Snd. scale and rcv.scale are initialized to zero, and are
changed only during processing of a received SYN segnent. |If
t he SYN segnment contains a Wndow Scale option with shift.cnt
= S, set snd.scale to S and set rcv.scale to R otherw se,
both snd.scale and rcv.scale are left at zero.

* The wi ndow field (SEG WND) in the header of every incom ng
segnent, with the exception of SYN segnments, will be left-
shifted by snd.scale bits before updati ng SND. WND:

SND. WND = SEG WAD << snd. scal e

(assuming the other conditions of RFC793 are met, and using
the "C' notation "<<" for left-shift).

* The wi ndow field (SEG WND) of every outgoing segnent, with
t he exception of SYN segnents, will have been right-shifted
by rcv.scale bits:

SEG. WND = RCV. WND >> rcv. scal e.
TCP determines if a data segnent is "old" or "new' by testing if
its sequence nunber is within 2**31 bytes of the left edge of the

wi ndow. If not, the data is "ol d" and discarded. To insure that
new data i s never mstakenly considered old and vice-versa, the

Jacobson & Braden [Page 5]

RFC 1072 TCP Extensions for Long-Del ay Paths Cct ober 1988

| eft edge of the sender’s wi ndow has to be at |east 2**31 away
fromthe right edge of the receiver’s window Similarly with the
sender’s right edge and receiver’s left edge. Since the right and
| eft edges of either the sender’s or receiver’s w ndow differ by
the wi ndow si ze, and since the sender and receiver w ndows can be
out of phase by at nost the wi ndow size, the above constraints
imply that 2 * the nmax wi ndow size nust be |l ess than 2**31, or

max w ndow < 2**30

Since the max window is 2**S (where S is the scaling shift count)
times at nost 2**16 - 1 (the maxi num unscal ed wi ndow), the maxi mum
wi ndow i s guaranteed to be < 2*30 if S <= 14. Thus, the shift
count must be limted to 14. (This allows wi ndows of 2**30 = 1
Goyte.) |If a Wndow Scale option is received with a shift.cnt

val ue exceeding 14, the TCP should I og the error but use 14

i nstead of the specified val ue.

3. TCP SELECTI VE ACKNOALEDGVENT OPTI ONS

To nmininize the inpact on the TCP protocol, the selective

acknow edgnent extension uses the formof two new TCP options. The
first is an enabling option, "SACK-permitted", that may be sent in a
SYN segnment to indicate that the the SACK option nmay be used once the
connection is established. The other is the SACK option itself,

whi ch may be sent over an established connection once perm ssion has
been given by SACK-permtted.

The SACK option is to be included in a segnent sent froma TCP that

is receiving data to the TCP that is sending that data; we will refer
to these TCP s as the data receiver and the data sender,
respectively. We will consider a particular sinplex data flow, any

data flowing in the reverse direction over the same connection can be
treated i ndependently.

3.1 SACK-Permitted Option
This two-byte option may be sent in a SYN by a TCP that has been

extended to receive (and presumably process) the SACK option once
t he connection has opened.

Jacobson & Braden [Page 6]

RFC 1072 TCP Extensions for Long-Del ay Paths Cct ober 1988

TCP Sack-Permitted Option

Kind: 4

3.2 SACK Option

The SACK option is to be used to convey extended acknow edgnent

i nformati on over an established connection. Specifically, it is
to be sent by a data receiver to informthe data transnitter of
non-conti guous bl ocks of data that have been received and queued.
The data receiver is awaiting the receipt of data in later
retransmissions to fill the gaps in sequence space between these
bl ocks. At that tine, the data receiver will acknow edge the data
normal Iy by advancing the I eft wi ndow edge in the Acknow edgnent
Nunber field of the TCP header.

It is inportant to understand that the SACK option will not change
the nmeani ng of the Acknow edgnment Nunber field, whose value wll

still specify the Ieft w ndow edge, i.e., one byte beyond the | ast
sequence nunber of fully-received data. The SACK option is
advisory; if it is ignored, TCP acknow edgnents will continue to

function as specified in the protocol.

However, SACK will provide additional information that the data
transnmitter can use to optim ze retransni ssions. The TCP data
receiver may include the SACK option in an acknow edgnent segnent
whenever it has data that is queued and unacknow edged. O

course, the SACK option may be sent only when the TCP has received
the SACK-permitted option in the SYN segnent for that connection

TCP SACK Opti on:
Kind: 5

Lengt h: Variabl e

S S S Fomm oo o - S, Fomm oo o - + - -+
| Kind=5 | Length | Relative Oigin | Bl ock Size |
S S S Fomm oo o - S, Fomm oo o - + - -+

This option contains a list of the blocks of contiguous sequence
space occupi ed by data that has been received and queued within

Jacobson & Braden [Page 7]

RFC 1072 TCP Extensions for Long-Del ay Paths Cct ober 1988
the wi ndow. Each block is contiguous and isolated; that is, the
octets just bel ow the bl ock,

Acknow edgnent Nunber + Relative Oigin -1,
and just above the bl ock,
Acknow edgrment Nunber + Relative Oigin + Block Size,
have not been received.
Each contiguous bl ock of data queued at the receiver is defined in
the SACK option by two 16-bit integers:
* Rel ative Origin
This is the first sequence nunmber of this block, relative to
t he Acknow edgment Nunber field in the TCP header (i.e.,
relative to the data receiver’'s left w ndow edge).
* Bl ock Size
This is the size in octets of this block of contiguous data.
A SACK option that specifies n blocks will have a |l ength of 4*n+2
octets, so the 44 bytes available for TCP options can specify a
maxi mum of 10 bl ocks. O course, if other TCP options are
i ntroduced, they will conpete for the 44 bytes, and the linit of

10 may be reduced in particul ar segnents.

There is no requirenent on the order in which blocks can appear in
a single SACK option

Note: requiring that the bl ocks be ordered would allow a
slightly nore efficient algorithmin the transmtter; however,
this does not seemto be an inportant optinization.
3.3 SACK with Wndow Scal i ng
If window scaling is in effect, then 16 bits may not be sufficient
for the SACK option fields that define the origin and |l ength of a
bl ock. There are two possible ways to handle this:

(1) Expand the SACK origin and length fields to 24 or 32 bits.

Jacobson & Braden [Page 8]

RFC 1072 TCP Extensions for Long-Del ay Paths Cct ober 1988

(2) Scale the SACK fields by the sanme factor as the w ndow.

The first alternative would significantly reduce the nunber of
bl ocks possible in a SACK option; therefore, we have chosen the
second alternative, scaling the SACK information as well as the
wi ndow.

Scaling the SACK i nformation introduces sone | oss of precision,
since a SACK option nust report queued data bl ocks whose origins
and lengths are nultiples of the window scale factor rcv. scale.
These reported bl ocks nust be equal to or smaller than the actual
bl ocks of queued dat a.

Specifically, suppose that the receiver has a contiguous bl ock of

gueued data that occupi es sequence nunbers L, L+1, ... L+N-1, and
that the wi ndow scale factor is S = rcv.scale. Then the
correspondi ng block that will be reported in a SACK option w |l
be:

Rel ative Oigin = int((L+S-1)/S)
Block Size = int((L+N)/S) - (Relative Oigin)

where the function int(x) returns the greatest integer contained
in X.

The resulting | oss of precision is not a serious problemfor the
sender. |If the data-sending TCP keeps track of the boundaries of
all segments in its retransnission queue, it will generally be
able to infer fromthe inprecise SACK data which full segnents
don't need to be retransmitted. This will fail only if Sis

| arger than the maxi num segnment size, in which case sone segnments
may be retransmitted unnecessarily. |If the sending TCP does not
keep track of transnitted segnent boundaries, the inprecision of
the scaled SACK quantities will only result in retransmtting a
smal | anount of unneeded sequence space. On the average, the data
sender will unnecessarily retransnit J*S bytes of the sequence
space for each SACK received; here J is the nunber of bl ocks
reported in the SACK, and S = snd. scal e.

3.4 SACK Option Exanples
Assunme the | eft w ndow edge is 5000 and that the data transmitter

sends a burst of 8 segnents, each containing 500 data bytes.
Unl ess specified otherw se, we assunme that the scale factor S = 1.

Jacobson & Braden [Page 9]

RFC 1072

TCP Extensions for Long-Del ay Paths Cct ober 1988

Case 1: The first 4 segnents are received but the last 4 are
dr opped.

The data receiver will return a normal TCP ACK segnent
acknowl edgi ng sequence numnber 7000, with no SACK option

Case 2: The first segment is dropped but the remaining 7 are
received.

The data receiver will return a TCP ACK segnment t hat
acknowl edges sequence nunber 5000 and contains a SACK option
speci fying one bl ock of queued dat a:

Rel ative Origin = 500; Block Size = 3500

Case 3: The 2nd, 4th, 6th, and 8th (last) segnents are
dr opped.

The data receiver will return a TCP ACK segnment t hat
acknowl edges sequence nunber 5500 and contains a SACK option
speci fying the 3 bl ocks:

Relative Oigin = 500; Block Size = 500
Rel ative Origin = 1500; Block Size = 500
Rel ative Origin = 2500; Block Size = 500

Case 4: Sane as Case 3, except Scale Factor S = 16.

The SACK option would specify the 3 scal ed bl ocks:

Relative Oigin = 32; Block Size = 30
Rel ative Oigin = 94; Block Size = 31
Relative Oigin = 157; Block Size = 30

These three reported bl ocks have sequence numnbers 512 through
991, 1504 through 1999, and 2512 through 2992, respectively.

3.5 Cenerating the SACK Option

Let us assune that the data receiver maintains a queue of valid
segnents that it has neither passed to the user nor acknow edged
because of earlier nissing data, and that this queue is ordered by
starting sequence nunber. Conputation of the SACK option can be
done with one pass down this queue. Segnents that occupy

Jacobson & Braden [Page 10]

RFC 1072 TCP Extensions for Long-Del ay Paths Cct ober 1988

3.

4.

6

conti guous sequence space are aggregated into a single SACK bl ock
and each gap in the sequence space (except a gap that is

term nated by the right w ndow edge) triggers the start of a new
SACK bl ock. [If this algorithmdefines nore than 10 bl ocks, only
the first 10 can be included in the option.

nterpreting the SACK Option

The data transmitter is assuned to have a retransm ssion queue
that contains the segnents that have been transmitted but not yet
acknowl edged, in sequence-nunber order. |If the data transmitter
perforns re-packetization before retransni ssion, the bl ock
boundaries in a SACK option that it receives may not fall on
boundari es of segnents in the retransm ssion queue; however, this
does not pose a serious difficulty for the transmtter.

Let us suppose that for each segnent in the retransm ssion queue
there is a (new) flag bit "ACK d", to be used to indicate that
this particul ar segnent has been entirely acknow edged. When a
segnent is first transmtted, it will be entered into the
retransm ssion queue with its ACKd bit off. If the ACKd bit is
subsequently turned on (as the result of processing a received
SACK option), the data transmtter will skip this segnment during
any later retransm ssion. However, the segnent will not be
dequeued and its buffer freed until the left wi ndow edge is
advanced over it.

When an acknow edgnent segnment arrives containing a SACK option,
the data transmitter will turn on the ACK' d bits for segnents that
have been sel ectively acknow eged. More specifically, for each

bl ock in the SACK option, the data transmitter will turn on the
ACK d flags for all segnments in the retransm ssion queue that are
whol Iy contained within that block. This requires straightforward
sequence nunber conpari sons.

TCP ECHO OPTI ONS

A sinmple nethod for neasuring the RTT of a segnment would be: the
sender places a tinestanp in the segnment and the receiver returns
that tinestanp in the correspondi ng ACK segnent. Wen the ACK segnent
arrives at the sender, the difference between the current tinme and
the tinmestanp is the RTT. To inplenent this timng nethod, the
receiver nmust sinply reflect or echo selected data (the tinmestanp)
fromthe sender’s segnents. This idea is the basis of the "TCP Echo"
and "TCP Echo Reply" options.

Jacobson & Braden [Page 11]

RFC 1072 TCP Extensions for Long-Del ay Paths Cct ober 1988

4.1 TCP Echo and TCP Echo Reply Options

TCP Echo Option

Kind: 6

Length: 6
S S Fomm oo o - S, Fomm oo o - S +
| Kind=6 | Length | 4 bytes of info to be echoed |
S S Fomm oo o - S, Fomm oo o - S +

This option carries four bytes of information that the receiving TCP
may send back in a subsequent TCP Echo Reply option (see below). A
TCP may send the TCP Echo option in any segnent, but only if a TCP
Echo option was received in a SYN segnent for the connection

When the TCP echo option is used for RTT neasurenent, it will be
included in data segnents, and the four information bytes will define
the time at which the data segnent was transmtted in any format
convenient to the sender

TCP Echo Reply Option:

Kind: 7

Length: 6
S S S Fomm oo o - S, Fomm oo o - +
| Kind=7 | Length | 4 bytes of echoed info
S S S Fomm oo o - S, Fomm oo o - +

A TCP that receives a TCP Echo option containing four information
bytes will return these sanme bytes in a TCP Echo Reply option

This TCP Echo Reply option nust be returned in the next segnent

(e.g., an ACK segnent) that is sent. If nore than one Echo option is
recei ved before a reply segnent is sent, the TCP nust choose only one
of the options to echo, ignoring the others; specifically, it nust
choose the newest segnment with the ol dest sequence nunber (see next
section.)

To use the TCP Echo and Echo Reply options, a TCP nust send a TCP
Echo option in its own SYN segnent and receive a TCP Echo option in a
SYN segnent fromthe other TCP. A TCP that does not inplenent the
TCP Echo or Echo Reply options must sinply ignore any TCP Echo
options it receives. However, a TCP should not receive one of these

Jacobson & Braden [Page 12]

RFC 1072 TCP Extensions for Long-Del ay Paths Cct ober 1988

options in a non-SYN segnent unless it included a TCP Echo option in
its own SYN segment.

4.2 Using the Echo Options

If we wish to use the Echo/Echo Reply options for RTT neasurenent, we
have to define what the receiver does when there is not a one-to-one
correspondence between data and ACK segnents. Assuming that we want
to minimze the state kept in the receiver (i.e., the nunber of
unprocessed Echo options), we can plan on a receiver renenbering the
i nformati on value fromat nost one Echo between ACKs. There are
three situations to consider

(A) Del ayed ACKs.

Many TCP' s acknow edge only every Kth segnment out of a group of
segnments arriving within a short tinme interval; this policy is

known generally as "del ayed ACK s". The data-sender TCP nust
neasure the effective RTT, including the additional time due to
del ayed ACK's, or else it will retransmt unnecessarily. Thus,

when del ayed ACK's are in use, the receiver should reply with
the Echo option information fromthe earliest unacknow edged
segment .

(B) A hole in the sequence space (segnent(s) have been |l ost).

The sender will continue sending until the windowis filled, and
we may be generating ACKs as these out-of-order segnents arrive
(e.g., for the SACK information or to aid "fast retransnit").

An Echo Reply option will tell the sender the RTT of sone
recently sent segnent (since the ACK can only contain the
sequence nunber of the hole, the sender nmay not be able to
determ ne whi ch segnent, but that doesn’t matter). |If the |oss
was due to congestion, these RTTs may be particul arly val uabl e
to the sender since they reflect the network characteristics

i Mmedi ately after the congestion.

(C© Afilled hole in the sequence space.

The segnent that fills the hole represents the nost recent
measurenment of the network characteristics. On the other hand,
an RTT conmputed froman earlier segnent would probably include
the sender’s retransmit tinme-out, badly biasing the sender’s
average RTT esti mate.

Case (A) suggests the receiver should renenber and return the Echo
option information fromthe ol dest unacknow edged segnent. Cases (B)

Jacobson & Braden [Page 13]

RFC 1072 TCP Extensions for Long-Del ay Paths Cct ober 1988

and (C) suggest that the option should cone fromthe nost recent
unacknow edged segnment. An algorithmthat covers all three cases is
for the receiver to return the Echo option information fromthe
newest segnent with the ol dest sequence nunber, as specified earlier.

A nodel inplenentation of these options is as follows.

(1) Receiver Inplenentation

A 32-bit slot for Echo option data, rcv.echodata, is added to
the receiver connection state, together with a flag,

rcv. echopresent, that indicates whether there is anything in the
slot. Wen the receiver generates a segnment, it checks
rcv.echopresent and, if it is set, adds an echo-reply option
containing rcv.echodata to the outgoi ng segnment then clears

rcv. echopresent.

If an incom ng segnent is in the window and contains an echo
option, the receiver checks rcv.echopresent. If it isn't set,
the value of the echo option is copied to rcv.echodata and
rcv.echopresent is set. |If rcv.echopresent is already set, the
recei ver checks whether the segnent is at the left edge of the
wi ndow. |If so, the segnent’s echo option value is copied to
rcv.echodata (this is situation (C above). Oherw se, the
segnent’s echo option is ignored.

(2) Sender |nplenentation

The sender’s connection state has a single flag bit,
snd. echoal | oned, added. |f snd.echoallowed is set or if the
segnent contains a SYN, the sender is free to add a TCP Echo
option (presumably containing the current tinme in sone units
convenient to the sender) to every outgoing segment.

Snd. echoal | owed should be set if a SYNis received with a TCP
Echo option (presumably, a host that inplenments the option will
attenpt to use it to tine the SYN segnent).

5. CONCLUSI ONS AND ACKNOWLEDGVENTS

We have proposed five new TCP options for scal ed wi ndows, selective
acknowl edgnents, and round-trip timing, in order to provide efficient
operation over |arge-bandw dt h*del ay- product paths. These extensions
are designed to provide conpatible interworking with TCP's that do not
i mpl ement the extensions.

Jacobson & Braden [Page 14]

RFC 1072 TCP Extensions for Long-Del ay Paths Cct ober 1988

The W ndow Scal e option was originally suggested by Mke St. Johns of
USAF/ DCA. The present form of the option was suggested by M ke Karels
of UC Berkeley in response to a nore cunbersonme schene proposed by Van
Jacobson. Gerd Beling of FGAN (West Germany) contributed the initial
definition of the SACK option.

Al'l three options have evol ved through di scussion with the End-to-End
Task Force, and the authors are grateful to the other nenbers of the
Task Force for their advice and encouragenent.

6. REFERENCES

[Cheriton88] Cheriton, D., "VMIP: Versatile Message Transaction
Protocol ", RFC 1045, Stanford University, February 1988.

[Jain86] Jain, R, "Divergence of Timeout Al gorithns for Packet
Retransmi ssions", Proc. Fifth Phoeni x Conf. on Conp. and Comm,
Scottsdal e, Arizona, March 1986.

[Karn87] Karn, P. and C. Partridge, "Estimating Round-Trip Tines
in Reliable Transport Protocols", Proc. SIGCOW ' 87, Stowe, VT,
August 1987.

[Clark87] dark, D., Lanbert, M, and L. Zhang, "NETBLT: A Bulk
Data Transfer Protocol"”, RFC 998, M T, March 1987.

[Nagl e84] Nagle, J., "Congestion Control in IP/ TCP
I nternetworks", RFC 896, FACC, January 1984.

[NBS85] Colella, R, Aronoff, R, and K. MIIls, "Perfornmance
I mprovenents for | SO Transport”, N nth Data Comm Synposi um
publ i shed in ACM SI GCOW Conp Conmm Revi ew, vol. 15, no. 5,
Sept enber 1985.

[Partridge87] Partridge, C, "Private Conmunication", February
1987.

[Postel 81] Postel, J., "Transmi ssion Control Protocol - DARPA
Internet Program Protocol Specification", RFC 793, DARPA,
Sept enber 1981.

[Velten84] Velten, D., Hnden, R, and J. Sax, "Reliable Data
Protocol ", RFC 908, BBN, July 1984.

[Jacobson88] Jacobson, V., "Congestion Avoi dance and Control", to
be presented at SIGCOW ' 88, Stanford, CA., August 1988.

[Zhang86] Zhang, L., "Why TCP Tinmers Don't Wrk Well", Proc.

Jacobson & Braden [Page 15]

RFC 1072 TCP Extensions for Long-Del ay Paths Cct ober 1988

SI GCOW ’ 86, Stowe, Vt., August 1986.

Jacobson & Braden [Page 16]

