Net wor k Wor ki ng Group B. Greenberg
Request for Comments: 1037 S. Keene
Decenber 1987

NFILE - A File Access Protocol

STATUS OF TH S MEMO

Thi s docunent includes a specification of the NFILE file access
protocol and its underlying | evels of protocol, the Token Li st
Transport Layer and Byte Streamwith Mark. The goal of this
specification is to pronpote discussion of the ideas described here,
and to encourage designers of future file protocols to take advant age
of these ideas. A secondary goal is to nmake the specification
available to sites that might benefit frominplenenting NFILE. The
distribution of this docunment is unlimted.

TABLE OF CONTENTS

Page

1. | NTRODUCTI ON 3
2. NFI LE PROTOCOL LAYERI NG 4
3. OVERVIEW OF AN NFI LE SESSI ON 5
4. NFILE CONTROL AND DATA CONNECTI ONS 6
5. NFILE FI LE OPENI NG MODES 7
6. NFILE CHARACTER SET 9
7. CONVENTIONS USED IN THI S DOCUVENT 10
7.1 Mapping Data Types Into Token List Representation 10

7.2 Format of NFILE Conmands and Responses 10

7.3 Data Channel Handles and Direct File Identifiers 13

7.4 Syntax of File and Directory Pathnane Argunents 13

7.5 Format of NFILE File Property/Val ue Pairs 14

8. NFI LE COVMANDS 16
8.1 ABORT Comand 16

8.2 CHANGE- PROPERTI ES Command 16

8.3 CLOSE Command 17

8.4 COWPLETE Conmand 19

8.5 CONTI NUE Conmmand 20

G eenberg & Keene [Page 1]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

8.6 CREATE- DI RECTORY Command 21
8.7 CREATE- LI NK Command 21
8.8 DATA- CONNECTI ON Conmmand 22
8.9 DELETE Conmmand 23
8.10 DI RECT- QUTPUT Conmand 23
8.11 DI RECTORY Conmand 24
8.11.1 NFILE DI RECTCORY Data For mat 26

8.12 DI SABLE- CAPABI LI TI ES Command 27
8.13 ENABLE- CAPABI LI TI ES Comrand 28
8.14 EXPUNGE Conmand 28
8.15 FILEPGS Conmand 29
8.15.1 |Inplenentation H nt for FILEPOCS Command 30

8.16 FIN SH Conmmand 30
8.17 HOVE- DI RECTORY Command 31
8.18 LOGE N Command 32
8.19 MULTI PLE- FI LE- PLI STS Command 34
8.20 OPEN Command 35
8.20.1 NFILE OPEN Optional Keyword/Val ue Pairs 39
8.20.2 NFILE OPEN Response Return Val ues 45

8.21 PROPERTI ES Comand 47
8.22 READ Command 49
8.23 RENAME Conmmand 50
8.24 RESYNCHRONI ZE- DATA- CHANNEL Conmand 51
8.24.1 Inplenmentation H nts for RESYNCHRON ZE- DATA- 51

CHANNEL Cormmand
8. 25 UNDATA- CONNECTI ON Commrand 52
9. NFI LE RESYNCHRONI ZATI ON PROCEDURE 53
9.1 NFILE Control Connection Resynchronization 54
9.2 NFILE Data Connection Resynchronization 55
10. NFILE ERRORS AND NOTI FI CATI ONS 58
10.1 Notifications Fromthe NFILE Server 58
10.2 NFILE Command Response Errors 59
10.3 NFILE Asynchronous Errors 60
10.4 NFILE Three-letter Error Codes 61
11. TOKEN LI ST TRANSPORT LAYER 65
11.1 Introduction to the Token List Transport Layer 65
11.2 Token List Stream 66
11.2.1 Types of Tokens and Token Lists 66
11.2.2 Token List Stream Exanpl e 68
11.2.3 Mapping of Lisp Oobjects to Token List Stream 70
Repr esent ati on
11.2.4 Aborting and the Token List Stream 71

G eenberg & Keene [Page 2]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

11.3 Token List Data Stream 72
12. BYTE STREAM W TH MARK 73
12.1 Discussion of Byte Streamw th Mark 73
12.2 Byte Streamwith Mark Abortable States 75
13. POSSI BLE FUTURE EXTENSI ONS 77
APPENDI X A. NORMAL TRANSLATI ON MODE 79
APPENDI X B. RAW TRANSLATI ON MODE 83
APPENDI X C. SUPER- | MAGE TRANSLATI ON MODE 84
NOTES 86

LI ST OF TABLES

TABLE 1. TRANSLATI ONS FROM NFI LE CHARACTERS TO UNI X CHARACTERS 80

TABLE 2. TRANSLATI ONS FROM UNI X CHARACTERS TO NFI LE CHARACTERS 80

TABLE 3. TRANSLATI ONS FROM NFI LE TO PDP-10 CHARACTERS 81

TABLE 4. TRANSLATI ONS FROM PDP- 10 CHARACTERS TO NFI LE 82
CHARACTERS

TABLE 5. SUPER- | MAGE TRANSLATI ON FROM NFI LE TO ASCI | 84

TABLE 6. SUPER- | MAGE TRANSLATI ON FROM ASCI| TO NFI LE 85

1. | NTRODUCTI ON

NFI LE stands for "New File Protocol"”. NFILE was originally designed
as a replacenent for an ol der protocol named QFILE, with the goal of
sol vi ng robustness problens of QFILE, hence the name "New Fil e

Prot ocol ".

NFI LE was designed and i npl enented at Synbolics by Bernard S.

G eenberg. M ke McMahon made inportant contributions, especially in
the design and inplenentation of the Byte Streamwi th Mark and Token
Li st Transport layers. NFILE has been used successfully for file
access between Synbolics conmputers since 1985. NFILE servers have
been witten for UNI X hosts as well. NFILE is intended for use by
any type of file system not just the native Synbolics file system

NFILE is a file access protocol that supports a large set of
operations on files and directories on renote systens, including:

- Reading and witing entire files

- Reading and witing selected portions of files
- Deleting and renam ng files

Greenberg & Keene [Page 3]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

- Creating |inks

- Listing, creating, and expunging directories

- Listing and changing the properties of files

- Enabling and di sabling access capabilities on a renote
host

NFI LE supports file transfer of binary or character files.

The NFILE server provides information about any errors that occur in
the course of a command. In addition, NFILE has a robust schene for
handl i ng aborts on the user side.

This specification defines NFILE user version 2 and server version 2.
We do not envision NFILE as an unchangi ng protocol, but rather as a
protocol that could continue to develop if additional requirenents
are identified though the process of this Request for Coments. The
desi gn of NFILE nakes room for various useful extensions. Sonme of
the extensions that we are considering are described later on in this
docunent: See the section "Possible Future Extensions", section 13.

2. NFILE PROTOCOL LAYERI NG

NFILE is a |layered file protocol. The |layers are:
o m o e o e o e e e e e e e e e e e e e e e eeoooo-- +
| client programor user interface |
o m o e o e o e e e e e e e e e e e e e e e eeoooo-- +
| NFI LE |
o m o e o e o e e e e e e e e e e e e e e e eeoooo-- +
| Token List Transport Layer |
o m o e o e o e e e e e e e e e e e e e e e eeoooo-- +
| Byte Streamwith Mark |
o m o e o e o e e e e e e e e e e e e e e e eeoooo-- +
| reliabl e host-host byte transni ssion protocol |
o m o e o e o e e e e e e e e e e e e e e e eeoooo-- +

Byte Streamwith Mark is a sinple protocol that guarantees that an
out - of - band signal can be transmitted in the case of program
interruption. Byte Streamw th Mark is to be | ayered upon extant
byte stream protocols. An inportant goal of the NFILE design was
that NFILE could be built on any byte stream It is currently

i npl enented on TCP and Chaosnet. See the section "Byte Streamwi th
Mar k", section 12.

The Token List Transport Layer is a protocol that facilitates the

transni ssion of sinple structured data, such as lists. See the
section "Token List Transport Layer", section 11.

Greenberg & Keene [Page 4]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The NFILE commands and comand responses are transmitted in "token
lists". See the section "NFILE Commands", section 8.

This specification does not include a client program or user
interface to the protocol. |In the Synbolics inplenentation, the
normal file operations transparently invoke NFILE, when the renote
host is known to support NFILE. Another possible interface to NFILE
woul d be through a dedicated client programthat would issue NFILE
commands in response to explicit requests by the user.

3. OVERVI EW OF AN NFI LE SESSI ON

An NFI LE session is a dialogue between two hosts. The host that
initiates the NFILE session is known as the "user side", and the
other host is the "server side". The user side sends all NFILE
commands. The server receives each command, processes it, and
responds to it, indicating the success or failure of the conmand.

The user side keeps track of commands sent and conmand responses
received by using "transaction identifiers" to identify each conmand.
The user side generates a transaction identifier (which nust be

uni que per this dialogue) for each command, and sends the transaction
identifier to the server along with the command. Each NFILE server
response includes the transaction identifier of the comand with

whi ch the response is associated. The server is not required to
respond to commuands in the same order that the user gave them

The user side sends NFILE conmands over a bidirectional network
connection called the "control connection". The server sends its
command responses on the same control connection. The control
connection governing the NFILE session is established at the

begi nning of the session. |If the control connection is ever broken,
the NFILE session is ended.

Wher eas NFI LE commands and responses are transnmitted on the control
connection, file data is transferred over "data channel s". An "input
data channel" transfers data fromserver to user. An "output data
channel " transfers data fromuser to server. Each input data channel
is associated with an output data channel; together these two
channel s conprise a "data connection".

Oten nore than one NFILE activity is occurring at any given tinme.
For exampl e, several files can be open and transferring data

si mul t aneously; one or nore commands can be in process at the sane
time; and the server can be sinultaneously transmitting directory

lists and processing further commands. This happens in an

i npl ementation in which the user side has nultiple processes, and

several processes share a single NFILE server.

Greenberg & Keene [Page 5]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

4.

NFI LE CONTROL AND DATA CONNECTI ONS

The user and server conmuni cate through a single control connection
and a set of data connections. Data connections are established and
di sestabl i shed by NFILE commands. The user side sends NFILE commands
to the server over the control connection. The server responds to
every user comand over this control connection. The actual file
data is transmitted over the data connecti ons.

User aborts can disrupt the normal flow of data on the contro
connection and data connections. An inportant aspect of any file
protocol is the way it handl es user aborts. NFILE uses a
resynchroni zati on procedure to bring the affected control connection
or data channel from an unknown, unsafe state into a known state.
After resynchronization, the control connection or data channel can
be reused. See the section "NFILE Resynchronization Procedure"
section 9.

THE CONTRCOL CONNECTI ON

An NFI LE session is begun when the NFILE user program connects to a
renote host and establishes a network connection. This initial
connection is the control conection of the dialogue. |If TCP is used
as the underlying protocol, contact NFILE s well-known port, 59. |If
Chaos is used, use the contact nanme "NFILE".

The control connection is the vehicle used by the user to send its
commands, and the server to send its command responses. These types
of communi cation occur over the NFILE control connection

- The user side sends NFILE comuands.

- The server sends command responses.

- The server sends "notifications" and "asynchronous errors".
See the section "NFILE Errors and Notifications", section 10.

- During resynchronization (a special circunstance) either the
user or server sends a nark.

Al'l commands, command responses, and other data flow ng over the

NFI LE control connection are transnitted in the fornmat of "top-Ieve
token lists". The control connection expects never to receive "l oose
tokens"; that is, tokens not contained in token lists.

Greenberg & Keene [Page 6]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

DATA CONNECTI ONS

Dat a connections are established and di scarded at user request, by
means of two NFILE conmmands: DATA- CONNECTI ON and UNDATA- CONNECTI ON
Each data connection is associated with a specific control

connection, which is the same control connection that caused the data
connection to be established.

Each data connection is conposed of two "data channel s". Each data
channel is capable of sending data in one direction. The term"input
channel " refers to the data channel that transnmits data fromthe
server to the user side; "output channel" refers to the data channe
that transmits data fromthe user to the server side. Throughout the
NFI LE docunentation, the ternms "input channel" and "output channel™
are seen fromthe perspective of the user side. A single data
channel can be used for one data transfer after another.

The format of the data transferred on the data channels is defined as
a "token list data streanmf. See the section "Token List Data
Streant, section 11.3. Wen the end of data is reached, the keyword
token EOF is sent. (Qccasionally, token lists are transmitted over

t he data channel s, such as asynchronous error descriptions.

5. NFILE FILE OPENI NG MCDES

The NFILE OPEN command opens a file for reading, witing, or "direct
access" at the server host. That neans, in general, asking the host
file systemto access the file and obtaining a file nunber, pointer,
or other quantity for subsequent rapid access to the file; this is
called an "opening". The term"opening" translates to a file stream
in Synbolics termnology, a JFNin TOPS-20 terninology, and a file
descriptor in UNI X term nol ogy. An opening usually keeps track of
how many bytes have been read or witten, and other bookkeeping

i nformati on.

NFI LE supports two ways of transferring file data, "data stream node"
and "direct access node". A single node is associated with each
opening. Note that an NFILE di al ogue can have nore than one openi ng,
and thus use both nodes.

DATA STREAM MODE
Data stream nmode of file transfer is the default node of NFILE s OPEN
command. Data stream node is appropriate when the entire file is

transferred, either fromuser to server, or fromserver to user.
Data stream node i s used nbre often than direct access node.

G eenberg & Keene [Page 7]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The OPEN conmmand includes a "handl e" argunent, which identifies the
data channel to be used to transfer the data. The handle is used in
subsequent conmmands to reference this particular opening. Wen a
data stream opening is requested with the OPEN command, the file is
opened and the data begins to flow i medi ately.

The sending side transmts the entire contents of the specified file
over the specified data channel as rapidly as the network pernits.
When t he sending side reaches the end of the file, it transmits a
special control token to signal end of file. The receiving side
expects an uninterrupted stream of bytes to appear inmediately on its
si de of the data channel

The user gives the CLOSE command to terninate a data streamtransfer
CLCSE results in closing the file.

DI RECT ACCESS MODE:

Direct access node enables reading or witing data froma given
starting point in a file through a specified nunber of bytes. 1In

di rect access node, data is requested and sent in individual
transactions. To request a direct access node opening, the OPEN
conmand is used with a DIRECT-FILE-1D argunent. (In data stream
node, no DIRECT-FILE-1D is supplied.) The direct file identifier is
used in subsequent commands to reference the direct access opening.

Wien a file is opened in direct access node, the flow of data does
not start inmmediately. Rather, the user gives either a READ conmand
(to request data to flow from server to user) or a DI RECT- QUTPUT
conmand (to request data to flow fromuser to server). \Wen reading,
t he READ command al l ows the user to specify the starting point and

t he nunber of bytes of data to transfer. Wen witing, the FILEPCS
command can be used to specify the starting point, before the

DI RECT- QUTPUT command is given. The user can give many READ and

DI RECT- QUTPUT commands, one after another.

The user side term nates the direct access transfer by using the

CLOSE conmand. The ABORT command can be given to term nate without
transnitting all of the specified bytes.

Greenberg & Keene [Page 8]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

6. NFILE CHARACTER SET

The NFILE character set <1> is an extension of standard ASCII. NFILE
command and response names use only the standard ASCI| characters.
However, the protocol supports the transfer of the non-ASCl
characters in the NFILE character set; these characters night be
stored in files, or nmight be used in pathnanes.

Servers on machi nes that do not natively use the NFILE character set
nmust perform character set translations for character openings,
dependi ng on the requested translation node. No translation is
required for binary openings. There are three translation nodes for
character openings: NORVAL, RAW and SUPER-I MACE. Each node
specifies a way to translate between the server’s native set and the
NFI LE character set.

NOCRMAL nmode is the default of the OPEN command. The translation for
NORMAL nmode ensures that a file containing characters in the NFILE
character set can be witten to a renote host and read back intact.
OPEN has optional keyword argunments to specify RAWor SUPER-| MAGE
RAW node nmeans to performno translation whatsoever. SUPER-1 MAGE
node is intended for use by PDP-10 family nmachines only. It is
included largely as an illustration of a system dependent extension.

The details of each translation node are given in Appendices:

See the section "NORMAL Transl ation Mdde", Appendix A. See the
section "RAW Transl ati on Mode", Appendix B. See the section
"SUPER- | MAGE Transl ati on Mode", Appendi x C

The use of the NFILE character set brings up a difficulty involved
with determ ning an exact position within a character file. Sone
NFI LE characters expand to nore than one native character on sone
servers. Thus, for character files, when we speak of a given
position in a file or the length of a file, we nmust specify whether
we are speaking in "NFILE units" or "server units", because the
counting of characters is different. This causes major problens in
file position reckoning for character files. Specifically, it is
futile for a user side to carefully nonitor file position during
out put by counting characters, when character translation is in
effect. The server’s operating systeminterface for "position to
point x in a file" necessarily operates in server units, but the user
side has counted in NFILE units. The user side cannot try to
second-guess the transl ati on-counting process w thout |osing host-

i ndependence. See the section "FILEPOS NFI LE Command".

Greenberg & Keene [Page 9]

RFC 1037

NFI LE - A File Access Protocol Decenber 1987

7. CONVENTI ONS USED IN THI S DOCUVMENT

7.1 WMapping Data Types Into Token List Representation

Throughout this NFILE specification, the data types of argunents,

return val ues,

asynchronous error descriptions, and notifications are

described as being strings, integers, dates, tinme intervals, and so

on. However ,

each conceptual data type nust be mapped into the

appropriate token list representation for transm ssion. The mapping

of concept ual

Concept ual Type

Keywor d
Keyword |i st
| nt eger

String

Bool ean Truth
Bool ean Fal se

Dat e

Dat e- or - never

Time interva

data types to token |ist representation is shown here:

Token List Representation

A keyword token
A token list of keyword tokens
A nuneric data token

A data token containing the characters of the
string in the NFILE character set.

The token known as BOOLEAN TRUTH
The enpty token I|ist.

A nuneric data token. The date is expressed in
Universal Tinme format, which neasures a tine as
the nunber of seconds since January 1, 1900, at
m dni ght GMI

Can be either a date or the enpty token Iist,
representing "never". "Never" is used for
val ues such as the tinme a directory was | ast
expunged, if it has never been expunged.

A nuneric data token. The tinme interval is
expressed in seconds. A tine interval

i ndicating "never" is represented by the enpty
token list.

7.2 Format of NFILE Conmands and Responses

Each command description begi ns by giving the command fornat and

response fornat.
conmand descri ption:

Greenberg & Keene

Here is the beginning of the DATA- CONNECTI ON

[Page 10]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

Command: (DATA- CONNECTI ON ti d new-i nput - handl e new out put - handl e)
Response: (DATA- CONNECTION tid connection-identifier)
The comand descriptions follow these conventi ons:

1. NFILE commands and responses are transnmitted as top-I|evel token
lists.

Top-level token lists are enclosed in parentheses in these
command descriptions. These parentheses are not sent literally
across the control or data connections, but are a shorthand
representation of special control tokens that delimt top-Ieve
token lists. Specifically, TOP-LEVEL-LIST-BEG N starts a top-

| evel token list; TOP-LEVEL-LIST-END ends a top-level token list.

2. NFILE comand names are keywords.

The comand name is required in every command and conmand
response. All NFILE conmand nanes are keywords. Keywords appear
in the NFILE docunentation as their nanes in uppercase. For
exanpl e, DATA- CONNECTI ON and DELETE are two conmmand nanes.

3. A unique transaction identifier (tid) identifies each conmand.

The transaction identifier is a string nade up by the user side
to identify this particular transaction, which is conposed of the
command and the response associated with this conmand. The
transaction identifier is abbreviated in the command descriptions
as tid. Transaction identifiers are limted to fifteen
characters in length. The transaction identifier is required in
every command and conmand response.

OPTI ONAL ARGUMENTS

Many NFI LE commands have "optional argunments”. Optional argunents
can be supplied (with appropriate values), or left out. If optional
argunents are left out, their om ssion nust be rmade explicit by means
of substituting the enpty token list in their place. The only
exception to that rule is for trailing optional arguments or return
val ues, which can be omtted wi thout including the enpty token I|ist.

For example, the text of the DELETE conmand descri pti on expl ains that
either a handl e or a pathnane nust be supplied, but not both;
therefore, one of themis an optional argunment. Here is the command
format of DELETE

(DELETE tid handl e pat hnane)

G eenberg & Keene [Page 11]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

If you supply a handl e and no pathname, the comuand format is:
(DELETE tid handl e)

If you supply a pathname and no handle, the comuand format is:
(DELETE tid enpty-token-1list pathnane)

The enpty token list in the token |ist stream appears as a LI ST-BEG N
followed i nredi ately by a LI ST- END.

OPTI ONAL KEYWORDY VALUE PAI RS

Four NFILE conmands have "optional keyword/val ue pairs". These
conmands are: COWPLETE, LOG N, OPEN, and READ. Optiona
keywor d/ val ue pairs can be either included in the comrand or omitted
entirely. There is no need to substitute the enpty token list for
onmi tted optional keyword tokens, unlike optional argunents. The
order of the option keyword/value pairs is not significant.

If included, optional keyword/value pairs are a sequence of

al ternating keywords and val ues. The val ues associated with the
keywords can be keywords, lists, strings, Bool eans, integers, dates,
date-or-never’s, and tinme intervals. The text of each conmand
description states what type of value is appropriate for each

opti onal keyword.

Optional keyword/value pairs appear in the text as the keyword only,
in uppercase letters. For exanple, here is the format of the LOGA N
conmand:
Command For mat :

(LOG@ N tid user password FILE- SYSTEM USER- VERSI ON)
FI LE- SYSTEM and USER- VERSI ON are two optional keywords associ at ed
with the LOG N command. The user side can supply USER-VERSI ON, and
omt FILE-SYSTEM as shown in this exanpl e:

(LOG N x105 tjones |et-nme-in USER- VERSI ON 2)
As seen above, the optional keyword/value pair USER- VERSI ON, if

supplied in a conmand, consists of the keyword USER- VERSI ON f ol | owed
by the value to be used for that keyword (in this exanple, 2).

G eenberg & Keene [Page 12]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

7.3 Data Channel Handles and Direct File Identifiers

Several NFILE commuands require an argunent that specifies an opening.
This kind of argunment is called a handle in the command descri ption.

It is always a string type argunent. A handle can be either a data

channel handle or a direct file identifier, depending on the node of
t he openi ng:

Data Stream

The handl e nust identify a data channel that is bound to an openi ng.

D rect Access

In general, the handle nust be a direct file identifier. A direct

file identifier specifies a direct access opening. It is the sane as
the val ue supplied in the DI RECT-FI LE-I D keyword/val ue pair in the
OPEN command. It is used for all operations that identify an opening

rat her than a data channel

Two NFI LE commands applicable to direct access openings are
exceptions to the general rule. The handl e supplied in ABORT and
CONTI NUE cannot be a direct file identifier, but nmust be a data
channel handl e i nstead.

7.4 Syntax of File and Directory Pathnane Argunents

Sone arguments and return values in the NFILE command descriptions
represent file pathnanes. These are strings in the pathname syntax
native to the server host. These pathnanes contain no host
identifiers of any kind. These pathnanes nust be fully defaulted, in
the sense that they have a directory and file nane (and file type, if
the server operating systemsupports file types). |If appropriate, a
device is referenced in the pathnane. |If the server file system
supports version nunbers, there is always an explicit version nunber,
even if that nunber or other specification is that systems
representation of "newest" or "ol dest".

Greenberg & Keene [Page 13]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

Here are sone exanples of file pathnanmes, for different server hosts:

Server Host Exanpl e of File Pathname
UNI X fusr/imax/life.c
TOPS- 20 ps: <max>l|ife.bin. 17
VS MACD: [MAX] LI FE. FOR; 3

Synbolics LMFS >max>life.lisp. newest

The CREATE- DI RECTORY and HOME- DI RECTORY commands take a directory as
an argunent. In NFILE commands, a directory is represented by a
string that nanes the directory. |In nost cases this string is in the
syntax native to the server host. However in sone cases the native
format is nodified somewhat to clarify that the string nanmes a
directory, and not a file. For exanple, a directory on UNIX is
represented by "/usr/max/", not "/usr/nmax".

Here are sone exanples of directory pathnanes for different server

host s:

Server Host Exanpl e of Directory Pathnane
UNI X [usr/ max/
TOPS- 20 <max>
VNS MACD: [MAX]

Symbol i cs LMFS >max>hacks>

7.5 Format of NFILE File Property/Value Pairs

Several NFILE commands request information regarding the properties
of files or directories. These commands include: DI RECTORY,

MULTI PLE- FI LE- PLI STS, PROPERTI ES, and CHANGE- PROPERTIES. This
section describes how file property information is conveyed over the
token list stream

G eenberg & Keene [Page 14]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

File property information is usually sent in property/val ue pairs,
where the property identifies the property, and the follow ng val ue
gives the value of that property for the specified file.

Each property is denoted either by a keyword or an integer. You can
m x both ways of specifying properties (keyword or integer) within a
single description. An integer is interpreted as an index into the
Property Index Table, an array of property keywords. The server can
optionally send a Property Index Table to the user during the
execution of the LOG@ N conmand, although it is not required. This
greatly reduces the |l ength of transni ssions.

In command argunents, file properties cannot be specified with

i ntegers; keywords must be used to specify file properties in comuand
argunents. Integers can be used to denote file properties only in
comand responses.

We now |ist the keywords associated with file properties. This list
is not intended to be restrictive. |f a programmrer inplenmenting

NFI LE needs a new keyword, a new keyword (not on this list) can be

i nvented. The type of value of any new keywords is by default
string. The keywords are sorted here by conceptual data type:

Data type Keywor ds denoting file properties

I nt egers BLOCK- SI ZE, BYTE- SI ZE, GENERATI ON- RETENTI ON- COUNT,
LENGTH- I N- BLOCKS, LENGTH-| N-BYTES,
DEFAULT- GENERATI ON- RETENTI ON- COUNT

Dat es CREATI ON- DATE, MODI FI CATI ON- DATE

Dat e- or - never’ s REFERENCE- DATE, | NCREMENTAL- DUMP- DATE
COVPLETE- DUVP- DATE, DATE- LAST- EXPUNGED,
EXPI RATI ON- DATE

Tinme intervals AUTO EXPUNGE- | NTERVAL

Keyword Lists SETTABLE- PROPERTI ES, LI NK- TRANSPARENCI ES,
DEFAULT- LI NK- TRANSPARENCI ES

Bool ean val ues DELETED, DONT- DELETE, DONT- DUMP, DONT- REAP

SUPERSEDE- PROTECT, NOT- BACKED- UP, OFFLI NE
TEMPORARY, CHARACTERS, DI RECTCORY

Greenberg & Keene [Page 15]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

Strings ACCOUNT, AUTHOR, LINK-TO PHYSI CAL- VOLUNE,
PROTECTI QN, VOLUME- NAME, PACK- NUMBER, READER,
DI SK- SPACE- DESCRI PTI ON, and any keywor ds not
on this Iist

Note that these keyword nanes are intended to inmply the semantics of
the properties. For a discussion of the senmantics of CREATI ON- DATE
See the section "NFILE OPEN Response Return Val ues", section 8.20.2.
The "Reference Guide to Streans, Files, and I/O" in the Synbolics
docunent ati on set details the semantics that Synbolics associ ates
with these properti es.

8. NFI LE COMVANDS

It is inportant to understand the conventions used in each of the
foll owi ng command descriptions. See the section "Conventions Used in
Thi s Docunent", section 7.

8.1 ABORT Command
Command: (ABORT tid input-handle)
Response: (ABORT tid)

ABORT cleanly interrupts and prematurely termnates a single direct
access node data transfer initiated with READ. The required input-
handl e string argunment identifies a data channel on which an input
transfer is currently taking place; this nust be a direct access
transfer. input-handle nust identify a data channel; it cannot be a
direct file identifier

Upon receiving the ABORT command, the server checks to see if a
transfer is still active on that channel. |If so, the server
ternminates the transfer by telling the data connection | ogical
process to stop transferring bytes of data. The user side needs to

i ssue this command only when there are outstandi ng unread bytes.

This excludes the case of the data channel havi ng been disestablished
or reallocated by the user side.

Whet her or not a transfer is active on that channel, the user side
puts the data channel into the unsafe state. Before the data channel
can be used again, it nust be resynchronized.

8.2 CHANGE- PROPERTI ES Conmmand
Command: (CHANGE- PROPERTI ES tid handl e pat hnane property-pairs)

Response: (CHANGE- PROPERTI ES ti d)

Greenberg & Keene [Page 16]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

CHANCE- PROPERTI ES changes one or nore properties of a file. Either a
handl e or a pathnanme nust be given, but not both. Wichever one is
gi ven nmust be supplied as a string. handle identifies a data channel
that is bound to an open file; it can be a direct file identifier.

pat hnane identifies a file on the server machine.

property-pairs is a required token list of keyword/value pairs, where
the nanme of the property to be changed is the keyword, and the
desired new property value is the val ue.

The properties that can be changed are host-dependent, as are any
restrictions on the values of those properties. The properties that
can be changed are the same as those returned as settabl e-properti es,
in the cormand response for the PROPERTI ES command.

The server tries to nodify all the properties listed in property-
pairs to the desired new values. There is currently no definition
about what should be done if the server can successfully change sone
properties but not others.

For further information on file property keywords and associ at ed
val ues: See the section "Format of NFILE File Property/Val ue Pairs",
section 7.5.

8.3 CLOSE Command
Command: (CLOSE tid handl e abort-p)
Response: (CLOSE tid truenanme binary-p other-properties)

CLOSE terminates a data transfer, and frees a data channel. The
handl e nust be a data channel handle for a data stream opening, or a
direct file identifier for a direct access opening. |If a data
channel is given, a transfer nust be active on that handle. |If
abort-p is supplied as Boolean truth, the file is close-aborted, as
descri bed bel ow.

"Closing the file" has different inplications specific to each
operating system It generally inplies invalidation of the pointer
or logical identifier obtained fromthe operating system when the
file was "opened", and freeing of operating systemand/or job
resources associated with active file access. For output files, it
i nvol ves ensuring that every last bit sent by the user has been
successfully witten to disk. The server should not send a
successful response until all these things have conpl eted
successful ly.

G eenberg & Keene [Page 17]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

In either data stream or direct access node, the user can request the
server to close-abort the file, instead of sinply closing it. To

cl ose-abort a file neans to close it in such a way, if possible, that
it isas if the file had never been opened. |In the specific case of
a file being created, it must appear as if the file had never been
created. This might be nore difficult to inplenment on certain
operating systens than others, but tricks with tenporary names and
close-tinme renamngs by the server can usually be used to inpl enent

cl ose-abort in these cases. 1In the case of a file being appended to,
cl ose-abort neans to forget the appended dat a.

AN UNSUCCESSFUL CLOSE OPERATI ON

For the normal CLOSE operation (not a close-abort), after witing
every last bit sent by the user to disk, and before closing the file,
the server checks the data channel specified by handle to see if an
asynchronous error is outstanding on that channel. That is, the
server nust determ ne whether it has sent an asynchronous error
description to the user, to which the user has not yet responded with

a CONTI NUE command. |If so, the server is unable to close the file,
and therefore sends a command error response indicating that an error
is pending on the channel. The appropriate three-letter error code

is EPC. See the section "NFILE Errors and Notifications", section
10.

A SUCCESSFUL CLOSE OPERATI ON

The return values for OPEN and CLOSE are syntactically identical, but
t he val ues m ght change between the tinme of the file being opened and
when it is closed. For exanple, the truenane return value is
supplied after all the close-tine renaming of output files is done
and the version nunbers resolved (for operating systems supporting
version nunbers). Therefore, on sone systens the truenane of a file
has one value at the tine it is opened, and a different value when it
has been closed. For a description of the CLOSE return val ues: See
the section "NFI LE OPEN Response Return Val ues", section 8.20.2.

If the user gives the CLOSE conmand with abort-p supplied as Bool ean

truth, thus requesting a close-abort of the file, the server need not
check whet her an asynchronous error description is outstanding on the
channel. The server sinply close-aborts the file.

Greenberg & Keene [Page 18]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

8.4 COWLETE Command
Command: (COWPLETE tid string pathnane DI RECTI ON NEW OK DELETED)
Response: (COWPLETE tid newstring success)
COWPLETE perfornms file pathname conpl etion

string is a partial filenanme typed by the user and pathnanme is the
default nane against which it is being typed. Both string and

pat hname are required argunents, and are of type string. The
remai ni ng argunents are optional keyword/val ue pairs.

NEW OK i s Boolean; if followed by Boolean truth, the server should
alloweither a file that already exists, or a file that does not yet
exist. The default of NEWOK is false; that is, the server does not
consider files that do not already exist.

DELETED is a Bool ean type argunment; if followed by Boolean truth, the
server is instructed to look for files that have been del eted but not
yet expunged, as well as non-deleted files. The default is to ignore
soft-deleted files.

DI RECTI ON can be followed by READ, to indicate that the file is to be
read. |If the fileis to be witten, DI RECTION can be followed by
WRI TE. The default is READ.

The filename is conpleted according to the files present in the host
file system and the expanded string newstring is returned. New
string is always a string containing a file name: either the

original string, or a new, nore specific string. The val ue of
success indicates the status of the conpletion. The keyword val ue OLD
or NEW neans conpl ete success, whereas the enpty token |ist nmeans
failure. The follow ng val ues of success are possible:

Val ue Meani ng

QLD Success: the string conpleted to the nane of
a file that exists.

NEW Success: the string conpleted to the nane of
a file that could be created

Empty token i st Failure due to one of these reasons:

The file is on a file systemthat does not

Greenberg & Keene [Page 19]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

support conpletion. newstring is supplied as
t he unchanged string.

There is no possible conpletion. newstring
is supplied as the unchanged string.

There is nore than one possible conpletion

The given string is conpleted up to the first
poi nt of anbiguity, and the result is supplied
as newstring.

A directory name was conpleted. Conpletion
was not successful because additional
conmponents to the right of this directory
remain to be specified. The string is

conpl eted through the directory name and the
delimter that follows it, and the result is
returned in newstring.

The semantics of COVWLETE are not docunented here. See the
"Reference Guide to Streans, Files, and 1/O" in the Synbolics
docunentation set for the recommended semantics of COMPLETE.

8.5 CONTI NUE Conmmand
Command: (CONTINUE tid handl e)
Response: (CONTI NUE tid)

CONTI NUE resunmes a data transfer that was tenporarily suspended due
to an asynchronous error. Each asynchronous error description has an
opti onal argunent of RESTARTABLE, indicating whether it nmakes any
sense to try to continue after this particular error occurred.
CONTINUE tries to resunme the data transfer if the error is
potentially recoverable, according to the RESTARTABLE argunent in the
asynchronous error description. For a discussion of asynchronous
errors: See the section "NFILE Errors and Notifications", section
10.

handle is a required string-type argunent that refers to the handl e
of the data channel that received an asynchronous error. That data
channel could have been in use for a data streamor direct access
transfer. handle cannot be a direct file identifier

I f the asynchronous error description does not contain the

RESTARTABLE argunment, and the user issues the CONTI NUE command
anyway, the server gives a conmand error response.

Greenberg & Keene [Page 20]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

8.6 CREATE- DI RECTORY Command
Command: (CREATE- DI RECTORY ti d pat hnane property-pairs)
Response: (CREATE-DI RECTORY tid dir-truenane)

CREATE- DI RECTCRY creates a directory on the renote file system The
requi red pathname argunment is a string identifying the pathnane of
the directory to be created. The return value dir-truenanme is the
pat hnane of the directory that was successfully created. Both of
these pathnanmes are directory pathnames: See the section "Syntax of
File and Directory Pathnane Argunents", section 7.4.

property-pairs is a keyword/value list of properties that further
define the attributes of the directory to be created. The allowable
keywords and associ ated val ues are operating system dependent;
typically they indicate argunents to be given to the native prinmitive
for creating directories.

|f property-pairs is supplied as the enpty token list, default access
and creation attributes apply and shoul d be assured by the server.
See the section "Format of NFILE File Property/Val ue Pairs", section
7.5.

8.7 CREATE-LI NK Cormand
Command: (CREATE-LINK tid pathnane target-pathnanme properties)
Response: (CREATE-LINK tid |ink-truenane)
CREATE-LINK creates a link on the renpte file system
pat hname is the pathnane of the link to be created; target-pathnane
is the place in the file systemto which the link points. Both are
required argunments. The return value |ink-truenane nanes the

resul ting link.

If a server on a file systemthat does not support l|inks receives the
CREATE- LI NK conmand, it sends a conmand error response.

The argunents pat hnane and target-pat hname, and the return val ue
link-truename, are all strings in the full pathname syntax of the
server host. See the section "Syntax of File and Directory Pathname
Argunent s", section 7. 4.

The required properties argunment is a token |ist of keyword/val ue

pairs. These properties and their values specify certain attributes
to be given to the link. The allowabl e keywords and associ at ed

G eenberg & Keene [Page 21]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

val ues are operating system dependent; typically they indicate
argunents to be given to the native primtive for creating |inks.

If no property pairs are given in the command, the server should
apply a reasonable default set of attributes to the link. See the
section "Format of NFILE File Property/Value Pairs", section 7.5.

8.8 DATA- CONNECTI ON Commrand
Command: (DATA- CONNECTI ON ti d new-i nput - handl e new out put - handl e)
Response: (DATA- CONNECTION tid connection-identifier)

DATA- CONNECTI ON enabl esthe user side to initiate the establishnment of
a new data connection. The user side supplies two required string
argunents, new-input-handle and new output-handle. These arguments
are used by subsequent commands to reference the two data channel s
that constitute the data connection now being created. newinput-
handl e descri bes the server-to-user data channel, and new- out put -
handl e describes the user-to-server channel. newinput-handle and
new out put - handl e cannot refer to any data channels already in use.

Upon recei ving the DATA- CONNECTI ON command, the server arranges for a
| ogi cal port (called socket or contact name on sonme networks) to be
made avail able on the foreign host machine. Wen the server has made
that port available, it nust informthe user of its identity. The
server relays that information in the command response, in the

requi red connection-identifier, a string. The server then listens on
the port named by connection-identifier, and waits for the user side
to connect to it.

Upon receiving the success command response, the user side supplies

t he connection-identifier to the |ocal network inplenmentation, in
order to connect to the specified port. The data connection is not
fully established until the user side connects successfully to that
port. This conmand is unusual in that the successful command
response does not signify the conpletion of the command; it indicates
only that the server has fulfilled its responsibility in the process
of establishing a data connecti on.

G eenberg & Keene [Page 22]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The connection-identifier infornms the user of the correct identity of
the |l ogical port that the server has provided. NFlILE expects the
connection-identifier to be a string. For TCP this string is the
port nunber represented in decimal. For Chaosnet, this string is the
contact nanme. The connection-identifier is used only once; in al
subsequent NFILE commands that need to reference either of the data
channel s that constitute this data connection, the newinput-handle
and new out put - handl e are used.

For background information: See the section "NFILE Control and Data
Connections", section 4.

8.9 DELETE Conmand
Command: (DELETE tid handl e pat hnane)
Response: (DELETE tid)
DELETE deletes a file on the renote file system

Ei t her a handle or a pathnanme nust be supplied, but not both. If

gi ven, the handl e nust be a data channel handle for a data stream
opening, or a direct file identifier for a direct access opening.
pathnane is a string in the full pathname syntax of the server host.
See the section "Syntax of File and Directory Pathnane Argunents”
section 7.4.

Wth a pat hnane supplied, the DELETE command causes the specified
file to be deleted. DELETE has different results depending on the
operating systeminvolved. That is, DELETE causes soft deletion on
TOPS-20 and LMFS, and hard deletion on UNI X and Miultics. If an
attenpt is made to delete a delete-through link on a Synmbolics LMFS
its target is del eted instead.

If the handle argunment is supplied to DELETE, the server deletes the
open file bound to the data channel specified by handl e at close
time. This is true in both the output and input cases.

8.10 DI RECT- QUTPUT Comand
Command: (DI RECT- QUTPUT tid direct-handl e out put-handl e)
Response: (DI RECT- QUTPUT tid)
DI RECT- QUTPUT starts and stops output data flow for a direct access

file opening. DI RECT-OUTPUT explicitly controls binding and
unbi ndi ng of an output data channel to a direct access opening.

Greenberg & Keene [Page 23]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

direct-handle is a required argument, and output-handle is optional.

I f supplied, output-handle is a request to bind an output data
channel (indicated by output-handle) to the direct access opening
designated by the direct-handle. The specified output data channel
must be free. The server binds the data channel and begi ns accepting
data fromthat connection and witing it to the opening.

If the output-handle is omitted, this is a request to unbind the
channel and terminate the active output transfer

8.11 DI RECTORY Conmmand

Command: (DI RECTORY tid input-handle pathname control - keywords
properties)

Response: (DI RECTORY tid)

DI RECTORY returns a directory listing including the identities and
attributes for logically related groups of files, directories, and
links. If the command is successful, a single token Iist containing
the requested information is sent over the data channel specified by
i nput - handl e, and the data channel is then inplicitly freed by both
sides <2>. For details on the format of the token list: See the
section "NFI LE DI RECTORY Data Fornat", section 8.11.1.

pat hnane specifies the files that are to be described; it is a string
in the full pathname syntax of the server host. See the section
"Syntax of File and Directory Pathname Argunents", section 7.4.

The pat hname general ly contains wildcard characters, in operating-
systemspecific format, describing potential file nane matches. Most
operating systens provide a facility that accepts such a pat hnane and
returns information about all files matching this pathname. Sone
operating systens allow wildcard (potential nultiple) matches in the
directory or device portions of the pathname; other operating systens
do not. There is no clear contract at this tinme about what is
expected of servers on systens that do not allow wildcard matches (or
some kinds of wild card matches), when presented with a wil dcard.

properties is a token |list of keywords that are the nanes of
properties. |If properties is omtted or supplied as the enpty token
list, the server sends along all properties. |If any properties are
supplied, the user is requesting the server to send only those
properties.

G eenberg & Keene [Page 24]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

control - keywords ARGUMENT TO DI RECTORY

control -keywords is a token list of keywords. The control -keywords
af fect the way the DI RECTORY conmand works on the server machi ne.

Al t hough sone of the options bel ow request the server to limt (by
some filter) the data to be returned, it is never an error if the
server returns nore information than is requested.

The foll owi ng keywords are recogni zed:
DELETED

I ncl udes soft-deleted files in the directory list. Wthout this
option, they nmust not be included. Such files have the DELETED
property indicated as true" anbng their properties. DELETED is
i gnored on systens that do not support soft deletion.

DI RECTORI ES- ONLY

This option changes the senmantics of DIRECTORY fairly drastically.
Normal |y, the server returns information about all files,
directories, and |inks whose pat hnanes match the supplied pat hnane.
This neans that for each file, directory, or link to be listed, its
directory nane nust match the potentially wildcarded) directory name
in the supplied pathnanme, its file name nust match the file name in
the supplied pathnane, and so on

When DI RECTORI ES- ONLY is supplied, the server is to list only
directories, not whose pathnanes natch the supplied pat hnane, but
whose pat hnames expressed as directory pathnanes natch the
(potentially wildcarded) directory portion of the supplied pathnane.
The description of the PROBE-DI RECTORY keyword that can be supplied
as the direction argunment of the OPEN command di scusses this: See
the section "OPEN Conmmand", section 8. 20.

It is not yet established what servers on hosts that do not support
this type of action natively are to do when presented with
DI RECTORI ES- ONLY and a pathnanme with a wildcard directory conponent.

FAST Speeds up the operation and data transm ssion by not |isting any

properties at all for the files concerned; that is, only the
truenanes are returned.

Greenberg & Keene [Page 25]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

NO- EXTRA- | NFO

Specifies that the server is to suppress listing those properties
that are generally nmore difficult or expensive to obtain. This
typically elimnates listing of directory-specific properties such as
i nformati on about default generation counts and expunge dates.

SORTED

This causes the directory listing to be sorted. The sorting is done
al phabetically by directory, then by file name, then file type, then
file version (by increasing version numnber).

8.11.1 NrFILE DI RECTORY Data For nmat

If the NFILE DI RECTORY command conpl etes successfully, a single token
list containing the requested directory information is sent on the
data channel specified by the input-handl e argunment in the DI RECTORY
command. This section describes the format of that single token
list, and gives further detail on the properties argunent to

DI RECTORY.

The token list is a top-level token list, so it is delimted by TOP-
LEVEL- LI ST-BEG@ N and TOP- LEVEL-LI ST-END. The top-1level token I|ist
cont ai ns enbedded token lists. The first enbedded token |i st
contains the enpty token list followed by property/value pairs
describing property information of the file systemas a whol e rat her
than of a specific file. NFILE requires one property of the file
systemto be present: DI SK-SPACE-DESCRIPTION is a string describing
the amount of free file space avail able on the system The follow ng
enbedded token lists contain the pathnane of a file, followed by
property/value pairs describing the properties of that file.

The foll owi ng exanple shows the format of the top-level token [|ist
returned by DI RECTORY, for two files. It is expected that the server
return several property/value pairs for each file; the nunber of
pairs returned is not constrained. |In this exanple, two
property/value pairs are returned for the file system two pairs are
returned for the first file, and only one pair is returned for the
second file.

TOP- LEVEL- LI ST-BEG N

LI ST- BEG N - first enbedded token list starts

LI ST- BEG N - an enpty enbedded token list starts
LI ST- END - the enpty enbedded token |ist ends
propl val uel - property/value pairs of file system
prop2 val ue2

LI ST- END

Greenberg & Keene [Page 26]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

LI ST- BEG N
pat hnanel
propl val uel
prop2 val ue2

pat hnane of the first file
property/value pairs of first file

LI ST- END

LI ST-BEG N

pat hnane2 - pathnane of the second file

propl val uel - property/value pairs of second file
LI ST- END

TOP- LEVEL- LI ST- END

The followi ng exanple is designed to illustrate the structure of the
top-level token list by depicting TOP-LEVEL-LIST-BEG N and TOP-
LEVEL- LI ST- END by parentheses and LI ST-BEG N and LI ST- END by squar be
rackets. respectively. The indentation, blank spaces, and new ines
in the exanple are not part of the token list, but are used here to
make the structure of the token list clear

(1 [] propl val uel prop2 val ue?]
[pat hnamel propl val uel prop2 val ue?]
[pat hname2 propl val uel])

The pathnane is a string in the full pathname syntax of the server
host. See the section "Syntax of File and Directory Pathname
Argurent s", section 7. 4.

For further information on file property/value pairs: See the
section "Format of NFILE File Property/Value Pairs", section 7.5.

8.12 DI SABLE- CAPABI LI TI ES Conmand
Command: (DI SABLE- CAPABI LI TIES tid capability)

Response: (DI SABLE- CAPABILITIES tid cap-1 success-1
cap- 2 success-2 cap-3 success-3 ...)

DI SABLE- CAPABI LI TI ES causes an access capability to be disabled on
the server nmachine. capability is a string nanming the capability to
be disabled. The neaning of the capability is dependent on the
operati ng system

The return values cap-1, cap-2, and so on, are strings specifying
nanes of capabilities. |If the capability naned by cap-1 was
successfully disabled, the correspondi ng success-1 is supplied as
Bool ean truth; otherwise it is the enpty token |ist.

G eenberg & Keene [Page 27]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

Al t hough the user can specify only one capability to disable, it is
conceivable that the result of disabling that particular capability
is the disabling of other, related capabilities. That is why the
conmand response can contain information on nore than one capability.

8.13 ENABLE- CAPABI LI TI ES Command
Conmmand: (ENABLE- CAPABI LI TIES tid capability password)}

Response: (ENABLE- CAPABI LITIES tid cap-1 success-1
cap- 2 success-2 cap-3 success-3 ...)

ENABLE- CAPABI LI TI ES causes an access capability to be enabl ed on the
server machine. The password argurent is optional, and should be
included only if it is needed to enable this particular capability.
Bot h password and capability are strings. The neaning of the
capability is dependent on the operating system

The return values cap-1, cap-2 and so on, are strings specifying
nanes of capabilities. |If the capability naned by cap-1 was
successfully enabl ed, the correspondi ng success-1 is supplied as
Bool ean truth; otherwise it is the enpty token I|ist.

Al t hough the user can specify only one capability to enable, it is
conceivable that the result of enabling that particular capability is
the enabling of other, related capabilities. That is why the command
response can contain information on nore than one capability.

8.14 EXPUNGE Command
Command: (EXPUNGE tid directory-pat hnane)
Response: (EXPUNGE tid server-storage-units-freed)

EXPUNGE causes the directory specified by pathname to be expunged.
Expungi ng nmeans that any files that have been soft deleted are to be
per manently renoved.

For file systems that do not support soft deletion, the command is to
be ignored; a success comand response is sent, but no action is
perforned on the file system |In this case, the nunber-of-server-
storage-units-freed return val ue should be onitted.

directory-pathnane is a required string argunent in the directory
pat hname format; it nust refer to a directory on the server file
system and not to a file. See the section "Syntax of File and
Directory Pat hname Argunents", section 7.4.

Greenberg & Keene [Page 28]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The return value server-storage-units-freed is an integer specifying
how many records, blocks, or whatever unit is used to neasure file
storage on the server host system were recovered. This return value
should be omtted if the server does not know how many storage units
were freed.

The protocol does not define whether directory-pathnane is really a
pat hnane as directory or a wildcard pathnane of files to be expunged.
The protocol does not define whether or not wildcards are permtted,
or required to be supported, in the directory portion of the pathnane
(representing an inplicit request to expunge many directories).

8.15 FILEPCS Conmmand
Command: (FILEPCS tid handl e position resync-uid)
Response: (FILEPCS tid)

FI LEPCS sets the file access pointer to a given position, relative to
t he beginning of the file. FILEPCS is used to indicate the position
of the next byte of data to be transferred.

The handl e indicates the file to be affected. handle nust be a data
channel handle for a data stream opening, or a direct file identifier
for a direct access opening. Both handle and position are required
argunents.

position is an integer indicating to which point in the file the file
access pointer is to be reset. position is either a byte nunber
according to the current byte size being used, or characters for
character openings. Position zero is the beginning of the file. |If
this is a character opening, position is neasured in server units,

not in NFILE character set units.

If the FILEPCS command is given on an input data channel (that is, a
data channel currently sending data fromserver to user), the

af fected data channel nust be resynchroni zed after the FILEPCS is
acconplished, in order to identify the start of the new data. The
resync-uid is a unique identifier associated with the

resynchroni zation of the data channel; it is unique with respect to
this dialogue. resync-uid nmust be supplied if handle is an input
handl e, but it is not supplied otherwise. For nore infornation on

t he resynchroni zati on procedure: See the section "NFlILE Data
Connecti on Resynchroni zati on", section 9. 2.

In the out put case, the user nust sonehow indicate to the server, on

t he output data channel, when there is no nore data. The user side
sends the keyword token EOF to do so. Upon receiving that contro

Greenberg & Keene [Page 29]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

token, the server is required to position the file pointer according
to the position given. Wen the new file position is established,
the server resunes accepting data at the new file position

In nost cases, using the direct access node of transfer is nore
conveni ent and efficient than repeated use of FILEPOS with a data
st ream openi ng.

There are problens inherent in trying to set a file position of a
character-oriented file on a foreign host, if one nachine is a
Synbol i cs conputer and the other is not. For exanple, character set
transl ati on nust take place. See the section "NFlILE Character Set",
section 6. Because of these difficulties, FILEPOS mi ght not be
supported in the future on character files. FILEPCS is not
problematic for binary files.

8.15.1 Inplenentation H nt for FILEPOCS Comand

The server processing of this command (by the control connection
handl er) nmust not attenpt to wait for the resynchronization procedure
to conplete. It is possible that the user could abort between
sendi ng the FILEPOCS conmand and reading for the mark and

resynchroni zation identifier. That scenario could | eave the sender
of the resynchroni zation identifier, on the server side, blocked for
out put indefinitely.

Only two commands received on the control connection can break the
data channel out of the bl ocked state described above: CLOSE with
abort-p supplied as Bool ean truth, and RESYNCHRON ZE- DATA- CHANNEL.
Therefore, the control connection nmust not wait for the data channe
to finish perform ng the resynchroni zation procedure. This wait
shoul d i nstead be perforned by the process nmanagi ng the data channel.

8.16 FI N SH Commrand
Command: (FINISH tid handl e)
Response: (FINISH tid truenanme binary-p other-properties)
FINISH closes a file and reopens it imediately with the file
position pointer saved, thus leaving it open for further I/O |If
possi bl e, the inplenentation should do the closing and opening in an

i ndi vi si bl e operation, such that no other process can get access to
the file.

Greenberg & Keene [Page 30]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The arguments, results, and their nmeaning are identical to those of
the CLOSE command. See the section "CLOSE Command", section 8. 3.
FINI SH requires a handl e, which has the same nmeani ng as the handl e of
t he CLOSE command.

In the output case, for both direct npde and data stream node of
openi ngs, the server wites out all buffers and sets the byte count
of the file. The user sends the keyword token EOF on the data
channel, to indicate that the end of data has been reached. The
server leaves the file in such a state that if the systemor server
crashes anytine after the FINI SH command has conpleted, it would

| ater appear as though the file had been closed by this comrand.
However, the file is not left in a closed state now, it is left open
for further /O operations. FINISHis areliability feature.

FINISH i s somewhat pointless in the input case, but valid. The
native Synbolics file system (LMFS) inplenments FIN SH on an out put
file by an internal operation that effectively goes through the work
of closing but |eaves the file open for appending.

ERRORS ON FI NI SH

After witing every last bit sent by the user to disk, and before
closing the file, the server checks the data channel specified by
handle to see if an asynchronous error is outstanding on that
channel. That is, the server nust determ ne whether it has sent an
asynchronous error to the user, to which the user has not yet
responded with a CONTI NUE command. |If so, the server is unable to
finish the file, and it nust send a comrand error response response,
indicating that an error is pending on the channel. The appropriate
three-letter error code is EPC. See the section "NFILE Errors and
Noti fications", section 10.

8.17 HOVE- DI RECTORY Conmand
Command: (HOME- DI RECTORY tid user)
Response: (HOVE-DI RECTORY tid directory-pat hnane)

HOVE- DI RECTORY returns the full pathnane of the home directory on the
server machine for the given user.

user is a string that should be recognizable as a user’s |ogin nane
on the server operating system directory-pathname is a string in

the directory pathnane fornat. See the section "Syntax of File and
Directory Pat hname Argunents", section 7.4.

G eenberg & Keene [Page 31]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

8.18 LOGE N Conmand
Command: (LOG N tid user password FlILE- SYSTEM USER- VERSI ON)
Response: (LOG N tid keyword/val ue-pairs)

LOG N |l ogs the given user in to the server nachine, using the
password if necessary. Both user and password are string argunents;
user is required, password is optional. An onmitted password is valid
if the host allows the specified user to log in without a password.
Dependi ng on the operating systemand server, it night be necessary
tolog into run a program (in this case the NFILE server progranm on
the host. LOG N establishes a user identity that is used by the
operating systemto establish the file author and deternmine file
access rights during the current session

The server has the option to reject with an error any conmand except
LOG N if a successful LOGA N command has not been perforned. This is
reconmended. Many operating systens performthe login function in a
di fferent process and/or environment than user prograns. The portion
of the NFILE server running in the special |ogin environnment could
concei vably be capable only of processing the LOG N conmand; this is
the reason for having the LOG N comrand i n NFILE

FI LE- SYSTEM and USER- VERSI ON are optional keyword/value pairs. The
FI LE- SYSTEM keywor d/ val ue pair selects the identity of the file
systemto which all follow ng comands in this session are to be
directed. This argunent has neaning only if the server host nachine
has nultiple file systens, and the targeted file systemis other than
the default file systemthat a user would get by initiating a

di al ogue with that host. The FILE-SYSTEM argunent is an arbitrary
token list. |If the server does not recognize it, the server gives an
appropriate comrand error response.

Currently, the only use of FILE-SYSTEMis for Synbolics servers to
sel ect one of the front-end processor hosts instead of the LMFS

which is the default. |In this case, the first elenment in the token
list is the keyword FEP, and the second elenent in the token list is
an integer, indicating the desired FEP disk unit nunber. If the

server discovers there is no such file system the server gives a
command error response including the three-letter code NFS, neaning
"no file systenf. See the section "NFILE Errors and Notifications",
section 10.

G eenberg & Keene [Page 32]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The user tells the server what version of NFILE it is running by

i ncludi ng the optional USER-VERSI ON keyword/val ue pair. The val ue
associ ated wi th USER- VERSI ON can be a string, an integer, or a token
list. This docunment describes NFILE user version 2 and server
version 2.

Upon receiving the representation of the user version, the server can
either adjust certain paraneters to handle this particular version
or sinply ignore the user version altogether. Currently, the only
rel eased versions of NFILE are user version 2 and server version 2.

LOG N RETURN VALUES: keyword/val ue-pairs

The keyword/val ue-pairs is a token list conposed of keywords foll owed
by their values. The server includes any or all of the follow ng
keywords and their values; they are all optional. The follow ng
keywords are recogni zed:

NAVE

The val ue associated with NAME is a string specifying the user
identity, in the server host’'s terns.

PERSONAL - NAME

The val ue associated with PERSONAL-NAME is a string representing the
user’s personal name, |last name first. For exanple: "MGIIicuddy
Al oysius X ".

HOVEDI R- PATHNAME

The val ue associated with HOVEDI R- PATHNAME is a string in the

pat hnane as directory fornmat, indicating the home directory of the
user. See the section "Syntax of File and Directory Pathname
Argurent s", section 7. 4.

GROUP- AFFI LI ATI ON

The val ue associated with GROUP- AFFI LI ATION is a string specifying
the group to which the user bel ongs, when this concept is
appropri at e.

SERVER- VERSI ON
The val ue associ ated with SERVER- VERSI ON can be a string, an integer
or atoken list. The value is a representation of the version of the

server is running. Upon receiving the server version, the user can:
adj ust certain paranmeters to handle this particular version; accept

Greenberg & Keene [Page 33]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

the version; or close the connection. Currently, the only rel eased
versions of NFILE are user version 2 and server version 2

PROPERTY- | NDEX- TABLE

The val ue associ ated wi th PROPERTY-| NDEX- TABLE is a token |ist of
keywords. This return value enables the server to informthe user
which file properties are neaningful on its file system The
keywor ds i n PROPERTY-| NDEX- TABLE can be used by the DI RECTORY command
(a user request for information on file properties of a specified
directory or directories). The server can specify a certain property
by giving an integer that is the index of that file property into the
PROPERTY- | NDEX- TABLE. This reduces the volunme of data sent during
directory listings. The first element in PROPERTY-| NDEX- TABLE i s

i ndexed by the nunmber 0. See the section "Dl RECTORY Command",
section 8.11.

8.19 MUILTI PLE- FI LE- PLI STS Command

Command: (MULTI PLE-FI LE-PLI STS tid input-handl e paths
characters properties)

Response: (MJLTI PLE-FI LE-PLI STS ti d)

MULTI PLE- FI LE- PLI STS returns file property information of one or nore
files. The server sends the information in a data structure (the
format is described later in this section) on the given input-handle.
paths is an enbedded token |ist conposed of the pathnames in which
the user is interested. Each pathnane in this list is a string in
the full pathnanme syntax of the server host. Unlike for the

DI RECTORY comrmand, wildcards are not allowed in these pathnanmes. See
the section "Syntax of File and Directory Pathnanme Argunents”

section 7.4.

characters is either Boolean truth (indicating that each file is a
character file), the enpty token list (each file is a binary file),

or the keyword DEFAULT. DEFAULT indicates that the server itself is
to figure out whether a file is a character or binary file. For nore
i nformati on on the nmeaning of the DEFAULT keyword: See the section
"OPEN Conmand", section 8.20. The value of characters can influence
some servers’ idea of a file s |ength.

properties is a token |list of keywords indicating which properties
the user wants returned. The server is always free to return nore
properties than those requested in the properties argunment. |If
properties is supplied as the enpty token list, the server should
transnit all known properties on the files.

Greenberg & Keene [Page 34]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The server transnits as nuch of the requested i nformati on as possible
on the given input-handle. The information is contained in a top-

l evel token list of elenents. Each elenment corresponds with a
suppl i ed pat hnane; the order of the original pathlist nust be
retained in the returned token list. An elenent is an enpty token
list if the corresponding file or any of its containing directories
does not exist. The elenents that correspond to successfully | ocated
files are lists conposed of truenane followed by any properties.
properties are keyword/value pairs. truenanme is a string in the ful
pat hnane syntax of the server host.

The foll owi ng exanpl e shows TOP-LEVEL-LI ST-BEG N and TOP- LEVEL- LI ST-
END as parent heses, and LI ST-BEG N and LI ST-END with square brackets.

For exampl e, the user supplied a pathlist argunment resenbling:
[filel file2 file3]

The server could not locate filel or file3, but did |locate file2, and
found the length and author of file2. The top-level token |ist
transnitted by the server is:

([1 [truename-of-file2 LENGIH 381 AUTHOR willians] [])

For further detail on how file properties and val ues are expressed:
See the section "Format of NFILE File Property/Val ue Pairs", section
7.5.

8.20 OPEN Conmand

Command: (OPEN tid handl e pat hnanme direction binary-p
TEMPORARY RAW SUPER- | MAGE DELETED PRESERVE- DATES
SUBM T DI RECT- FI LE- | D ESTI MATED- LENGTH BYTE- SI ZE
| F- EXI STS | F- DOES- NOT- EXI ST)

Response: (OPEN tid truenane binary-p other-properties)

OPEN opens a file for reading, witing, or direct access at the
server host. That means, in general, asking the host file systemto
access the file and obtaining a file nunber, pointer, or other
quantity for subsequent rapid access to the file; this is called an
"opening". See the section "NFILE File Opening Mddes", section 5.

The OPEN command has the nobst conplicated syntax of any NFILE
conmand. The OPEN command has required argunments, an optiona
argunent, and nany optional keyword/value pairs. For details on the
syntax of each of these parts of the OPEN commuand: See the section
"Conventions Used in This Docunment", section 7.

Greenberg & Keene [Page 35]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The followi ng argunents are required: pathnane, direction, and

bi nary-p. handle is an optional argunent, which nust either be
supplied or explicitly omtted by means of substituting in its place
the enpty token list.

The OPEN command has many optional keyword/val ue pairs, which encode
conceptual argunents to the server file systemfor the OPEN
operation. A detailed description of all the supported OPEN opti onal
keywords is given bel ow

The OPEN return values reflect information about the file opened,
when the opening is successful. 1In the case of a probe-type opening,
this information is returned when the given file (or link, or
directory) exists and is accessible, even though the file (or |ink,
or directory) is not actually opened. For detail on the OPEN return
val ues: See the section "NFILE OPEN Response Return Val ues", section
8. 20. 2.

THE pat hnane OPEN ARGUMENT

The pathname is a required argunment specifying the file to be opened.
pathnane is a string in the full pathname syntax of the server host.
See the section "Syntax of File and Directory Pathname Argunents"”
section 7.4.

For sone purposes (for exanple, when the OPEN argunment direction is
suppl i ed as PROBE- DI RECTORY), only the directory specified by this
pathname is utilized. See the section "NFILE OPEN Optiona
Keywor d/ Val ue Pairs", section 8.20.1

THE handl e OPEN ARGUMENT

The handl e argunent of the OPEN command specifies a data channel to
be used for the transfer. Subsequent conmands in this session use
the same handle to specify this opening. It is the user side's
responsibility to ensure that handle refers to an existing and free
data channel that does not require resynchronization before use. A
handl e nmust be supplied, unless a probe-type opening is desired (that
is, the direction is supplied as PROBE, PROBE-D RECTORY, or PROBE-
LINK) or a direct access opening is being requested (that is, a
DIRECT-FILE-1D is supplied). 1In those cases, the enpty token list is
supplied for handle.

THE directi on OPEN ARGUVENT
The direction argunment nust be supplied as one of these keywords:

| NPUT, OUTPUT, | O, PROBE, PROBE-DI RECTORY, and PROBE-LINK. The
nmeani ngs of the direction keywrds are as foll ows:

Greenberg & Keene [Page 36]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

I NPUT

Specifies that the file is to be opened for input server-to-user
transfer). To request a direct access opening, supply a value for
DI RECT-FILE-ID. If no DIRECT-FILE-ID is supplied, the opening is a
data stream openi ng.

QUTPUT

Specifies that the file is to be opened for output user-to-server
transfer). To request a direct access opening, supply a value for
DI RECT-FILE-ID. If no DIRECT-FILE-ID is supplied, the opening is a
data stream openi ng.

Specifies that interspersed input and output will be perforned on
the file. This is only neaningful in direct access node. A

DI RECT- FI LE-I1 D nust al so be supplied. See the section "NFlLE OPEN
Optional Keyword/ Val ue Pairs", section 8.20.1

If direction is supplied as PROBE, PROBE-LINK, or PROBE-DI RECTORY,
the opening is said to be a probe-type opening. The D RECT-FILE-1D
option is neaningless and an error for probe-type openings. The file
handl e nmust be supplied as an enpty token |ist for probe-type

openi ngs.

PROBE
Specifies that the file is not to be opened at all, but sinply
checked for existence. |f the file does not exist or is not
accessible, the error indications and actions are identical to
those that would be given for an I NPUT opening. |If the file does

exi st, the successful comand response contains the sane
information as it would have if the file had been opened for
INPUT. If it is alink, thelink is followed to its target.

PROBE- LI NK
Li ke PROBE, with one difference. PROBE-LINK specifies that if the

pat hnane is found to refer to a link, that link is not to be
followed, and information about the link itself is to be returned.

Greenberg & Keene [Page 37]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

PROBE- DI RECTORY

PROBE- DI RECTORY requests information about the directory

desi gnated by the pathnanme argunent. |In the PROBE- DI RECTORY case,
the pathnanme argunent refers to the directory on which infornmation
is requested. 1In all other cases, the pathnanme refers to a file
to be opened. |If pathnane contains a file name and file type,

these parts of the pathnanme are ignored for PROBE- DI RECTORY
openi ngs as long as they are syntactically valid.

THE bi nary-p OPEN ARGUMENT

The val ue of binary-p affects the node in which the server opens the
file, as well as informng it whether or not character set
transl ati on nmust be perforned.

If binary-p is supplied as the enpty token list, the opening is said
to be a character opening. The server perforns character set

transl ation between its native character set and the NFILE character
set. The data is transferred over the data connection one character
per eight-bit byte. See the section "NFILE Character Set", section
6

If binary-p is supplied as Boolean truth, the opening is said to be a
bi nary opening. The user side supplies the byte size via the BYTE-

SI ZE option; if not supplied, the default byte size is 16 bits. |If
byte size is less than 9, the file data is transferred byte by byte.
If the byte size is 9 or greater, the server transfers each byte of
the file as two eight-bit bytes, |oworder first.

bi nary-p can al so be supplied as the keyword DEFAULT. DEFAULT
specifies that the server itself is to determ ne whether to transfer
bi nary or character data. DEFAULT is neaningful only for input
openings; it is an error for QUTPUT, IO or probe-type openings. For
file systens that maintain the innate binary or character nature of a
file, the server sinply asks the file system which case is in force
for the file specified by pathnane.

When binary-p is supplied as DEFAULT, on file systens that do not
mai ntain thisinformation, the server is required to performa
heuristic check for Synbolicsobject fileson the first two 16-bit
bytes of the file. |If the file isdetermned to be aSynbolics object
file, the server perforns a Bl NARY openi ngwi th BYTE- SI ZE of 16;
otherwise, it perfornms a CHARACTER openi ng.

Greenberg & Keene [Page 38]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The details of the check are as follows: if the first 16-bit byte is
the octal nunber170023 and the second 16-bit byte is any nunber
between 0 and 77 octal (inclusive), the file is recognized as a
Synbolics object file. |In any othercase, it is not.

8.20.1 NFILE OPEN Optional Keyword/Val ue Pairs

The OPEN command has many optional keyword/val ue pairs that encode
conceptual argunents to the file systemfor the OPEN operation

The followi ng options are used often:
BYTE- SI ZE

Must be followed by an integer between 1 and 16, inclusive, or the
enpty token list. BYTE-SIZE is nmeaningful only for binary

openi ngs. BYTE-SI ZE can be ignored for probe-type openings. It
can be onitted entirely for character openings, but if supplied,
nmust be followed by the enpty token list. |If binary-p is supplied
as DEFAULT, BYTE-SIZE can be onmitted entirely, or foll owed by the
enpty token |ist.

If a binary opening is requested and BYTE-SIZE i s not suppli ed,
the assunmed value is 16 for output openings. For input binary
openi ngs, the default is the host file systenis stored conception
of the file's byte size (for those hosts that natively support
byte size). For file systens that do not natively support
natively byte size, the default byte-size on binary input is 16.

For file systens that maintain the innate byte-size of each file,
the server should supply this nunber to the appropriate operating
systeminterface that perfornms the semantics of opening the file.
For other operating systenms, a file witten with a given byte size
nmust produce the sane bytes in the sanme order when read with that
byte size. In this case, the server or host operating system can
choose any packi ng schene that conplies with this rule.

Operating systens that do not support byte size nust ensure that
binary files witten fromuser ends of the current protocol can be
read back correctly. However, the server can choose packing
schenes that allow all bits of the server host’s word to be
accessed and concur with other packing schemes used by native host
sof twar e

For exanple, Miultics supports 36 bit words and 9 bit bytes. A
packi ng schene appropriate for a Multics NFILE server is:

Greenberg & Keene [Page 39]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

Byte Size Packi ng Schene
7, 8, or 9 bits four per 36-bit word
10, 11, or 12 bhits three per 36-bit word

13, 14, 15, or 16 bits two per 36-bit word

In the first packing schenme in the table, native Miltics
character-oriented software can access each | ogical byte
sequentially. In the |ast packing schene, each Synbolics byte is
in a halfword, easily accessible and visible in an octal
representation. To achieve maxi num data transfer rate and access
all bits of a Multics word, a byte size of 12 nust be specified.

DELETED

I f supplied as Bool ean truth, DELETED specifies that del eted"
files are to be treated as though they were not "del eted".
DELETED i s neani ngful only for operating systens that support
"soft deletion" and subsequent "undel etion" of files. Oher
operating systenms nust ignore this option. Normally, deleted
files are not visible to the OPEN operation; this option makes
them vi si bl e.

DELETED can al so be followed by the enpty token list, which has
the sane effect as omitting the DELETED keyword/val ue pair
entirely. For output openings, DELETED is neani ngl ess and an
error if supplied.

DI RECT- FI LE-1 D

If supplied, the DIRECT-FILE-ID indicates that the opening is to
be a direct access node opening. |f not supplied, the opening is
a data stream opening. The value of DIRECT-FILE-ID is a string
generated by the user, that has not been used as a DI RECT-FILE-ID

in this dial ogue, and does not designate any data channel. The
DIRECT-FILE-ID is a unique identifier for the direct access
opening. It is used for all operations that identify an opening

rather than a data channel. The DI RECT-FILE-ID is used to
identify a direct access opening, just as a file handle is used to
identify a data stream opening. The PROPERTIES, CLOSE, and RENAME
commands use the DIRECT-FILE-ID in this way. There are only two
NFI LE commands applicable to direct access openings (ABORT and
CONTI NUE) that do not use the DI RECT-FILE-ID, but use a data
channel handl e i nst ead.

PRESERVE- DATES

If supplied as Bool ean truth, PRESERVE-DATES specifies that the

Greenberg & Keene [Page 40]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

server is to attenpt to prevent the operating systemfrom updating
the "reference date" or date-time used" of the file. This is
meani ngful only for input openings, and is an error otherw se.

The Synbolics operating systeminvokes this option for operations
such as View File in the editor, where it w shes to assert that
the user did not "read" the file, but just "looked at it".
Servers on operating systens that do not support reference dates
or users revising or suppressing update of the reference dates
must ignore this option.

ESTI MATED- LENGTH

The val ue of ESTI MATED-LENGTH i s an integer estimating the |ength
of the file to be transferred. This option is nmeani ngful and
permitted only for output openings. ESTI MATED LENGTH enabl es the
user end to suggest to the server’'s file systemhow long the file
is going to be. This can be useful for file systens that nust
preallocate files or file maps or that accrue performance benefits
fromknow ng this information at nthe tinme the file is first
opened. This estimate, if supplied, is not required to be exact.
It is ignored by servers to which it is not useful or interesting.
The units of the estimate are characters for character openings,
and bytes of the agreed-upon byte size for binary openings. The
character units should be server units, if possible, but since
this is only an estinmate, NFILE character units are acceptable.
See the section "NFILE Character Set", section 6.

EXI STS

Meani ngful only for output openings, ignored otherw se, but not

di agnosed as an error. The value of IF-EXISTS is a keyword that
specifies the action to Be taken if a file of the given nane

al ready exists. The semantics of the values are derived fromthe
Common Lisp specification and repeated here for conpl eteness. |If
the file does not already exist, the IF-EXI STS option and its

val ue are ignored.

If the user side does not give the |IF-EXI STS option, The action to
be taken if a file of the given nane already exists depends on
whet her or not the file systemsupports file versions. If it

does, the default is ERROR (if an explicit version is given in the
file pathname) or NEWVERSION (if the version in the file pathnane
is the newest version). For file systens not supporting versions,
the default is SUPERSEDE. These actions are described bel ow

G eenberg & Keene [Page 41]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

| F- EXI STS provi des the mechanismfor overwiting or appending to
files. Wth the default setting of IF-EXISTS, new files are
created by every output opening.

Operating systenms supporting soft deletion can take different
actions if a "deleted" file already exists with the sane nanme (and
type and version, where appropriate) as a file to be created. The
Synmbolics file system (LMFS) effectively uses SUPERSEDE, even if
not asked to do so. Oher servers and file systens are urged to
do simlarly. Recommended action is to not allow deleted files to
prevent successful file creation (with specific version nunber)
even if an | F-EXI STS option weaker than SUPERSEDE, RENAME, or
RENAME- AND- DELETE i s specified or inplied.

Here are the possible values and their neanings:
ERROR

Reports an error.
NEW VERSI ON

Creates a newfile with the sane file nane but with a | arger
version nunber. This is the default when the version conponent
of the filenane is newest. File systens wi thout version
nunbers can inplenent this by effectively treating it as
SUPERSEDE

RENAME

Renames the existing file to sonme other name and then creates a
new file with the specified nanme. On nost file systens, this
renani ng happens at the time of a successful close.

RENAME- AND- DELETE

Renames the existing file to sone other name and then del etes
it (but does not expunge it, on those systens that distinguish
del etion fromexpunging). Then it creates a newfile with the
specified name. On nost file systens, this renam ng happens at
the time of a successful close.

OVERVWRI TE
Qut put operations on the opening destructively nodify the
existing file. New data replaces old data at the begi nning of

the file; however, the file is not truncated to length zero
upon openi ng.

G eenberg & Keene [Page 42]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

TRUNCATE

Qut put operations on the opening destructively nodify the
existing file. The file pointer is initially positioned at the
begi nning of the file; at that time, TRUNCATE truncates the
file to length zero and frees di sk storage occupied by it.

APPEND

Qut put operations on the opening destructively nodify the
existing file. New data is placed at the current end of the
file.

SUPERSEDE

Supersedes the existing file. This neans that the old file is
renoved or del eted and expunged. The new file takes its place.
If possible, the file system does not destroy the old file
until the new file is closed, against the possibility that the
file will be close-aborted. This differs from NEWVERSION in
that SUPERSEDE creates a new file with the sane nanme as the old
one, rather than a file name with a higher version nunber.

There are currently no standards on what a server can do if it
cannot inplenent some of these actions.

| F- DOES- NOT- EXI ST
Meani ngful for input openings, never mneaningful for probe-type
openi ngs, and sonetines nmeani ngful for output openings. |F-DOES-
NOT- EXI ST takes a val ue token, which specifies the action to be
taken if the file does not already exist. Like IF-EXISTS, it is a
derivative of Common Lisp. The default is as follows: If this is
a probe-type opening or read opening, or if the |IF EXI STS option

is specified as OVERWRI TE, TRUNCATE, or APPEND, the default is
ERROR. O herwi se, the default is CREATE.

These are the values for |F-DOES- NOT- EXI ST:
ERROR

Reports an error.
CREATE

Creates an enpty file with the specified name and then proceeds
as if it already exi sted.

Greenberg & Keene [Page 43]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The follow ng optional keyword/value pairs are rarely used, if ever:

RAW

If supplied as Boolean truth, RAWspecifies that character set
translation is not to be performed, but that characters are to be
transferred intact, w thout inspection. This option is meaningful
only for character openings; it is an error otherwise. It is also
an error to supply RAWas Bool ean truth for probe-type openings.
RAW can al so be followed by the enpty token list, which has the
sanme effect as if the RAWkeyword/val ue pair were omtted
entirely. See the section "RAW Transl ati on Mode", Appendi x B.

SUPER- | MAGE

I f supplied as Bool ean truth, SUPER-1MAGE specifies that Rubout
guoting is not to be perforned. This operation is meaningful only
for character openings; it is an error otherwise. It is also an
error for probe-type openings. SUPER-I1MAGE can al so be foll owed
by the enpty token list, which has the same effect as if the
SUPER- | MAGE keywor d/val ue pair were omtted entirely.

SUPER- | MAGE npde causes the server to read or wite character
files where ASCI1 Rubout characters are a significant part of the
file content, not where they are an escape for this protocol.
However, other translations nust still be performed: See the
section SUPER- I MAGE Transl ati on Mdde", Appendi x C.

TEMPORARY

Used by the TOPS-20 server only. TEMPORARY says to use GI%MP in
the GIJFN. This is useful mainly when witing files, and

i ndicates that the foreign operating systemis to treat the file
as tenporary. See TOPS-20 docunentation for nore about the
implications of this option. Oher servers can ignore it. This
option is nmeaningless and an error for input or probe-type

openi ngs. TEMPORARY can al so be foll owed by the enpty token Iist,
whi ch has the same effect as if the TEMPORARY keyword/val ue pair
were omitted entirely.

SUBM T

SUBM T is nmeaningful for output only. |If supplied as Bool ean
truth, SUBM T causes the server to submt the contents of the file
being witten to the operating systemas a job, after the file is
closed. VMs is an exanple of an operating systemthat could
conveniently support SUBMT. SUBMT can al so be followed by the
enpty token list, which has the same effect as if the SUBMT

Greenberg & Keene [Page 44]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

keyword/val ue pair were omtted entirely. Servers that do not
i mpl ement this option should give an error response if requested
to submit a file to the operating system

8.20.2 NFILE OPEN Response Return Val ues
The results of a successful OPEN operation are reported in the
command response. Here is the specification of the OPEN response
format:
Response For nat:

(OPEN tid truenanme binary-p other-properties)

The return values for OPEN and CLOSE are syntactically identical, but
t he val ues can change in the time interval between open and cl ose.

truenanme is a string representing the pathnanme of the file in the
full pathname syntax of the server host. It should be determ ned by
the server once it has opened the file, via sonme request to its
operating system The request can be of the form "Wat file

corresponds to this JFN, file nunber, pointer, etc.?" |If the
operating system supports version nunbers, this string al ways
contains an explicit version nunber. It always contains a directory

nane, a file nane, and so on

Sone operating systems night not know the truenane of an output file
until it is closed. It is pernmissible not to supply an explicit
version nunmber in the pathnane in the OPEN response in this specific
case. On these systens the truenanme when the file is opened is
different than the truenanme after it has been cl osed.

The return value binary-p indicates whether the opening is a binary
or character opening. For binary openings, binary-p is supplied as
Bool ean truth; for character openings it is the enpty token list.

other-properties is a list of keyword/value pairs. other-properties
must contai n CREATI ON- DATE and LENGTH. AUTHOR shoul d be included if
the server operating systemhas a conveni ent nechani smfor

determ ning the author of the sfile. The other properties described
here can be included if desired.

AUTHOR
The value of AUTHOR is a string representing the nane of the author
of the file. This is sone kind of user identifier, whose format is

systemspecific. As wth CREATI ON- DATE (see below), AUTHOR is
supposed to represent the logical determ nor of the current data

Greenberg & Keene [Page 45]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

content of the file, not necessarily the agency that actually created
the file.

BYTE- SI ZE

The byte-size agreed upon via the rules described for the BYTE-SIZE
option. The value of BYTE-SIZE is an integer. For details on the
ram fications of BYTE-SIZE: See the section "NFILE OPEN Optiona
Keywor d/ Val ue Pairs", section 8.20.1. This paraneter is only

meani ngful for BI NARY openi ngs. However, if FILEPOS is returned in
the other-properties list, BYTE-SIZE should al so be included, even
for character openings.

CREATI ON- DATE

The creation date of the file. The date is expressed in Universa
Time format, which neasures a tinme as the nunber of seconds since
January 1, 1900, at nidnight GMI. Creation date does not necessarily
mean the tinme the file systemcreated the directory entry or records
of the file. For systems that support nodification or appending to
files, it is usually the nodification date of the file. Creation
date can nean the date that the bit count or byte count of the file
was set by an application program

Sone types of file systems support a user-settable quantity

(CREATI ON- DATE) which the user can set to an arbitrary tine, to
indicate that the contents of this file were witten a long tinme ago
by sonmeone el se on another conputer. The default value of this
quantity, if the user has not set it, is the tinme soneone | ast
nodified the information in the file. This quantity, in the OPEN
response for an output file, is disregarded by the user side, but
nevert hel ess must be present.

The Synbolics conmputer system software uses this quantity as a uni que
identifier of file contents, for a given file nane, type, and
version, to prove that a file has not changed since it |ast recorded
this quantity for a file.

FI LEPCS

An integer giving the position of the logical file pointer, in
characters or bytes as appropriate for the type of opening. This is
al ways zero for an input opening and for an output opening creating a
new file. For an output opening appending to an existing file,

FI LEPCS i s the nunber of characters or bytes, as appropriate,
currently in the file. This nunber, for character openings, is
measured in server units: See the section "NFILE Character Set",
section 6.

Greenberg & Keene [Page 46]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

LENGTH

An integer reporting the length of the file, in characters for
character openings and in bytes of the agreed-upon size for binary
openi ngs. LENGTH shoul d be reported as zero for output openings,
even if appending to an existing file. The server usually only knows
the length for a character opening in server units; thus, it reports
length in server units.

8.21 PROPERTIES Conmand

Conmmand: (PROPERTIES tid handl e pat hname control - keywor ds
properties)

Response: (PROPERTIES tid property-el enent settabl e-properties)

PROPERTI ES requests the property information about one file. The
file is identified by the pathnanme argunent or the handle argunent,
but not both. |If pathnanme is supplied, it is a string in the ful

pat hnane syntax of the server host. See the section "Syntax of File
and Directory Pat hnane Arguments", section 7.4.

If handle is supplied, its value is a string identifying an opening,
which inmplicitly identifies a file. For direct access node openings,
handl e nust be a direct file identifier.

control -keywords is reserved in the current design. However, it is a

requi red argunment, and nust be supplied as the enpty token list. Its
presence in the NFILE specification allows for future expansion. In
the future the value of control-keywords mght affect the listing
node.

properties is a token list of keywords indicating the properties the
user wants returned. (In command argunents, properties cannot be
specified with integers, such as indices into the Property |ndex
Table). For a list of keywords associated with file properties: See
the section "Format of NFILE File Property/Value Pairs", section 7.5.

The server is always free to return nore properties than those
requested in the properties argunment. |f properties is supplied as
the enpty token list, the server transmts all known properties of
the file.

Greenberg & Keene [Page 47]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

PROPERTI ES COMVAND RESPONSE

The server returns the property information for the given file in the
command response. The PROPERTI ES command does not use any data
channels. If the specified file does not exist or is not accessible,
the server signals an error and includes an appropriate three-letter
error code in the conmand error response. See the section "NFILE
Errors and Notifications", section 10.

The return value property-elenent is a token list. The first el enent
in that token list is the pathname of the file, in the full pathnane
syntax of the server host. The follow ng elenents of the property-
el enent token list are property/value pairs. The server is expected
to return several property/value pairs; the nunber of pairs is not
constrained. For further details on file properties and their

associ ated values: See the section "Format of NFILE File
Property/Val ue Pairs", section 7.5.

The return val ue settabl e-properties is a token list of keywords.
The nunber of keywords is not constrained. (Note that integers
cannot be used in settable-properties to indicate the file property;
keywords are to be used instead.) Each keyword supplied in

settabl e-properties identifies a property considered settable by the
server. The server is inplicitly guaranteeing a nmechani sm for
changing the properties reported as settable. The user can change
any of the settable properties for this file by using the CHANGE-
PROPERTI ES command. See the section " CHANGE- PROPERTI ES Conmand”,
section 8. 2.

The foll owi ng exanple shows the format of the PROPERTIES conmand
response. Renenber that the nunber of property/value pairs and

keywords is not constrained; this exanple has two property/val ue
pairs and three settabl e-properties keywords returned:

Greenberg & Keene [Page 48]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

TOP- LEVEL- LI ST-BEA N

PROPERTI ES - nanme of the conmmand

tid - transaction identifier

LI ST-BEG N

pat hnane of file

propl val uel - file s property/value pairs
prop2 val ue2

LI ST- END

LI ST-BEG N

keyword- 1 - file s settable properties
keywor d- 2

keywor d- 3

LI ST- END

TOP- LEVEL- LI ST- END

The followi ng exanple is designed to better show the structure of the
top-level token list by depicting TOP-LEVEL-LIST-BEG N and TOP-
LEVEL- LI ST- END by parentheses and LI ST-BEG N and LI ST- END by square
brackets. The indentation and newlines in the exanple are not part
of the token list, but are used here to make the structure of the
token list clear

(PROPERTIES tid [pathname propl val uel prop2 value2 ...]
[keywordl keyword2 keyword3 ...]

8.22 READ Comand
Command: (READ tid direct-file-id input-handle count FILEPQCS)
Response: (READ tid)

READ requests input data flow for direct access openings. The
direct-file-id is the sanme as the DI RECT-FILE-1D argunent that was

gi ven when opening the file; it designates the opening from which the
characters or bytes are to be transferred. The input-handle
speci fi es which data channel should be used for the transfer of data
fromserver to user. The data channel should have been al ready
establ i shed, cannot have been disestablished, and nmust not currently
be in use.

count is an integer specifying how nany bytes (or NFILE characters,
as appropriate) to read. count can be supplied as the enpty token
list, meaning read to the end of the file. |If the user specifies the
enpty token list or a count greater than the nunber of bytes
remaining in the file, the server sends the keyword ECF to mark the
end of the file.

Greenberg & Keene [Page 49]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

FILEPCS is an optional keyword/value pair. |f the keyword FILEPCS is
supplied, it nust be followed by an integer. Before data is
transferred, the opening is positioned to the point specified by the
val ue of FILEPOS. The position of the point is neasured in server
units for character openings; for binary openings it is nmeasured in
bi nary bytes. See the section "FILEPOS NFI LE Comrand".

Upon receiving the READ command, the server binds the data channel to
the opening and i medi ately begins transferring data. The server
stops when all data has been transferred. After the server sends the
| ast requested byte, it unbinds the data channel, freeing it for

ot her use. Wen the user side has processed the |last byte, the user
si de assunes that the data channel can now be reused for another data
transfer.

8.23 RENAME Command
Command: (RENAME tid handl e pat hnane t o- pat hnane)
Response: (RENAME tid from pat hnanme to-pat hnane)

RENAME requests the server to give a file a newnane. This is
NFILE s interface to the systenmis native renanme operation, with al
of its systemspecific semantics and constraints.

Ei t her a handle or a pathnanme (but not both) specifies the file that
is to receive a new nanme. The argunent to-pathnanme designates that
new name. The return value from pathnanme gives the full original
nanme of the file, and to-pathnane gives the full new nane of the
file. For systenms that support version nunbers, the return val ues
can differ in version nunber fromthe val ues of the argunents given
t 0 RENAME.

The argunents pat hnane and to-pathname and the return val ues from
pat hnane and to-pathnanme are strings in the full pathnanme syntax of
the server host. See the section "Syntax of File and Directory

Pat hnane Argunents", section 7.4.

If the file to be renaned is specified by a pathnanme, the file should
be renaned imedi ately. |If the file is specified by handle, it is
acceptable to wait until close-tine to renane the file.

Sone operating systems can renane only within a directory.
Nevert hel ess, the to-pathname of the RENAME nust be fully specified;
the server on these systenms nust check for and reject an attenpted
cross-directory renane.

Greenberg & Keene [Page 50]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

8.24 RESYNCHRONI ZE- DATA- CHANNEL Commrand

The command and response format for this command varies, depending on
whet her the handl e argunent indicates an input or output data
channel .

For an | nput Handl e:

Command: (RESYNCHRONI ZE- DATA- CHANNEL tid handl e)

Response: (RESYNCHRONI ZE- DATA- CHANNEL tid identifier)

For an Qut put Handl e:

Command: (RESYNCHRONI ZE- DATA- CHANNEL tid handl e identifier)
Response: (RESYNCHRONI ZE- DATA- CHANNEL ti d)

RESYNCHRONI ZE- DATA- CHANNEL begi ns a prescri bed procedure between user
and server over the unsafe data channel specified by handle. The
resynchroni zati on procedure clears the data channel of any unwanted
data, and restores the data channel to a safe state, ready to
transfer data again.

Al'l arguments to RESYNCHRONI ZE- DATA- CHANNEL are required.

For a detailed description of how the user and server coordinate the
resynchroni zati on of data channels: See the section "NFlILE Data
Connecti on Resynchroni zation", section 9. 2.

8.24.1 Inplenentation H nts for RESYNCHRON ZE- DATA- CHANNEL Command

In general, both the user and server should should be inpl enented
with the knowl edge that a transmi ssion can be aborted. That is, the
receiving side must be careful not to act upon a transm ssion (that
is, to performany action or side effect) until the transm ssion has
been successfully received in entirety. This protects the user
program fromthe possibility that an abort can occur after a
transni ssi on has been partially sent.

G eenberg & Keene [Page 51]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

RESYNCHRONI ZI NG AN OQUTPUT DATA CHANNEL

The server will probably want to dispatch the | ooping and reading to
the | ogical data process. Looping reading for the resynchronization
identifier in the control connection handler is not a viable option.
If the user side fails to send the resynchroni zation identifier (for
exanpl e, due to a user abort) the control connection handl er can
never be broken out of this |oop

Shoul d the user side send the control connection handl er command
first, or send the marks and identifiers first?

Sending the marks first is problenmatic, because the data channel at
the other end nmight not be reading them (for it has not yet been so
instructed by the control connection handler). The user night then
beconme bl ocked for output, thus prohibiting sending of the
RESYNCHRONI ZE- DATA- CHANNEL comand.

On the other hand, sending the control connection handl er comrand
first requires that the user side can send the nmarks and identifiers
bet ween sendi ng the control connection handler command and receiving
a response for it. The response will never cone until the marks and
identifiers have been successfully received. The user inplenmentation
must allow for this one case of a comuand where a subroutine that
"sends a command and waits for a response" is inapplicable.

RESYNCHRONI ZI NG AN | NPUT DATA CHANNEL

The server control process shoul d dispatch the data process to send
the mark, and not wait, |est the data process becone bl ocked for

out put due to a user abort. The control process nust go back to its
command | oop, to possibly receive a cormmand that might break the data
process out of that bl ock.

8.25 UNDATA- CONNECTI ON Comand
Command: (UNDATA- CONNECTI ON ti d i nput-handl e out put - handl e)
Response: (UNDATA- CONNECTI ON ti d)
UNDATA- CONNECTI ON explicitly disestablishes a data connection from
the user side. The user side has the option of disestablishing data
connections at its discretion. There is no place in the protocol

wher e di sestablishnent of data connections is required, other than at
the end of the session, where it is inplicit.

G eenberg & Keene [Page 52]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The data connection to be disestablished is the one designated by the
i nput - handl e and out put - handl e argunents. These two handl es nust
refer to the same data connection

It is not permitted to explicitly disestablish a data connection

ei ther of whose channels is active. |If the session is term nated by
t he breaking of the control connection, all file handles becone
nmeani ngl ess, and the server nust close all data connections known to
it and close-abort all files opened on behalf of the user during the
di al ogue.

In the Synbolics inplenmentation, the user side disestablishes data
connections that have not been used for a long tinme, such as twenty
m nutes or so.

For nore informati on about data connections: See the section "NFlLE
Control and Data Connections", section 4.

9. NFI LE RESYNCHRONI ZATI ON PROCEDURE

Odinarily, the user side sends NFILE commands to the server side
over the control connection; the server side responds to every user
command, and file data is transnitted over the data channels. This
section describes a resynchronization procedure that takes place when
somet hi ng di sturbs the usual course of events.

First, if the server side aborts while sending or receiving data,
not hi ng can be done to sal vage the connecti on between the two hosts.
The control connection and any data channels associated with this
connection are broken. This happens rarely, if at all.

It is not unusual for the user side to abort file operations, either
commands or data transfer. On a Synbolics conputer, the user can do
this by pressing CONTROL- ABORT. An inportant aspect of any file
protocol is the way it handl es the situation when the user side
aborts file operations.

An NFI LE user side reacts to user side aborts by inmediately marking
t he connection unsafe. Wen a control connection is unsafe, it nust
be resynchroni zed before it can be used again. Data channels can

al so be marked unsafe, and must al so be resynchroni zed before further
use. The resynchronization process rids the connection (whether
control or data connection) of bytes of data that are now unwant ed,
and thus cleans up the channel so it can be used again.

The resynchroni zati on procedure is sonewhat conplex, but it fulfills

a genui ne need. For those interested, a brief design discussion is
i ncl uded as note <3>.

Greenberg & Keene [Page 53]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

9.1 NFILE Control Connection Resynchronization

NFI LE requires any unsafe control connection to undergo a
resynchroni zati on procedure before further use. Therefore, the
resynchroni zati on does not necessarily occur inmediately after the
control connection is marked unsafe. The user side initiates the
control connection resynchronizati on when anot her operation on the
control connection is attenpted.

A "mark" is defined in the context of Byte Streamwith Mark: See the
section "Discussion of Byte Streamw th Mark", section 12.1.

USER SI DE STEPS: CONTROL CONNECTI ON RESYNCHRONI ZATI ON

1. The user side sends a nark over the control connection to
t he server.

2. The user side sends the ASCI| characters USER- RESYNC- DUMWY
(as a data token) to the server.

3. The user side sends a second mark to the server.

4. The user side declares the control connection safe (at the
token list |evel).

5. The user side generates and sends a uni que data token to
the server.

6. The user side then waits, expecting to detect a mark
foll owed by the uni que data token. The user side reads and
di scards all tokens and marks until the desired match is
f ound.

Once the user side detects the nmark and uni que data token, the
control connection has been fully resynchroni zed, and can be used
agai n.

SERVER SI DE STEPS: CONTROL CONNECTI ON RESYNCHRONI ZATI ON
1. The server side detects a mark. The server is thus alerted
that the control connection is unsafe, and that
resynchroni zation is in progress.
2. The server continues to read data com ng fromthe user side

until it detects the second mark, and the token follow ng
it.

Greenberg & Keene [Page 54]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

3. The server checks to see if the token following the mark is
USER- RESYNC- DUMMY. This rare situation occurs if the user
aborts during the course of the resynchronization itself.

If so, the server side discards the USER RESYNC- DUMW
token. The control connection is still unsafe, and the
user side restarts the resynchronization procedure; the
server side therefore begins at Step 2 again.

4. |If the token following the mark is not USER- RESYNC- DUMW
(this is the expected circunstance), the server should have
received a single data token that is the unique data token
generated by the user side.

a. The server sends a nark to the user side.

b. The server declares the control connection safe (at
the token list level).

c. The server sends the unique data token to the user
si de.

5. If the server detects sonething follow ng the mark that was
nei t her USER- RESYNC- DUMMY nor a single data token, a
protocol error has occurred.

9.2 NFILE Data Connecti on Resynchroni zation

The NFILE data channel resynchronization procedure is simlar to the
NFI LE control connection resynchronization. Both procedures are
based on a mark signalling the unsafe condition, then a second nark
followed by a unique identifier. One inportant difference between
the two procedures is the circunstances in which they occur. Contro
connections are put into unsafe states only when the user aborts
during control connection |I/O operations. Data channels are nmade
unsafe by a |l arger set of circunstances:

Greenberg & Keene [Page 55]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

- User aborts occur during the file protocol operations that
assign and deassign data channels. This is the nbst common
cause of data channel s beconi ng unsafe.

- A server receives a CLOSE command (with abort-p supplied as
Bool ean truth) specifying an open file that has not finished
transmtting data. That is, file reading is aborted.

- The ABORT conmand is issued, causing data channels to be
made unsafe.

- The FILEPOCS conmand is issued, causing the input data
channel to becone unsafe.

The resynchroni zation clears the data channel of unwanted data from
aborted operations and puts the data channel in a known state. The
data channel resynchroni zati on procedure is invoked when the user

si de gives the RESYNCHRONI ZE- DATA- CHANNEL conmand over the control
connecti on.

The followi ng policies can be used to i nprove response tinme, but are
not required by the NFILE protocol: The user side can initiate
resynchroni zation only if it needs the data channel, having first
tried to use a free data channel that does not require

resynchroni zation. Also, the user side can periodically
resynchroni ze all unsafe data channel s.

I n giving the RESYNCHRONI ZE- DATA- CHANNEL conmmand, the user side

i ndi cat es whi ch data channel should be resynchroni zed. Data channels
are unidirectional, which neans that depending on the direction
(either input or output) of the data channel, either the user side or
the server side sends the resynchronization data. This is another

di fference fromthe resynchroni zation of the control connection, in
whi ch the resynchroni zati on data is always sent by the user side.

The resynchroni zati on steps for input data channels are different
than the steps for output data channels.

Greenberg & Keene [Page 56]

RFC 1037 NFILE - A File Access Protocol Decenber
| NPUT DATA CHANNEL RESYNCHRONI ZATI ON

1. The user side gives the RESYNCHRONI ZE- DATA- CHANNEL command
on the control connection, with only one argunent, the
handl e of the data channel to be resynchroni zed.

2. The server side of the data channel generates a uni que
identifier, and sends that data token in its regular
command response to the user side.

3. The server side sends a nmark over the data channel

4. The server side sends the unique identifier token over the
dat a channel

5. The user side reads until it detects a nmark foll owed by the

uni que identifier token. The resynchronization is then
conplete. The data channel is no longer in an unsafe
state.

OUTPUT DATA CHANNEL RESYNCHRONI ZATI ON

1.

The user side gives the RESYNCHRONI ZE- DATA- CHANNEL conmand
on the control connection, with two argunents: the handl e
of the data channel to be resynchroni zed, and a uni que
identifier that it has just generated.

The user side of the data channel sends a mark

The user side of the data channel sends a dummy identifier
token. The dummy identifier can be any token that the
server could not interpret as being the unique identifier.
One suggestion is the data token DUMMY- | DENTI FI ER

The server side of the data channel was alerted by the
RESYNCHRONI ZE- DATA- CHANNEL conmand that resynchroni zation
is in progress. The server side now reads the data,
seeking the first nmark

The server side reads and discards the first mark and the
dummy identifier.

The user side sends a second narKk.
The user side sends the unique identifier.

The server side recognizes the mark and the uni que
identifier that follows, and the resynchronization is

G eenberg & Keene [Page

1987

57]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

10.

10.

conplete. The data channel is no longer in the unsafe
state.

NFI LE ERRORS AND NOTI FI CATI ONS
NFI LE recogni zes two types of errors: conmand response errors and
asynchronous errors. In addition to errors, NFILE supports
notifications.
Command response errors:
- Signify an error that prevented the successful conpletion of
t he command; when such an error occurs, a command response
error is sent instead of a normal command response.
- Cccur frequently in normal operations

Asynchronous errors:

Are not related to any specific command

- Are associated with an erring data channe

Typically indicate a problemin the transfer, such as
runni ng out of disk space or allocation, or an unreadabl e
di sk record

- Cccur rarely in normal operations

Noti ficati ons:

- Are not associated with an error

- Are sent at the server’s discretion

- Provide general information, such as a warning that the
systemis goi ng down

1 Notifications Fromthe NFILE Server

The NFILE server can send asynchronous notifications to the user side
over the control connection. The text of the notification contains
information of interest to the person using NFILE, such as a warning
that the server’s operating systemw ||l be going down soon
Notifications can come fromthe server side at any tine that the
server is not sending sonething el se.

The format of NFILE notifications is:

(NOTI FI CATION "" text)
The enpty string "" takes the place of a transaction identifier.
Notifications are initiated by the server, and are not associ ated
with any transaction originated by the user side.n

Greenberg & Keene [Page 58]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

10.2 NFILE Command Response Errors

When an error prevents the successful conpletion of an NFILE conmmand,
a command response error is sent instead of the normal command
response. A normal command response indicates success; a conmand
response error indicates failure of the conmand.

NFI LE command response errors are sent fromthe server to the user
across the control connection as top-level token lists, in this
format:

(ERROR tid three-letter-code error-vars nessage)

ERROR is a keyword. The tid is the transaction identifier of the
conmand that encountered this error. The argunments three-letter-
code, error-vars, and nessage are all required.

The three-letter-code provides the information on what kind of an
error was encountered. For a table of the three-letter codes and
their nmeanings: See the section "NFILE Three-letter Error Codes",
section 10. 4.

nmessage is a string that is displayed to the human user of the
pr ot ocol .

error-vars is a keyword/value list. The three possible keywords are:
PATHNAME, OPERATI ON, and NEW PATHNAME. Before transmitting an error,
the server |ooks at the type of error to see if it can easily
determ ne the value of any of the keywords. |If so, the server

i ncludes the keyword/value pair inits error. |f not, the
keyword/val ue pair is onitted. The value associated w th OPERATI ON
is the keyword naming the NFILE command that failed. The val ues
associ ated wi th PATHNAMVE and NEW PATHNAME are strings in the ful

pat hnane syntax of the server host.

For exampl e, suppose the server on a file systemw th hierarchical
directories could not access a file because its containing directory
did not exist. The command error response woul d use the PATHNAME
keyword to indicate the first directory |level that did not exist,

i nstead of the full pathname which was supplied as the command
argunment. This gives the user side valuable information that it

ot herwi se woul d not have known.

Greenberg & Keene [Page 59]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

10.3 NFILE Asynchronous Errors

When a data channel process, in either direction, encounters an error
condition, the server sends an asynchronous error description. An
asynchronous error description consists of a top-level token list.
Typi cal |y, asynchronous errors indicate error conditions in the
transfer, such as running out of disk space or allocation, or a

unr eadabl e di sk record.

The format of asynchronous error descriptions is:
(ASYNC- ERROR handl e three-letter-code error-vars nmessage)

ASYNC- ERRCR is a keyword. The handl e argunent identifies the erring
data channel. The argunments three-letter-code, error-vars, and
nmessage are all required. Their nmeanings are the same as in NFlLE
conmand error responses: See the section "NFILE Command Response
Errors", section 10. 2.

When the server detects an asynchronous error on an input data
channel, the server sends an asynchronous error description on that
data channel itself. Wen an asynchronous error occurs on an out put
data channel, the asynchronous error description is sent on the
control connection

Sonme asynchronous errors are restartable. In this context,
restartable neans it nakes sense to try to resune the operation. One
exanple of a restartable error is an attenpt to wite a file to a
file systemthat is out of room The server side indicates whether
an asynchronous error is restartable by prepending the keyword
RESTARTABLE and the associ ated val ue Bool ean truth to the error-vars
list. To proceed froma restartable error, the user side sends a
CONTI NUE conmand over the control connection

On any asynchronous error, either input or output, the data channel
on the server side enters an "asynchronous error outstandi ng" state.
The server can exit that state in one of two ways: by receiving a
CONTI NUE command or a CLOSE command with the abort-p argunent
suppl i ed as Bool ean truth.

On a normal CLOSE (not a close-abort), the server side checks the
channel it was requested to close. |[If an asynchronous error
description has been sent on the data channel, but not yet processed
by CONTI NUE, the server side does not close the channel, but sends a
conmand error response. The sane thing happens on a FIN SH conmand
received on a channel that has an asynchronous error pending. In
both cases, the three-letter code included in the conmand error
response is EPC, for Error Pending on Channel.

Greenberg & Keene [Page 60]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

10.4 NFILE Three-letter Error Codes

Usual Iy the server’s operating system provi des sone description of an
error that occurs. NFILE has a nmechani smfor conveying that
information to the user side. Upon detecting an error, the NFILE
server should characterize the error by choosing the three-letter
code that best describes the error. The three-letter code is an
argunment in both the command response error and asynchronous error
nmessages fromthe server to the user

Each of the NFILE three-letter codes represents sone systemerror.
The set of codes enables all operating systenms to use one error-
reporting nechanism Some operating systens will never encounter
certain of the error conditions.

Sone errors fit logically into two error codes. For exanple, suppose
the server could not delete a file because the file was not found.
This error could be considered either CDF (Cannot Delete File) or FNF
(File Not Found). |In this case, File Not Found gives nore specific
and val uabl e informati on than Cannot Delete File. Since the protocol
does not allow nore than one error code to be reported when an error
occurs, the server must choose the nost appropriate error code, given
the information available to it fromthe operating system

This is the set of three-letter codes:

ACC Access error. This indicates a protection-violation error.

ATD Incorrect access to directory. A directory could not be
accessed because the user’'s access rights to it did not
permit this type of access.

ATF Incorrect access to file. A file could not be accessed
because the user’s access rights to it did not permt this
type of access.

BUG File systembug. This includes all protocol violations
detected by the server, as well as by the host file system

CCD Cannot create directory. An error occurred in attenpting to
create a directory.

CDF Cannot delete file. The file systemreported that it cannot
delete a file.

CCL Cannot create link. An error occurred in attenpting to
create a link

G eenberg & Keene [Page 61]

RFC 1037

CR

DAE

DAT

DND

DNE

DNF

EPC

FAE

FNF

FOO

FOR

NFI LE - A File Access Protocol Decenber 1987

Circular link. An operation was attenpted on a pat hnane that
designates a link that eventually |inks back to itself.

Cannot renane file. An error occurred in attenpting to
renane a file.

Cannot set property. An error occurred in attenpting to
change the properties of a file. This could nean that you
tried to set a property that only the file systemis all owed
to set, or a property that is not defined on this type of
file system

Directory already exists. A directory could not be created
because a directory or file of this name already exists.

Data error. The file system contains unreadable data. This
coul d nmean data errors detected by hardware or inconsistent
data inside the file system

Devi ce not found. The device of the file was not found or
does not exi st.

"Do Not Delete" flag set. An attenpt was nade to delete a
file that is marked by a "Do Not Del ete" fl ag.

Directory not enpty. An invalid deletion of a nonenpty
directory was attenpted.

Directory not found. The directory was not found or does not
exist. This refers specifically to the containing directory;
if you are trying to access a directory, and the actual
directory you are trying to access is not found, FNF (for
File Not Found) should be indicated instead.

Error pending on channel. The server cannot close the
channel in attenpting to close or finish the channel

File already exists. The file could not be created because a
file or directory of this nane already exists.

File not found. The file was not found in the containing
directory. The TOPS-20 and TENEX "no such file type" and "no
such file version"” errors should also report this condition

File open for output. Opening a file that was al ready opened
for output was attenpted.

Fil epos out of range. Setting the file pointer past the

G eenberg & Keene [Page 62]

RFC 1037

FTB

HNA

| BS

| P?

| PS

| PV

LCK

LI P

MsC

NAV

NFI LE - A File Access Protocol Decenber 1987

end-of -file position or to a negative position was attenpted.

File too big. File is larger than the maximumfile size
supported by the file system

Host not avail able The file server or file systemis
intentionally denying service to user. This does not nean
that the network connection failed; it neans that the file
systemis explicitly not avail able.

Invalid byte size. The value of the "byte size" option was
not valid.

| nconsi stent options. Some of the options given in this
operation are inconsistent with others.

Invalid operation for directory. The specified operation is
invalid for directories, and the given pathname specifies a
directory, in directory pathname as file fornmat.

Invalid operation for Iink. The specified operation is
invalid for links, and this pathname is the nane of a link.

Invalid password. The specified password was invalid.

I nval i d pat hname syntax. This includes all invalid pathnane
syntax errors.

Invalid property value. The new val ue provided for the
property is invalid.

Invalid wildcard. The pathnanme is not a valid wldcard
pat hnane.

File locked. The file is locked. It cannot be accessed,
possi bly because it is in use by sone other process.

Login problens. A problemwas encountered while trying to
log into the file system

M scel | aneous probl ens.

Not available. The file or device exists but is not

avail able. Typically, the disk pack is not nmounted on a
drive, the drive is broken, or the like. Operator
intervention is probably required to fix the problem but
retrying the operation is likely to succeed after the probl em
i s sol ved.

Greenberg & Keene [Page 63]

RFC 1037

NER

NET

NFS

NLI

NVR

RAD

REF

UKC

UKP

UNK

uuo

NFI LE - A File Access Protocol Decenber 1987

Not enough resources. For exanple, a systemlinit on the
nunber of open files or network connections has been reached.

Network problem The file server had sone sort of trouble
trying to create a new data connection, or perform sone other
network operation, and was unable to do so.

No file system The file systemwas not available. For
exanpl e, this host does not have any file systens, or this
host’s file system cannot be initialized or accessed for some
reason, or the file systemsinply does not exist.

Not logged in. A file operation was attenpted before | ogging
in. Normally the file systeminterface always | ogs in before
doi ng any operation, but this problemcan occur in certain
unusual cases in which logging in has been abort ed.

No nore room The file systemis out of room This can nean
any of several things:

- The entire file systemis full.

- The particular volume involved is full.

- The particular directory involved is full.

- The user’s allocated quota has been exceeded.

Renane across directories. The devices or directories of the
initial and target pathnanes are not the sanme, but on this
file systemthey are required to be.

Rename to existing file. The target name of a renane
operation is the nane of a file that already exists.

Unknown operation. An unsupported file system operation was
attenpted, or an unsupported conmand was attenpted.

Unknown property. The property is unknown.

Unknown user. The specified user name is unknown to this
host .

Uni npl emented option. An option to a command is not
i npl enent ed.

Wong kind of file. This includes errors in which an invalid
operation for a file, directory, or link was attenpted.

W dcard not all owed.

Greenberg & Keene [Page 64]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

11.

11.

TOKEN LI ST TRANSPORT LAYER

PURPCSE: The Token List Transport Layer is a protocol that
facilitates the transm ssion of sinple structured data, such as
lists.

1 Introduction to the Token List Transport Layer

The Token List Transport Layer is a general -purpose protocol. The
Token List Transport Layer sends "tokens" through its underlying
stream Each token usually represents a sinple quantity, such as a
string or integer.

Tokens can be organi zed into "token lists". Special tokens are

provi ded to denote the starting and ending point of lists. The token
list transport |ayer differentiates between "top-level token |ists",
which are not contained in other lists, and "enbedded token Iists",
which are contained in other lists. Using lists nakes it conveni ent
to send structured records, such as comands and comand responses of
the client protocol. The top-level token lists provide robustness.

The Token List Transport Layer is a general termthat includes two
separate but related subjects: the "token list stream and the
"token list data streanf. The token list streamis conmonly used for
applications that can easily organize the information to be
transmtted into tokens and lists. The token list data streamis
nore appropriate for transmtting a |large volune of data that cannot
easily be structured into tokens and lists, such as file data, which
is sinply a sequence of characters or bytes.

The following table illustrates the main differences between token
list streans and token |list data streans:
Token List Data Stream Token List Stream
Built on: token list stream Byte Streamwith Mark
Transm ts: stream dat a t okens, token lists
Exanpl e
of use: NFI LE data channel s NFI LE contro

connection

Greenberg & Keene [Page 65]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

NFI LE uses the the Token List Transport Layer, and provides an

excel ent exanple of its useful ness. The NFILE comuands and conmand
responses are sent over the control connection in a token [|ist
stream File data is sent across each data channel in a token |ist
data stream

11.2 Token List Stream
11.2.1 Types of Tokens and Token Lists

Al'l nunbers in the token |ist docunmentation are represented in
deci mal notation. Bytes are 8 bits |ong.

TYPES OF TOKENS
Tokens are of the follow ng types:
1. Atom c tokens.
Atomi c tokens are of the follow ng subtypes:

- Data tokens. A data token consists of a sequence of
bytes with an effectively infinite maximumlength. In
sone contexts a data token represents a string; in
ot her contexts, a data token is other arbitrary data.

Each data token is preceded in the token list stream
by a representation of its length in bytes.

Dat a tokens that are under 200 bytes |ong are preceded
by one byte containing their length in bytes. That

is, a data token of 34 bytes is preceded by one byte
of val ue 34.

Dat a t okens 200 bytes or over are preceded by the byte
known as PUNCTUATI ON- LONG, of value 201. After the
201 cones a four-byte-long nunber (least significant
byte first) containing the length of the data token
that follows.

- Numeric tokens. A sequence of bytes that represent
and encode a nonnegative binary integer. The |argest
valid integer is 2763 - 1.

Nuneri c tokens are either short integers (less than
256) or long integers (greater than or equal to 256).
Short integers are preceded by the byte known as
PUNCTUATI ON- SHORT- | NTEGER, of val ue 206.

Greenberg & Keene [Page 66]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

Long i ntegers are begun by PUNCTUATI ON- LONG | NTECER

of value 207. One byte follows, containing the |ength
(in bytes) of the long integer. The integer itself is
next, |east significant byte first.

- Keyword tokens. A sequence of bytes that represent
and encode a naned identifier of the inplenented
protocol. Keyword tokens are used by the client
protocol to convey a nane; the only significance of a
keyword token is in its name.

Each keyword is preceded by the byte known as
PUNCTUATI ON- KEYWORD, of value 208. The data token
foll om ng PUNCTUATI ON- KEYWORD represents the nane of
the keyword as a string. The characters are in
upper - case standard ASCI|.

- Boolean truth. A special token that represents the
Bool ean truth value. This token is known as
BOOLEAN- TRUTH, of val ue 209 <4>,

2. Control tokens.

The token list stream supports four control tokens to delinit token
lists, and one paddi ng token.

TOP- LEVEL- LI ST-BE@ N 202 This control token
appears at the start of
each top-1level token list.

TOP- LEVEL- LI ST- END 203 This control token
appears at the end of
each top-1level token list.
LI ST- BEG N 204 This control token
appears at the start of
each enbedded token |ist.

LI ST- END 205 This control token
appears at the end of
each enbedded token |i st.

PUNCTUATI ON- PAD 200 This paddi ng token shoul d
be ignored by the token
list stream It can be
sent to fill buffers.

Greenberg & Keene [Page 67]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

TOKEN LI STS

A token list consists of a sequence of atomc tokens or token |ists.
Token lists are begun and ended by control tokens that delimt the
token lists. There are three types of token |ists:

1. Top-level token lists.

Top-1 evel token lists begin with TOP-LEVEL-LIST-BEGA N and
end with TOP-LEVEL-LI ST-END. Top-level token lists are not
contained in other |ists.

2. Enbedded token |lists.

These token lists occur inside other token lists. They
begin with LI ST-BEG N and end with LI ST- END.

3. The enpty token |ist.

This is a special exanple of the enbedded token list. In
some contexts, the enpty token list represents Bool ean
falsity. An enbedded enpty token list is conposed of a

LI ST-BEG N fol l owed i mredi ately by a LIST-END. A top-1evel
enpty token list is conposed of TOP-LEVEL-LIST-BEG N

foll owed i nedi ately by TOP-LEVEL- LI ST- END

11.2.2 Token List Stream Exanpl e

This section contains an exanple of some data that can appear on a
token list stream The exanple is a top-level token list encoding an
NFI LE DELETE conmand.

The DELETE command is conposed of the followi ng pieces: a TOP-
LEVEL- LI ST-BEG N, the keyword DELETE, a data token containing the
transaction identifier, a LIST-BEG N, a LIST-END, a data token
containing a pathnane of a file to be deleted, and a TOP-LEVEL-LI ST-
END. This exanple uses t105 as the transaction identifier, and

[usr/ max/tenp as the pathnane.

Al'l nunbers in this section are expressed in decinmal notation

The pieces of the conmmand are di splayed here in order:

1. TOP-LEVEL-LIST-BEG N

2. The keyword token whose name is DELETE

3. The data token containing the characters: t105
4. LIST-BEG N

5. LI ST- END

Greenberg & Keene [Page 68]

RFC 1037

NFI LE - A File Access Protocol Decenber 1987

6. The data token containing the characters: /[usr/max/tenp
7. TOP- LEVEL- LI ST- END

Now, let’s translate each piece of the command into the bytes that
are transmtted through the token list stream

1.

TOP- LEVEL- LI ST-BEGA N
202 represents TOP-LEVEL-LI ST-BEG N
The keyword token whose nane is DELETE.

A keyword token is introduced by PUNCTUATI ON KEYWORD, which
is represented in the token |list streamas the byte 208.

A data token follows, containing the string "DELETE". A
data token under 200 bytes long is introduced by one byte
containing its length in bytes. The Iength of this data
token is 6 bytes.

The data token continues with the standard ASCI| character
set representation of each character in the string DELETE

208 represents PUNCTUATI ON- KEYWORD

006 represents the length of this data token
068 represents "D

069 represents "E"

076 represents "L"

069 represents "E"

084 represents "T"

069 represents "E"

The data token containing the characters: t105

This data token is begun by its length in bytes (4), and
continues with the NFILE character set representation of
each character in the string:

004 represents the length of this data token
116 represents "t"
049 represents "1"
048 represents "0"
053 represents "5"

4. LI ST-BEG N

204 represents LIST-BEG N

Greenberg & Keene [Page 69]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

5. LI ST- END
205 represents LI ST-END

6. The data token containing the characters: /[usr/max/tenp

013 represents length of this data token
047 represents "/"
117 represents "u"
115 represents "s"
114 represents "r"
047 represents "/"
109 represents "nf
097 represents "a"
120 represents "x"
047 represents "/"
116 represents "t"
101 represents "e"
109 represents "nf
112 represents "p"

7. TOP-LEVEL- LI ST- END
203 represents TOP-LEVEL-LI ST-END
11.2.3 Mapping of Lisp Objects to Token List Stream Representation

The Synbolics interface to the token Iist stream sends Lisp objects
t hrough the underlying Byte Streamw th Mark and produces Lisp

objects on the other end. Not all Lisp objects can be sent in this
way. For exanple, conpound objects other than lists are not handl ed.
An appropriate analogy is the sending and reconstruction of I|ist

structure via printed representation. These are the types of objects

that can be sent, and their representations:

- Lisp strings are represented as data tokens in the NFILE
character set. Only 8-bit strings can be sent <5>.

- Keyword synbols are represented as keyword tokens. Although
identifiable and reconstructable as keyword synbols, only
their nanmes are sent. Any properties, bindings, and the
like are not sent.

- Tis represented as BOOLEAN- TRUTH

- NIL is represented as the enpty token I|ist.

- Lists are represented as token lists. Circular lists cannot

Greenberg & Keene [Page 70]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

be sent. See the footnote related to the anbiguity between

NIL and the enpty list: See the section "Types of Tokens
and Token Lists", section 11.2.1.

- Integers are represented as nuneric tokens. Only
nonnegati ve integers |less than 2763 can be sent.

11.2.4 Aborting and the Token List Stream

A token list stream accrues the benefits of the abort managenent
policy of the Byte Streamwith Mark on which it is built. In order
to fully realize this benefit, some sinple rules nust be obeyed by
any inplenentation of the token list stream

The term "transm ssion" neans either an atom c token or a conplete
top-level token list. Atransmission starts with the control token
TOP- LEVEL-BEGA N and ends with TOP-LEVEL-END. The top-Ievel token
list can contain enbedded token |ists.

The interface that wites to the token |[ist stream nust be capabl e of
witing the representation of entire transm ssions. Wen this
interface is called, it nust effectively lock the token list stream
and excl ude access by other processes until the entire transm ssion
has been encoded and sent.

If the sending is aborted while the streamis |ocked, the stream
enters an "unsafe" state. Trying to send data while the streamis
unsafe signals an error. The application and the token list stream
must send a mark to cause resynchroni zation, and all ow the token |i st
streamto be used again. Wien the reading side encounters this mark,
it resynchronizes itself according to whatever client protocol is in
use.

Simlarly, the interface that reads fromthe token |ist stream nust

be capable of reading entire transmi ssions. Wen this interface is

called, it nmust lock the stream excluding access by other processes
until the entire transm ssion has been read.

If the reading is aborted while the streamis |ocked, the stream
enters an unsafe state. The only exit fromthis unsafe state is by
means of receiving a mark. Wen the streamis unsafe, the only valid
operation that can be performed upon it is "read and discard al
tokens until a mark is encountered; read and discard that mark

decl are the stream safe again".

G eenberg & Keene [Page 71]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

11.

Dependi ng on the client protocol, the receipt of a nmark might cause
the reading side to read for further marks. NFILE inplenents the
resynchroni zati on of token list streans, and serves as a useful
exanpl e: See the section "NFILE Control Connection
Resynchroni zati on", section 9. 1.

The Synbolics inplenmentation provides the two mark-handling
primtives in this way:

1. Send token (or list) preceded by a mark. Wen the stream
is in the unsafe state (on the output side), this is the
only pernitted output operation (other than closing).

2. Read through to a mark and read the token (or list)
follow ng the mark. Wen the streamis in the unsafe state
(on the input side), this is the only permtted input
operation (other than closing).

3 Token List Data Stream

The token list data streamis a facility to transmt stream data
through a token list stream The token |list data streaminposes the
following protocol on the data transmtted:

- Data is sent in the format of |oose data tokens, not
contained in token |ists.

- The keyword token ECF indicates that the end of data has
been reached.

- Token lists can be transmitted through the token I|i st
data stream

- No | oose tokens other than data tokens or the keyword
token EOF can be sent.

- Boundaries between data tokens are not signification
The data is considered to be a continuous stream wth
the possi bl e exception of narks.

The token list data streamis nost appropriate for sending file data.
It is expected (but not required) that its typical node of use is to
send a | arge nunber of data tokens, with an occasional token |ist.
The design intent was that token lists would be used by the
application programto indicate exceptional situations.

Dat a tokens, the keyword token EOF, and token lists are defined in

G eenberg & Keene [Page 72]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

the token list stream docunentation: See the section "Types of
Tokens and Token Lists", section 11.2.1.

The NFILE file protocol provides a good exanple of the use of token
list data streanms. NFILE sends file data through token list data
streans; each NFILE data channel is a token list data stream FErrors
such as disk errors during the reading of a file are conveyed as
token lists through the token |ist data stream

12. BYTE STREAM W TH MARK

PURPCSE: Byte Streamwith Mark is a sinple layer of protocol that
guar ant ees that an out-of-band signal can be transnitted in the case
of programinterruption. Byte Streamw th Mark is designed to
provi de end-to-end stream consistency in the face of user program
aborts.

12.1 Discussion of Byte Streamw th Mark
| NTRODUCTI ON

Byte Streamwith Mark is a reliable, bidirectional byte streamwth
one out-of-band (but not out-of-sequence) signal called a "mark".

The design of Byte Streamwi th Mark ensures that the mark is al ways
recogni zabl e on the receiving end. The Byte Streamwith Mark is
built on an underlying stream which nust support the transm ssion of
8-bit bytes. Byte Streamwith Mark has been inplenented to run on
TCP and Chaos. Marks are inplenmented differently on the two

pr ot ocol s.

Marks are used to resynchroni ze the stream when sonet hi ng has
occurred to interrupt normal operations. For exanple, an application
| ayer sending data over the Byte Streamw th Mark can abort in the

m ddl e of sending that data. Recovery is handled by sending a nark.

In the context of this docunent, "aborting" is defined as follows:
Aborting the current execution of a program means to halt that
execution and to abandon it, never to conplete it. The data
representing the state of the execution are irrevocably discarded.

EXAMPLE OF USE

Byte Streamwith Mark is the |ayer of protocol underlying NFILE

NFI LE uses the marks inplenented in Byte Streamwi th Mark to
resynchroni ze control connections or data channel s whose
synchroni zati on has been lost. For a description of NFILE s use of
mar ks to resynchroni ze streans: See the section "NFILE
Resynchroni zati on Procedure", section 9.

Greenberg & Keene [Page 73]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

BYTE STREAM W TH MARK ON CHAGSNET

A mark is recogni zed on Chaosnet by a packet bearing the opcode 201
(octal). There is no data in a mark packet, so the data portion of
the packet is ignored. Byte Streamwith Mark transmits all data in
packets bearing opcode 200 (octal).

If Byte Streamwith Mark is inplenmented on anot her (non-Chaos) stream
t hat supports opcode-bearing packets, the recommended i nplenmentation
is the reservation of an opcode for the nark

BYTE STREAM W TH MARK ON TCP: RECORD MODE

The purpose of Byte Streamwith Mark is to guarantee that narks can
al ways be unanbi guously identified. Therefore, for TCP (and for any
transport |ayer that does not inplenent packets natively) a sinple
record streamis inposed on the stream The record boundaries serve
only to distinguish where a mark can occur. A record consists of a
two- byte byte count, nobst significant byte first, followed by that
many bytes of data. A byte count of zero is recognized as a nark.

Both the sending side and the receiving side nmust rigorously maintain
the integrity of the record boundaries. A witer to the stream nust
never output a byte count w thout that nunber of data bytes
followwng. Simlarly, a reader of the stream after reading a byte
count, has effectively contracted to read that many bytes fromthe
encapsul ated stream regardl ess of whether those bytes are requested
by the application |ayer.

MAI NTAI NI NG RECORD | NTEGRI TY

This subsection deals with maintaining record integrity on non-Chaos
networks. Since Chaos inplenments packets natively, no special care
is required to maintain record integrity on the Chaos network.

The design di scussed here guarantees record integrity; the underlying
stream nust guarantee data integrity.

The basic design of Byte Streamw th Mark on TCP (and ot her transport
| ayers that do not inplenment packets natively) is to preserve record
integrity by putting clearly demarcated, byte-counted records in the
natural records of the encapsul ated stream Therefore, when the
outer streamrequests a buffer’s worth of file data fromthe

encapsul ated stream it expects to receive a buffer containing one
entire, ntegral, record of that stream conplete with byte count.

Because of diverse network inplenentations on different operating
systens, the software that inplenments the encapsul ated stream m ght

Greenberg & Keene [Page 74]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

12.

not be able to provide integral record buffers to the Byte Stream
with Mark inplenentation. For exanple, the witing stream coul d have
written records that are nmuch | onger than avail able buffers on the
receiving system |In this case, a request to read fromthe

encapsul ated streamreturns sone buffer or sone ampunt of data
representing less than an entire Byte Streamwi th Mark record. The

i nput subroutine of the Byte Streamwi th Mark inpl enentation nust
therefore return a region of this (smaller) buffer, representing |ess
than the full Byte Streamw th Mark record. Nevertheless, the Byte
Streamwith Mark must extract the count of the full Byte Streamwith
Mark record fromthe first such buffer of each Byte Streamwi th Mark
record, and nmaintain and update this count as succeedi ng conponent
buffers are read.

In this case, if the programreading fromthe Byte Streamw th Mark
aborts while reading data, the inplenmentation of Byte Streamw th
Mar k must continue to read through the remaining buffers of the Byte
Streamwith Mark record that has been subdivided in this fashion

The user side programw || have determ ned that an abort has
occurred, and will request the Byte Streamwi th Mark to read up to
and through the next mark. The Byte Streamw th Mark will have
processed a fractional record, and nust discard the remaining buffers
of the record now bei ng read.

2 Byte Streamw th Mark Abortable States

Byte Streamwith Mark is designed to provide end-to-end stream
consistency in the face of user program aborts. This section

descri bes user program aborts, and how Byte Stream w th Mark handl es
them In the context of this docunent, "aborting" is defined as
follows: Aborting the current execution of a program neans to halt
that execution and to abandon it, never to conplete it. The data
representing the state of the execution are irrevocably discarded.

USER PROGRAM ABORTS AND |/ O STREAMS

Aborting the execution of the code that manipulates 1/O streans, in
general, poses significant problens. Gven that a streamis a static
data object, and is intended to be used over and over again, aborting
the execution of any routine manipulating a streamcan leave it in an
i nconsi stent, unusable state.

Many operating systens solve this problem by manipulating a | arge
subset of streans within the confines of the supervisor or executive
program which is not vulnerable to aborts, short of system or
network failure. Nevertheless, the need still exists to inplenment
streans outside of the boundaries of the supervisor. Furthernore,

Greenberg & Keene [Page 75]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

the Synbolics conputer environnment has no supervisor or executive
program and is thus vulnerable to aborts everywhere.

BYTE STREAM W TH MARK HANDLI NG OF USER PROGRAM ABORTS

Byte Streamwith Mark is designed to be nearly inpervious to the
aborting of prograns using it. |Its design is based on carefu
analysis of all possible states of the stream and of the effect of
aborts of the prograns using the streamin each of these states.
This section provides that analysis.

A "transmission" is a collection of user data sent by the application
| evel through the Byte Streamw th Mark whose end is well-defined,
once its start has been recognized. For instance, the token I|i st
stream when using Byte Streamw th Mark, sends token lists. Wen a
TOP- LEVEL- LI ST-BEA N has been sent, the containing transnission is
not consi dered conplete until the correspondi ng TOP-LEVEL-LIST-END is
read. See the section "Token List Transport Layer", section 11.

The followi ng cases are possible states of the stream when an abort
occurs:

1. Abort occurs when the user programis not manipul ating the
stream

This case presents no problem

2. Abort occurs after a transm ssion has been partially sent,
at a packet or record boundary.

This inplies that the datumthat would indicate the
successful conplete sending of that transni ssion has been
not yet been sent.

The Byte Streamwith Mark state is consistent, but the
application level state is not. The application |evel nust
determ ne that the execution of the code conposing and
sending its transm ssion was, in fact, aborted, and
initiate resynchronization via marks.

The receiving side nust be careful not to act upon a
transmission (that is, to performany action or side
effect) until the transm ssion has been successfully
received in entirety. This protects the user programfrom
the possibility that an abort can occur after a

transm ssion has been partially sent.

Greenberg & Keene [Page 76]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

3. Abort occurs during the sending or receiving of a record.

This is the nost vulnerable state of the nechanism This
case does not occur on packet-oriented nedia; it is
subsuned by the next case.

This case is handled by mnimzing the extent of this

wi ndow, and killing the connection when and if the
situation is detected. Depending on the operating system
i nvol ved, this wi ndow could be m nimzed by using

i nterrupt-disabling nechanisns, auxiliary processes or
tasks, or sone other technique.

For buffered streanms, input and output waiting can be done
in consistent states, thus mnimzing the amount of tine
mani pul ati ng the actual encapsul ated stream For
unbuffered streans, a lot of tinme can be spent in this

wi ndow. It is expected that unbuffered streans will be
exceedi ngly unconmon. Neverthel ess, the inplenentation of
Byte Streamw th Mark nust detect this case.

4. Abort occurs during the sending or receiving of fundanental
units of the |owest-Ilevel underlying stream (packets,
buffers, or bytes).

This case is usually handled by inhibiting interrupts, or
other forms of masking, in the code inplenenting the
encapsul ated stream since no waiting is possible at
unexpected timnes.

13. PGCSSI BLE FUTURE EXTENSI ONS
NFI LE was designed to be extended as the needs of its clients grow,

or as newclients with different needs appear. Currently it neets
the needs of the Synbolics Genera 7.0 operating system although its

design is intentionally general. |If users of other operating systens
identify new features that would be useful, they could be added to
NFILE. This section illustrates some areas areas where the design of

NFI LE intentionally accommbdat es extensi ons.

- The NFILE protocol encodes conmands and responses as text,
rat her than using prearranged nunbers. This nmeans that new
conmands and responses can be added wi thout having to obtain
a new nunber froma central registry.

- The Token List Transport Layer provides a general substrate

for the value-transm ssion portion of network protocols. In
fact, it has been used at Synmbolics for other protocols

Greenberg & Keene [Page 77]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

besi des NFILE. The Token List Transport Layer could
conveni ently be extended to support transm ssion of other
types of values besides those it currently supports.

- The character set to be used for file transfer could be nmade
negoti abl e.

- The conmmand character set could be nade negoti abl e.
Currently there is no negotiation sequence, but one could be
added.

- Greater support for nore conplex file organizations could be
added, such as record files, databases, and so on. This
could be an extension to the direct access node facility.

- Currently, the LOG N command all ows the user side to inform
the server which version of NFILE it is running. This
feature is included in NFILE so that a server can continue
to support ol der versions of the protocol even after new,
ext ended versi ons have been inplenented. However, the
specification is currently sonewhat vague as to how the
server can make use of the version

- NFILE is not restricted to using TCP or Chaos as its
underlying protocol. NFILE can be built on any byte stream
protocol that supports reliable transm ssion of 8-bit bytes
and mul tiple connections.

In addition to the possible future extensions, we would like to
mention a known limtation of NFILE.

Currently NFILE requires nmultiple connections for a single session.
That is, the control connection nust be separate fromthe data
connections. If NFILE is to be used over a tel ephone, this

requi rement poses an inconvenient restriction. It is possible to

i npl erent a nultiplexing schene as a | evel between NFILE and the
conmuni cati on medi um

Greenberg & Keene [Page 78]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

APPENDI X A
NORVAL TRANSLATI ON MODE

NORMAL transl ati on node guarantees the foll ow ng:

- Afile containing characters in the NFILE character set can
be witten to any NFILE server and read back intact
(contai ning the same characters).

- Afile witten by NFILE should not appear as "foreign" to a
server operating systemunless the file contains NFILE s
extended characters. That is, a server file that uses only
t he subset of the NFILE character set limted to standard
ASCI| characters (the 95 printing characters, and the native
representation of return, linefeed, page, backspace, rubout,
and tab) can be read and witten, with the result being the
same data in NFILE characters as exists in server
characters.

In this section, all nunbers designating val ues of character codes
are to be interpreted in octal. The notation "x in cl..c2" nmeans
"for all character codes x such that cl1 <= x <= c2."

The NFILE character set is an extension of standard ASCII. The 95
ASCI| printing characters have the same nunerical codes in the NFILE
character set. Five ASCII non-printing characters have counterparts
in the NFILE character set, as shown in the following table. The
NFI LE character set includes a single Return character, rather than
the carriage-return line-feed sequence typically used in ASCII. The
NFI LE character set does not include the ASCII control characters,
other than the five shown in the follow ng table, but does include
sone additional printing and formatting characters that have no
counterparts in ASClI

NFI LE St andard ASCI

Rubout : 207 177

Backspace: 210 10

Tab: 211 11

Li nef eed: 212 12

Page: 214 14
Note that the NFILE Return character is of code 215. This character
includes "going to the next line". This is a notable difference from
the convention used in PDP-10 ASCII in which |ines are ended by a
pair of characters, "carriage return' and "line feed".

Greenberg & Keene [Page 79]

RFC 1037 NFI LE -

A File Access Protocol Decenber 1987

NORVAL TRANSLATI ON TO UNI X SERVERS

The translation given in this table is appropriate for use by UN X
servers, or other servers that use 8-bit bytes to store ASCl
characters. Mchines with 8-bit bytes usually place the extra NFILE
characters in the top half of their character set.

TABLE 1. TRANSLATI ONS FROM NFI LE CHARACTERS TO UNI X CHARACTERS

NFI LE char act er

x in 000..007
x in 010..015
X in 016..176
177
x in 200..207
X in 210..211
212
X in 213..214
215
X in 216..376
377

UNI X char act er

X

X + 200
X

377

X

x - 200
015

x - 200
012

X

177

TABLE 2. TRANSLATI ONS FROM UNI X CHARACTERS TO NFI LE CHARACTERS

UNI X char act er

x in 000..007
x in 010..011
012
x in 013..014
015
X in 016..176
177
x in 200..207
X in 210..215
X in 216..376
377

NFI LE char act er

X

X + 200
215

X + 200
212

X

377

X

x - 200
X

177

NCRMAL TRANSLATI ON TO PDP-10 FAM LY SERVERS

The translation given in this table is appropriate for use by PDP-10
fam |y servers, or other servers that use 7-bit bytes to store ASCl I
characters. On the PDP-10 the sequence CRLF, 015 012, represents a

new | i ne.

Greenberg & Keene

[Page 80]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

The mechanismfor this translation on machines with 7-bit bytes is to
use the RUBQUT character (octal code 177) as an escape character.

TABLE 3. TRANSLATI ONS FROM NFI LE TO PDP- 10 CHARACTERS

NFI LE charact er PDP- 10 character(s)
x in 000..007 X

X in 010..012 177 X

013 013

X in 014..015 177 X

X in 016..176 X

177 177 177

X in 200..207 177 x - 200

X in 210..212 x - 200

213 177 013

214 014

215 015 012

X in 216..376 177 x - 200

377 no correspondi ng code

These tables m ght seem confusing at first, but there are sone
general rules about it that should nake it clearer. First, NFILE
characters in the range 000..177 are generally represented as

t hemsel ves, and x in 200..377 is generally represented as 177
followed by x - 200. That is, 177 is used to quote the second 200
NFI LE characters. It was deened that 177 is a nore useful and common
character than 377, so 177 177 nmeans 177, and there is no way to
describe 377 with PDP-10 ASCI| characters. 1In the NFILE character
set, the formatting control characters appear offset up by 200 with
respect to standard ASCII. This explains why the preferred node of
expressing 210 (backspace) is 010, and 010 turns into 177 010. The
sane reasoning applies to 211 (Tab), 212 (Linefeed), 214 (Fornfeed),
and 215 (Return).

More special care is needed for the Return character, which is the
mappi ng of the system dependent representation of "the start of a new
line". The NFILE Return (215) is equivalent to 015 012 (CRLF) in
some ASCI| systens. |In the NFILE character set there is no
representation

G eenberg & Keene [Page 81]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

TABLE 4. TRANSLATI ONS FROM PDP- 10 CHARACTERS TO NFI LE CHARACTERS

PDP- 10 character NFI LE charact er
x in 000..007 X

x in 010..012 X + 200
013 013

014 214

015 012 215

015 not-012 115

X in 016..176 X

177 x in 000..007 X + 200
177 x in 010..012 X

177 013 213

177 x in 014..015 X

177 x in 016..176 X + 200
177 177 177

of a carriage that doesn’t go to a newline, so if there is one in a
server file, it nust be translated to sonething else. Wen
converting ASCI|I characters to NFILE characters, an 015 fol |l owed by
an 012 therefore turns into a 215. A stray CRis arbitrarily
translated into a single M (115).

G eenberg & Keene [Page 82]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

APPENDI X B
RAW TRANSLATI ON MODE

RAW node nmeans no transl ation should be performed. |In RAWnode the
server operating systemshould treat the file as a character file and
use the sane data formatting that woul d be appropriate for a
character file, but transfer the actual binary values of the

char acter codes.

Greenberg & Keene [Page 83]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

APPENDI X C
SUPER- | MAGE TRANSLATI ON MODE

SUPER- | MAGE node is intended for use by PDP-10 fam |y machi nes only.
It is included largely as an illustration of a system dependent
extension. A server machine that has 8-bit bytes should treat
SUPER- | MAGE node the sane as NORVAL node.

In this section, all nunbers designating val ues of character codes
are to be interpreted in octal. The notation "x in cl..c2" nmeans
"for all character codes x such that cl <= x <= c2."

SUPER- | MAGE npde suppresses the use of the 177 character as an escape
character. Character translation should be done as in NORMAL node,

wi th one exception. Wen a two-character sequence beginning with 177
is detected, the 177 should not be output at all.

In this section, all nunbers designating val ues of character codes
are to be interpreted in octal. SUPER-IMAGE node is intended for use
by PDP-10 machi nes only.

SUPER- | MAGE suppresses the use of Rubout for quoting. That is, for
each entry beginning with a 177 in the PDP-10 character colum in the
NORMAL transl ation table, the NFILE character has the 177 renoved.

TABLE 5. SUPER- | MAGE TRANSLATI ON FROM NFI LE TO ASC

NFI LE charact er PDP- 10 character(s)

x in 000..177 X

X in 200..214 <x - 200>

215 015 012

X in 216..376 <x - 200>

377 no correspondi ng code

Greenberg & Keene [Page 84]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

TABLE 6. SUPER- | MAGE TRANSLATI ON FROM ASCI I TO NFI LE

PDP- 10 character NFILE character

x in 000..007 X

x in 010..012 X + 200
013 013

014 214

015 012 215

015 not-012 115

X in <016..176> X

177 177

Greenberg & Keene [Page 85]

RFC 1037 NFI LE - A File Access Protocol Decenber 1987

NOTES

1. NFILE s requirenent for using the NFILE character set is
recogni zed as a drawback for non-Synbolics machines. A useful
extension to NFILE would be a provision to make the character set
negoti abl e.

2. Inplenentation note: Care nust be taken that the freeing is done
before the control connection is allowed to process anot her
command, or else the control connection may find the data channe
to be falsely indicated as being in use.

3. The Synbolics operating system has the policy that whenever the
user side is waiting for the server side, a user abort can occur.
This user side waiting can occur in any context, such awaiting a
response, waiting in the mddle of reading network input, or
waiting in the mddle of transmtting network output. Thus there
are no "hung" states.

4. Note that the Token List Transport Layer supplies a special token
to indicate Boolean truth, but no corresponding token to indicate
Bool ean falsity. NFILE uses an enpty token list to indicate
Bool ean falsity. The historical reason for this asymmetry is the
inability of the Lisp language to differentiate between the enpty
list and NIL, which is traditionally used to nean Bool ean falsity.
If the flexibility of both a Boolean falsity and an enpty token
list were allowed, it would create problens for an operating
system that cannot distinguish between the two. This aspect of
the protocol is recognized as a concession to the Lisp | anguage.
The unfortunate effect is to disallow operating systens to
di sti ngui sh between Bool ean falsity and an enpty list.

5. No so-called "fat strings" can be sent.

Greenberg & Keene [Page 86]

